
Editors: Narciso Mart́ı-Oliet Miguel Palomino

Technical report TR-08/12

Universidad Complutense de Madrid
Departamento de Sistemas Informáticos y Computación

WADT 2012
Preliminary Proceedings

21st International Workshop on
Algebraic Development Techniques

Narciso Mart́ı-Oliet Miguel Palomino

Technical report TR-08/12

Universidad Complutense de Madrid
Departamento de Sistemas Informáticos y Computación

June 2012

Preface

The 21st International Workshop on Algebraic Development Techniques (WADT
2012) was held in Salamanca, Spain, from the 7th to the 10th of June 2012.

The algebraic approach to system specification encompasses many aspects of
the formal design of software systems. Originally born as a formal method for
reasoning about abstract data types, it now covers new specification frameworks
and programming paradigms (such as object-oriented, aspect-oriented, agent-
oriented, logic and higher-order functional programming) as well as a wide range
of application areas (including information systems, concurrent, distributed and
mobile systems).

The WADT workshop series focuses on the algebraic approach to the speci-
fication and development of systems and aims at providing a platform for pre-
senting recent and ongoing work, to meet colleagues, and to discuss new ideas
and future trends. Typical, but not exclusive topics of interest are:

– Foundations of algebraic specification.
– Other approaches to formal specification, including process calculi and mod-

els of concurrent, distributed and mobile computing.
– Specification languages, methods, and environments.
– Semantics of conceptual modelling methods and techniques.
– Model-driven development.
– Graph transformations, term rewriting and proof systems.
– Integration of formal specification techniques.
– Formal testing and quality assurance.
– Validation and verification.

This technical report contains the 36 abstracts presented during the work-
shop. In addition to the presentations of ongoing research results, the program
included three invited lectures by Roberto Bruni (Università di Pisa, Italy),
Francisco Durán (Universidad de Málaga, Spain), and Kim G. Larsen (Aalborg
University, Denmark).

As for previous WADT workshops, after the meeting authors will be invited
to submit full papers for the refereed proceedings, which will be published as a
volume of Springer’s Lecture Notes in Computer Science.

The Steering Committee consists of:

– Michel Bidoit (France)
– Andrea Corradini (Italy)
– Jose Fiadeiro (UK)
– Rolf Hennicker (Germany)
– Hans-Jörg Kreowski (Germany)
– Till Mossakowski (chair, Germany)
– Fernando Orejas (Spain)
– Francesco Parisi-Presicce (Italy)

II

– Grigore Roşu (United States)
– Andrzej Tarlecki (Poland)

The local Organising Committee included:

– Narciso Mart́ı-Oliet (cochair, Universidad Complutense de Madrid)
– Miguel Palomino Tarjuelo (cochair, Universidad Complutense de Madrid)
– Gustavo Santos (Universidad de Salamanca)
– Ignacio Fábregas (Universidad Complutense de Madrid)
– Isabel Pita (Universidad Complutense de Madrid)
– Adrián Riesco (Universidad Complutense de Madrid)
– David Romero (Universidad Complutense de Madrid)
– Fernando Rosa (Universidad Complutense de Madrid)

The workshop took place under the auspices of IFIP WG 1.3, and it was
organized by the Departmento de Sistemas Informáticos y Computación at Uni-
versidad Complutense de Madrid. We gratefully acknowledge the sponsorship by
the Spanish Ministerio de Economı́a y Competitividad, IFIP TC1, Facultad de
Informática of Universidad Complutense de Madrid, Caja España–Duero Obra
Social, Universidad de Salamanca, and IMDEA Software Institute.

May 29, 2012
Madrid

Narciso Mart́ı-Oliet
Miguel Palomino

Table of Contents

Invited talks

Open Multiparty Interaction . 1

Chiara Bodei, Linda Brodo, and Roberto Bruni

On the modularity and reusability of the rule-based specification of
QoS properties of systems . 4

Francisco Durán (Universidad de Málaga), Steffen Zschaler (King’s
College London)

Quantitative Modal Transition Systems . 6

Kim G. Larsen

Regular presentations

Systematic Design of Abstractions in K . 9

Irina Măriuca Asăvoae

Bounded Model Checking of Recursive Programs with Pointers in K 12

Irina Măriuca Asăvoae, Frank de Boer, Marcello M. Bonsangue,
Dorel Lucanu, Jurriaan Rot

A K-Based Methodology for Modular Design of Embedded Systems 16

Mihail Asăvoae

An Object-Z Institution for Specifying Dynamic Object Behavior 18

Hubert Baumeister, Mohamed Bettaz, Mourad Maouche, and
Mhamed Mosteghanemi

A History-Dependent Probabilistic Strategy Language for Probabilistic
Rewrite Theories . 21

Lucian Bentea and Peter Csaba Ölveczky

Adaptable Transition Systems . 25

Roberto Bruni, Andrea Corradini, Fabio Gadducci, Alberto Lluch
Lafuente, and Andrea Vandin

Entailment Systems for Default Reasoning . 28

Valent́ın Cassano, Carlos G. Lopez Pombo, and Thomas S.E.
Maibaum

Representing CASL in a Proof-Theoretical Logical Framework 31

Mihai Codescu, Fulya Horozal, Iulia Ignatov, and Florian Rabe

IV

Compiling Logics . 34
Mihai Codescu, Fulya Horozal, Till Mossakowski, and Florian Rabe

On the Concurrent Semantics of Transformation Systems with Negative
Application Conditions . 37

A. Corradini, R. Heckel, F. Hermann, S. Gottmann, and N.
Nachtigall

Decision Algebra: Parameterized Specification of Decision Models 40
Antonina Danylenko, Wolf Zimmermann and Welf Löwe

A module algebra for behavioural specifications . 44
Răzvan Diaconescu

Query Languages are Cartesian Monads (Extended abstract) 46
Zinovy Diskin and Tom Maibaum

Statistical Model-Checking for Composite Actor Systems 48
Jonas Eckhardt, Tobias Mühlbauer, José Meseguer, and Martin
Wirsing

On Linear Contravariant Semantics . 51
Ignacio Fábregas, David de Frutos Escrig, and Miguel Palomino

Soft Constraints with Lexicographic Ordering . 54
Fabio Gadducci and Giacoma Valentina Monreale

On Open Semantics for Reactive Systems . 57
Fabio Gadducci, Giacoma Valentina Monreale and Ugo Montanari

From Interface Theories to Assembly Theories Extended Abstract 59
Rolf Hennicker and Alexander Knapp

Streamlining Policy Creation in Policy Frameworks . 61
Mark Hills

Representing Categories of Theories in a Proof-Theoretical Logical
Framework . 64

Fulya Horozal and Florian Rabe

Designing DSLs – A Craftsman’s Approach for the Railway Domain
using CASL . 66

Phillip James, Alexander Knapp, Till Mossakowski, and Markus
Roggenbach

Satisfiability calculi: the semantic counterpart of proof calculi in general
logics . 69

Carlos G. Lopez Pombo, Pablo F. Castro, Nazareno M. Aguirre,
and Tomas S.E. Maibaum

V

Categorical Characterization of Structure Building Operations 72
Carlos G. Lopez Pombo and Marcelo F. Frias

Execution modes as local states — towards a formal semantics for
reconfigurable systems . 75

Alexandre Madeira, Manuel A. Martins, Lúıs S. Barbosa

Constructions – Models of Signatures with Dependency Structure 78
Grzegorz Marczyński

Semantics of the distributed ontology language: Institutes and Institutions 81
Till Mossakowski, Oliver Kutz, and Christoph Lange

Dualities for modal algebras . 84
Pedro Miguel Teixeira Olhero Pessoa Nora

Formal Specification of the Kademlia and the Kad Routing Tables in
Maude . 86

Isabel Pita and Maŕıa Inés Fernández Camacho

Mechanically Verifying Logic Translations . 89
Florian Rabe and Kristina Sojakova

A Generic Program Slicing Technique based on Language Definitions 91
Adrián Riesco, Irina Măriuca Asăvoae, Mihail Asăvoae

Distances Between Processes: a Pure Algebraic Approach 93
David Romero Hernández, David de Frutos Escrig

Multiset Rewriting for the Verification of Depth-Bounded Processes
with Name Binding . 96

Fernando Rosa-Velardo and Maŕıa Martos-Salgado

Deriving architectural reconfigurations . 99
Alejandro Sanchez, Luis S. Barbosa, and Daniel Riesco

Verifying Parallel Recursive Programs by Regular Approximations of
Context-Free Languages . 101

Pierre-Yves Schobbens

From Bialgebraic Semantics to Universal Simulators of Cellular Automata 104
Baltasar Trancón y Widemann

On the Instantiation of Parameterised Specifications 107
Ionuţ Ţuţu

Author Index . 109

VI

Open Multiparty Interaction?

Chiara Bodei1, Linda Brodo2, and Roberto Bruni1

1 University of Pisa, Italy
2 University of Sassari, Italy

Extended Abstract

An interaction is an action by which communicating processes can influence each
other. Interactions in the time of Web are something more than input and output
between two entities. Actually, the word itself can be misleading, by suggesting
a reciprocal or mutual kind of actions. Instead, interactions more and more often
involve many parties and actions are difficult to classify under output and input
primitives. In the field of process calculi, the best studied, well-understood and
popular form of interaction is dyadic, i.e., where only two processes are involved.
As networks have become part of the critical infrastructure of our daily activ-
ities (for business, home, school, social, health, news, government, etc.) and a
large variety of loosely coupled processes have been offered over global networks,
as services, more sophisticated forms of interactions have become common, for
which convenient formal abstractions are under study. For example, one im-
portant trend in networking is moving towards architectures where the infras-
tructure itself can be manipulated by the software, like in the Software Defined
Networking (SDN) approach, where the control plane is remotely accessible and
modifiable by software clients, using open protocols such as OpenFlow, making
it possible to decouple the network control from the network topology and to
provide Infrastructure as a Service (IaaS) over data-centers and cloud systems.

In this talk, we propose a process calculus abstraction based on Open Multi-
party Interaction instead of ordinary Dyadic Interaction. An interaction is mul-
tiparty when it involves two or more processes and it is open when the number
of involved processes is not fixed or known a priori. Despite the inherent com-
plexity of representing more sophisticated forms of interaction, we show that
the underlying synchronisation algebra and name handling primitives are quite
simple and straightforward generalisation of dyadic ones. This is witnessed by
the operational semantics rules of our calculus, that in the simpler version (i.e.,
without message passing) resemble the SOS rules of CCS, while in the full one
they resemble the SOS rules of pi-calculus (early variant). As a main result, we
show how the new calculus can be used to encode Cardelli and Gordon’s Mobile
Ambients [5] in a natural way. We prove a tight correspondence at the level of
reduction semantics and we provide a bisimilarity semantics for Mobile Ambients
as a side result.

? Research partially supported by the EU through the FP7-ICT Integrated Project
257414 ASCEns (Autonomic Service-Component Ensembles).

2

Related Work Our work originated during the study of pi-calculus encodings
of Mobile Ambients [6, 2] and it has been mainly inspired and influenced by the
Network Conscious pi-calculus [14] and by previous graph-based encodings of
Mobile Ambients [8, 9].

Among related work on extending CCS and pi-calculus with more sophisti-
cated forms of interactions, it seems our approach is closest in spirit to [4, 3, 10,
11] (among many others).

Among related work on providing abstract semantics for Mobile Ambients,
we mention [13, 15, 1]. The paper [13] is the first work that studies a reduc-
tion barbed congruence characterised by a rather ad hoc weak bisimilarity. This
bisimilarity relies on a labelled transition system (LTS) where transitions for
processes are distinguished from the transitions for systems. The execution of a
capability is then derived in two steps: first, transitions for processes are per-
formed for allowing a capability prefix to fire, and the target process contains a
hole for holding the sub-process that will change its location; then, once transi-
tions for systems are performed, the involved sub-process will fill the “hole” and
the capability is completed.

In [15] the authors build on the theory of reactive systems [17, 12, 16] to
derive the LTS directly from the reduction semantics and define a transition
system composed of three types of transitions. In order to derive the execution
of a capability, they first apply process-view transitions, then context-view tran-
sitions, and finally they suitably combine and apply the two previous kinds of
transitions.

The work in [1] studies a graphical encoding over which the authors introduce
a graph transformation system for simulating process reduction. Furthermore
the technique of borrowed contexts [7] is exploited to derive an LTS for graphs
that are images of Mobile Ambients processes. It is conjectured that the three
semantics in [13, 15, 1] do coincide.

References

1. F. Bonchi, F. Gadducci, and G.V. Monreale. Labelled transitions for mobile am-
bients (as synthesized via a graphical encoding). Electron. Notes Theor. Comput.
Sci., 242(1):73–98, July 2009.

2. L. Brodo. On the expressiveness of the pi-calculus and the mobile ambients. In
M. Johnson and D. Pavlovic, editors, AMAST, volume 6486 of Lecture Notes in
Computer Science, pages 44–59. Springer, 2010.

3. R. Bruni and I. Lanese. Parametric synchronizations in mobile nominal calculi.
Theor. Comput. Sci., 402(2-3):102–119, 2008.

4. M. Carbone and S. Maffeis. On the expressive power of polyadic synchronisation
in pi-calculus. Nord. J. Comput., 10(2):70–98, 2003.

5. L. Cardelli and A.D. Gordon. Mobile ambients. Theor. Comput. Sci., 240(1):177–
213, 2000.

6. G. Ciobanu and V.A. Zakharov. Encoding mobile ambients into the pi -calculus.
In I. Virbitskaite and A. Voronkov, editors, Ershov Memorial Conference, volume
4378 of Lecture Notes in Computer Science, pages 148–165. Springer, 2006.

3

7. H. Ehrig and B. König. Deriving bisimulation congruences in the dpo approach
to graph rewriting with borrowed contexts. Mathematical Structures in Computer
Science, 16(6):1133–1163, 2006.

8. G.L. Ferrari, U. Montanari, and E. Tuosto. A LTS semantics of ambients via
graph synchronization with mobility. In Proceedings of the 7th Italian Confer-
ence on Theoretical Computer Science, ICTCS ’01, pages 1–16, London, UK, 2001.
Springer-Verlag.

9. F. Gadducci and G.V. Monreale. A decentralised graphical implementation of
mobile ambients. J. Log. Algebr. Program., 80(2):113–136, 2011.

10. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types.
In G.C. Necula and P. Wadler, editors, POPL, pages 273–284. ACM, 2008.

11. C. Laneve and A. Vitale. The expressive power of synchronizations. In Proceedings
of the 25th Annual IEEE Symposium on Logic in Computer Science, LICS 2010,
11-14 July 2010, Edinburgh, UK, pages 382–391. IEEE Computer Society, 2010.

12. J.J. Leifer and R. Milner. Deriving bisimulation congruences for reactive systems.
In C. Palamidessi, editor, CONCUR, volume 1877 of Lecture Notes in Computer
Science, pages 243–258. Springer, 2000.

13. M. Merro and F. Zappa Nardelli. Behavioral theory for mobile ambients. J. ACM,
52(6):961–1023, November 2005.

14. U. Montanari and M. Sammartino. Network conscious pi-calculus. Technical Re-
port TR-12-01, Computer Science Department, University of Pisa, 2012.

15. J. Rathke and P. Sobociński. Deriving structural labelled transitions for mobile
ambients. Inf. Comput., 208(10):1221–1242, October 2010.

16. V. Sassone and P. Sobocinski. Deriving bisimulation congruences: 2-categories vs
precategories. In A.D. Gordon, editor, FoSSaCS, volume 2620 of Lecture Notes in
Computer Science, pages 409–424. Springer, 2003.

17. P. Sewell. From rewrite rules to bisimulation congruences. Theor. Comput. Sci.,
274(1-2):183–230, 2002.

On the modularity and reusability of the
rule-based specification of QoS properties of

systems

Francisco Durán1? and Steffen Zschaler2

1 Universidad de Málaga, Spain
2 King’s College London, United Kingdom

Quality of service (QoS) constraints, such as performance, reliability, etc., are
essential characteristics of any non-trivial system. Thus, as for other technologies
and development processes, in Model-Driven Engineering (MDE), and inside it
in the community of Domain-Specific Visual Languages (DSVLs), the modelling,
simulation and reasoning about the non-functional properties of systems play a
crucial role.

Most DSVLs already allow the specification of the structure and behavior of
systems. However, little attention has been paid to the QoS constraints usage and
management. Indeed, just a few DSVLs currently provide some support for the
modelling of QoS properties. In most of these exceptional cases very specialized
notations are used, requiring skilled users to specify and manage such constraints.
Very recently, Troya and Vallecillo have proposed in [2, 3] an alternative approach
to specify, simulate and reason about QoS properties of systems specified using
rule-based DSVLs in a high-level and platform-independent way.

Basically, they propose the use of alien dedicated objects, which they call
observers, to enable the monitorization of the execution of systems, and, specifi-
cally, of the actions that take place along the simulations of the system and of the
states their objects pass through. These observers have been effectively used to
achieve testing, performance analysis of systems, and automatic reconfiguration
of systems depending on the values of the observed properties.

Their proposal is actually quite attractive, and generic, since although they
provide a wide variety of observers for measuring performance parameters such
as throughput, mean time between failures, idle time, etc., other properties could
similarly be specified and analysed. The kind of analysis they can carry on is
also quite powerful, obtaining, with relatively very little effort, results that with
other approaches require a rather big amount of knowledge and effort.

The methods proposed for DSVLs lack however appropriate mechanisms
for modularity and reusability. On the other hand, concepts such as measure-
ment [4] or characteristic [1] have been used in different contexts to represent
non-functional dimensions of systems. The idea in all of them is to use these
measurements to express non-functional specifications as constraints over them.
Based on ideas for the formalisation of non-functional properties introduced by
Zschaler in the context of component-based software engineering (CBSE), we

? Partially supported by Spanish Research Projects TIN2008-031087 and TIN2011-
23795.

5

suggest the use of context models to specify measurements independently of the
concrete applications on which they are to be used.

In our proposal, measurements are defined relative a partial functional char-
acterisation of the system to be constrained. Specifically, this characterization
contains the elements, structures, and behaviours on which the measurement
definition relies. This is the reason by which Zschaler calls them context models,
since they define the context of a measurement, explicitly stating its assump-
tions on the environment to which it will be applied. This way, context models
allow us to specify measurements independently of their usage in concrete ap-
plications. In fact, Zschaler defines his notion of measurement with a clear idea
in his mind: “The formal specifications used to define measurements must not
influence the behaviour of the systems to which they are applied.”

Once measurements are specified, these definitions can be applied to concrete
application specifications. This is accomplished by saying how the application
model instantiates the measurement’s context model, or, more specifically, by
mapping the elements (concepts) in the measurement’s context model to the
elements (structures and behaviours) in the application model. This mapping
will, of course, then have to be checked valid, but will tell us how to bind the
parameters.

On appropriate definitions of DSVL and DSVL morphism, we develop a for-
mal framework in which observer specifications can be developed independently,
and which, with appropriate bindings to specific systems, can be combined with
these, thus giving place to instrumentalized systems which can then be used for
simulation and reasoning. On appropriate conditions on the specification of ob-
servers and bindings, the framework can ensure the preservation of the system
semantics, which is key for the correctness of the analysis on the instrumentalized
system.

