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This talk is about a kind of structure that we want to propose that we
call egalitarian. They are egalitarian in the sense that we consider states
and transitions at the same level—with the same rights, if you want. I
will explain in which precise sense this is so, and why we think these
structures are useful or convenient.
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Why we need to be egalitarian

I will begin with an example. This is a very simple program. There are a
few instructions. Two of them are writes to a file, and so there is an
instruction for asking for the handle to the file and another for releasing
the handle. There are some other instructions we don’t care about. We
have assigned labels identifying the states between the instructions.
A desirable property of such a process is that it cannot write unless it
previously has got the handle. We can express this with a formula like
2(d → -3c), using the past-time temporal operator -3. That is, “if we
are at state d , writing to the file, at some previous time we were at state
c, that is, we got the handle”.
However, this formula is very closely tied to this particular part of this
particular process, with the particular identifiers we have chosen for its
states.
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Why we need to be egalitarian

Instead of using such a formula, we usually define propositions, say
usingH and gotH, and write the formula 2(usingH→ -3gotH). These
are true of the states shown in the drawing, and probably also of some
others not shown. Indeed, such a formula can be used on any process on
which the two propositions can be given a meaning.
Up to now, all has been state-based, and this is known to be not enough
in some cases.
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Why we need to be egalitarian

Suppose, for instance, that a new way to get the handle is discovered to
exist—hacking it in some way. This is undesirable, and we want to rule it
out with our formula. But this is not possible in a state-based setting.
We need to refer to actions.
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Why we need to be egalitarian

Some logics of actions allow writing formulas like 2(write1→ -3askH),
where we refer not to the fact that we got the handle, but to the way we
got it. Note that also the other part of the formula, the fact that we are
writing to the file, is better considered as action-based.
But this new formula has the same problem as the original one: it uses
literally identifiers from the text of the program and, thus, is only useful
for this particular part of this particular path of this process.
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Why we need to be egalitarian

What we need are propositions on transitions, say using-res and
asking-for-res (using the resource, or the handle if you prefer, and
asking for it). We define them to be true on the transitions shown in the
drawing, but probably also on other transitions not shown, and we write
the appropriate formula 2(using-res→ -3asking-for-res).
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Why we need to be egalitarian

The point to note is that this is a very general and meaningful formula.
Thanks to a smart choice of names for the propositions, this formula can
be understood by itself, even if we don’t know to which system it is to be
applied. This is one of our main points in this talk: being egalitarian
entails, in particular, using propositions on transitions.



Strategies also benefit from propositions on transitions

ai bi ci di ei fi gi
x:=1 askHi write1 write2 relHi y:=2

((askH1 ; other* ; relH1) | (askH2 ; other* ; relH2))*

ops enter exit : -> Prop .
eq askH |= enter = true .
eq relH |= exit = true .
eq I:Instruction |= P:Prop = false [owise] .

(enter ; (¬enter)* ; exit)*
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Strategies also benefit from propositions on transitions

Let me show you another example, this one related to strategies. We now
have two copies of the same previous process—that’s why we have
included subscripts. Both processes write to the same file, so we need a
way to ensure mutual exclusion. We can use a strategy in the shape of a
regular expression like the one in the slide.
Here, other is a shorthand for the disjunction of all instructions different
from askH and relH. So, after process 1 has asked for the file handle
and got it, this expression only allows actions not related to the handle,
until process 1 releases it. In particular, process 2 is not allowed to ask
for the handle until process 1 releases it. And vice versa.
The problem with this expression is the same as above: it is only useful
for these particular actions.
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Strategies also benefit from propositions on transitions

Using a Maude-like syntax, we can define propositions on transitions
called enter and exit to be true respectively of askH and relH, and
false everywhere else.
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Strategies also benefit from propositions on transitions

Now, we can write this very simple strategy expression, that has the same
mutual exclusion effect: “once an action satisfying enter occurs, only
actions not satisfying enter are allowed until an exit occurs”.
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Strategies also benefit from propositions on transitions

Again, I want to point out that this expression is valid for any system in
which these two propositions can be defined. And it is meaningful by
itself, and can be understood even not knowing to which system it is
going to be applied.



