
Synchronous products
of rewrite systems

I Óscar Mart́ın J
Alberto Verdejo

Narciso Mart́ı-Oliet
Univ. Complutense de Madrid

ATVA 2016
Chiba



Aim: modular specification in rewriting logic

s1 s2

s3 s4

a

b ca ‖

t1

t2

t3

b

c

= ?

Rewriting logic (and Maude)

Abstract transition systems

1 / 15



Aim: modular specification in rewriting logic

s1 s2

s3 s4

a

b ca ‖

t1

t2

t3

b

c

= ?

Rewriting logic (and Maude)

Abstract transition systems

20
16

-1
0-

11
Aim: modular specification in rewriting logic

The idea is a well-known one: we are given the description of two
systems in some way and we want to figure out what it means to
compose them, to make them evolve in parallel and synchronized. It is
the concept called synchronous product in automata theory; and the
same concept called parallel composition of processes in process algebras.



Aim: modular specification in rewriting logic

s1 s2

s3 s4

a

b ca ‖

t1

t2

t3

b

c

= ?

Rewriting logic (and Maude)

Abstract transition systems

1 / 15



Aim: modular specification in rewriting logic

s1 s2

s3 s4

a

b ca ‖

t1

t2

t3

b

c

= ?

Rewriting logic (and Maude)

Abstract transition systems

20
16

-1
0-

11
Aim: modular specification in rewriting logic

Our aim is to take to concept to rewriting logic. Rewriting logic is a very
expressive formalism for the specification of systems that, up to now,
lacks a concept of parallel composition of modules. Maude is the
language based on rewriting logic that we use in our work.



Aim: modular specification in rewriting logic

s1 s2

s3 s4

a

b ca ‖

t1

t2

t3

b

c

= ?

Rewriting logic (and Maude)

Abstract transition systems

1 / 15



Aim: modular specification in rewriting logic

s1 s2

s3 s4

a

b ca ‖

t1

t2

t3

b

c

= ?

Rewriting logic (and Maude)

Abstract transition systems

20
16

-1
0-

11
Aim: modular specification in rewriting logic

We also want to be somewhat more abstract and define the same concept
for a suitable kind of transition systems that I will make explicit later.



This is a very simple Maude module

mod RAILWAY is
sort State .
ops waiting crossing to-station

at-station from-station : -> State .
rl [wc] : waiting => crossing .
rl [ct] : crossing => to-station .
rl [ta] : to-station => at-station .
rl [af] : at-station => from-station .
rl [fw] : from-station => waiting .

endm

at-station

from-station

waiting

crossing

to-station

2 / 15



This is a very simple Maude module

mod RAILWAY is
sort State .
ops waiting crossing to-station

at-station from-station : -> State .
rl [wc] : waiting => crossing .
rl [ct] : crossing => to-station .
rl [ta] : to-station => at-station .
rl [af] : at-station => from-station .
rl [fw] : from-station => waiting .

endm

at-station

from-station

waiting

crossing

to-station

20
16

-1
0-

11
This is a very simple Maude module

I will use my first few slides to go deeper into this motivation and, at the
same time, refreshing you on rewriting logic and Maude, in case you need
it.
This is a very simple system. It consists of a train that goes around a
circular railway. We have identified five states on it: being at the station,
coming from the station, waiting before the crossing, crossing, and going
back to the station.



This is a very simple Maude module
mod RAILWAY is

sort State .
ops waiting crossing to-station

at-station from-station : -> State .
rl [wc] : waiting => crossing .
rl [ct] : crossing => to-station .
rl [ta] : to-station => at-station .
rl [af] : at-station => from-station .
rl [fw] : from-station => waiting .

endm

at-station

from-station

waiting

crossing

to-station

2 / 15



This is a very simple Maude module
mod RAILWAY is

sort State .
ops waiting crossing to-station

at-station from-station : -> State .
rl [wc] : waiting => crossing .
rl [ct] : crossing => to-station .
rl [ta] : to-station => at-station .
rl [af] : at-station => from-station .
rl [fw] : from-station => waiting .

endm

at-station

from-station

waiting

crossing

to-station

20
16

-1
0-

11
This is a very simple Maude module

This is the Maude module that models such system. Its name is
RAILWAY. We start declaring a sort (or type) State and five constants of
that sort to represent the five states of the system. Then, there are five
rules. Rules describe the dynamics of the system. For instance, the first
one, whose label is wc, allows the system to move from state waiting to
state crossing. Usually, there are also equations in a Maude module.