References

1. Information technology - quality of service: Framework, 1998. ISO/IEC 13236:1998,
ITU-T X.641.

2. J. Troya, J. E. Rivera, and A. Vallecillo. On the specification of non-functional prop-
erties of systems by observation. In S. Ghosh, ed., Models in Software Engineering,
vol. 6002 of LNCS, pp. 296–309. Springer, 2009.

3. J. Troya and A. Vallecillo. On the performance analysis of rule-based domain specific
visual models. Submitted for publication, 2011.

4. S. Zschaler. Formal specification of non-functional properties of component-based
software systems. Software and Systems Modeling, 9:161–201, 2010.

Quantitative Modal Transition Systems

Kim G. Larsen

CS Department, Aalborg University, Denmark

This talk will offer a comprehensive presentation of the specification formal-
ism of modal transition systems and its recent extensions to the quantitative
setting of timed as well as stochastic systems.

Modal transition systems [25] provides a behavioural comositional specifica-
tion formalism for reactive systems. Modal transition systems grew out of the
notion of relativized bisimulation, which allows for simple specifications of com-
ponents by allowing the notion of bisimulation to take the restricted use that a
given context may have in its.

A modal transition system is essentially a (labelled) transition system, but
with two types of transitions: so-called may transitions, that any implementa-
tion may (or may not) have, and must transitions, that any implementation
must have. In fact, ordinary labelled transition systems (or implementations),
are modal transition systems where the set of may- and must-transitions coin-
cide. Modal transition systems come equipped with a bisimulation-like notion of
(modal) refinement, reflecting that the the more must-transitions and the fewer
may-transitions a modal specification has the more refined and closer to a final
implementation it is.

In fact, modal transition systems has all the ingrediences of a complete com-
positinal specification theory allowing for logical compositions (e.g. conjunction)
[22], structural compositions (e.g. parallel) [19] as well as quotienting permitting
specifications of composite systems to be transformed into necessary and suffi-
cient specification of components [18]. Thus, modal transition systems has all
the benefits of both logical and behavioural specification formalisms [7]. Though
modal refinement – like bisimulation – is polynomial-time decidable for finite-
state modal transition systems, it only provides a sound but not complete test for
the true semantic refinement between modal spefication, in terms set inclusion
between their implementation-sets (so-called thorough refinement). For several
years, the complexity of thorough refinement – as well as consistency – between
modal specifications was an open problem, which after a series of attempts [23, 2]
[1] was shown to be EXPTIME-complete [5].

In [20] modal transitions systems were extended into a specification formal-
ism for Markov Chains by the introduction of so-called probabilistic specifica-
tions (now known as Interval Markov Chains), where concrete probabilities are
replace with intervals and with refinement providing a conservative extension
or probabilistic bisimulation [24]. However, Interval Markov Chains lack several
of the properties required for a complete compositional specification theory; in
particular, they are not closed neither under logical nor structural composition.
Recently, the extended notion of Constraint Markov Chains was introduced pre-
cisely with the purpose of providing these closure properties [9, 8]. In fact, a

7

number of decision problems has been settled [17, 16], extions to so-called Ab-
stract Probabilistic Automata has been given [14] with the tool APAC providing
support for composition, refinement and consistency checking [15].

Timed extensions of modal transitions, were introduced early on [11] as timed
and modal extension of the process algebra CCS. Unfortunately the supporting
tool EPSILON was entirely relying on the so-called region-abstraction, making
scalability extremely poor. Most recently, taking advantage of the power-full
game-theoretical engine of UPPAAL Tiga [3, 10] a “modal-transition system”-
like compositional specification theory based on Timed I/O Automata has been
proposed [12] with efficient tool support for refinement, consistency and quoti-
enting provided by the tool ECDAR [13].

The work of [6] suggests an alternative timed extension of modal transition
systems (though still relying on regions for refinement algorithms). Also, modal
transition systems extended with weights [21] has recently been introduced pro-
viding a third quantitative extension, also considered in [4].

References

1. Adam Antonik, Michael Huth, Kim G. Larsen, Ulrik Nyman, and Andrzej Wa-
sowski. 20 years of modal and mixed specifications. Bulletin of the EATCS, 95:94–
129, 2008.

2. Adam Antonik, Michael Huth, Kim G. Larsen, Ulrik Nyman, and Andrzej Wa-
sowski. Modal and mixed specifications: key decision problems and their complex-
ities. Mathematical Structures in Computer Science, 20(1):75–103, 2010.

3. Gerd Behrmann, Agnès Cougnard, Alexandre David, Emmanuel Fleury, Kim Guld-
strand Larsen, and Didier Lime. Uppaal-tiga: Time for playing games! In Werner
Damm and Holger Hermanns, editors, CAV, volume 4590 of Lecture Notes in Com-
puter Science, pages 121–125. Springer, 2007.

4. Nikola Benes, Jan Kret́ınský, Kim G. Larsen, Mikael H. Møller, and Jiŕı Srba.
Parametric modal transition systems. In Tevfik Bultan and Pao-Ann Hsiung,
editors, ATVA, volume 6996 of Lecture Notes in Computer Science, pages 275–
289. Springer, 2011.

5. Nikola Benes, Jan Kret́ınský, Kim Guldstrand Larsen, and Jiŕı Srba. Checking
thorough refinement on modal transition systems is exptime-complete. In Martin
Leucker and Carroll Morgan, editors, ICTAC, volume 5684 of Lecture Notes in
Computer Science, pages 112–126. Springer, 2009.

6. Nathalie Bertrand, Axel Legay, Sophie Pinchinat, and Jean-Baptiste Raclet. A
compositional approach on modal specifications for timed systems. In Karin Breit-
man and Ana Cavalcanti, editors, ICFEM, volume 5885 of Lecture Notes in Com-
puter Science, pages 679–697. Springer, 2009.

7. Gérard Boudol and Kim Guldstrand Larsen. Graphical versus logical specifications.
In André Arnold, editor, CAAP, volume 431 of Lecture Notes in Computer Science,
pages 57–71. Springer, 1990.

8. Benôıt Caillaud, Benôıt Delahaye, Kim G. Larsen, Axel Legay, Mikkel L. Pedersen,
and Andrzej Wasowski. Compositional design methodology with constraint markov
chains. In QEST, pages 123–132. IEEE Computer Society, 2010.

9. Benôıt Caillaud, Benôıt Delahaye, Kim G. Larsen, Axel Legay, Mikkel L. Ped-
ersen, and Andrzej Wasowski. Constraint markov chains. Theor. Comput. Sci.,
412(34):4373–4404, 2011.

8

10. Franck Cassez, Alexandre David, Emmanuel Fleury, Kim Guldstrand Larsen, and
Didier Lime. Efficient on-the-fly algorithms for the analysis of timed games. In
Mart́ın Abadi and Luca de Alfaro, editors, CONCUR, volume 3653 of Lecture Notes
in Computer Science, pages 66–80. Springer, 2005.

11. Karlis Cerans, Jens Chr. Godskesen, and Kim Guldstrand Larsen. Timed modal
specification - theory and tools. In Costas Courcoubetis, editor, CAV, volume 697
of Lecture Notes in Computer Science, pages 253–267. Springer, 1993.

12. Alexandre David, Kim G. Larsen, Axel Legay, Ulrik Nyman, and Andrzej Wa-
sowski. Timed i/o automata: a complete specification theory for real-time systems.
In Karl Henrik Johansson and Wang Yi, editors, HSCC, pages 91–100. ACM ACM,
2010.

13. Alexandre David, Kim Guldstrand Larsen, Axel Legay, Ulrik Nyman, and Andrzej
Wasowski. Ecdar: An environment for compositional design and analysis of real
time systems. In Ahmed Bouajjani and Wei-Ngan Chin, editors, ATVA, volume
6252 of Lecture Notes in Computer Science, pages 365–370. Springer, 2010.

14. Benôıt Delahaye, Joost-Pieter Katoen, Kim G. Larsen, Axel Legay, Mikkel L. Ped-
ersen, Falak Sher, and Andrzej Wasowski. Abstract probabilistic automata. In
Ranjit Jhala and David A. Schmidt, editors, VMCAI, volume 6538 of Lecture
Notes in Computer Science, pages 324–339. Springer, 2011.

15. Benôıt Delahaye, Kim G. Larsen, Axel Legay, Mikkel L. Pedersen, and Andrzej
Wasowski. Apac: A tool for reasoning about abstract probabilistic automata. In
QEST, pages 151–152. IEEE Computer Society, 2011.

16. Benôıt Delahaye, Kim G. Larsen, Axel Legay, Mikkel L. Pedersen, and Andrzej
Wasowski. Decision problems for interval markov chains. In Adrian Horia Dediu,
Shunsuke Inenaga, and Carlos Mart́ın-Vide, editors, LATA, volume 6638 of Lecture
Notes in Computer Science, pages 274–285. Springer, 2011.

17. Benôıt Delahaye, Kim G. Larsen, Axel Legay, Mikkel L. Pedersen, and Andrzej
Wasowski. Consistency and refinement for interval markov chains. J. Log. Algebr.
Program., 81(3):209–226, 2012.

18. Gregor Goessler and Jean-Baptiste Raclet. Modal contracts for component-based
design. In Dang Van Hung and Padmanabhan Krishnan, editors, SEFM, pages
295–303. IEEE Computer Society, 2009.

19. Hans Hüttel and Kim Guldstrand Larsen. The use of static constructs in a modal
process logic. In Albert R. Meyer and Michael A. Taitslin, editors, Logic at Botik,
volume 363 of Lecture Notes in Computer Science, pages 163–180. Springer, 1989.

20. Bengt Jonsson and Kim Guldstrand Larsen. Specification and refinement of prob-
abilistic processes. In LICS, pages 266–277, 1991.

21. Line Juhl, Kim G. Larsen, and Jiŕı Srba. Modal transition systems with weight
intervals. J. Log. Algebr. Program., 81(4):408–421, 2012.

22. Kim Guldstrand Larsen. Modal specifications. In Joseph Sifakis, editor, Automatic
Verification Methods for Finite State Systems, volume 407 of Lecture Notes in
Computer Science, pages 232–246. Springer, 1989.

23. Kim Guldstrand Larsen, Ulrik Nyman, and Andrzej Wasowski. On modal refine-
ment and consistency. In Lúıs Caires and Vasco Thudichum Vasconcelos, editors,
CONCUR, volume 4703 of Lecture Notes in Computer Science, pages 105–119.
Springer, 2007.

24. Kim Guldstrand Larsen and Arne Skou. Bisimulation through probabilistic testing.
Inf. Comput., 94(1):1–28, 1991.

25. Kim Guldstrand Larsen and Bent Thomsen. A modal process logic. In LICS, pages
203–210, 1988.

Systematic Design of Abstractions in K?

Irina Măriuca Asăvoae

Faculty of Computer Science, Alexandru Ioan Cuza University, Romania
mariuca.asavoae@info.uaic.ro

The Rewriting Logic Semantics Project [10] unifies algebraic denotational
semantics and structural operational semantics, two areas in programming lan-
guages that evolved in separation. There is already consistent research work
proving this unification amenable and useful. Among others, the K framework
[13] is one of the protruding applications which recently achieved a peak in the
specification of C semantics [6]. The perspective about such semantic definitions
is that they are directly executable as interpreters in a rewriting logic language
such as Maude [15] and testable for correctness on representative test-suites.
Moreover, Maude’s generic formal tools, such as the LTL model checker [5], can
be used directly on the semantic definition to obtain program analysis and veri-
fication capabilities. The current work studies the latter mentioned aspect w.r.t.
overcoming its limitations related to the effectiveness of the program analysis
and verification in the context of the Rewriting Logic Semantics.

The program analysis and verification methods are, many times, charac-
terized by the infamous ExpTime complexity. This generates an effectiveness
problem for the program analysis/verification, problem which is traditionally
by-passed by the abstract interpretation [4, 3]. In more details, the abstract
interpretation framework standardizes a method for reducing the complexity of
the analysis/verification methods by a coherent projection of the program’s state
space. The projection is actually a mapping from the state space of the concrete
system into the state space of an abstract system such that the mapping pre-
serves the transition relations. By coherent projection we understand that the
class of properties currently analyzed/verified is reflected from the abstract sys-
tem into the concrete system. Furthermore, sharp abstractions may also require
an associated projection of the concrete transition operators into the abstract
ones [2]. The coherent projection is founded by a Galois connection between the
concrete and the abstract systems which are, in turns, viewed as lattices. The
abstract interpretation framework is developed on top of the operational seman-
tics and there exists an abundance of literature on practical instantiations of it
[11].

On the other hand, the rewriting logic already has established its own no-
tion of abstraction, namely the algebraic simulation [9, 8]. In more details, the
standard notion of simulation is incrementally mirrored into the rewriting logic
under the hypothesis that the systems being related are described as rewrit-
ing systems. The presentation in [9, 8] is eloquently sustained at each step by
examples instantiating the concrete and the abstract rewrite systems and by

? This work has been supported by Project POSDRU/88/1.5/S/47646 and by Con-
tract ANCS POS-CCE, O2.1.2, ID nr 602/12516, ctr.nr 161/15.06.2010 (DAK).

10

providing the definition of the algebraic simulation also as a rewrite system. The
beauty of this approach lies in the unified rewriting logic representation of both
the systems and the simulation. Moreover, the approach is automatically exe-
cutable using the tools implementing the rewriting logic [1]. Consequently, the
rewriting logic and the algebraic simulations provide an appealing framework for
specifying abstractions using the algebraic denotational semantics.

The view of the current work is drawn from the above stated facts. One
fact is that Rewriting Logic Semantics unifies the operational semantics and the
algebraic denotational semantics. Another fact is that the abstractions already
proved to be a sine qua non in the field of analysis and verification. These two
facts induce the natural idea of a systematic transportation of the results from
the abstract interpretation into the Rewriting Logic Semantics. As such, the cur-
rent work studies the transformation of Galois connections into theoroidal maps
with a direct application to a systematic design of abstractions in K. By system-
atic design we understand a methodology of relating two programming language
K-specifications. Namely, the concrete programming language is syntactically
mapped into the abstract programming language, followed by a projection of
this mapping at the level of the semantic rules. As such, using off-the-shelf ab-
stractions available in the abstract interpretation is tantamount with relating
K-specifications in a compositional fashion. We adjust this transformation of
the K-specifications to the stages of abstraction described in [14], and exemplify
using the notorious predicate abstraction. The choice of predicate abstraction is
justified by the existence of consistent documentations in both worlds, namely
in abstract interpretation [7] and in rewriting logic [12]. Hence, the bridge that
the current work is building between these two worlds finds in the predicate
abstraction solid grounds at both ends.

In conclusion, we acknowledge that this work is answering the challenge posed
by the K-framework of eagerly transporting the achievements from the opera-
tional semantics into the algebraic denotational semantics. Particularly, we would
like to thank to Grigore Roşu for opening this view at the level of programming
languages, and claiming it as well at the level of the abstractions a la abstract
interpretation.

References

1. Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-
Oliet, José Meseguer, and Carolyn L. Talcott, editors. All About Maude - A High-
Performance Logical Framework, How to Specify, Program and Verify Systems in
Rewriting Logic, volume 4350 of Lecture Notes in Computer Science. Springer,
2007.

2. Patrick Cousot. Design of syntactic program transformations by abstract inter-
pretation of semantic transformations (invited talk). In Ph. Codognet, editor,
Proceedings of the Seventeenth International Conference, ICLP 2001, pages 4–5,
Paphos, Cyprus, November/December 2001. LNCS 2237, Springer, Berlin.

3. Patrick Cousot. Formal verification by abstract interpretation. In Alwyn Goodloe
and Suzette Person, editors, 4th NASA Formal Methods Symposium (NFM 2012),

11

volume 7226 of Lecture Notes in Computer Science, pages 3–7, Heidelberg, 2012.
Springer-Verlag.

4. Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
Symposium on Principles of Programming Languages, pages 238–252. ACM Press,
1977.

5. Steven Eker, José Meseguer, and Ambarish Sridharanarayanan. The Maude LTL
model checker. In Fabio Gaducci and Ugo Montanari, editors, Workshop on Rewrit-
ing Logic and Its Applications, volume 71 of Electronic Notes in Theoretical Com-
puter Science. Elsevier, September 2002.

6. Chucky Ellison and Grigore Rosu. An executable formal semantics of c with
applications. In John Field and Michael Hicks, editors, Proceedings of the 39th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012, pages 533–
544. ACM, 2012.

7. Susanne Graf and Hassen Saidi. Construction of abstract state graphs with PVS.
In Proceedings of the 9th Conference on Computer-Aided Verification, pages 72–83.
Springer-Verlag, 1997.

8. José Meseguer, Miguel Palomino, and Narciso Mart́ı-Oliet. Equational abstrac-
tions. Theor. Comput. Sci., 403(2-3):239–264, 2008.

9. José Meseguer, Miguel Palomino, and Narciso Mart́ı-Oliet. Algebraic simulations.
J. Log. Algebr. Program., 79(2):103–143, 2010.

10. José Meseguer and Grigore Rosu. The rewriting logic semantics project. Theor.
Comput. Sci., 373(3):213–237, 2007.

11. Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program
Analysis. Springer-Verlag New York, Inc., 1999.

12. Miguel Palomino. A predicate abstraction tool for Maude. Documentation and
tool available at http://maude.sip.ucm.es/~miguelpt/bibliography.html.

13. Grigore Rosu and Traian-Florin Serbanuta. An overview of the K semantic frame-
work. J. Log. Algebr. Program., 79(6):397–434, 2010.

14. David A. Schmidt and Bernhard Steffen. Program analysis as model checking of
abstract interpretations. In Giorgio Levi, editor, Static Analysis, 5th International
Symposium, SAS ’98, Pisa, Italy, September 14-16, 1998, Proceedings, volume 1503
of Lecture Notes in Computer Science, pages 351–380. Springer, 1998.

15. Traian-Florin Serbanuta and Grigore Rosu. K-Maude: A rewriting based tool for
semantics of programming languages. In Peter Csaba Ölveczky, editor, Rewriting
Logic and Its Applications - 8th International Workshop, WRLA 2010, Held as
a Satellite Event of ETAPS 2010, Paphos, Cyprus, March 20-21, 2010, Revised
Selected Papers, volume 6381 of Lecture Notes in Computer Science, pages 104–
122. Springer, 2010.

Bounded Model Checking
of Recursive Programs with Pointers in K?

Irina Măriuca Asăvoae1, Frank de Boer2,3,
Marcello M. Bonsangue3,2, Dorel Lucanu1, Jurriaan Rot3

1 Faculty of Computer Science - Alexandru Ioan Cuza University, Romania
{mariuca.asavoae, dlucanu}@info.uaic.ro

2 Centrum voor Wiskunde en Informatica, The Netherlands
frb@cwi.nl

3 LIACS - Leiden University, The Netherlands
{marcello, jrot}@liacs.nl

The current work is an approach to the automatic verification of programs
with pointers and procedures, e.g., C or Java programs. The verification method
of choice is abstract model checking and we focus on developing the algebraic
theories of the abstract model and its verification method. More to the point,
we follow the abstract interpretation perspective [2] which advocates applying
analysis or verification methods over an abstract, simplified model. The advan-
tage of the abstract model consists in the enhanced effectiveness for verification,
or even existence of decidability results.