Decoupling is our aim

System
specs

Proposition
definitions

Formulas

Strats
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Decoupling is our aim

Decoupling is a key word. System specification is an independent task.
The specification of temporal properties by means of formulas, and the
specification of control by means of strategies should be also independent
tasks. Independent from the particular systems to which they can be
applied in the future. This independence can be achieved thanks to the
interface provided by propositions, both on states and on transitions.



We propose egalitarian structures

(S,T ,R,AP, L)

I S: set of states;
I T : set of transitions;
I R ⊆ (S × T ) ∪ (T × S);
I AP: set of atomic propositions;
I L : (S ∪ T )→ 2AP.

s t s ′ t ′
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We propose egalitarian structures

That was the problem we think we have identified. Now I present our
proposal. An egalitarian structure is formally given by a tuple
(S,T ,R,AP, L). Note that T is an independent set of objects: a
transition is not given as a pair of states, or anything similar, but as a
new kind of object. The adjacency relation R is bipartite: from a state to
a transition, and from a transition to a state. We draw it as shown: with
rounded shapes for states and square ones for transitions—Petri-net style.
Then we have a set of atomic propositions and the labeling function.
Note that we use the same set of propositions on states and on
transitions. I will be back to this point several times in the rest of the
talk. We think this is just natural. For instance, it is often the case that
a property of a system begins to hold at a certain point and keeps
holding for some lapse of time. All the states in this lapse of time satisfy
the property; it seems suitable that the same property also holds while
transitions are being executed within this lapse of time.



Rewrite systems are egalitarian

ops f g : Nat -> SomeSort .
op _+_ : SomeSort SomeSort -> State .
var N : Nat .
rl [a] : N => N + 1 .
rl [b] : f(N) => f(3) .

g(1) + f(2)
g(1) + f(a(2))

g(1) + b(2)
g(1) + f(3)

g(a(1)) + f(2) g(2) + f(2)
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Rewrite systems are egalitarian

In rewriting logic, transitions are represented by so-called proof terms, in
the same way as states are represented by terms of the appropriate sort.
The diagram shows the proof terms for the three possible transitions
from the chosen initial state. A proof term includes the label of the rule
being applied, the values that instantiate the variables in the rule, and
the context, that is, the part of the term that does not change. Thus, as
both kinds of objects are equally represented by terms, they are ready to
be treated just the same.



Rewrite systems are egalitarian

g(1) + f(2)
g(1) + f(a(2))

g(1) + b(2)
g(1) + f(3)

g(a(1)) + f(2) g(2) + f(2)

op has-g1 : Prop .
var E : Elem .
eq g(1) + E |= has-g1 = true .
eq E |= has-g1 = false [owise] .
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Rewrite systems are egalitarian

For instance, in this toy example, suppose that we are interested in
defining a proposition has-g1 that is true of terms of the shape
g(1)+ something. This definition does the job. Note that it is valid for
states and for transitions, at the same time, with an only, uniform
definition. The two upper states and the two upper transitions satisfy it;
the others don’t.



Egalitarian structures can be split

Egalitarian structures −→ Kripke structures

(S,T ,R,AP, L) 7−→ (S ∪ T ,R,AP, L)

s t s ′ t ′ 7−→ s t s ′ t ′
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Egalitarian structures can be split

It is possible to translate an egalitarian structure to an equivalent Kripke
structure. Formally, it is only necessary to transform transitions in new
states. Graphically, we just redraw squares as circles.
The point to note here is that the resulting Kripke structure and the
original, egalitarian one are isomorphic. All the information present in one
is also in the other. Any property we express about the Kripke structure
(by means of a temporal formula, for instance) is immediately
translatable to a property about the egalitarian one. Any verification task
performed on the Kripke structure is verifying something about the
egalitarian structure. In this way, we can use any non-egalitarian tool,
either theoretical or practical, with an egalitarian aim.
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Rewrite systems can be split