A little bit more complex
mod RAILWAYx2 is

sorts TrainState State .
ops waiting crossing to-station

at-station from-station : -> TrainState .
op <_,_> : TrainState TrainState -> State .
rl [wc] : waiting => crossing .
rl [ct] : crossing => to-station .
rl [ta] : to-station => at-station .
rl [af] : at-station => from-station .
rl [fw] : from-station => waiting .

endm

< waiting, waiting >

< crossing, waiting >

< waiting, crossing >

wc

wc

3 / 15



A little bit more complex
mod RAILWAYx2 is

sorts TrainState State .
ops waiting crossing to-station

at-station from-station : -> TrainState .
op <_,_> : TrainState TrainState -> State .
rl [wc] : waiting => crossing .
rl [ct] : crossing => to-station .
rl [ta] : to-station => at-station .
rl [af] : at-station => from-station .
rl [fw] : from-station => waiting .

endm

< waiting, waiting >

< crossing, waiting >

< waiting, crossing >

wc

wc

20
16

-1
0-

11
A little bit more complex

As there is a crossing with another railway in the previous system, we
want to model that railway as well. We need two sorts now, TrainState
for the state of each individual train, and State for the global state. We
have the same five constants as before, but now they are of sort
TrainState. There is a new operator for building terms of sort State.
And we have exactly the same five rules as before.



A little bit more complex
mod RAILWAYx2 is

sorts TrainState State .
ops waiting crossing to-station

at-station from-station : -> TrainState .
op <_,_> : TrainState TrainState -> State .
rl [wc] : waiting => crossing .
rl [ct] : crossing => to-station .
rl [ta] : to-station => at-station .
rl [af] : at-station => from-station .
rl [fw] : from-station => waiting .

endm

< waiting, waiting >

< crossing, waiting >

< waiting, crossing >

wc

wc

3 / 15



A little bit more complex
mod RAILWAYx2 is

sorts TrainState State .
ops waiting crossing to-station

at-station from-station : -> TrainState .
op <_,_> : TrainState TrainState -> State .
rl [wc] : waiting => crossing .
rl [ct] : crossing => to-station .
rl [ta] : to-station => at-station .
rl [af] : at-station => from-station .
rl [fw] : from-station => waiting .

endm

< waiting, waiting >

< crossing, waiting >

< waiting, crossing >

wc

wc

20
16

-1
0-

11
A little bit more complex

The same five rules work because, in rewriting logic, rules can be applied
to subterms. For instance, starting from a state
< waiting, waiting >, the rule labeled wc can be applied either to the
first or to the second component of the global state.



Adding mutual exclusion

mod SAFE-RAILWAYS is
sorts TrainState State .
ops waiting crossing to-station

at-station from-station : -> TrainState .
op <_,_> : TrainState TrainState -> State .
var T : TrainState .
crl [t1wc] : < waiting, T > => < crossing, T >

if T =/= crossing .
crl [t2wc] : < T, waiting > => < T, crossing >

if T =/= crossing .
rl [ct] : crossing => to-station .
rl [ta] : to-station => at-station .
rl [af] : at-station => from-station .
rl [fw] : from-station => waiting .

endm

4 / 15



Adding mutual exclusion

mod SAFE-RAILWAYS is
sorts TrainState State .
ops waiting crossing to-station

at-station from-station : -> TrainState .
op <_,_> : TrainState TrainState -> State .
var T : TrainState .
crl [t1wc] : < waiting, T > => < crossing, T >

if T =/= crossing .
crl [t2wc] : < T, waiting > => < T, crossing >

if T =/= crossing .
rl [ct] : crossing => to-station .
rl [ta] : to-station => at-station .
rl [af] : at-station => from-station .
rl [fw] : from-station => waiting .

endm20
16

-1
0-

11
Adding mutual exclusion

We need to ensure somehow that both trains do not go into the crossing
at the same time. We can do so by adding some control in the rule that
allows trains into the crossing. For that, we need the whole state to
appear in that rule, so that we need to split rule wc into two, one to
control each train.