As the abstract modeling language we introduce Shylock, an imperative pro-
gramming language with pointers and recursive procedures which use local and
global variables with fields to store references in the heap. The simplicity of Shy-
lock’s syntax targets the control flow graph abstraction – an already standard
view in abstract interpretation – and is specifically tailored for heap manipula-
tion. Hence, from a concrete program, we abstract away any statements besides
pointer manipulation, maintaining however the control flow graph structure of
the concrete program. Consequently, we can focus on the problem of interest
namely the heap structure and its evolution along the execution of a concrete
program.

The definition of the abstract operators in abstract interpretation is, in our
settings, equivalent to giving formal semantics for Shylock. The consistent de-
sign of the abstract operators is crucial in abstract interpretation because of two
reasons: (i) it ensures the soundness of the abstract model w.r.t. the properties
to be reflected in the concrete, and (ii) it has a direct influence on the effec-
tiveness of the verification, which can be roughly measured by the size of the
abstract state space. We refer [13] for a detailed description of the consistency of
Shylock semantics, and we concentrate the current work on Shylock’s algebraic
representation and its verification method which is, in our choice, LTL model
checking for safety properties.

We proceed to give a short description of the specifics of the abstract oper-
ators in our proposed abstraction. The semantics with a standard fresh object

? This work has been supported by Project POSDRU/88/1.5/S/47646 and by Con-
tract ANCS POS-CCE, O2.1.2, ID nr 602/12516, ctr.nr 161/15.06.2010 (DAK).

13

creation, which allocates an object identity never used before, is prone to gen-
erating an infinite object identity space during recursive calls. We propose an
improved semantics which introduces a novel mechanism for managing the object
identities in the heap. This mechanism resides in a combination of memory reuse
upon generation of fresh object identities combined with a renaming scheme to
resolve name clashes possibly resulting from the execution of a procedure return
statement. Our renaming scheme defined for resolving name clashes in the con-
text of memory reuse is based on the concept of cut points as introduced in [7].
Hence, under the assumption of a bounded visible heap, Shylock programs can be
represented by finitary structures, namely finite pushdown systems. Moreover,
in the presence of matching, the comparison of the abstract states is further
simplified.

Shylock’s standard and improved formal semantics are bisimilar, as we prove
in [13]. For the current work, we use K [8] to give a bisimilar algebraic represen-
tation to each of these semantics. Moreover, we show that there is an algebraic
bisimulation [6] between these two K-specifications. We implement this algebraic
bisimulation by defining a K-specification which contains both semantics as they
are, and protects them via labeling each of the two semantics. Note that, given
the existence of a K-specification for C’s semantics [4], there is the opportunity
of proving the algebraic simulation between the concrete (i.e., C) and abstract
(i.e., Shylock) semantics. However, this concerns a more extensive future work.

We employ the K-specification of Shylock to derive verification capabilities
using LTL model checking. For this purpose we settle two aspects: the properties
of interest and the model checking procedure. We present and discuss these in
the followings.

The atomic properties are defined as regular expressions over the heap struc-
ture. The regular expressions are basically a Kleene algebra with tests [5], where
the global and local variables are used as tests while the fields constitute the
set of basic actions. The Maude LTL model checker [3] provides a substantial
expressivity w.r.t. the atomic properties in comparison with other model check-
ing tools. This feature justifies the appropriateness of using K-Maude [9] for
Shylock in order to consequently model check Shylock programs for safety prop-
erties. However, due to the prerequisites imposed by Maude’s model checker, we
can successfully verify only a restricted class of Shylock programs, namely the
non-recursive ones. Next, we address this issue in more details and present the
approached solutions.

Obviously, in the presence of recursive procedures, the stack in the pushdown
system grows unboundedly and, even if the abstraction ensures a finitary rep-
resentation by a pushdown system, the generated transition system is infinite.
This makes the use of Maude’s LTL model checker practical only for Shylock
programs without recursion. To overcome this drawback we apply a further ab-
straction on the stack contents which enforces the finiteness of the equivalent
transition system. However, the stack abstraction induces incompleteness in the
model checking for Shylock.

14

On the other hand, the value of Shylock improved semantics concerns ex-
actly its pushdown system characterization for which there are standardized
model checking results [1, 14]. Hence, as a second solution for the Shylock safety
model checking, we propose embedding the K-specification for Shylock abstract
semantics into a K-specification for Shylock collecting semantics which produces
the reachability automaton. A further coupling with the LTL property produces
the full power LTL model checking capabilities. Consequently, this solution pre-
serves the completeness of the model checking procedure for Shylock programs,
solely under the standard assumption of a bounded visible heap.

Two final considerations on the work: (i) Shylock represents the syntactic ex-
tension of the language proposed in [12]. Namely, Shylock adds fields for variables
so, even if it maintains the original program instructions, the abstract semantics
has to be redesigned due to the change in the state structure. (ii) The proposed
K specification for model checking pushdown systems is generic and comple-
ments the leading program verification perspective in K, namely matching logic
[11, 10].

References

1. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Application to model checking. In Proc. CONCUR 97, vol. 1243 of LNCS,
Springer, 1997.

2. P. Cousot, and R. Cousot. Abstract Interpretation and Application to Logic Pro-
grams, Journal of Logic Programming, 13(2–3), pp. 103–179, 1992.

3. S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL Model Checker.
In WRLA 2002, vol. 71 of ENTCS, pp. 162–187, 2002.

4. C. Ellison, and G. Roşu. An Executable Formal Semantics of C with Applications.
In POPL 2012, pp. 533–544.

5. D. Kozen. Kleene algebra with tests. ACM Trans. Program. Lang. Syst., 19:427–
443, 1997.

6. J. Meseguer, M. Palomino, and N. Mart́ı-Oliet. Equational abstractions. In The-
oretical Computer Science, vol. 403(2-3), pp. 239–264, 2008.

7. N. Rinetzky, J. Bauer, T. W. Reps, S. Sagiv, and R. Wilhelm. A semantics for
procedure local heaps and its abstractions. In POPL 2005, pp. 296–309, 2005.

8. G. Roşu, and T. F. Şerbănuţă. An overview of the K semantic framework. Journal
of Logic and Algebraic Programming, 79(6):397–434, 2010.

9. G. Roşu, and T. F. Şerbănuţă. K-Maude: A Rewriting Based Tool for Semantics
of Programming Languages. WRLA 2010, vol. 6381of LNCS, pp.104–122, Springer
2010.

10. G. Roşu, and A. Ştefănescu. Matching logic rewriting: Unifying operational and
axiomatic semantics in a practical and generic framework. Technical Report
http://hdl.handle.net/2142/28357, University of Illinois, 2011.

11. G. Roşu, and A. Ştefănescu. Towards a Unified Theory of Operational and Ax-
iomatic Semantics. ICALP 2012, to appear.

12. J. Rot. A Pushdown Representation for Unbounded Object Creation. BsC thesis,
Universiteit Leiden Opleiding Informatica, 2010.

13. J. Rot, I. M. Asavoae, F. de Boer, M. Bonsangue, and D. Lucanu. Interacting via
the Heap in the Presence of Recursion. ICE 2012, Submitted.

15

14. S. Schwoon. Model-Checking Pushdown Systems. PhD thesis, Technische Univer-
sität München, 2002.

A K-Based Methodology for Modular Design of
Embedded Systems ?

Mihail Asăvoae

Faculty of Computer Science
Alexandru Ioan Cuza University, Iaşi, Romania

1 Introduction

The increased complexity of current software systems requires, from a program-
ming language definitional point of view, the manipulation of large program
configurations. In the context of embedded software systems, it is important,
as well, to capture the underlying architecture behavior. In this paper, we use
the K framework [7] to study how to modularly define program executions in
complex environments and then, how to apply abstractions on them.

Originated from the rewriting logic semantics project [6], K is specialized in
defining programming languages and their afferent analysis tools. A K specifica-
tion consists of configurations - multisets of labeled, nested cells that represent
the structure of the system/program states, rewrite rules - either transformations
of structural information or transitions in the program execution and computa-
tions - the executions of the specified system. The K framework proposes a
concise notation to manipulate the configurations, which allows the K rewrite
rules to use only the necessary semantic entities. These entities are represented
as K-cells. This mechanism works because of an underlying configuration ab-
straction, called context transformation [5], which automatically completes the
configuration with the omitted cells. Next, we present an overview of our model-
ing methodology, which in turn is based on this context transformation and the
inherited modularity of the K framework.

We take the general configuration C , which comprises of all semantic entities
of the specified system and split it into the sub-configurations C1, C2, . . . , Cn,
each Ci, included into a separate K module. K provides a special cell, called k,
which solely handles the actual computation. The k cell is included into each of
the Ci sub-configurations and it is used, apart from the computational purpose,
to pass messages among modules and to facilitate, in this way, the interaction
between modules. These messages play the role of meta-assertions between mod-
ules. Therefore, a concrete execution in this system is an interleaving between
computations and messages that are interchanged between modules. Next, we de-
fine abstractions in the following way: first wrap the concrete sub-configurations
of interest into a configuration wrap(Ci), and then define the abstract configu-
ration A, which has as sub-configuration wrap(Ci). The initial split of C into

? This work has been supported by Project POSDRU/88/1.5/S/47646 and by Con-
tract ANCS POS-CCE, O2.1.2, ID nr 602/12516, ctr.nr 161/15.06.2010 (DAK).

17

Cis allows, when the abstraction is applied, to execute only the system’s func-
tionality that is of interest. Moreover, the abstraction controls the ”concrete”
execution and enables functionality reuse. A different consequence of this mod-
eling methodology is that it permits to implant certain characteristics of the
concrete semantic entities. We present next an instance of this approach.

While our methodology is general, we exemplify it on assembly programs
executed in the presence of instruction and data caches and a main memory
system. Our initial configuration C consists of the semantic entities to define
the assembly language as well as the micro-architecture components. A natural
split produces sub-configurations (and modules) for the language, the instruction
cache, the data cache and the main memory system. Now, the language module
plays the role of the processor, as it requests information from the memories.
This allow us to apply using the wrapping, a timing behavior for the set of
instructions in the language, or an power-consumption model. Also, wrapping the
instruction cache and the main memory module [1] allows us to implement well-
known abstract interpretation [3] based analyses for caches [8], for the purpose
of timing analysis [9]. A prototype of this mechanism is implemented in K-
Maude [4], the K framework implementation on top of Maude system [2] and
experimental results are presented wrt a reusability metric.

References

1. Mihail Asavoae, Irina Mariuca Asavoae, and Dorel Lucanu. On abstractions for
timing analysis in the k framework. In FOPARA, LNCS, 2011. to appear.

2. Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-Oliet,
José Meseguer, and Carolyn L. Talcott, editors. All About Maude - A High-
Performance Logical Framework, How to Specify, Program and Verify Systems in
Rewriting Logic, volume 4350 of LNCS. Springer, 2007.

3. Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
POPL, pages 238–252. ACM Press, 1977.

4. Traian Florin Şerbanuţă and Grigore Roşu. K-Maude: A rewriting based tool for
semantics of programming languages. In WRLA 2010, volume 6381 of LNCS, pages
104–122, 2010.

5. Mark Hills and Grigore Rosu. Towards a module system for k. In WADT, pages
187–205, 2008.

6. José Meseguer and Grigore Roşu. The rewriting logic semantics project. Theoretical
Computer Science, 373(3):213–237, 2007.

7. Grigore Roşu and Traian Florin Şerbănuţă. An overview of the K semantic frame-
work. Journal of Logic and Algebraic Programming, 79(6):397–434, 2010.

8. Henrik Theiling, Christian Ferdinand, and Reinhard Wilhelm. Fast and precise wcet
prediction by separated cache and path analyses. Real-Time Systems, 18(2/3):157–
179, 2000.

9. Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan
Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann,
Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and
Per Stenström. The worst-case execution-time problem—overview of methods and
survey of tools. ACM Trans. Embed. Comput. Syst., 7(3):1–53, 2008.

An Object-Z Institution for Specifying Dynamic
Object Behavior

Hubert Baumeister1, Mohamed Bettaz2, Mourad Maouche3, and Mhamed
Mosteghanemi2

1 DTU Informatics, Technical University of Denmark,
hub@imm.dtu.dk

2 Laboratoire Méthodes de Conception de Systèmes, ESI, Algeria,
m.bettaz@mesrs.dz, m.mosteghanemi@mesrs.dz

3 Philadelphia University, Jordan,
mmaouch@philadelphia.edu.jo

1 Motivation

Institutions provide a general framework for describing logical systems; (co-)
morphisms (between institutions) are used to connect such systems in the frame-
work of multi-modeling languages allowing to deal with heterogeneous specifica-
tions in a consistent way [2].

In this work we define an institution OZS for Object-Z specifications, where
the operation schemata are defined on an explicit model on the state of the
system under specification.

The ultimate objective is to contribute to the building of heterogeneous spec-
ifications ‘enclosing’ Object-Z notation.

We assume familiarity with the most basic notions of institutions [4], [3] and
Object-Z [5].

2 Signatures

A signature Σ in OZS is a pair Σ = (S, F) where,

– S = C ∪ T is the disjoint union of class sorts C and primitive types T .
– F = B ∪ R ∪ O declares a family B of operation symbols Bc→t , (c ∈ C,
t ∈ T) representing basic attributes, R a family of operation symbols Rc→c′ ,
(c, c′ ∈ C) representing reference attributes, and O a family of operation
symbols Oc,w and Oc,w,s , (c ∈ C, w ∈ S∗, s ∈ S) representing operation
schemata; Oc,w is used for operation schemata returning no value, while
Oc,w,s is used for operation schemata returning a value.

A signature morphism ϕ : Σ → Σ′, where Σ = (C ∪ T , B ∪ R ∪ O), and
Σ′ = (C ′ ∪ T ′, B′ ∪R′ ∪O′) is a map ϕ = (ϕS : S → S′, ϕF : F → F ′), with:

– ϕS(c) ∈ C ′ for c ∈ C, ϕS(t) ∈ T ′ for t ∈ T , and

19

– ϕF (b) ∈ B′ϕS(c)→ϕS(t) for b ∈ Bc→t, ϕF (r) ∈ R′ϕS(c)→ϕS(c′) for r ∈ Rc→c′ ,

and ϕF (o) ∈ O′ϕS(c),ϕS(w) for o ∈ Oc,w and ϕF (o) ∈ O′ϕS(c),ϕS(w),ϕS(s) for

o ∈ Oc,w,s, where ϕS(w) = ϕS(s1)...ϕS(sn), (w = s1...sn).

OZS signatures and OZS signature morphisms define a category denoted
OZS-Sig. The composition of morphisms is the composition of the corresponding
functions, and the identity morphisms are the identity functions.

Fact 1. The category OZS-Sig is (finitely) co-complete.

Proof. Let G be a functor from J to OZS − Sig , G(i) = Σi = (Si, F i), and
G(g) = (G(g)S , G(g)F) , for g : i → j in J . Let GS be a functor from J to
Set defined by GS(i) = Si and GS(g) = G(g)S , and GF be a functor from J
to Set defined GF (i) = F i , GF (g) = G(g)F . The colimit of the functor G is
then defined by

∐
G = (Sco, F co) , where Sco is the colimit of the functor GS ,

and F co the functor colimit of the functor GF . The co-cone morphisms ιGi =
((ιGS)i, (ι

G
F)i), from Σi to

∐
G are given by the co-cone morphisms ιGS

i from Si

to Sco and ιGF
i from F i to F co . ut

3 Models

Given a signature Σ, a Σ–model M defines:

– A set Ms for each sort s ∈ S, and
– An (explicit) state, stateM = Σc∈C(Mc →

∏
a∈Bc→t∪Rc→c′

Mtype(a)), where

type(a) = t if a ∈ Bc→t and type(a) = pow(c′) if a ∈ Rc→c′ and Mpow(c′) =
pow(Mc′). (An element σ of stateM is σc(oid)(a) in Mt or pow(Mc′), with
c ∈ C, oid ∈Mc, and a ∈ Bc→t ∪Rc→c′).

– A function oM : stateM ×Mc×Ms1 × ...×Msn → stateM for each operation
o ∈ Oc,w , and a function oM : stateM×Mc×Ms1× ...×Msn →Ms×stateM
for each operation o ∈ Oc,w,s , (w = s1...sn) .

A Σ–homomorphism h : M → M ′, where M and M ′ are Σ models is a
family h of functions (hs : Ms →M ′s) for s ∈ S together with a function hstate :
stateM → stateM ′ such that:

– hstate(oM (σc,m1, ...,mn)) = oM ′(hstate(σc), hs1(m1), ..., hsn(mn)) for o ∈
Oc,w , c ∈ C,w = s1...sn, si ∈ Si, and σc ∈ stateM . Analogous for o ∈ Oc,w,s .

– ht(σc(oid)(a)) = hstate(σ)c(hc(oid))(a) for all σ ∈ stateM , oid ∈ Mc, c ∈
C, a ∈ Bc→t, and

– hpow(c′)(σc(oid)(a)) = hstate(σ)c(hc(oid))(a) for all σ ∈ stateM , oid ∈ Mc,
c ∈ C, a ∈ Rc→c′ , where hpow(s) : pow(Ms) → pow(M ′s) with hpow(s)(N) =
{hs(m) | m ∈ N} for all N ⊆Ms.

The identity homomorphism is the family of identities for the sets Ms and
the identity on the set stateM .

The composition of homomorphisms is the composition of the family of the
functions for the sets Ms and the composition of the functions for the state.

20

Given a signature morphism ϕ : Σ → Σ′ in OZS-Sig, and a Σ′- model M ,
the ϕ−reduct of M is defined by:

– (M |ϕ)s = MϕS(s), and
– oM |ϕ = ϕF (o)M for all o ∈ Oc,w ∪Oc,w,s .

For a Σ′–homomorphism h : M → M ′, the ϕ–reduct h|ϕ : M |ϕ → M ′|ϕ is
defined by:

– (h|ϕ)s = hϕS(s),
– Define the ϕ–reduct σ|ϕ ∈ stateM |ϕ of a state σ ∈ stateM by
• σ|ϕc(oid)(a) = σϕ(c)(oid)(ϕF (a)) for oid ∈Mc, c ∈ C, and a ∈ F .

– Then (h|ϕ)state(σ|ϕ)c(h(oid))(a) = hstate(σ)ϕS(c)(h(oid)(ϕF (a)) .

The functor OZS-Mod from OZS-Sig to Cat takes each signature Σ to
the category having as objects Σ-models and as morphisms Σ-homomorphisms,
and each OZS-Sig-morphism ϕ from Σ to Σ′ to a functor from the category
OZS-Mod(Σ′) to the category OZS-Mod(Σ), sending each Σ′-model M to its
ϕ-reduct M |ϕ and each Σ′-homomorphism h to its ϕ-reduct h |ϕ.

Fact 2. The institution OZS has amalgamation.