There is a translation between rewrite systems, that we also call split,
that corresponds to the one in the previous slide. The idea is transforming
each rule into two. Note that the left hand side of the original rule occurs
as left hand side of the first half rule; and the right hand side occurs as
such in the second half rule. In between, we have added a term formed
using the original rule label and the list of variables in it.
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Rewrite systems can be split

The interesting thing about the resulting split system is that its standard
Kripke-structure semantics is the split of the egalitarian semantics of the
original rewrite system. Note that the drawing is the split of the one
shown in a previous slide—just with rectangles turned into rounded
shapes.
Although rewriting logic is egalitarian in nature, Maude is not so, as
proof terms are not Maude objects. The split transformation makes proof
terms appear, and allows us to refer to states and to transitions in the
same way, as we want.



Temporal logics for egalitarian structures
I Using LTL, CTL, µ-calculus. . . on the split system.
I Translating:

(split, σ) : RwS× TLR*→ RwS× CTL*,

such that

R, e |= ϕ ⇔ split(R), e |= σ(ϕ).

σ : TLR*→ CTL*:
I σ(P) = P, if P has sort SProp;
I σ(P) = #P, if P has sort TProp;
I σ(¬ϕ) = ¬σ(ϕ);
I σ(ϕ1 ∨ ϕ2) = σ(ϕ1) ∨ σ(ϕ2);
I σ(#ϕ) = # # σ(ϕ);
I σ(ϕ1 Uϕ2) = (isState→ σ(ϕ1))U (isState ∧ σ(ϕ2));
I σ(Eϕ) = Eσ(ϕ).
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Temporal logics for egalitarian structures

When we want to use temporal logics on egalitarian structures, there are
two ways to do it. The first one is to use a logic for Kripke structures
and use it on the split system, as explained above. The second one is to
use a temporal logic of an egalitarian nature and translate its formulas so
that the satisfaction relation is preserved.
TLR* is not really egalitarian, but it is able to talk about actions as well
as states, so we show a suitable translation for it.
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Temporal logics for egalitarian structures

We use here a particular flavor of TLR*: while the standard definition of
TLR* uses patterns for proof terms (so-called spatial actions) we use
directly propositions for transitions. However, this does not turn TLR*
into a fully egalitarian temporal logic, because in TLR* propositions and
formulas can only be evaluated on states. The way to assert something
about a transition is to assert it on its origin state.
So, while a proposition on states (sort SProp) is left unchanged by the
translation, a proposition on transitions (TProp) is translated with a next
operator #, to make it jump to the next state (of the split system, that
represents a transition of the original one).
Also, the next operator in #ϕ has to be duplicated, to make the system
jump over the transition-state to the next genuine state.
Something similar happens with the translation of the until operator: we
have to be sure that the formulas are always evaluated on genuine states.
For this, we need a particular proposition, isState, true of states that
represent states, false otherwise.



Our implementation
(mod EXAMPLE is

pr NAT .
sort State .
op a : Nat -> State .
var N : Nat .
crl [forth] : a(N) => a(N + 1) if N < 100 .
rl [back] : a(3) => a(2) .

endm)

a(0) forth(0) a(1) forth(1) a(2) forth(2) a(3) forth(3) . . .

back

(mod SPLIT[EXAMPLE] is
pr NAT .
sorts StateEXAMPLE TransEXAMPLE State .
subsorts StateEXAMPLE TransEXAMPLE < State .
op a : Nat -> StateEXAMPLE .
op forth : Nat -> TransEXAMPLE .
op back : -> TransEXAMPLE .
var N : Nat .
crl [forth1] : a(N) => forth(N) if N < 100 .
rl [forth2] : forth(N) => a(N + 1) .
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Our implementation

We have implemented a module operator that allows us to work in an
egalitarian way on Maude modules. I will show you how it works. This is
the example I will use. All states are built with the operator a and a
natural number. There are two rules: one that allows adding one to the
number, the other is a loop back from 3 to 2.
The property in which we will be interested is that after performing rule
back it is not possible to reach a state with number less than two. This
is quite obvious, but we want to model check for it, anyway.
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Our implementation