Counting stations and getting a mess
mod COUNTING-SAFE-RAILWAYS is

including NAT .
sorts TrainState State .
ops waiting crossing to-station

at-station from-station : -> TrainState .
op <_,_,_> : TrainState TrainState Nat -> State .
var T : TrainState .
var N : Nat .
crl [t1wc] : < waiting, T, N > => < crossing, T, N >

if T =/= crossing .
crl [t2wc] : < T, waiting, N > => < T, crossing, N >

if T =/= crossing .
rl [ct] : crossing => to-station .
rl [t1ta] : < to-station, T, N >

=> < at-station, T, N + 1 > .
rl [t2ta] : < T, to-station, N >

=> < T, at-station, N + 1 > .
rl [af] : at-station => from-station .
rl [fw] : from-station => waiting .

endm

5 / 15



Counting stations and getting a mess
mod COUNTING-SAFE-RAILWAYS is

including NAT .
sorts TrainState State .
ops waiting crossing to-station

at-station from-station : -> TrainState .
op <_,_,_> : TrainState TrainState Nat -> State .
var T : TrainState .
var N : Nat .
crl [t1wc] : < waiting, T, N > => < crossing, T, N >

if T =/= crossing .
crl [t2wc] : < T, waiting, N > => < T, crossing, N >

if T =/= crossing .
rl [ct] : crossing => to-station .
rl [t1ta] : < to-station, T, N >

=> < at-station, T, N + 1 > .
rl [t2ta] : < T, to-station, N >

=> < T, at-station, N + 1 > .
rl [af] : at-station => from-station .
rl [fw] : from-station => waiting .

endm

20
16

-1
0-

11
Counting stations and getting a mess

Let’s add some other complexity: a counter for the number of times the
trains stop at their stations. For that we need to add a natural number
to the state. And we need rule ta to use the whole state, so that we
need to split it into two, one for each train.
This is starting to look messy, even though the system is still quite
simple. This is the usual problem with monolithic specifications.



The (well-known) solution is modularity
mod RAILWAY1 is mod RAILWAY2 is

sort State . sort State .
ops w c t a f : -> State . ops w c t a f : -> State .
rl [t1wc] : w => c . rl [t2wc] : w => c .
rl [t1ct] : c => t . rl [t2ct] : c => t .
rl [t1ta] : t => a . rl [t2ta] : t => a .
rl [t1af] : a => f . rl [t2af] : a => f .
rl [t1fw] : f => w . rl [t2fw] : f => w .

endm endm

mod MUTEX is mod COUNTER is
sort State . inc NAT .
ops one none : -> State . sort State .
rl [t1wc] : none => one . subsort Nat < State .
rl [t2wc] : none => one . rl [t1ta] : N => N + 1 .
rl [t1ct] : one => none . rl [t2ta] : N => N + 1 .
rl [t2ct] : one => none . endm

endm

6 / 15



The (well-known) solution is modularity
mod RAILWAY1 is mod RAILWAY2 is

sort State . sort State .
ops w c t a f : -> State . ops w c t a f : -> State .
rl [t1wc] : w => c . rl [t2wc] : w => c .
rl [t1ct] : c => t . rl [t2ct] : c => t .
rl [t1ta] : t => a . rl [t2ta] : t => a .
rl [t1af] : a => f . rl [t2af] : a => f .
rl [t1fw] : f => w . rl [t2fw] : f => w .