Proof. Omitted for lack of space. ut

4 Conclusion

In this paper we introduced some basic ’ingredients’ leading to the definition of
an institution. Proofs of facts, definition of sentences, satisfaction relations and
satisfaction condition were omitted for lack of space. These will be given in the
final version of this contribution, and with a running example. The difference
with similar works is that our contibution is not limited to static structures, but
deals also with the dynamic behavior of the system under design. As a future
work, we plan to consider defining operation schemata on an implicit model [1]
of the system state.

References

1. Baumeister H, Relations between Abstract Datatypes modeled as Abstract
Datatypes, PhD thesis, Universitat des Saarlandes, Saarbrucken, May 1999.

2. Boronat A, Knapp A, Meseguer J, Wirsing M, What is a Multi-Modeling Language?,
Lecture Notes in Computer Science, Vol. 5486, pp.266-289, 2009.

3. Diaconescu R, Three Decades of Institution Theory, In: Beziau, J.-Y. (ed.), Univer-
sal Logic: an Anthology, Birkhauser, 2011.

4. Goguen J and Burstall RM, Institutions: Abstract Model Theory for Specification
and Programming, Journal of ACM, 39(1), 95-146, 1992.

5. Kim SK and Carrington D, A Formal Mapping between UML Models and Object-Z
Specifications, Lecture Notes in Computer Science, Springer-Verlag, Vol.1878, pp.2-
21, 2000.

A History-Dependent Probabilistic Strategy
Language for Probabilistic Rewrite Theories

Lucian Bentea1 and Peter Csaba Ölveczky1,2

1 Department of Informatics, University of Oslo
2 University of Illinois at Urbana-Champaign

Probabilistic rewrite theories [7, 1] have been introduced to specify prob-
abilistic systems in rewriting logic. Since such theories combine probabilistic
and nondeterministic features, all nondeterminism in the specification must be
quantified to allow probabilistic analysis—including statistical model checking
and quantitative analysis using, e.g., VeStA [10] or PVeStA [2]. This is achieved
in [7, 1] by means of adversaries that quantify such nondeterminism. However,
until now, there has not been any way for the user to define different adversaries
for probabilistic rewrite theories.

In [4] we define a strategy language for specifying memoryless adversaries
for probabilistic rewrite theories, and implement a probabilistic simulator and
statistical model checker for probabilistic rewrite theories with strategy expres-
sions. In that version, the user must first define the probability of applying a
certain rewrite rule, then define the probability of using a certain context as a
function of the selected rule, and finally the user must define the probability of
choosing a particular matching substitution as a function of the selected rule
and rewrite context. In [4] we show the usefulness of being able to define dif-
ferent strategies for a given specification by a cloud computing example, where
different probabilistic strategies specify different load balancing policies.

Many systems’ probabilistic behavior is history-dependent, where the proba-
bility distribution over successor states may depend on the computation history.
For example, in probabilistic density control algorithms for wireless sensor net-
works, nodes turn themselves on and off in rounds, to save energy while main-
taining sensing/network coverage. Different strategies for selecting active nodes
could be to, e.g., select with high probability nodes that were previously not
often activated (to allow the most active nodes to save energy), or to give high
probability to the previously frequently activated nodes (which should therefore
be “optimal” nodes).

Another example is that of randomized leader election protocols [9] where
the aim is to designate a node of a distributed system as the leader. Assuming
a single channel, such protocols execute in rounds as follows. In each round,
every node sends a message on the channel with probability p. At the end of the
round, the channel can be in different states, depending on how many messages
it contains. If it contains one message, the leader is chosen as the node that sent
the message; otherwise, another round of the protocol is executed. For the new
round, the transmission probability p may also be updated according to the type
of leader election protocol [9]:

22

– oblivious, in which p depends on the number of rounds executed so far;
– uniform, where p is a function of the status history of the channel at the end

of each round, including the current one;
– nonuniform, in which p is a function of the local history of decisions taken

by each node in all the rounds, including the current one.

In either case, the probability distribution over the states at the next step of the
protocol is a function of its computation history.

The work reported in this abstract extends our work in [4] as follows:

1. We propose a language for specifying history-dependent adversaries of prob-
abilistic rewrite theories. In this way, we allow defining different probabilistic
history-dependent execution policies for a given system specification.

2. We extend the language in [4] to any possible choice order of the rule, context,
and matching substitution, and therefore to any possible probabilistic depen-
dencies between these choices. We also show that the extended language can
specify any computable adversary of a probabilistic rewrite theory.

3. We define the semantics of our language by mapping each strategy expression
to an adversary, and use this mapping to define both the probability-theoretic
semantics, and the probabilistic rewrite theory semantics of our language.
(This also defines the semantics of the subset of the strategy language in [4],
for which no formal semantics has been given.)

For example, in an uniform leader election protocol, a node’s decision of
whether or not to transmit a message on the channel can be formalized by the
following two object-oriented rewrite rules, written in Full Maude syntax:

rl [transmit]: < O : Node | trial : false > < O’ : Channel | buffer : ML >

=> < O : Node | trial : true > < O’ : Channel | buffer : (ML msgFrom(S)) > .

rl [not-transmit]: < O : Node | trial : false > < O’ : Channel | buffer : ML >

=> < O : Node | trial : true > < O’ : Channel | buffer : ML > .

together with a probabilistic rule strategy expression in our language:

psdrule RlStrat := given state: (CF < O : Channel | trial : false >) history: RH

is: transmit -> prob(RH) ; not-transmit -> (1 - prob(RH)) .

where CF is a variable of sort Configuration that matches the rest of the current
state, RH contains the entire history of rule applications up to the current state,
and the function prob : RuleHistory -> Rat is defined equationally by:

eq prob(none) = 1/2 . --- the transmission probability in the first round

eq prob(RH ; transmit) = prob(RH) . eq prob(RH ; not-transmit) = prob(RH) .

eq prob(RH ; nextRoundNull) = min(1, 2 * prob(RH)) .

eq prob(RH ; nextRoundCollision) = prob(RH) / 2 .

where nextRoundNull is the label of a rule that is matched at the end of a round,
when the channel contains no messages, and similarly nextRoundCollision is the
label of a rule that is matched when the channel contains two or more messages.

23

It is worth mentioning that well known tools such as Uppaal-SMC [6] and
PRISM [8] do not support user-defined probabilistic strategies, nor history-
dependent models. Uppaal-SMC relies on a probabilistic semantics given to net-
works of priced timed automata [5], in which the time delays in each location
may also follow an uniform—and therefore non-memoryless—probability distri-
bution. However, the probability distribution that each action determines over
successor locations only depends on the current location of the automaton, and
not its entire computation history. Similarly, in all models supported by PRISM,
the probability distribution over next states only depends on the current state.

We have not yet implemented the above extensions of the probabilistic strat-
egy language in Full Maude, but aim at having a prototype ready by the time
of WADT. We refer to our technical report [3] for details about our strategy
language and its semantics.

Acknowledgments. We gratefully acknowledge partial support for this work
by AFOSR Grant FA8750-11-2-0084.

References

1. Gul Agha, José Meseguer, and Koushik Sen. PMaude: Rewrite-based specification
language for probabilistic object systems. Electronic Notes in Theoretical Computer
Science, 153(2), 2006.

2. Musab AlTurki and José Meseguer. PVeStA: A parallel statistical model checking
and quantitative analysis tool. In Andrea Corradini, Bartek Klin, and Corina
Ĉırstea, editors, CALCO’11, volume 6859 of LNCS, pages 386–392. Springer, 2011.

3. Lucian Bentea and Peter Csaba Ölveczky. A language for defining adversaries
of probabilistic rewrite theories and its semantics. Manuscript available from:
http://heim.ifi.uio.no/~lucianb/publications/2012/prob-strat.pdf, 2012.

4. Lucian Bentea and Peter Csaba Ölveczky. A probabilistic strategy language for
probabilistic rewrite theories and its application to load balancing policies in cloud
computing. Paper in preparation., 2012.

5. Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikucionis, Danny Bøgsted
Poulsen, Jonas van Vliet, and Zheng Wang. Statistical model checking for net-
works of priced timed automata. In Uli Fahrenberg and Stavros Tripakis, editors,
FORMATS, volume 6919 of LNCS, pages 80–96. Springer, 2011.

6. Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikucionis, and Zheng
Wang. Time for statistical model checking of real-time systems. In Ganesh
Gopalakrishnan and Shaz Qadeer, editors, CAV, volume 6806 of LNCS, pages
349–355. Springer, 2011.

7. Nirman Kumar, Koushik Sen, José Meseguer, and Gul Agha. Probabilistic
rewrite theories: Unifying models, logics and tools. Technical report UIUCDCS-
R-2003-2347, Department of Computer Science, University of Illinois at Urbana-
Champaign, 2003.

8. Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Veri-
fication of probabilistic real-time systems. In Ganesh Gopalakrishnan and Shaz
Qadeer, editors, CAV, volume 6806 of LNCS, pages 585–591. Springer, 2011.

9. Koji Nakano and Stephan Olariu. Uniform leader election protocols for radio
networks. IEEE Trans. Parallel Distrib. Syst., 13(5):516–526, 2002.

http://heim.ifi.uio.no/~lucianb/publications/2012/prob-strat.pdf

24

10. Koushik Sen, Mahesh Viswanathan, and Gul A. Agha. VESTA: A statistical model-
checker and analyzer for probabilistic systems. In QEST, pages 251–252. IEEE
Computer Society, 2005.

Adaptable Transition Systems?

Roberto Bruni1, Andrea Corradini1, Fabio Gadducci1,
Alberto Lluch Lafuente2, and Andrea Vandin2

1 Department of Informatics, University of Pisa, Italy
2 IMT Institute for Advanced Studies Lucca, Italy

Introduction Self-adaptive systems have been advocated as a convenient so-
lution to the problem of mastering the complexity of modern software systems
and the continuous and rapid evolution of the environment where they operate.
Should the analysis favour a black-box perspective, a software system is called
“self-adaptive” if it can modify its behaviour in response to a change in its
context.

On the contrary, white-box adaptation focuses on how adaptation is realised
in terms of architectural and linguistic mechanisms and usually promotes a clear
separation of adaptation and application logics. Our own contribution [1] char-
acterizes adaptivity on the basis of a precisely identified collection of control
data, deemed to be interpreted as those data whose manipulation triggers an
adaptation. This view is agnostic with respect to the form of interaction with
the environment, the level of context-awareness, the use of reflection for self-
awareness. In fact, our definition applies equally well to most of the existing
approaches for designing adaptive systems. Overall, it provides a satisfactory
answer to the question “what is adaptation conceptually?”.

But “what is adaptation formally?” and “which is the right way to reason
about adaptation, formally?”. Unfortunately, only few works (e.g. [6]) address
the foundational aspects of adaptive systems, including their semantics and the
use of formal reasoning methods, and very often only generic analysis techniques
are applied. An example of the possibilities of such technique is our approach [2]
to adaptive self-assembly strategies using Maude (and following precisely both [6]
and [1]), where we applied standard simulation and statistical model checking.

Adaptable Transition Systems Building on the intuitions briefly discussed
above and on some foundational models of component based systems (like I/O
automata [5] and interface automata [3]), we aim at distilling a core, essential
model of adaptive systems. We propose a simple formal model based on a new
class of transition systems, and we sketch how this definition can be used to
specify properties related to the adaptive behaviour of a system. A central role
is again played by control data, as well as by the interaction among components
and with the enviroment (not addressed explicitly in [1]).

? Reserach partially supported by the EU through the FP7-ICT Integrated Project
257414 ASCEns (Autonomic Service-Component Ensembles).

26

Let us recall that I/O and interface automata are possibly infinite-state au-
tomata where steps are labeled over three disjoint sets of actions, namely in-
put, output and internal actions. The composition of two automata is defined
only if certain disjointness constraints over the sets of actions are satisfied, and
is obtained conceptually as a synchronous composition on shared actions and
asynchronous on the others, the differences between the two models not being
relevant at this level of abstraction.

Adaptable Transition Systems (ATSs) combine these features on actions
within an extended Kripke frame presentation, in order to capture the essence
of adaptativity. An ATS is a tuple A = 〈S,A, T, Φ, l, Φc〉 where S are the states,
A = 〈I,O,H〉 is a triple of three disjoint sets of input, output and internal ac-
tions, and T ⊆ S×A×S is a transition relation, where by A here we improperly
denote the union I]O]H. Furthermore, Φ is a set of atomic propositions, and
l : S → 2Φ is a labeling function mapping states to sets of propositions. Finally,
Φc ⊆ Φ is a distinguished subset of control propositions, which play the role of
the control data of [1].

A transition s
a→ s′ ∈ T is called an adaptation if it changes the control data,

i.e., if there exists a ϕ ∈ Φc such that ϕ ∈ l(s) ⇐⇒ ϕ 6∈ l(s′). Otherwise, it is
called a basic transition. An action a ∈ A is called a control action if it labels at
least one adaptation, and the set of all control actions is denoted by C.

The relationship between the action set C and the alphabets I, O and H
is arbitrary in general, but it could satisfy some pretty obvious constraints for
specific classes of systems. For example, an ATS A is self-adaptive if C ∩ I = ∅,
i.e., if all adaptations are under the control of the system. If instead C ⊆ I
the system is adaptable; intuitively, adaptations cannot be executed locally but
should be triggered by an external manager. Hybrid situations are possible as
well, when a system has both input and local control actions.

A preliminary investigation suggests that the composition operations on I/O
automata can be extended seamlessly to ATSs. It will be exploited, for example,
to model the composition of an adaptable basic component AB and an adapta-
tion manager AM that realizes the adaptation logics, for example a control loop
in the style of the MAPE-K architecture [4]. In this case, natural well-formedness
constraints could be expressed as suitable relations among sets of actions. For
example, the manager controls completely the adaptivity features of the basic
component if CB ⊆ OM ; and if the manager itself is at least partly adaptable
(i.e., CM ∩ IM 6= ∅), a natural requirement to avoid circularities would be that
OB ∩ CM = ∅, i.e. that the basic component cannot govern the adaptivity of
the manager. Composition of ATSs will also be used to model different kinds of
aggregation of adaptive systems, like ensembles and swarms.

A computation of an ATS A is a finite or infinite sequence of consecutive

transitions {si
li→ si+1}i<n from T (thus n can be ω). A computation is basic if

it is made of basic transitions only, otherwise it is adaptive.

By the very nature of adaptive systems, properties that one could be inter-
ested to verify on them could be classified according to the kind of computations
that are concerned with. For example we can consider: global properties, i.e. prop-

27

erties about the global behaviour of the system, including for example invariants,
safety and liveness properties, or QoS levels that the system as a black-box must
satisfy/guarantee; basic properties, i.e. properties that must be satisfied by basic
computations of the system only; and adaptation properties, i.e. properties that
may fail for basic computations, and that therefore need the adapting capability
of the system to be satisfied.

In the talk we report some initial results on the use of ATSs for the specifica-
tion of adaptive systems as well as on the epressiveness of composition operators,
and we discuss on the definition of suitable logics and verification techniques (e.g.
along the lines of the Mode-extended Linear Temporal Logic [7]) for expressing
and analyzing system properties as those mentioned above .

References

1. Roberto Bruni, Andrea Corradini, Fabio Gadducci, Alberto Lluch-Lafuente, and
Andrea Vandin. A conceptual framework for adaptation. In Juan de Lara and
Andrea Zisman, editors, FASE, volume 7212 of LNCS, pages 240–254. Springer,
2012.

2. Roberto Bruni, Andrea Corradini, Fabio Gadducci, Alberto Lluch-Lafuente, and
Andrea Vandin. Modelling and analyzing adaptive self-assembling strategies with
Maude. In Francisco Durán, editor, Preliminary Proceedings of WRLA, 2012.

3. Luca de Alfaro and Thomas A. Henzinger. Interface automata. In ESEC/SIGSOFT
FSE 2001, volume 26(5) of ACM SIGSOFT Software Engineering Notes, pages 109–
120. ACM, 2001.

4. Paul Horn. Autonomic Computing: IBM’s perspective on the State of Information
Technology, 2001.

5. Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for distributed
algorithms. In PODC 1987, pages 137–151. ACM, 1987.

6. José Meseguer and Carolyn L. Talcott. Semantic models for distributed object
reflection. In Boris Magnusson, editor, ECOOP, volume 2374 of LNCS, pages 1–36.
Springer, 2002.

7. Yongwang Zhao, Dianfu Ma, Jing Li, and Zhuqing Li. Model checking of adaptive
programs with mode-extended linear temporal logic. In Engineering of Autonomic
and Autonomous Systems (EASe), 2011 8th IEEE International Conference and
Workshops on, pages 40–48. IEEE Computer Society, 2011.

Entailment Systems for Default Reasoning

Valent́ın Cassano1, Carlos G. Lopez Pombo2,3, and Thomas S.E. Maibaum1

1 Department of Computing and Software, McMaster University
2 Departmento de Computación, Universidad de Buenos Aires

3 Consejo Nacional de Investigaciones Cient́ıficas y Tecnológicas (CONICET)
cassanv@mcmaster.ca clpombo@dc.uba.ar tom@maibaum.org

Software certification is a widespread concern in Software Engineering for, in
many cases, the compliance of software with certain requirements becomes indis-
pensable because of the critical tasks it is supposed to perform. In that respect,
formal methods have provided a promising toolset for coping with this issue.
However, they are mostly based on monotonic logical frameworks. This imposes
some considerations on the manipulation of the corpus of evidence justifying
how a piece of software fulfills some critical properties. To provide an example,
additional evidence obtained about a software artifact, e.g., data gathered from
further testing, possibly invalidates previous claims made about it. Within a
monotonic reasoning framework, this vitiates further analysis from logical inter-
est4. Thus, the need to create formal frameworks capable of dealing with such
scenarios then becomes indispensable.

In view of the above, nonmonotonic reasoning appears as an adequate frame-
work for coping with the class of problems just presented. In brief, nonmonotonic
reasoning emerged from the field of Artificial Intelligence, and it was originally
motivated by a prevailing discontent in the area with the limits of first order clas-
sical logic as a framework for reasoning about action and causation5. Notwith-
standing, this initial motivation was rapidly outgrown and nonmonotonic rea-
soning became a subject of study in its own right. The underlying philosophy of
this type of reasoning is a cogent reflection of the fact that reasoning is not in
general reducible to the consequences obtainable from a set of definite claims.
Instead, it is also being carried out under some judiciously chosen hypotheses.
These are understood as tentative claims and, in view of their nature, may be
abandoned in the light of new evidence.

In turn, there exist several alternative formalizations of a nonmonotonic con-
sequence relation, but in this work we will concentrate on default reasoning. This
formalism was proposed originally by Reiter in [4] as a way of reasoning with in-
complete information6. Intuitively, in such situations some surmises are posited
to carry out further reasoning. As a result, in default reasoning, the premises
of its consequence relation consist of a set of facts, conceived of as representing
unalterable judgments, and a set of default rules, understood as conditionally
supporting some tentative claims. In virtue of this conditional conception, de-

4 Since in the presence of monotonicity, once a claim is established, it is regarded as
being absolute, hence its rebuttal necessarily leads to an inconsistent situation.

5 q.v. Nonmonotonic Reasoning in [1] for an historical account of the field.
6 q.v. [4], p. 87.