We have implemented a module operator called SPLIT. The slide shows
the way to use it. Instead of extending the original module as usual, with
definitions of propositions, initial states, and so on, the user has to
extend the split system. After importing SPLIT[EXAMPLE], users have
state terms and transition terms at their disposal.
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Our implementation

The user does not even see the result of the split, but I will show you
what is happening behind the scenes. The SPLIT operator assumes the
argument module has a sort named State. The split module has a sort
StateEXAMPLE that is a renaming of that sort State. It also has
TransEXAMPLE to represent transitions in the original module. There is
also a sort State that is not the original module’s one, but a new one
that includes states and transitions of the original module.
There are two operators that build transition terms, with the names of
the original module’s rules. And there are the four rules that result from
the splitting of the two original ones.



Our implementation
(mod EXAMPLE-PROPS-LTLR is

pr SPLIT[EXAMPLE] .
inc MODEL-CHECKER .
inc LTLR .

op going-back : -> TProp .
eq back |= going-back = true .
eq T:TransEXAMPLE |= going-back = false [owise] .

var N : Nat .
op at-Nlt2 : -> SProp .
eq a(N) |= at-Nlt2 = (N < 2) .
eq S:StateEXAMPLE |= at-Nlt2 = false [owise] .

eq S:StateEXAMPLE |= isState = true .
eq T:TransEXAMPLE |= isState = false .

endm)

red modelCheck(a(0), LTLR([] (going-back -> [] ˜ at-Nlt2))) .
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Our implementation

I will show you two ways of performing the model checking. Let me
advance that we prefer the second one. In the first case, we declare and
define a proposition on transitions (TProp) called going-back, true
when executing rule back and false when executing forth. We also use
a proposition on states called at-Nlt2, true of a state iff its number is
less than two. The sorts SProp and TProp are defined in the module
LTLR, that is part of our implementation.
We can now write [] (going-back -> [] ˜ at-Nlt2) which is a
TLR* formula. More precisely, a formula from LTLR, the linear-time
subset of TLR*. We need to translate it to LTL to be able to use
Maude’s model checker. The function LTLR, also defined in the module
by the same name, does the translation. It is the restriction of the
function σ above to the linear-time setting. Note that this provides a
model checker for LTLR as a by-product.
As explained, the translation needs to use the proposition isState, so
we have defined it.



Our implementation

(mod EXAMPLE-PROPS-LTL is
pr SPLIT[EXAMPLE] .
inc MODEL-CHECKER .

op going-back : -> Prop .
eq back |= going-back = true .
eq S:State |= going-back = false [owise] .

var N : Nat .
op at-Nlt2 : -> Prop .
eq a(N) |= at-Nlt2 = (N < 2) .
eq forth(N) |= at-Nlt2 = (N < 2) .
eq S:State |= at-Nlt2 = false [owise] .

endm)

red modelCheck(a(0), [] (going-back -> [] ˜ at-Nlt2)) .
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Our implementation

In the second case we define the same propositions but on all states and
transitions. Proposition going-back, that was previously defined only on
transitions, is now defined also on states. While staying on a state we are
going nowhere, in particular we are not going back, so we define this
proposition as false on every state. Note that the sort State appearing
there is the one from the split module, that includes states and
transitions from the original module.
Also, the proposition at-Nlt2 can be naturally given a meaning on
transitions as shown: true only when applying rule forth with a number
less that 2.
With propositions defined in this way, we can write an LTL formula (the
same one as above) that can be directly fed to the model checker.
This is the very nature of being egalitarian: not only using propositions
on states and on transitions, but doing it uniformly, with no visible
discrimination.



Future work

I Be egalitarian!

I Strategies.
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Future work

I finish with a glimpse of our future work in two items. The first one
looks rather like a New Year’s resolution. As it is written, it is a little
strong. I would rather say: “consider the possibility that being egalitarian
in your particular setting pays off”.
The second item is more concrete. We are interested in strategies, in
controlling systems by means of strategies, and we feel that being
egalitarian will allow our strategies to be more general, more meaningful,
and maybe even easier to implement.



Thank you.

Have a good day.