endm endm

mod MUTEX is mod COUNTER is
sort State . inc NAT .
ops one none : -> State . sort State .
rl [t1wc] : none => one . subsort Nat < State .
rl [t2wc] : none => one . rl [t1ta] : N => N + 1 .
rl [t1ct] : one => none . rl [t2ta] : N => N + 1 .
rl [t2ct] : one => none . endm

endm

20
16

-1
0-

11
The (well-known) solution is modularity

This is the usual solution: modular, or component-wise, specification.
Our framework does not allow for parametric specifications. Thus, we
need the two trains modeled by two separate modules. They have rules
with different labels, but are otherwise equal.
The control needed for mutual exclusion is in module MUTEX. It has only
two states, representing whether one or no trains are crossing. Note that
the rule labels in this module are the same that appear in the railway
systems. This is the whole point: rules with the same label can only be
run synchronously, at the same time. Thus, rule t1wc, that allows train
one to get into the crossing, can only be run when MUTEX is in state
none. As that rule label does not occur in the other two systems, they
have no concern about it.
The module COUNTER deals just with counting stops.
Each rule in MUTEX, and also in COUNTER, is somewhat duplicated: once
for each railway system.



This is how our implementation is used

mod COMPOSED-MODULE is
including ((RAILWAY1 || RAILWAY2) || MUTEX) || COUNTER .
...
... < < < crossing, T >, M >, N > ...
...

endm

rl [t1wc] : < < < waiting, T >, none >, N >
=> < < < crossing, T >, one >, N > .

7 / 15



This is how our implementation is used

mod COMPOSED-MODULE is
including ((RAILWAY1 || RAILWAY2) || MUTEX) || COUNTER .
...
... < < < crossing, T >, M >, N > ...
...

endm

rl [t1wc] : < < < waiting, T >, none >, N >
=> < < < crossing, T >, one >, N > .

20
16

-1
0-

11
This is how our implementation is used

We have implemented on Maude the operator ||, that takes two Maude
modules and produces one representing their synchronous product. Such
composition can be imported in other module as shown and, then,
composed states can be used.



This is how our implementation is used

mod COMPOSED-MODULE is
including ((RAILWAY1 || RAILWAY2) || MUTEX) || COUNTER .
...
... < < < crossing, T >, M >, N > ...
...

endm

rl [t1wc] : < < < waiting, T >, none >, N >
=> < < < crossing, T >, one >, N > .

7 / 15



This is how our implementation is used

mod COMPOSED-MODULE is
including ((RAILWAY1 || RAILWAY2) || MUTEX) || COUNTER .
...
... < < < crossing, T >, M >, N > ...
...

endm

rl [t1wc] : < < < waiting, T >, none >, N >
=> < < < crossing, T >, one >, N > .

20
16

-1
0-

11
This is how our implementation is used

Internally, the || operator generates rules like the one shown, with the
same label taken from the components, and showing the synchronized
changes. The user does not see this rule, nor needs it. The user only
needs to note which rules have equal labels.



The other half: syncing also on states
Precedents:

I L2TS (De Nicola & Vaandrager, 1995)
I ESTL (Kindler & Vesper, 1998)
I TLR* (Meseguer, 2008)
I egalitarian structures (ourselves, 2016)

P Q
s1

P Q
s2

¬P Q
s3

P ¬Q
s4

a

b ca ‖

P Q ¬R
t1

¬P Q ¬R
t2

¬P Q R
t3

b

c

= ?

8 / 15



The other half: syncing also on states
Precedents:

I L2TS (De Nicola & Vaandrager, 1995)
I ESTL (Kindler & Vesper, 1998)
I TLR* (Meseguer, 2008)
I egalitarian structures (ourselves, 2016)

P Q
s1

P Q
s2

¬P Q
s3

P ¬Q
s4

a

b ca ‖

P Q ¬R
t1

¬P Q ¬R
t2

¬P Q R
t3

b

c

= ?

20
16

-1
0-

11
The other half: syncing also on states

The synchronizations shown up to now are all on actions. But since the
start, we wanted to synchronize our systems using both transitions and
states.
I have listed a few of the precedents on using transitions and states. The
two in the middle are temporal logics; the other two are transition
structures. The important thing about these proposals is that they
include rationals on why it is convenient to be able to refer to states and
transitions at the same time. For instance, some temporal properties of
systems are more naturally and simply expressed by formulas that can use
both. We think that the same is true for synchronization purposes.