29

fault rules become the source of non-monotonicity, for the sustainability of the
claims they establish may be undermined by the addition of further claims. In
addition, the nature of default rules forbids two conflicting tentative claims to
be considered in the same situation, as, in such a circumstance, the justifications
of both claims are contradicted. Thence, for a given set of facts, default rules
determine a class of alternative situations that may arise because of conflicting
tentative claims. These alternative situations are known as extensions. The con-
sequences of some given premises are obtained either skeptically, or credulously,
based on what can be demonstrated in every, or some, extension, respectively.

Perhaps the most illustrative example of a default reasoning argument is
explained in reference to the legal principle of Presumption of Innocence. This
principle states that in the absence of further information, it should be sustained
that anyone accused of committing a crime is innocent. Arguably, if obtained in
this way, the innocence of the accused must be regarded as a tentative claim.
That is, if during the course of a trial sufficient convicting evidence is presented,
the claim denoting the innocence of the accused can no longer be sustained.
This general form of reasoning is not only typical of default reasoning, but also
of software certification. For, as previously mentioned, in the latter situation,
additional evidence can possibly invalidate otherwise established claims.

Now, since its introduction, several distinct formalizations of Reiter’s origi-
nal idea have been proposed, leading to what nowadays forms a class of default
reasoning formalisms. We regard these formalizations as problematic, for they
have been described from an operational point of view. We consider that this
underlying approach mitigates against the study of general properties of de-
fault reasoning systems and that this is particularly reflected in the study of the
formal properties of consequence relations for them. In view of these consider-
ations, we propose a categorical formalization of the concept of an entailment
system for default reasoning. Our formalization follows the methodology intro-
duced by Meseguer in [3]; where a categorical definition of entailment systems is
introduced as a syntactic counterpart of institutions [2] providing an extremely
general and powerful tool for the study of the general properties of monotonic
entailment relations. We elaborate on the way in which our approach tackles
the previously mentioned problems and illustrate how most of the standard sys-
tems of default reasoning are captured by this new, abstract formalization. In
addition, we explain how the approach advocated here elucidates some consid-
erations with respect to general properties of consequence relations for default
reasoning, thus underpinning the study of these properties.

To provide an overview of our formulation of an entailment system for default
reasoning, we consider the following steps:

i. We fix an underlying entailment system over which default reasoning will
be carried out.

ii. Then, resorting to an adequate abstraction of default rules, analogous to
the case of sentences of an entailment system, we construct a category of
premises for an entailment relation for default reasoning. The objects of this

30

category are seen as tuples consisting of a set of facts and a set of default
rules.

iii. In turn, the concept of the class of extensions associated with some given
premises is defined by a functor mapping premises to classes of sets of sen-
tences. These sets of sentences are regarded as augmentations of the set of
facts with a number of tentative claims being supported by certain default
rules.

iv. An entailment relation for default reasoning is then a relation between
premises and sentences, and it is referred to as skeptical, or credulous, de-
pending on whether the relation between some given premises and a sentence
holds whenever that sentence belongs to every, or some, extension of these
premises, respectively.

v. Lastly, the desired properties of an entailment relation for default reasoning
are expressed in relation to the extensions of some given premises.

The contribution of our approach, besides its generality, is twofold. Firstly,
it provides a formal framework, within the theory of general logical systems, for
the study of different systems of default reasoning, with an emphasis on the de-
parture from the traditional operational view. Namely, our categorical definition
of entailment systems for default reasoning, which resorts to general principles
entrenched in the theory of entailment systems, identifies the basic concepts and
structures involved in various default reasoning formalisms, and it establishes,
based on these constructions, some minimal requirements these formalisms are
considered to satisfy. We argue that this methodological standpoint aids in the
formulation, and posterior analysis, of general properties of entailment relations
for default reasoning. Secondly, it internalizes a notion of structure preserving
mapping between premises which allows for their structuring in a nonmonotonic
setting. This favors the study of concepts analogous to conservative extensions
in classical entailment systems, but now for default reasoning.

References

1. D. M. Gabbay and J. Woods. Handbook of the History of Logic: The Many Valued
and Nonmonotonic Turn in Logic, volume 8. North-Holland, Amsterdam, 2007.

2. J. A. Goguen and R. M. Burstall. Introducing institutions. In Logics of Programs,
volume 164 of LNCS, pages 221–256. 1984.

3. J. Meseguer. General logics. In Logic Colloquium 1987, pages 275–329, 1989.
4. R. Reiter. A logic for default reasoning. Artificial Intelligence, 13(1-2):81–132, 1980.

Representing CASL in a Proof-Theoretical
Logical Framework

Mihai Codescu1, Fulya Horozal2, Iulia Ignatov2, and Florian Rabe2

1 DFKI GmbH Bremen, Germany
2 Computer Science, Jacobs University Bremen, Germany

The Common Algebraic Specification Language CASL [9] provides a standard
language for algebraic specification, expressive enough to subsume and thus unify
many of the existing languages. At the basic level, the CASL logic is multi-sorted
partial first-order logic with subsorting and induction. Moreover, sublogics can be
obtained by restricting one or many of the features of the logics (e.g. partiality,
subsorting) and the design of the CASL logic allows for language extensions
(e.g. higher-order or coalgebraic extensions) which can be integrated easily. An
extension of CASL to heterogeneous multi-logic specifications is supported by
the Heterogeneous Tools Set Hets [8].

The Logic Atlas and Integrator (LATIN) project [1] develops a foundation-
ally unconstrained framework for the representation of logics and translations
between them [11]. It integrates proof-theoretical frameworks (such as LF [4])
and model-theoretic frameworks (such as institutions [3]) by giving a general
definition of a logical framework, called the LATIN meta-framework [2].

The LATIN meta-framework follows a “logics-as-theories and translations-as-
morphisms” approach, providing a generic construction of a logic from a theory
graph in a logical framework. In particular, this has the advantage that we can
use declarative logic representations in the LATIN meta-framework to automat-
ically give rise to implementations of these logics. Thus, Hets can be extended
conveniently not only on the developer’s side but also directly by the user, in a
significantly simplified manner.

PCFOLSyn

PCFOLPf

PCFOLMod

ZFC
µ

In this work, we represent CASL as a logic in
the instantiation of the LATIN meta-framework
with LF [4] as a concrete representation lan-
guage. Our representation follows closely the def-
inition of the CASL logic in [9]. Firstly, we repre-
sent the syntax, proof theory and model theory
of the multi-sorted version of CASL (PCFOL) in LF, which results in the dia-
gram of LF theories and theory morphisms on the right. PCFOLSyn encodes the
syntax by declaring one LF symbol for every class of expressions in CASL (e.g.,
sorts, functions, predicates, terms, etc.). This representation includes declara-
tion patterns for CASL signatures, a new notion we add to LF that represents
the different kind of symbol declarations allowed in signatures of a logic or a
related declarative language [5]. PCFOLPf encodes the proof-theory by adding
one LF constant for every proof rule. PCFOLMod encodes CASL models as the-
ories of set theory ZFC, and µ interprets the CASL syntax by mapping each
CASL concept in PCFOLSyn to a CASL model.

32

Secondly, we represent only the syntax of subsorting explicitly in a signa-
ture CASLSyn and obtain its semantics and proof theory via a translation of
subsorting in PCFOL. We then use a logic program in the Twelf [10] implemen-
tation of LF combined with a pattern-based functor to implement the signature
and expression translation from CASLSyn to PCFOLSyn . The Twelf meta-theory
guarantees that this translation preserves typing. The Twelf sources of our rep-
resentation are available in the LATIN Logic Atlas [6].

This representation of CASL has two major benefits. Firstly, CASL exten-
sions or variants can now be easily defined in LF and added to Hets automati-
cally. Secondly, we can apply knowledge management services [7] (such as search,
change management, querying, presentation, etc.) via the LATIN framework to
CASL specifications.

References

1. M. Codescu, F. Horozal, M. Kohlhase, T. Mossakowski, and F. Rabe. Project Ab-
stract: Logic Atlas and Integrator (LATIN). In J. Davenport, W. Farmer, F. Rabe,
and J. Urban, editors, Intelligent Computer Mathematics, volume 6824 of Lecture
Notes in Computer Science, pages 287–289. Springer, 2011.

2. M. Codescu, F. Horozal, M. Kohlhase, T. Mossakowski, F. Rabe, and K. So-
jakova. Towards Logical Frameworks in the Heterogeneous Tool Set Hets. In
T. Mossakowski and H. Kreowski, editors, Recent Trends in Algebraic Develop-
ment Techniques 2010, volume 7137 of Lecture Notes in Computer Science, pages
139–159. Springer, 2012.

3. J. Goguen and R. Burstall. Institutions: Abstract model theory for specification
and programming. Journal of the Association for Computing Machinery, 39(1):95–
146, 1992.

4. R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal
of the Association for Computing Machinery, 40(1):143–184, 1993.

5. F. Horozal and F. Rabe. Representing categories of theories in a proof-
theoretical logical framework. https://svn.kwarc.info/repos/fhorozal/pubs/

theory-categories_abst.pdf. Submitted to WADT 2012.

6. M. Kohlhase, T. Mossakowski, and F. Rabe. The LATIN Project, 2009. see
https://trac.omdoc.org/LATIN/.

7. M. Kohlhase, F. Rabe, and V. Zholudev. Towards MKM in the Large: Modular
Representation and Scalable Software Architecture. In S. Autexier, J. Calmet,
D. Delahaye, P. Ion, L. Rideau, R. Rioboo, and A. Sexton, editors, Intelligent
Computer Mathematics, volume 6167 of Lecture Notes in Computer Science, pages
370–384. Springer, 2010.

8. T. Mossakowski, C. Maeder, and K. Lüttich. The Heterogeneous Tool Set. In O.
Grumberg and M. Huth, editor, TACAS 2007, volume 4424 of Lecture Notes in
Computer Science, pages 519–522, 2007.

9. Peter D. Mosses, editor. CASL Reference Manual. Number 2960 in LNCS. Springer
Verlag, 2004.

10. F. Pfenning and C. Schürmann. System description: Twelf - a meta-logical frame-
work for deductive systems. Lecture Notes in Computer Science, 1632:202–206,
1999.

https://svn.kwarc.info/repos/fhorozal/pubs/theory-categories_abst.pdf
https://svn.kwarc.info/repos/fhorozal/pubs/theory-categories_abst.pdf
https://trac.omdoc.org/LATIN/

33

11. F. Rabe. A Logical Framework Combining Model and Proof Theory. Mathematical
Structures in Computer Science, 2012. to appear; see http://kwarc.info/frabe/

Research/rabe_combining_10.pdf.

http://kwarc.info/frabe/Research/rabe_combining_10.pdf
http://kwarc.info/frabe/Research/rabe_combining_10.pdf

Compiling Logics

Mihai Codescu1, Fulya Horozal2, Till Mossakowski1, and Florian Rabe2

1 DFKI GmbH Bremen, Germany
2 Computer Science, Jacobs University Bremen, Germany

In [2], we presented an extension of the Heterogeneous Tool Set HETS [5]
with a framework for representing logics independently of their foundational
assumptions. The key idea [6] is that a graph of theories in a type theoretical
logical framework like LF [3] can fully represent a model theoretic logic. Our
integration used this construction to make the process of extending HETS with
a new logic more declarative, on one side, and fully formal, on the other side.

However, the new logic in HETS inherits the syntax of the underlying logical
framework. This is undesirable for multiple reasons. Firstly, a logical framework
unifies many concepts that are distinguished in individual logics. Examples are
binding and application (unified by higher-order abstract syntax), declarations
and axioms (unified by the Curry-Howard correspondence), and different kinds
of declarations (unified by LFP – LF with declaration patterns – as introduced
in [4]). Therefore, users of a particular logic may find it unintuitive to use the
concrete syntax (and the associated error messages) of the logical framework.

Secondly, only a small fragment of the syntax of the logical framework is used
in a particular logic. For example, first-order logic only requires two base types
term for terms and form for formulas and not the whole dependent type theory
of LF. Therefore, it is unnecessarily complicated if implementers of additional
services for a particular logic have to work with the whole abstract syntax of
the logical framework. Such services include in particular logic translations from
logics defined in LF to logics implemented by theorem provers.

Therefore, we introduce an architecture that permits compiling logics defined
in LF into custom definitions in arbitrary programming languages. This is similar
to parser generators, which provide implementations of parsers based on a lan-
guage definition in a context-free grammar. Our work provides implementations
of a parser and a type-checker based on a context-sensitive language definition in
the recent extension of LF with declaration patterns (LFP) [4]. Here declaration
patterns give a formal specification of the syntactic shape of the declarations in
the theories of a logic.

LFP signature Logic Syntax

Haskell Instance

SML Instance

An overview of the architecture is given
on the right. The centerpiece is the compiler,
which takes an LFP signature and produces
an abstract representation of the syntax of
the defined logic, including parsing and type-
checking algorithms in a generic functional
programming language. In a second step, the logic syntax can be easily serialized
in, e.g., Haskell or SML.

35

A logic syntax corresponds to the straightforward implementation one would
choose in a functional programming language. Given an LFP signature Σ, the
compiler generates one abstract data type for every type family declaration in
Σ. Here all type dependencies are erased, and only those LFP symbols with
higher-order arguments are supported that can be readily interpreted as binders.
Moreover, for every declaration pattern in Σ, one data type of declarations is
generated, and lists of such declarations form the type of signatures. Finally, one
type family must be distinguished as the type of formulas, which permits the
definition of a type of theories.

For example, for propositional logic, the LF type form : type generates one
data type form whose constructors are the connectives. The declaration pattern
pattern PropVar = {F : form} for propositional variables gives rise to a data
type PropVar with one constructor taking a string argument, i.e., the name of
the declared symbol.

In addition, the compiler produces two families of recursive functions. Firstly,
parsing functions map from a generic representation of the concrete syntax to
the generated data types. This generic representation uses one keyword for each
LFP declaration pattern to introduce declarations. For expressions, it uses a
simplified variant of OpenMath objects [1]. Parsing of actual user input into
this representation is straightforward and does not depend on Σ (except for
possibly customizing the parser with the fixities and precedences declared in
Σ). Secondly, typing functions map from the generated data types to a generic
representation of the abstract syntax. This representation is based on LFP, and
type checking the latter is again straightforward and parametric in Σ.

We are currently integrating this framework into HETS, using a re-implemen-
tation of first-order logic as an easy test case. This will provide insight about how
much functionality is still missing in order to make the implementation of new
logics in HETS fully declarative. Important such functionality includes signature
colimits, amalgamability checks, and theorem prover interfaces. The plan for the
future is to extend the framework with these features, and successively replace
HETS’ Haskell-coded logics with compiled LF-defined logics.

References

1. S. Buswell, O. Caprotti, D. Carlisle, M. Dewar, M. Gaetano, and M. Kohlhase. The
Open Math Standard, Version 2.0. Technical report, The Open Math Society, 2004.
See http://www.openmath.org/standard/om20.

2. M. Codescu, F. Horozal, M. Kohlhase, T. Mossakowski, F. Rabe, and K. Sojakova.
Towards Logical Frameworks in the Heterogeneous Tool Set Hets. In T. Mossakowski
and H. Kreowski, editors, Recent Trends in Algebraic Development Techniques 2010,
volume 7137 of Lecture Notes in Computer Science, pages 139–159. Springer, 2012.

3. R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of
the Association for Computing Machinery, 40(1):143–184, 1993.

4. F. Horozal and F. Rabe. Representing categories of theories in a proof-
theoretical logical framework. https://svn.kwarc.info/repos/fhorozal/pubs/

theory-categories_abst.pdf. Submitted to WADT 2012.

http://www.openmath.org/standard/om20
https://svn.kwarc.info/repos/fhorozal/pubs/theory-categories_abst.pdf
https://svn.kwarc.info/repos/fhorozal/pubs/theory-categories_abst.pdf

36

5. T. Mossakowski, C. Maeder, and K. Lüttich. The Heterogeneous Tool Set. In O.
Grumberg and M. Huth, editor, TACAS 2007, volume 4424 of Lecture Notes in
Computer Science, pages 519–522, 2007.

6. F. Rabe. A Logical Framework Combining Model and Proof Theory. Mathematical
Structures in Computer Science, 2012. to appear; see http://kwarc.info/frabe/

Research/rabe_combining_10.pdf.

http://kwarc.info/frabe/Research/rabe_combining_10.pdf
http://kwarc.info/frabe/Research/rabe_combining_10.pdf

On the Concurrent Semantics of Transformation
Systems with Negative Application Conditions

A. Corradini1, R. Heckel2, F. Hermann3, S. Gottmann3, and N. Nachtigall3

1 andrea(at)di.unipi.it, Dipartimento di Informatica, Università di Pisa, Italy
2 reiko(at)mcs.le.ac.uk, University of Leicester, UK

3 {frank.hermann,susann.gottmann,nico.nachtigall}(at)uni.lu, Interdisciplinary Center
for Security, Reliability and Trust, Université du Luxembourg, Luxembourg

Extended Abstract

Graph Transformation Systems (GTSs) are an integrated formal specification
framework for modelling and analysing structural and behavioural aspects of
systems. The evolution of a system is modelled by the application of rules to the
graphs representing its states and, since typically such rules have local effects,
GTSs are particularly suitable for modelling concurrent and distributed systems
where several rules can be applied in parallel. Thus, it is no surprise that a large
body of literature is dedicated to the study of the concurrent semantics of graph
transformation systems.

The classical results include – among others – the definitions of shift-equivalence
and parallel production, exploited in the Church-Rosser and Parallelism theo-
rems [5]: briefly, derivations that differ only in the order in which independent
steps are applied are considered to be equivalent. Several years later, taking
inspiration from the theory of Petri nets, deterministic processes were intro-
duced [4], which are a special kind of GTSs, endowed with a partial order,
and can be considered as canonical representatives of shift-equivalence classes
of derivations. Next, the unfolding of a GTS was defined as a typically infi-
nite non-deterministic process which summarizes all the possible derivations of
a GTS [2]. Recently, all these concepts have been generalized to transformation
systems based on (M-)adhesive categories [6, 3, 1].

In this paper, we consider the concurrent semantics of GTSs that use the
concept of Negative Application Conditions (NACs) for rules [7], which is widely
used in applied scenarios. A NAC allows one to describe a sort of “forbidden
context”, whose presence around a match of a rule inhibits the application of
the rule. Existing contributions that generalize the concurrent semantics of GTSs
to the case with NACs are not always satisfactory.

For example, the definition of shift-equivalence was generalized to adhesive
transformation systems with NACs in [11]. However, as shown in [8], unlike
the case without NACs, the notion of sequential independence among deriva-
tion steps is not stable under switching. More precisely, it is possible to find
a derivation made of three direct derivations s = (s1; s2; s3) where (s1; s2) are
sequentially independent, but the corresponding steps (s′1; s′2) are not sequen-
tially independent in the shift-equivalent derivation s′ = (s′3; s′1; s′2) (obtained

38

with the switchings (2 ↔ 3; 1 ↔ 3)). This fact implies that it is not possible to
generalize in a direct way to the case with NACs the results concerning deter-
ministic and non-deterministic processes that are known to hold for plain GTSs.
For example, it is not possible to establish a one-to-one correspondence between
shift-equivalent classes of derivations and isomorphism classes of processes, as
done for example in [4] for DPO rewriting without NACs, because in the above
situation s1 and s′1 would be represented by the same event in the process,
and similarly for s2 and s′2, but then these two events should be both causally
related and independent, resulting in a contradiction. Clearly, for the same rea-
son all other process based semantics (including non-deterministic processes and
unfoldings) cannot be applied straightforwardly to GTSs with NACs.

Inspired by a solution proposed in [8], we first show that the stability of
sequential independence with respect to switching is still guaranteed if all the
NACs L → N are incremental, i.e., if there are two decompositions L → N1 →
N = L → N = L → N2 → N , then there exist either an f : N1 → N2 or
a g : N2 → N1 such that the resulting triangles commute. Next we present a
construction that, given a rule r with arbitrary NACs generates a set of rules
Inc(r) with incremental NACs only preserving the rewriting relation, i.e., such
that G ⇒r H if and only if there is a rule r′ ∈ Inc(r) such that G ⇒r′ H.
The construction can be extended to a function from derivations over a set of
rules G to derivations over the set Inc(G). By exploiting this function we define
a new notion of independence: d1; d2 are independent in G iff Inc(d1; d2) are
independent in Inc(G). This stricter notion of independence should enjoy the
desired properties needed to lift the process and unfolding semantics to DPO
rewriting with NACs.

In the presentation, we shall also discuss other problematic aspects of the
currently available concurrent semantics of DPO rewriting with NACs. For ex-
ample, one can observe that in the case without NACs the concurrent execution
of sequentially independent steps is “safe”, i.e., independent from the internal
interleaving of the addition and deletion of structural elements within the mod-
elled system. Instead, we will show that this is not generally the case for rules
with NACs, because the forbidden pattern of one rule could show up temporar-
ily during the application of the other rule. In this framework, we will discuss a
stricter condition of independence that ensures safety.

Finally, we will discuss the relationship between the above topics and our
previous work where we argued that shift-equivalence with NACs is too strict
to relate all equivalent transformation sequences, and we introduced the notion
of permutation equivalence that captures exactly all equivalent linearisations of
a process [9, 10] obtained from a transformation sequence with NACs. Since,
permutation equivalence is more general than switch equivalence with NACs,
the problem that consecutive independent steps are not preserved from one lin-
earization to an equivalent one is again present. As we will show, this problem
does not occur for systems with incremental NACs.

39

References

1. Paolo Baldan, Andrea Corradini, Tobias Heindel, Barbara König, and Pawel
Sobocinski. Unfolding grammars in adhesive categories. In CALCO, volume 5728
of LNCS, pages 350–366. Springer, 2009.

2. Paolo Baldan, Andrea Corradini, Ugo Montanari, and Leila Ribeiro. Unfolding
semantics of graph transformation. Inf. Comput., 205(5):733–782, 2007.

3. Andrea Corradini, Frank Hermann, and Pawe lSobociński. Subobject Transforma-
tion Systems. Applied Categorical Structures, 16(3):389–419, 2008.

4. Andrea Corradini, Ugo Montanari, and Francesca Rossi. Graph processes. Funda.
Info., 26:241–265, 1996.

5. H. Ehrig. Introduction to the Algebraic Theory of Graph Grammars (A Survey).
In Graph Grammars and their Application to Computer Science and Biology, vol-
ume 73 of LNCS, pages 1–69. Springer, 1979.

6. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in Theor. Comp. Science. Springer, 2006.

7. A. Habel, R. Heckel, and G. Taentzer. Graph Grammars with Negative Application
Conditions. Special issue of Fundamenta Informaticae, 26(3,4):287–313, 1996.

8. Reiko Heckel. DPO Transformation with Open Maps. Submitted., 2012.
9. Frank Hermann. Permutation Equivalence of DPO Derivations with Negative Ap-

plication Conditions based on Subobject Transformation Systems. EC-EASST, 16,
2009.

10. Frank Hermann, Andrea Corradini, and Hartmut Ehrig. Analysis of Permuta-
tion Equivalence in M-adhesive Transformation Systems with Negative Application
Conditions. MSCS, 2012. To appear.

11. L. Lambers, H. Ehrig, F. Orejas, and U. Prange. Parallelism and Concurrency
in Adhesive High-Level Replacement Systems with Negative Application Condi-
tions. In H. Ehrig, J. Pfalzgraf, and U. Prange, editors, Proceedings of the ACCAT
workshop at ETAPS 2007, volume 203 / 6 of ENTCS, pages 43–66. Elsevier, 2008.

Decision Algebra: Parameterized Specification of
Decision Models

Antonina Danylenko1, Wolf Zimmermann2 and Welf Löwe1

1 Linnaeus University, Software Technology Group,
351 95 Växjö, Sweden

{antonina.danylenko,welf.lowe}@lnu.se
2 Martin-Luther-Universität Halle Wittenberg, Institut für Informatik,

061 20 Halle(Saale), Germany
{wolf.zimmermann}@informatik.uni-halle.de

Introduction. Processing decision information to adjust and alter applica-
tions’ behaviour is a constitutive part in different fields of Computer Science,
such as Data Mining, Software Engineering, Artificial Intelligence, etc. In gen-
eral, decision information is an information that is used to deduce the relation-
ship between a certain context and a certain decision. It is usually represented
by a decision model (or classifier), which is a set of rules that determines a tar-
get decision based on the current context. Frequently used examples of decision
models are decision tables, decision trees, support vector machines, etc.

Problem. In general, capturing decision information in decision models can
have the problems like data replication (redundancy in the stored information)
and model overfitting possibly leading to data fragmentation (the amount of
information is too small to make a statistically significant decision) [5]. Thus,
an important choice to be made is to select and implement a certain decision
model for a particular problem domain. Issues such as model accuracy, capturing
time, robustness, and scalability must be considered and can involve tradeoff
between (1) the expressiveness of the model, i.e., the representation should be as
close as possible to the initial captured data, (2) the memory required to keep
this high-detailed decision model and (3) the time and initial data required in
order to choose among the alternative decisions it can represent [3]. Moreover,
developing or adjusting algorithms for processing this information might require
adding new operations which, in general, have a negative impact on the problem
domain memory requirements and performance.

Decision Algebra. Because of this variety of application domains with de-
cision problems (each coming with different notations and tailored implementa-
tions) we consider it worthwhile to introduce a general algebraic specification,
referred to as Decision Algebra, for describing an abstract data type that corre-
sponds to a general decision model representation. Speaking of decision models
we may have in mind decision models originated in Machine Learning filed, which
keep different data (e.g. distributions, coefficients, probabilities) required for a
correct decision making. Other examples may include decision models in Soft-
ware Engineering, such as models representing program analysis results, software
complexity models or service quality models.

41

A1

A2 A2

0	 1	

hot	 cold	 hot	 cold	

yes	 no	 yes	 no	

Fig. 1. Example of the Decision Tree DT

spec BinaryC = C+
sorts binaryC
opns
t: binaryC binaryC → binaryC
yes: → binaryC
no: → binaryC

Every model has in general its own specification based on which different
types of implementation are allowed. Therefore, it could be more effective to
give one general specification for decision model, which can be parameterized,
such that concrete instantiations may be obtained by suitable actualization of
the parameter [2]. Such general algebraic specification for decision models can
play an important conceptual role in software specifications where a decision
process is involved, and development focused on functional programming.

Decision Algebra Specification. In our previous work [1] we introduced
the Decision Algebra that was limited to decision trees and decision tables, where
the specification was not parameterized and was particularly dedicated to certain
decision model representation. The purpose of the current work is to present
the Decision Algebra DA(T,C,DF (T,C)) as a parameterized specification that
provides the representation of decision information as decision functionDF along
with a set of operations and equations. By replacing a formal parameter DF by
an actual parameter specification we can obtain a new specification which defines
a concrete decision model implementation.

spec DA(T,C,DF (T,C)) = DF (T,C)+
opns evert: df int → df ; approx: df int → df; apply(n): fun df(n) → df
vars d1, d2 : df; d: df(n); i : int; f : fun
axioms arity(approx(d1, i)) ≤ arity(d1) = true

evert(d1, i) ≡ d1 = true arity(evert(d1, i)) =int arity(d1) = true
apply(n)(f, d) = eval(n) (f, d) approx(d1, i) v d1 = true

A decision function dfn : T → C, where T = A1 × . . . × An is a tuple of
contexts (attributes) that lead to a decision C, serves as a formal parameter
specification which in turn is also parameterized by the specific decision infor-
mation that is kept in a certain decision model, i.e. by concrete representation
of tuple T and decision C.

spec DF (T,C) = T+, C+, INT
sorts df, fun

opns decide: df t → c; v: df df → bool ; ≡: df df → bool ;
arity: df → int1; eval(n): fun dfn → df

vars d1, d2 : df
axioms (∀ x: t, decide(d1, x) v decide(d2, x) = true) ⇒ v (d1, d2) = true

(∀ x :t, decide(d1, x) =c decide(d2, x) = true) ⇒ ≡(d1, d2) = true

In this case the only requirement for parameter C is definition of partial
order v over decisions c1, c2 ∈ C.

To specify parameter passing mechanism in this work we define a specifica-
tion morphism that replaces a formal by an actual parameter specification and

1 Note that arity operation specifies the number of attributes that influences the final
decision

42

therefore results in a concrete decision model representation. For example, the
decision tree model depicted in Figure 1 corresponds to the specific implementa-
tion MyDT (T) of the decision function DF (T,BinaryC) that is parameterized
with the BinaryC values representing the decision C.

spec MyDT (T) = T+, BinaryC+, INT ‘+
sorts A1, A2, A3, V1, V2, fun
sub-sorts A1 v df , A2 v df , A3 v df

opns

tuple: V1V2 → t ; merge: → fun; eval(2): fun df df → df ; decide: t df → binaryC ;
a1: A2 A2 → A1; a2: A3 A3 → A2; t: A1 A1 → A1; t: A1 A2 → A1;
leaf: c → A3; 0: → V1; 1: → V1; hot: → V2;
Π1: T → V1; Π2: T → V2 cold: → V2;

vars x1, x2, u1, u2: df; t1, t2: t, c1, c2: binaryC
axioms (decide(t, leaf(c1)) = c1; eval(2)(merge, x1, x2) = x1 t x2

(Π1(t1) = 0) ⇒ decide(t1, a1(x1, x2)) = decide(t1, x1)
(Π1(t1) = 1) ⇒ decide(t1, a1(x1, x2)) = decide(t1, x2)
(Π2(t1) = hot) ⇒ decide(t1, a1(x1, x2)) = decide(t1, x1)
(Π2(t1) = cold) ⇒ decide(t1, a1(x1, x2)) = decide(t1, x2)
a1(x1, x2) t a2(u1, u2) = a1((x1 t a2(u1, u2)), (x2 t a2(u1, u2)))
a2(x1, x2) t a2(u1, u2) = a2((x1 t u2), (x2 t u2))
leaf(c1) t leaf(c2) = leaf(c1 t c2); approx(a1(x1, x2), 1) = x1 t x2
approx(a1(a2(x1, x2), a2(u1, u2)), 2) = a1((x1 t u1), (x2 t u2))

Outcome. Central idea of the Decision Algebra is the idea of a function,
which computes a result that depends on the values of its inputs. This very
much correlates with the ideas of functional programming that gives the clearest
possible view of abstraction (in a function) and data abstraction (in an abstract
data type) [4, 6]. Therefore, using our Decision Algebra, decision models can be
directly implemented as a data type in functional languages, whereas in other
languages one is forced to describe them by different specific data structures with
a number of additional operations. Another strengths of having a such general
algebraic specification for decision models is that we can define general functions
which can be used in different applications and, therefore, construct the pattern
of computation: transform every decision model in a same way and combine the
decision models using same operator. Due to this generalization, insights can
be gained at an abstract level or reused between application domains, paving
the way for a deeper problem understanding and, possibly, for novel and more
efficient algorithms for combining different decision models.

References

1. Antonina Danylenko, Jonas Lundberg, and Welf Löwe. Decisions: Algebra and
Implementation. In 7th International Conference on Machine Learning and Data
Mining (MLDM 2011), New-York/USA, August-September 2011.

2. Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Specification 1: Equa-
tions and Initial Semantics. Springer-Verlag, 1985.

3. Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.
4. Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala: A Compre-

hensive Step-by-step Guide. Artima Incorporation, USA, 1st edition, 2008.
5. M. Steinbach P.-N. Tan and V. Kumar. Introduction to Data Mining. Addison

Wesley, 2005.

43

6. Simon Thompson. The Haskell: The Craft of Functional Programming. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 1999.

A module algebra for behavioural specifications

Răzvan Diaconescu

Simion Stoilow Institute of Mathematics of the Romanian Academy

The structuring of specifications, or specification in-the-large, is a crucial
paradigm for building complex specification. Moreover it is known to have su-
perior specification power than unstructured or flat specification paradigm, in
the sense that one is able to specify classes of models that cannot be specified
by flat specifications (e.g. see [6] for some examples). The modern specification
languages, including CASL [1] and CafeOBJ [7] among others, implement rather
powerful structuring or modularization techniques based upon the rather vast
institution theory literature. An important part of the study of modularization
systems is the development of appropriate module algebras [2, 9, 6, 15] which
includes both the definition of appropriate structuring operators and the inves-
tigation of relevant equations between module expressions.

On the other hand behavioral specification [13, 10, 11, 8, 12, 14, 4] consti-
tutes one of the most promising algebraic specifications paradigm, which in my
opinion is still insufficiently developed both at the mathematical and method-
ological levels. One aspect that needs further serious consideration may be a
comprehensive theory of structuring behavioral specifications which may serve
as a basis for a proper realization of behavioral specification paradigm within
concrete specification languages. An important part of such investigation would
consist of a development of an algebra for behavioral modules.

One may raise the following (rather legitimate) point. Given the current well
developed sophisticated modularization theories available within the algebraic
specification literature, would it not be enough just to instantiate some of those
to some appropriate behavioral logic institution, such as some version of hidden
algebra? I think this is only partly possible due to some of the peculiar specifici-
ties of the behavioral or hidden algebra institutions. For example the union of
signatures displays a very specific type of partiality induced by two factors: (1)
the requirement to keep the hidden and the visible sorts separate, and (2) the
so-called ‘encapsulation’ condition on the signature morphisms that is crucial
for the Satisfaction Condition to hold.

Here we report a very recent development of a module algebra for behav-
ioral specifications meant to be part of a comprehensive theory of structuring
behavioral specifications. The main features of this theory are as follows.

1. While it is an institution dependent study, on the one hand it is based upon
well established institution theoretic techniques (e.g. pushouts, inclusion sys-
tems, etc.) and, on the other hand it relies upon most recent advances in
institution-independent modularization theory (e.g. [6, 5]).

2. The behavioral specification logic considered is a version [8] of Goguen’s
hidden algebra [10].

45

3. The module algebra is a partial one (in the sense of [3]) and satisfies rather
interesting versions of important rules such as associativity, distributivity,
etc.

References

1. Edigio Astesiano, Michel Bidoit, Hélène Kirchner, Berndt Krieg-Brückner, Peter
Mosses, Don Sannella, and Andrzej Tarlecki. CASL: The common algebraic spec-
ification language. Theoretical Computer Science, 286(2):153–196, 2002.

2. Jan Bergstra, Jan Heering, and Paul Klint. Module algebra. Journal of the Asso-
ciation for Computing Machinery, 37(2):335–372, 1990.

3. Peter Burmeister. A Model Theoretic Oriented Approach to Partial Algebras.
Akademie-Verlag, Berlin, 1986.

4. Răzvan Diaconescu. Coinduction for preordered algebras. Information and Com-
putation, 209(2):108–117, 2011.

5. Răzvan Diaconescu. An axiomatic approach to structuring specifications. Theo-
retical Computer Science, 433:20–42, 2012.

6. Răzvan Diaconescu and Ionuţ Ţuţu. On the algebra of structured specifications.
Theoretical Computer Science, 412(28):3145–3174, 2011.

7. Răzvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report: The Language, Proof
Techniques, and Methodologies for Object-Oriented Algebraic Specification, vol-
ume 6 of AMAST Series in Computing. World Scientific, 1998.

8. Răzvan Diaconescu and Kokichi Futatsugi. Behavioural coherence in object-
oriented algebraic specification. Universal Computer Science, 6(1):74–96, 2000.
First version appeared as JAIST Technical Report IS-RR-98-0017F, June 1998.

9. Răzvan Diaconescu, Joseph Goguen, and Petros Stefaneas. Logical support for
modularisation. In Gerard Huet and Gordon Plotkin, editors, Logical Environ-
ments, pages 83–130. Cambridge, 1993. Proceedings of a Workshop held in Edin-
burgh, Scotland, May 1991.

10. Joseph Goguen and Răzvan Diaconescu. Towards an algebraic semantics for the
object paradigm. In Hartmut Ehrig and Fernando Orejas, editors, Recent Trends in
Data Type Specification, volume 785 of Lecture Notes in Computer Science, pages
1–34. Springer, 1994.

11. Joseph Goguen and Grant Malcolm. A hidden agenda. Theoretical Computer
Science, 245(1):55–101, 2000.

12. Rolf Hennicker and Michel Bidoit. Observational logic. In A. M. Haeberer, editor,
Algebraic Methodology and Software Technology, number 1584 in LNCS, pages 263–
277. Springer, 1999. Proc. AMAST’99.

13. Horst Reichel. Behavioural equivalence – a unifying concept for initial and final
specifications. In Proceedings, Third Hungarian Computer Science Conference.
Akademiai Kiado, 1981. Budapest.

14. Grigore Roşu. Hidden Logic. PhD thesis, University of California at San Diego,
2000.

15. Donald Sannella and Andrzej Tarlecki. Foundations of Algebraic Specifications and
Formal Software Development. Springer, 2012.

Query Languages are Cartesian Monads
(Extended abstract)

Zinovy Diskin1,2 and Tom Maibaum1

1 McMaster University, Canada
2 University of Waterloo, Canada

zdiskin@gsd.uwaterloo.ca,tom@maibaum.org

Query languages (QLs) are an important ingredient of information technolo-
gies. A number of QLs are well-known and work well in their respective domains:
SQL in the relational world, XQuery and XPath for semi-structured data/XML,
and OCL in the model-driven engineering (MDE) world. However, modern soft-
ware is extremely heterogeneous, and combines components from different tech-
nological worlds. In addition, new applications often require querying facilities,
even if the latter are not recognized as queries. For example, such a situation
is typical for the model transformation area in the MDE world, where queries
are encoded as transformation rules and are hidden in the transformation code.
Thus, we often need to translate from one query language to another, or to iden-
tify queries in a particular piece of code. Hence, we need a generic notion of a
query language independent of a particular data definition language. More pre-
cisely, given a data definition language DDL, what is a mathematical model for
a query language QL over DDL? Surprisingly, it seems that such a generic model
of QL was never mathematically formulated, and this is where our contribution
goes.

Our interest in the problem is mainly motivated by MDE applications [2].
We call data schemas metamodels, and data instances models. This fits with
the jargon of institutions, where metamodels are theories, and their models are
our models. Our solution to the generic QL-over-DDL problem consists of the
following steps.