The other half: syncing also on states
Precedents:

I L2TS (De Nicola & Vaandrager, 1995)
I ESTL (Kindler & Vesper, 1998)
I TLR* (Meseguer, 2008)
I egalitarian structures (ourselves, 2016)

P Q
s1

P Q
s2

¬P Q
s3

P ¬Q
s4

a

b ca ‖

P Q ¬R
t1

¬P Q ¬R
t2

¬P Q R
t3

b

c

= ?

8 / 15



The other half: syncing also on states
Precedents:

I L2TS (De Nicola & Vaandrager, 1995)
I ESTL (Kindler & Vesper, 1998)
I TLR* (Meseguer, 2008)
I egalitarian structures (ourselves, 2016)

P Q
s1

P Q
s2

¬P Q
s3

P ¬Q
s4

a

b ca ‖

P Q ¬R
t1

¬P Q ¬R
t2

¬P Q R
t3

b

c

= ?

20
16

-1
0-

11
The other half: syncing also on states

These are L2TSs, doubly labeled transition structures. Their transitions
are labeled by atomic action identifiers, and their states are labeled by
the atomic propositions they satisfy. These are the kind of transition
systems useful to us, as I will explain shortly. So the question is how to
synchronize this kind of systems. The short answer is: transitions by
equal labels; states by agreement on their common propositions.



Syncing on states
mod RAILWAYS-EXT is

including SATISFACTION .
including RAILWAY1 || RAILWAY2 .
op safe : -> Prop .
var S : State .
eq < crossing, crossing > |= safe = false .
eq S |= safe = true [owise] .

endm
mod MUTEX2 is

including SATISFACTION .
op o : -> State .
op safe : -> Prop .
eq o |= safe = true .

endm

9 / 15



Syncing on states
mod RAILWAYS-EXT is

including SATISFACTION .
including RAILWAY1 || RAILWAY2 .
op safe : -> Prop .
var S : State .
eq < crossing, crossing > |= safe = false .
eq S |= safe = true [owise] .

endm
mod MUTEX2 is

including SATISFACTION .
op o : -> State .
op safe : -> Prop .
eq o |= safe = true .

endm

20
16

-1
0-

11
Syncing on states

As an example of synchronization on states, this is an implementation of
the mutual exclusion control using states. As this synchronization is on
propositions, we need to extend (not modify) the two-railways system.
We define on it the proposition safe, as true everywhere except when
both trains are crossing at the same time. Then we specify a new module
MUTEX2 with an only state o and a proposition also with the name safe
that is always true.
States from the component systems can only be visited at the same time
if they agree on their common propositions. The only common
proposition is safe, and it is always true in the unique state of MUTEX2,
so it must be also true in all states visited in the two railways. That is, a
state with both trains crossing cannot be visited.



Syncing on states
mod RAILWAYS-EXT is

including SATISFACTION .
including RAILWAY1 || RAILWAY2 .
op safe : -> Prop .
var S : State .
eq < crossing, crossing > |= safe = false .
eq S |= safe = true [owise] .

endm
mod MUTEX2 is

including SATISFACTION .
op o : -> State .
op safe : -> Prop .
eq o |= safe = true .

endm

More involved?

9 / 15



Syncing on states
mod RAILWAYS-EXT is

including SATISFACTION .
including RAILWAY1 || RAILWAY2 .
op safe : -> Prop .
var S : State .
eq < crossing, crossing > |= safe = false .
eq S |= safe = true [owise] .

endm
mod MUTEX2 is

including SATISFACTION .
op o : -> State .
op safe : -> Prop .
eq o |= safe = true .

endm

More involved?20
16

-1
0-

11
Syncing on states

This can be seen as more involved. The idea is not: it only says that the
state <crossing, crossing> cannot be visited. But the coding
probably is.



Syncing on states
mod RAILWAYS-EXT is

including SATISFACTION .
including RAILWAY1 || RAILWAY2 .
op safe : -> Prop .
var S : State .
eq < crossing, crossing > |= safe = false .
eq S |= safe = true [owise] .

endm
mod MUTEX2 is

including SATISFACTION .
op o : -> State .
op safe : -> Prop .
eq o |= safe = true .

endm

More suitable

9 / 15



Syncing on states
mod RAILWAYS-EXT is

including SATISFACTION .
including RAILWAY1 || RAILWAY2 .
op safe : -> Prop .
var S : State .
eq < crossing, crossing > |= safe = false .
eq S |= safe = true [owise] .

endm
mod MUTEX2 is

including SATISFACTION .
op o : -> State .
op safe : -> Prop .
eq o |= safe = true .

endm

More suitable20
16

-1
0-

11
Syncing on states

But, more importantly, this is more correct. If, for instance, one of the
trains could go backwards, and enter the crossing like this, the former
control on actions would need to be modified to account for the new
actions, but this control would still be valid.



Used in this way

mod COMPOSED-MODULE-2 is
including (RAILWAYS-EXT || MUTEX2) || COUNTER .
...

endm

crl [t1wc] : < < < waiting, T >, M >, N >
=> < < < crossing, T >, M >, N >
if compatible(< crossing, T >, M) .

10 / 15



Used in this way

mod COMPOSED-MODULE-2 is
including (RAILWAYS-EXT || MUTEX2) || COUNTER .
...

endm

crl [t1wc] : < < < waiting, T >, M >, N >
=> < < < crossing, T >, M >, N >
if compatible(< crossing, T >, M) .

20
16

-1
0-

11
Used in this way

The rules generated in this case look like this, where the function
compatible tests whether the states agree on their common
propositions.



From rewrite systems to L2TSs

(Σ,E ∪ Ax ,R) 7−→ (S,Λ,→,AP, L):
I S := TΣ/E∪Ax ,State;
I Λ is the set of rule labels in R;
I s λ−→ s ′ iff there is a rule in R with label λ that allows

rewriting s to s ′ in one step;
I AP := TΣ/E∪Ax ,Prop;
I L(s) := {p ∈ AP | s |= p = true modulo E ∪ Ax}.

11 / 15



From rewrite systems to L2TSs

(Σ,E ∪ Ax ,R) 7−→ (S,Λ,→,AP, L):
I S := TΣ/E∪Ax ,State;
I Λ is the set of rule labels in R;
I s λ−→ s ′ iff there is a rule in R with label λ that allows

rewriting s to s ′ in one step;
I AP := TΣ/E∪Ax ,Prop;
I L(s) := {p ∈ AP | s |= p = true modulo E ∪ Ax}.

20
16

-1
0-

11
From rewrite systems to L2TSs

I want to be a little more formal in the final slides.
There is a natural translation from rewrite systems to L2TSs (that can be
seen as a semantics function):

• the set of states is given by the terms of sort State in the rewrite
system;

• the alphabet of actions is the set of rule labels;

• a transition is given by a rewrite rule as written in the slide;

• the set of atomic propositions is given by the terms of sort Prop in
the rewrite system;

• the labeling is given by the equations E as explained in the slide.



The synchronous product of L2TSs

(S,Λ,→,AP, L) := (S1,Λ1,→1,AP1, L1) ‖ (S2,Λ2,→2,AP2, L2)

I S := (S1 × S2) ∩ ≈AP1 ∩ AP2 ;
I Λ := Λ1 ∪ Λ2;
I regarding transitions:

I 〈s1, s2〉
λ−→ 〈s ′

1, s ′
2〉 iff s1

λ−→ s ′
1 and s2

λ−→ s ′
2,

I 〈s1, s2〉
λ−→ 〈s ′

1, s2〉 iff s1
λ−→ s ′

1 and λ 6∈ Λ2,
I 〈s1, s2〉

λ−→ 〈s1, s ′
2〉 iff s2

λ−→ s ′
2 and λ 6∈ Λ1;

I AP := AP1 ∪AP2;
I L(〈s1, s2〉) := L1(s1) ∪ L2(s2).