1 DDL and its semantics. We model a DDL together with its semantics as
a split fibration ppp: Mod→MMod.

Objects of category MMod are metamodels, and arrows are mappings be-
tween them. The reader may think of metamodels as graphs with diagram predi-
cates (Makkai’s generalized sketches), that is, pairs M = (GM , CM) with GM the
carrier graph of M and CM the constraints declared in M . Metamodel mappings
are then graph morphisms compatible with constraints (very much like theory
moprhisms in institutions are signature morphisms compatible with sentences);
details can be found in [1]. Given a metamodel M as above, its instance A can
be thought of as a data graph GA typed over GM , i.e., supplied with a typing
mapping tA: GA → GM , such that the constraints are satisfied, tA |= CM ; we
again refer to [1] for details.

2 QL and its semantics. We model a QL over a DDL ppp by a pair of monads
(Qdef ,Q) over categories MMod and Mod, resp. The first monad describes the

47

syntax (query definitions), and the second one provides the semantics (query ex-
ecution). In contrast to ordinary algebraic operations, whose results stay within
the same carrier universe, the result of a query is recognized as new information
(of a new type), and hence goes beyond the original dataset. In other words, a
query Q to a model tA: GA → GM adds to the latter new elements, and thus can
be seen as an augmented typing mapping t+A: G+

A → G+
M from the augmented

data graph to the augmented type graph (there are inclusions X ↪→ X+ = Q(X)
for all three components X = tA, GA, GM). Simple sanity checks show that we
should require functor ppp to be a monad morphism.

Moreover, a fundamental property of queries is that the original data are
not affected: queries compute new data but do not change the original. Mathe-
matical modeling of this property results in a number of equations, which can
be summarized by saying that monad Q is ppp-Cartesian, ı.e., the Cartesian and
the monad structure work in sync. We come to a compact algebraic model of
QL as a Cartesian monad over a fibration modeling DDL. Unfortunately, this
nice algebraic definition only works well under an additional assumption that all
queries are monotonic: an injection of data instances i: GA → GB gives rise to
an injection of query results i+: G+

A → G+
B . Thus, our observations result in the

following main definition.

Definition 1 () An abstract DDL is a split fibration ppp: Mod→MMod. A
monotonic query language over ppp is a pair of monads (Qdef ,Q) such that ppp is a
monad morphism, and monad Q is ppp-Cartesian.

3 View mechanism.

Theorem 1. Let (Q,Qdef) be a monotonic query language over an abstract DDL
ppp: Mod→MMod. This gives rise to a split fibration pppQ: ModQ →MModQdef

between the corresponding Kleisli categories.

The Kleisli categories above have immediate practical interpretations. Mor-
phisms in MModQdef

are nothing but view definitions: they map elements of
the source metamodel to queries against the target one. Correspondingly, mor-
phisms in ModQ are view executions composed from query execution followed
by retyping. The theorem says that for monotonic query languages, the view
execution mechanism is compositional: execution of a composed view (i.e., ex-
ecution of the composed query followed by retyping) equals the composition of
executions (execute the first query, retype, then execute the second query and
retype).

References

1. Z. Diskin and U. Wolter. A diagrammatic logic for object-oriented visual modeling.
Electron. Notes Theor. Comput. Sci., 203(6):19–41, 2008.

2. Zinovy Diskin, Tom Maibaum, and Krzysztof Czarnecki. Intermodeling, queries,
and Kleisli categories. In Juan de Lara and Andrea Zisman, editors, FASE, volume
7212 of Lecture Notes in Computer Science, pages 163–177. Springer, 2012.

Statistical Model-Checking for Composite Actor
Systems?

Jonas Eckhardt1, Tobias Mühlbauer1, José Meseguer2, and Martin Wirsing3

1 Technical University of Munich
2 University of Illinois at Urbana-Champaign
3 Ludwig Maximilian University of Munich

A wide class of real-world entities can be expressed as a composition of
communicating sub-entities. The Internet is a prominent example of such an en-
tity which is composed of various participants and systems and is hierarchically
structured in different layers and networks. Such composed entities are often
safety- and security-critical, have strong qualitative and quantitative formal re-
quirements, equally important time-critical properties, and need to dynamically
interact with a potentially probabilistic environment.

In order to formally specify and analyze such composed entities, we use
rewriting logic as the semantic framework and Maude, a language and system
based on rewriting logic that offers the possibility of executing and formally an-
alyzing specifications. Our specifications are based on the actor model of com-
putation [1], a mathematical model of concurrent computation in distributed
systems. The actor model allows the natural description of entities which com-
municate through message passing. Temporal logic properties of such actor-based
models are model checked either by exact model checking algorithms or, in an
approximate but more scalable way, by statistical model checking. The idea of
statistical model checking is to verify the satisfaction of a temporal logic prop-
erty by statistical methods up to a user-specified level of statistical confidence.
For this, a large enough number of Monte-Carlo simulations of the system are
performed, and the formula is evaluated on each of the simulations. PVeStA
[3] is an extension and parallelized version of the VeStA model checking tool. It
supports the statistical model checking analysis of probabilistic rewrite theories
in Maude. Properties are thereby expressed as QuaTEx formulas.

Current statistical model checking methods require that the system is purely
probabilistic, i.e., that there is no non-determinism in the choice of transitions.
This is nontrivial to achieve in a way that faithfully models system behavior for
a distributed system, where many different components may perform local tran-
sitions concurrently. In PMaude [2], Agha et al. present an approach to avoid
un-quantified non-determinism by associating continuous probability distribu-
tions with message delays and computation time and by relying on the fact,
that for continuous distributions the probability of sampling the same real num-
ber twice is zero. In [4], AlTurki et al. present a different approach to achieve the
same goal by introducing a scheduler that provides a deterministic ordering of

? This work has been partially sponsored by the EU-funded project FP7-257414 AS-
CENS and AFOSR Grant FA8750-11-2-0084

49

messages. These approaches allow the model checking of standard probabilistic
temporal logic properties as well as quantiative temporal logic properties.

Both approaches rely on a “flat soup of actors” in the model and neither can
handle composite models. In this work, we (i) contribute a coordination mecha-
nism that faithfully models the distributed behavior of composite actor systems
and reflects the so-called “Russian Dolls” model [7] to support an arbitrary hi-
erarchical composition of entities; and (ii) show that this mechanism naturally
supports a scheduling approach for composite actor models that guarantees the
absence of non-determinism which is an important prerequisite for statistical
model checking. Our method is very general and can be applied to a wide range
of composite actor systems. To the best of our knowledge, our solution is the first
one making it possible to analyze such systems in a faithful way by statistical
model checking.

In particular, we extend the actor model of computation to support actor
composition, i.e., actors may contain a soup of actors, which again may con-
tain soups of actors, and so on. This hierarchical composition is analogous to
the “Russian Dolls” model [7]. In Maude, we specify a composite actor as a
term, e.g., < 0.1.2 | config : C>, which contains an address (here 0.1.2) and
an inner soup of objects and messages (C)4. Furthermore, we introduce a hier-
archical naming scheme, which allows the automatic generation of fresh names.
Our scheduling approach that prevents un-quantified non-determinism works as
follows: Messages are emitted as inactive messages at any level of a composed
actor hierarchy. Inactive messages are inserted into the scheduler by equational
simplification which stores the messages in a strict order. Whenever the actor
system cannot perform any transition, the scheduler inserts the message that
is scheduled to become active next into the subconfiguration which emitted it.
Our approach only requires local transition rules and boundary crossing rules to
cross a single composition boundary to be specified. This means that no rules
need to be specified that take the whole system composition into account.

Our methodology to verify composite distributed systems follows the follow-
ing stages:

1. Specification of the real-world entity as a composite actor system in PMaude.

2. Definition of appropriate standard probabilistic temporal logic properties
and quantiative temporal logic properties for describing the required quality
of service properties.

3. Specification of an initial state which contains the top-level scheduler.

4. Formal analysis of the defined properties over the initial state using statistical
model checking in PVeStA [3].

A simple case study illustrates our method for designing and validating com-
posite distributed systems; we model an abstraction of a distributed system as

4 For the sake of brevity, we ommited additional properties
of a composite actor. Composite actors are constructed by
op < : | config : , > : Address ActorType Config AttributeSet −> Actor . .

50

a binary tree of composite actors5. Messages are randomly sent between the
leaf actors in the tree while the intermediate composite actors only forward the
messages up or down in the composition hierarchy.

References

1. Gul Agha. Actors: a model of concurrent computation in distributed systems. MIT
Press, 1986.

2. Gul Agha, José Meseguer, and Koushik Sen. PMaude: Rewrite-based Specification
Language for Probabilistic Object Systems. ENTCS, 153:213–239, 2006.

3. M. AlTurki and J. Meseguer. PVeStA: A parallel statistical model checking and
quantitative analysis tool. In CALCO, volume 6859 of LNCS, pages 386–392, 2011.

4. Musab AlTurki, José Meseguer, and Carl A. Gunter. Probabilistic Modeling and
Analysis of DoS Protection for the ASV Protocol. ENTCS, 234:3–18, 2009.

5. Jonas Eckhardt. A Formal Analysis of Security Properties in Cloud Computing.
Master’s thesis, LMU Munich, TU Munich, 2011.

6. Jonas Eckhardt, Tobias Mühlbauer, Musab AlTurki, José Meseguer, and Martin
Wirsing. Stable availability under denial of service attacks through formal patterns.
In FASE, pages 78–93, 2012.

7. José Meseguer and Carolyn L. Talcott. Semantic Models for Distributed Object
Reflection. In Proceedings of the 16th European Conference on Object-Oriented
Programming, ECOOP, pages 1–36. Springer, 2002.

8. Tobias Mühlbauer. Formal Specification and Analysis of Cloud Computing Man-
agement. Master’s thesis, LMU Munich, TU Munich, 2011.

5 The abstraction is deliberately simple as we only want to illustrate the usefullness of
our methodology for highly hierarchical systems. Other applications of our approach
are shown in [6, 8, 5].

On Linear Contravariant Semantics?

Ignacio Fábregas, David de Frutos Escrig, and Miguel Palomino

Departamento de Sistemas Informáticos y Computación, UCM
fabregas@fdi.ucm.es {defrutos, miguelpt}@sip.ucm.es

Classical semantics for processes usually treat all the actions in Act uniformly.
Certainly, there have been several works where some modality features have been
taken into account, in particular the input-output character [4], but this has only
been applied to some very specific semantics. Recently, we have studied [3, 1, 2]
the covariant-contravariant simulation which introduces, nicely and in a quite
general way, modalities in the simulation framework.

Our goal now is to extend the dual nature of covariant and contravariant
actions to the linear-time semantics, such as traces, failures, or readiness, tar-
geting the interesting cases. Except for the trace semantics, these are not related
with plain simulation but with ready simulation and this is why we have started
our study by considering ready cc-simulation. Classical ready simulations im-
pose that pairs of related processes have the same offerings: we keep this same
constraint for the ready cc-simulation since equality is dual to itself.

Definition 1. Given P = (P,A,→P) and Q = (Q,A,→Q), two labeled tran-
sition systems for the alphabet A, and a partition {Ar, Al} of this alphabet, a
ready covariant-contravariant simulation is a relation R ⊆ P ×Q such that for
every pRq we have:

– I(p) = I(q).

– For all a ∈ Ar and all p
a−→ p′ there exists q

a−→ q′ with p′Rq′.

– For all b ∈ Al and all q
b−→ q′ there exists p

b−→ p′ with p′Rq′.

We write p .ccR q if there exists a ready covariant-contravariant simulation R
such that pRq.

The same transformation which provides the axiom governing ready simula-
tion from that defining simulation can be applied to the axioms for cc-simulation,
producing:

(RSrp) arx v arx+ ary. (RSlp) alx+ aly v alx.

In a similar way, we can obtain the axioms for the induced equivalence:

(RSr,r≡) ar(x+ bry + brz) = ar(x+ bry + brz) + ar(x+ bry).
(RSr,l≡) ar(x+ aly) = ar(x+ aly) + ar(x+ aly + alz).
(RSl,r≡) al(x+ ary) = al(x+ ary) + al(x+ ary + arz).
(RSl,l≡) al(x+ bly + blz) = al(x+ bly + blz) + al(x+ bly).

? Research supported by the Spanish projects DESAFIOS10 TIN2009-14599-C03-01,
TESIS TIN2009-14321-C02-01 and PROMETIDOS S2009/TIC-1465.

52

After taking care of all the necessary details, the completeness proof for the
axioms for cc-simulation in [3] can be transferred to ready cc-simulation.

Plain traces (covariant traces in the following) associate to each process p
a set of traces Tr(p) in such a way that the trace preorder .T is defined as:
p .T q iff Tr(p)) ⊆ Tr(q). Instead, whenever all the actions are contravariant,
contravariant traces should allow us to define just the “opposite” order p .cT q iff
q .T p, by means of set inclusion between the corresponding sets of contravariant
traces TrC (p); that is, p .cT q iff TrC (p) ⊆ TrC (q). Since T1 ⊆ T2 iff T2 ⊆ T1,
in this simple case it would be enough to take as contravariant traces the set of
no-traces of each process, that is, the complement of the set of traces: TrC (p) =
Tr(p). In the presence of both covariant and contravariant action we combine
the two definitions above to obtain the following recursive definition of the set
of cc-traces of a process:

Definition 2. Given a partition {Ar, Al} of a set of actions, we say that α is
a covariant-contravariant trace of the process p (denoted by α ∈ Trcc(p)) if and
only if:

– α = 〈〉, or

– α = 〈b〉 with b ∈ Al, and p
b

6−→, or

– α = 〈a〉 · α′, a ∈ Ar, and p
a−→ p′ with α′ ∈ Trcc(p′), or

– α = 〈b〉 · α′ with b ∈ Al, α′ 6= 〈〉 and α′ ∈ Trcc(p′) for all p
b−→ p′.

The covariant-contravariant trace preorder p .ccT q is defined by: p .ccT q iff
Trcc(p) ⊆ Trcc(q).

Unfortunately, neither the cc-trace preorder nor the induced equivalence are
finitely axiomatizable. This is caused by the impossibility to traverse an arbi-
trarily long sequence of contravariant actions to prove a valid equality such as
a1b(a1 + a2) =ccT a1ba1 + a1ba2.

*Failures
Classical (covariant) failure semantics is defined by means of refusals: R ⊆

Act is refused by p, denoted by R ∈ Ref(p), iff I(p)∩R = ∅. These are connected
with the traces of processes to obtain the failures: 〈t, R〉 ∈ F(p) iff there exists

p
t−→ p′ with I(p′) ∩R = ∅.
Duality provides again the natural definition of cc-refusal: for R = Rr ∪ Rl

with Rr ⊆ Ar and Rl ⊆ Al, R is cc-refused by p iff I(p)∩Rr = ∅ or I(p)∩Rl 6= ∅,
denoted by R ∈ Refcc(p). Then cc-failures are obtained by taking 〈t, R〉 ∈ Fcc(p)

if and only if t = c1 . . . ck and p |= Q1c1Q2c2 . . . Qkck (p
t−→ p′ ⇒ (I(p′)∩Rr = ∅

or I(p′)∩Rl 6= ∅)), where Qi ≡ ∃ iff ci ∈ Ar and Qi ≡ ∀ iff ci ∈ Al. The meaning
of an expression of the form

p |= Q1c1Q2c2 . . . Qkck (p
t−→ p′ ⇒ ϕ),

is the following:

53

– If k = 1 and c1 = a ∈ Ar, we have: p |= ∃a (p
a−→ p′ ⇒ ϕ) iff there exists

p
a−→ p′ and p′ |= ϕ.

– If k = 1 and c1 = b ∈ Al, we have: p |= ∀b (p
b−→ p′ ⇒ ϕ) iff (p

b−→ p′ ⇒
p′ 6|= ϕ).

– If k > 1, then p |= Q1c1Q2c2 . . . Qkck(p
t−→ p′ ⇒ ϕ) iff Q1p

c1−→ p′′ and

p′′ |= Q2c2 . . . Qkck(p
t′−→ p′ ⇒ ϕ), where t′ = c2 . . . ck.

It is interesting to observe that the intuitive interpretation of cc-failures is
nice and simple: a refusal tells us that the process cannot accept any of the offered
covariant actions in Rr, or is ready to execute some contravariant action that is
not allowed by the offered contravariant actions in Rl. Both of these properties
have a negative nature: it is bad to accumulate many failures. However, as in the
ordinary case, we also have embedded the positive information that is provided
by the traces of processes.

*Readiness, Failure traces and Ready traces
As done in the definition of ready cc-simulation, ready sets should treat in a

uniform way covariant and contravariant actions, and therefore they are easily
defined from our cc-traces. For R ∈ A, we say that 〈t, R〉 ∈ Recc(p) if and only

if t = c1 . . . ck and p |= Q1c1Q2c2 . . . Qkck (p
t−→ p′ ⇒ I(p′) = R).

Once we have our definitions for cc-failures semantics and cc-readiness se-
mantics, those for cc-failure traces and cc-ready traces are easily obtained. For
the case of cc-failures traces we have, taking Ri = Rri ∪ Rli with Rri ⊆ Ar and
Rli ⊆ Al:

〈R0c1R1 . . . ckRk〉 ∈ FTcc(p) if and only if

p |= R0Q1c1R1Q2c2R2 . . . Qkck (p
c1...ck−→ p′ ⇒ (I(p′) ∩Rrk = ∅ or I(p′) ∩Rlk 6= ∅)),

where the general meaning of such an expression is defined in a similar way as

for the case of failures (requiring I(p′′)∩Rrk = ∅ or I(p′′)∩Rlk 6= ∅ when defining

the meaning of any quantification QiciRi for each transition p
ci−→ p′′).

References

1. L. Aceto, I. Fábregas, D. de Frutos-Escrig, A. Ingólfsdóttir, and M. Palomino.
Graphical representation of covariant-contravariant modal formulae. In B. Luttik
and F. Valencia, editors, EXPRESS, volume 64 of EPTCS, pages 1–15, 2011.

2. L. Aceto, I. Fábregas, D. de Frutos Escrig, A. Ingólfsdóttir, and M. Palomino. Re-
lating modal refinements, covariant-contravariant simulations and partial bisimula-
tions. In F. Arbab and M. Sirjani, editors, Fundamentals of Software Engineering,
FSEN 2011, LNCS, pages 268–283. Springer, To appear.

3. I. Fábregas, D. de Frutos-Escrig, and M. Palomino. Equational characterization
of covariant-contravariant simulation and conformance simulation semantics. In
L. Aceto and P. Sobociński, editors, Proceedings Seventh Workshop on Structural
Operational Semantics, Paris, France, 30 August 2010, volume 32 of EPTCS, pages
1–14, 2010.

4. N. Lynch. I/O automata: A model for discrete event systems. In 22nd Annual
Conference on Information Sciences and Systems, pages 29–38, 1988.

Soft Constraints with Lexicographic Ordering?