12 / 15



The synchronous product of L2TSs

(S,Λ,→,AP, L) := (S1,Λ1,→1,AP1, L1) ‖ (S2,Λ2,→2,AP2, L2)

I S := (S1 × S2) ∩ ≈AP1 ∩ AP2 ;
I Λ := Λ1 ∪ Λ2;
I regarding transitions:

I 〈s1, s2〉
λ−→ 〈s ′

1, s ′
2〉 iff s1

λ−→ s ′
1 and s2

λ−→ s ′
2,

I 〈s1, s2〉
λ−→ 〈s ′

1, s2〉 iff s1
λ−→ s ′

1 and λ 6∈ Λ2,
I 〈s1, s2〉

λ−→ 〈s1, s ′
2〉 iff s2

λ−→ s ′
2 and λ 6∈ Λ1;

I AP := AP1 ∪AP2;
I L(〈s1, s2〉) := L1(s1) ∪ L2(s2).20

16
-1

0-
11

The synchronous product of L2TSs

The definition of the synchronous product for rewrite systems happens to
be too complex and long, due to the large number of cases and points
that need to be taken into account. The same is true for its
implementation. It is all in the paper. But the idea is simple and can be
better appreciated with L2TSs:

• the set of states is a subset of the Cartesian product, given by the
compatibility relation ≈ on the common propositions;

• the alphabet of actions is the union of the individual alphabets;

• transitions are possible either if the same action is possible in both
systems at the same moment or if an action is available in one
system and does not exist in the alphabet of the other;

• atomic propositions and labeling as shown in the slide.



The synchronous product of L2TSs: example

P Q
s1

P Q
s2

¬P Q
s3

P ¬Q
s4

a

b ca ‖

P Q ¬R
t1

¬P Q ¬R
t2

¬P Q R
t3

b

c

=

P Q ¬R
〈s1, t1〉

P Q ¬R
〈s2, t1〉

¬P Q ¬R
〈s3, t2〉

¬P Q R
〈s3, t3〉

a

b

13 / 15



The synchronous product of L2TSs: example

P Q
s1

P Q
s2

¬P Q
s3

P ¬Q
s4

a

b ca ‖

P Q ¬R
t1

¬P Q ¬R
t2

¬P Q R
t3

b

c

=

P Q ¬R
〈s1, t1〉

P Q ¬R
〈s2, t1〉

¬P Q ¬R
〈s3, t2〉

¬P Q R
〈s3, t3〉

a

b20
16

-1
0-

11
The synchronous product of L2TSs: example

• State s1 does not agree on P with t2 nor t3, so it only gives rise to
〈s1, t1〉.

• Action b must be executed in both systems at the same time.

• Action a can be executed in the left system alone, as the right
system does not care about it.

• Action c is present in both systems, but there is no way to execute
it at the same time in both. Thus, c cannot happen in the
composed system. (Note, by the way, that action c is in the
alphabet of actions of the resulting system, even though it is not
shown in the drawing.)



Future work

I Generalization: complex transition terms.
I Modular verification.
I Implementation of strategies.
I Explore intersections with:

I runtime verification,
I coordination models,
I aspect-oriented programming,
I behavioral programming,
I DES,
I . . .

14 / 15



Future work

I Generalization: complex transition terms.
I Modular verification.
I Implementation of strategies.
I Explore intersections with:

I runtime verification,
I coordination models,
I aspect-oriented programming,
I behavioral programming,
I DES,
I . . .

20
16

-1
0-

11
Future work

• The first thing on which we are working is generalizing all the above
in several directions. The main one is treating transitions and states
as equals. It is unfortunate that the only information we can use
from transitions is the action identifier, while for states we have
complex terms representing them and propositions defined on them.
We want to find an appropriate term representation for transitions
as well, and use it for synchronization.

• Modular verification seems to be a natural next step.
• Strategies, regarding non-deterministic systems, are a way to guide

the system, restricting its capabilities, so as to get the system
behave in certain ways and not others. We want to explore to what
extent strategies can be implemented as rewrite systems that exert
their control through synchronous products.

• Finally, it seems worth exploring the intersections of all the above
with existing fields like the ones in the slide.



Thank you.

Have a good day.