Fabio Gadducci and Giacoma Valentina Monreale

Department of Informatics, University of Pisa, Italy

1 Introduction

Classical Constraint Satisfaction Problems (CSPs) search for the assignment of a
set of variables that may satisfy a family of requirements. Constraint propagation
(as e.g. represented by local consistency algorithms) embeds any reasoning which
consists of explicitly forbidding values or their combinations for some variables of
a problem because a given subset of its constraints cannot be satisfied otherwise.

The soft framework extends the classical constraint notion in order to model
preferences: the aim is to provide a single environment where suitable proper-
ties (e.g. on constraint propagation) could be proven and inherited by all the
instances. Technically, this is done by adding to the classical notion of CSP a
representation of the levels of satisfiability of each constraint. Albeit appearing
with alternative presentations in the literature, the additional component con-
sists of a poset (stating the desiderability among levels) equipped with a binary
operation (defining how two levels can be combined). Besides their flexibility, the
use of these formalisms has been advocated for two main reasons. First of all, for
their flexibility: their abstract presentation allows for recasting many concrete
cases previously investigated in the literature; moreover, for their modularity:
suitable operators can be defined, in order to manipulate such structures and
build new ones.

Definition 1. A general valuation structure (GVS) is 4-tuple G = 〈A,≤,⊗,>〉
such that G≤ = 〈A,≤,>〉 is a join semilattice (JSL) with top, G⊗ = 〈A,⊗,>〉
is a commutative monoid, and distributivity a⊗ (b∨ c) = (a⊗ b)∨ (a⊗ c) holds.

For G≤ being a JSL means that there exists a join a∨b for every pair a, b ∈ A
(hence, for every finite, non-empty subset of A). From distributivity it follows
that the tensor operator preserves the order, i.e., a ≤ b implies a⊗ c ≤ b⊗ c.

Our GVSs are a generalization of valuation structures [5], replacing their
total order with a JSL, as well as of c-semirings [2] (also known as absorptive
semirings [1]), removing the requirement of a bottom element ⊥ (which is by
construction also an annihilator, i.e., such that a⊗⊥ = ⊥). The lack of such a
(necessarily unique) element is going to be be pivotal in our proposal for mod-
elling constraints whose degree of satisfaction is based on lexicographic orders.

Indeed, it proved impossible to recast in the soft CSP fold the case of lexico-
graphic orders, i.e., sets whose elements are pairs and the position plays a role.
Assuming two partial orders ≤0 and ≤1, the associated lexicographic order is

? Partially supported by the EU FP7-ICT IP ASCEns and by the MIUR PRIN SisteR.

55

〈a0, a1〉 ≤l 〈b0, b1〉 if

{
a0 <0 b0 or

a0 =0 b0 & a1 ≤1 b1

with a < b meaning that a ≤ b and a 6= b. It is easy to see that ≤l is a partial
order. Indeed, it is a JSL if both ≤0 and ≤1 are so, and the latter also is bounded,
i.e., it has a bottom ⊥1. Explicitly, the definition is given below as

〈a0, a1〉 ∨l 〈b0, b1〉 =

〈b0, a1 ∨1 b1〉 if a0 =0 b0

〈b0, b1〉 if a0 <0 b0 (and similarly for b0 <0 a0)

〈a0 ∨0 b0,⊥1〉 otherwise

The condition on the existence of the bottom ⊥1 is not restrictive. Indeed, for
any GVS G a new one is obtained by adding an annihilator: by construction it is
also the bottom, yet it bears no change in the definition of the tensor operator.

Assuming two GVSs G0 and G1, a monoidal tensor ⊗l is also easily defined
pointwise. However, the distributivity law usually fails. Such a failure motivated
in [4] the introduction of a novel formalism, alternative to the standard soft con-
straint technology. In our work we follow a more traditional path, proving that
under suitable conditions on G0, also Lex(G0, G1) = 〈A0 ×A1,≤l,⊗l, 〈>0,>1〉〉
falls back to the standard soft CSP fold. Our main result is summed up below.

Definition 2. Let G be a GVS. We say that ⊗ strictly preserves the order if
a < b implies a⊗ c < b⊗ c for all elements a, b, c ∈ A.

As usual, a < b means that a ≤ b and a 6= b. Note that the formulation above
forbids the presence in A of the annihilator (or, equivalently, of the bottom).

Proposition 1. Let G0 and G1 be two GVSs. If ≤0 is total and it is strictly
preserved by ⊗0, then also Lex(G0, G1) is a GVS.

Since ≤0 is a total order, the third item of the characterization of the join
operator ∨l is never verified, hence it is not necessary to require the bottom for
G1. The lack of the third item is the main reason for the theorem to hold.

Note that the conditon of the theorem implies that G0 is what is called
a stricly monotonic valuation structure [3]. An alternative, possibly simpler to
verify characterization for such structures can be find below (see also [1]).

Lemma 1. Let G be a GVS such that ≤ is total. Then, ⊗ strictly preserves the
order iff it is cancellative, i.e., if a⊗ c = b⊗ c implies a = b for all a, b, c ∈ A.

References

1. S. Bistarelli and F. Gadducci. Enhancing constraints manipulation in semiring-
based formalisms. In G. Brewka, S. Coradeschi, A. Perini, and P. Traverso, editors,
ECAI 2006, volume 141 of FAIA, pages 63–67. IOS, 2006.

56

2. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint solving and
optimization. Journal of ACM, 44(2):201–236, 1997.

3. M.C. Cooper. Reduction operations in fuzzy or valued constraint satisfaction. Fuzzy
Sets and Systems, 134(3):311–342, 2003.

4. M. Hoelzl, M. Meier, and M. Wirsing. Which soft constraints do you prefer. In
G. Rosu, editor, WRLA 2008, volume 283(2) of ENTCS, pages 189–205. Elsevier,
2009.

5. T. Schiex, H. Fargier, and G. Verfaillie. Valued constraint satisfaction problems:
Hard and easy problems. In IJCAI 1995, pages 631–637. Morgan Kaufman, 1995.

On Open Semantics for Reactive Systems?

Fabio Gadducci, Giacoma Valentina Monreale and Ugo Montanari

Department of Informatics, University of Pisa, Italy

Reactive systems (RSs) [5] represent an abstract formalism for specifying the
dynamics of a computational model. The usual specification technique is based
on a reduction semantics: a set representing the possible states of the system,
plus an unlabeled relation among these states, denoting the possible evolutions
of the system. Despite the advantage of conveying the semantics with relatively
few rules, the main drawback of reduction semantics is that the dynamics of
a system is described in a monolithic way, and so it can be interpreted only
by inserting the system in appropriate contexts, where a reduction may take
place. To make the analysis of systems simpler, it is often necessary to consider
descriptions allowing the analysis of the behavior of each single subcomponent,
thus increasing modularity and enhancing the opportunities for verification.

The framework of RSs thus offers techniques allowing to distill labelled tran-
sition systems (LTSs), hence, behavioral equivalences, for formalisms specified by
a reduction system. It is centered on the concepts of term, context and reduction
rules: contexts are arrows of a category, terms are arrows having as domain 0,
an object denoting groundness, and reduction rules are pairs of (ground) terms.

Definition 1 (Reactive System). A reactive system C consists of

1. a category C with a distinguished object 0;
2. a composition-reflecting subcategory D of reactive contexts;
3. a set of pairs R ⊆

⋃
I∈|C|C(0, I)×C(0, I) of reduction rules.

Intuitively, reactive contexts are those in which a reduction can occur. By
composition-reflecting we mean that d′ ◦ d ∈ D implies d, d′ ∈ D. Note that the
rules have to be ground, i.e., left-hand and right-hand sides have to be terms
without holes and, moreover, with the same codomain.

The reduction relation is generated from the reduction rules by closing them
under all reactive contexts. The key idea behind the LTS derivation is instead
the following: a system p has a labelled transition p

c−→ p′ if the system obtained
by inserting p inside the (unary) minimal context c may reduce to p′. The notion
of “minimal” context is expressed in terms of the categorical notion of relative
pushout (RPO), which ensures that bisimilarity is a congruence when enough
RPOs exist. Should all the possible contexts allowing a reduction be admitted,
the resulting equivalence, denoted as saturated bisimilarity, would also result in a
congruence. However, it is usually intractable, since it has to tackle a potentially
infinite set of contexts. The problem has been addressed in [2], by introducing
an “efficient” characterization (so-called semi-saturation) of these semantics.

? Partially supported by the EU FP7-ICT IP ASCEns and by the MIUR PRIN SisteR.

58

However, in some interesting cases it turns out that bisimilarity via minimal
contexts is too fine-grained, while the saturated one is too coarse. As for process
calculi, the standard way out of the empasse it is to consider barbs [6] (predicates
on the states of a system) and barbed equivalences (adding the check of such
predicates in the bisimulation game). The flexibility of the definition allows for
recasting a variety of observational, bisimulation-based equivalences. So, in [1],
a suitable notion of barbed saturated semantics for RSs is introduced.

Despite its applicability, the main limit suffered by RSs is the restriction to
the use of ground rules for describing the dynamics of a system: this is often
a strong requirement, in the modeling of open-ended systems operating in an
ever changing environment. So, in [4], this problem is addressed, by developing
a theory for open RSs considering also open terms and parametric rewriting
rules. This means that, differently from Definition 1, no distinguished object is
required and the domain of the left-hand and right-hand sides of a reduction
rule can be any object besides 0. So, now the synthesized transitions are labelled
not only with the minimal context but also with the most general instantiation
allowing a reduction: p

c−→
x
p′ if p inserted into the context c and instantiated with

the (possibly open) term x may evolve into a state p′. The notions of minimal
context and most general instantiation are captured at once by the notion of lux.
However, open RSs have suffered so far from two main drawbacks. First of all,
no finitary presentation of the derived LTS has been found, possibly via a set
of inference rules according to the SOS-style. Most importantly, the bisimilarity
induced by the synthesized LTS for open terms results to be a congruence only
under very restrictive conditions, hindering the applicability of the framework.

The solution to the first issue can be obtained by following the one for closed
RSs [3], i.e., by illustrating how the synthesized LTS can be equipped with a SOS-
like presentation via an encoding into tile systems. Instead, as far as the second
issue, the solution we propose is to study a suitable notion of barbed saturated
bisimilarity for open RSs (which by definition is guaranteed to be a congruence),
proposing a characterization via the lux LTS and the semi-saturated game.

References

1. F. Bonchi, F. Gadducci, and G. V. Monreale. Reactive systems, barbed semantics,
and the mobile ambients. In FoSSaCS 2009, volume 5504 of LNCS. Springer, 2009.

2. F. Bonchi, B. König, and U. Montanari. Saturated semantics for reactive systems.
In LICS 2006, pages 69–80. IEEE Computer Society, 2006.

3. B. Bruni, F. Gadducci, U. Montanari, and P. Sobocinski. Deriving weak bisimulation
congruences from reduction systems. In CONCUR 2005, volume 3653 of LNCS,
pages 293–307. Springer, 2005.

4. B. Klin, V. Sassone, and P. Sobocinski. Labels from reductions: Towards a general
theory. In CALCO 2005, volume 3629 of LNCS, pages 30–50. Springer, 2005.

5. J.J. Leifer and R. Milner. Deriving bisimulation congruences for reactive systems.
In CONCUR 2000, volume 1877 of LNCS, pages 243–258. Springer, 2000.

6. R. Milner and D. Sangiorgi. Barbed bisimulation. In ICALP 1992, volume 623 of
LNCS, pages 685–695. Springer, 1992.

From Interface Theories to Assembly Theories?

Extended Abstract

Rolf Hennicker1 and Alexander Knapp2

1 Ludwig-Maximilians-Universität München
hennicke@pst.ifi.lmu.de

2 Universität Augsburg
knapp@informatik.uni-augsburg.de

Reactive software components are commonly understood as encapsulated
units which communicate with their environment via well-defined interfaces.
Interface specifications provide a means to describe the visible behaviour of in-
teracting components. They serve, on the one hand, to express what is expected
from the environment for a correct functioning of a component, and, on the
other hand, to specify what is offered by a component. For the development of
component systems on the basis of interfaces some rudimentary requirements
should be respected which we summarise by the abstract concept of an inter-
face theory (inspired by the notion of an interface language in [1]). An interface
theory F = (F,�,⊗,4,→) comprises

– a class F of interface specifications,
– a symmetric connectability relation � ⊆ F ×F to express when two inter-

faces are statically connectable,
– a partial, commutative and associative composition operator ⊗ : F×F ⇀ F

which is defined for connectable interfaces,
– a reflexive and transitive refinement relation 4 ⊆ F ×F, and
– an accession relation → ⊆� to express, by F → G, that the communica-

tion assumptions of F are satisfied by G.

For all interfaces F1, F2, G1, G2 ∈ F the following properties are required:

1. Compositional refinement: If G1� G2, F1 4 G1 and F2 4 G2, then F1�
F2 and (F1 ⊗ F2) 4 (G1 ⊗ G2).

2. Preservation of accession by refinement: If G1 → G2 and F1 4 G1, F2 4 G2,
then F1 → F2.

The result of interface composition yields again an interface describing the
visible (blackbox) behaviour of a composite component. What is still missing is
the specification of architectural information and therefore also the possibility to
observe communications between components. To tackle this issue we show how
we can move from interface theories to assembly theories. An assembly theory
(A, intfs ,v, cs , pack) over an interface theory F = (F,�,⊗,4,→) is given by

? This work has been partially sponsored by the European Union under the FP7-
project ASCENS, 257414. A full paper is actually submitted for journal publication.

60

– a class A of assemblies,
– an interface selector function intfs : A → ℘idx(F), providing the finitely

indexed set (Fi)1≤i≤n of interfaces over which an assembly is built,
– a reflexive and transitive assembly refinement relation v ⊆ A×A,
– a communication”=safety predicate cs ⊆ A to express when the interfaces

of an assembly work properly together, and
– an encapsulation operation pack : A → F to encapsulate an assembly into

an interface,

such that for all assemblies A,B ∈ A the following conditions are satisfied:

1. Interface”=wise assembly refinement: Let intfs (A) = (Fi)1≤i≤n and intfs (B) =
(Gi)1≤i≤n. If cs (B) and Fi 4 Gi for i = 1, . . . , n, then A v B.

2. Preservation of communication”=safety: If cs (B) and A v B, then cs (A).
3. Refinement encapsulation: If cs (B) and A v B, then pack (A) 4 pack (B).

In general, there is left some freedom to construct an assembly theory over
a given interface theory. We can, however, define a canonical construction of an
assembly theory over any arbitrary interface theory in the following way.

Theorem 1. Let F = (F,�,⊗,4,→) be an interface theory. Then (A, intfs ,v,
cs , pack) with

A = {(Fi)1≤i≤n ∈ ℘idx(F) | (Fi)1≤i≤n connectable} ,

intfs ((Fi)1≤i≤n) = (Fi)1≤i≤n ,

(Fi)1≤i≤m v (Gi)1≤i≤n ⇐⇒ m = n ∧ ∀1 ≤ i ≤ n . Fi 4 Gi ,

cs ((Fi)1≤i≤n) ⇐⇒ ∀1 ≤ j ≤ n . Fj →
⊗

(Fi)1≤i 6=j≤n ,

pack (A) =
⊗

(Fi)1≤i≤n

is an assembly theory over F .

We can also show that certain properties, like incremental design, propagate
from the interface level to the assembly level.

As a concrete instantiation we consider a modal interface theory such that
interfaces are given by modal I/O-transition systems with distinguished may and
must-transitions and with weak modal refinement [2] and we construct a modal
assembly theory with a flexible communication”=safety predicate that ensures
that any output of a component will eventually be taken by its environment.

References

1. Luca de Alfaro and Thomas A. Henzinger. Interface-based design. In Manfred
Broy, Johannes Grünbauer, David Harel, and C. A. R. Hoare, editors, Engineer-
ing Theories of Software-intensive Systems, volume 195 of NATO Science Series:
Mathematics, Physics, and Chemistry, pages 83–104. Springer, 2005.

2. Hans Hüttel and Kim Guldstrand Larsen. The use of static constructs in a modal
process logic. In Albert R. Meyer and Michael A. Taitslin, editors, Logic at Botik,
volume 363 of Lect. Notes Comp. Sci., pages 163–180, 1989.

Streamlining Policy Creation in Policy
Frameworks

Mark Hills1

Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

Abstract. Policy frameworks provide a technique for improving reuse
in program analysis: the same language frontend, and a core analysis
semantics, can be shared among multiple analysis policies for the same
language, while analysis domains (such as units of measurement) can be
shared among frameworks for different languages. One limitation of pol-
icy frameworks is that, in practice, adding a new policy can still require
a significant level of knowledge about the internals of the semantics def-
inition. This abstract describes work on extending policy frameworks to
solve this limitation, making policies reflective over their requirements
and generating the policy semantics from a higher-level policy descrip-
tion language.

Using executable language definitions, such as rewriting logic semantics [9]
(RLS) or K [11] definitions running in Maude [4], program analysis can be treated
as a form of non-standard program evaluation over appropriate domains of ab-
stract values. An example of this approach is the unit safety analysis developed
first for BC [3] (a small calculator language) and then for a small subset of
C [10]. In this analysis, the abstract values were units of measurement [1] (e.g.,
meters, seconds, lumens). The analysis semantics modeled the operation of lan-
guage constructs over these units, detecting errors in cases where units were used
incorrectly, e.g., when two different units were added.

However, in this work, rules specific to the analysis were tangled with analysis-
agnostic rules, making it challenging to reuse parts of the existing semantics
in a new analysis. Solving this problem was the goal of the C Policy Frame-
work [5], or CPF, an extensible analysis framework for C defined in Maude. The
core of CPF includes an analysis-generic frontend, allowing annotations to be
added (in comments) as function contracts or within function bodies, and an
abstract C semantics. To define a specific analysis policy, this core is extended
with an analysis-specific definition of abstract values, a specific annotation lan-
guage, and equational definitions for a number of hooks, representing points in
the semantics that differ between analysis policies. Later work extended this to
the SILF language [7], which provides a simpler, more modular environment for
experimenting with analysis policies. This work also extended the annotation
mechanism to type-like annotations, a feature subsequently added to CPF.

Unfortunately, even though the frameworks for C and SILF were structured
modularly [8, 2], they were sometimes not modular in practice, a point raised in

http://www.cwi.nl

62

conversations with the author. To actually implement a new policy, the imple-
menter requires a detailed knowledge of both Maude and of the entire provided
core semantics. This includes knowing which hooks must be defined to provide
the policy-specific semantics and which modules provide base variants of func-
tionality that can be directly reused or extended. In this abstract we describe
ongoing work on two features being added to the SILF policy framework (and
later to CPF) to help solve this problem: the reflective extraction of extension
point information, and a DSL for describing analysis policies.

Reflective Extraction of Extension Point Information Each hook operation de-
fined in the core framework semantics is identified using a Maude metadata

attribute. Additional operations are defined equationally to identify modules
that can be used directly or extended to provide specific features, e.g. a base
annotation language. Using a combination of standard rewriting and Maude’s
reflective capabilities, the policy description language, described below, can then
“ask” a framework about defined extension points.

A Policy Description Language Using the extracted policy information, a policy
description language is used to describe the three standard parts of an analysis
policy. First, the domain of policy values is defined algebraically, with pretty-
printing rules defined to display policy values appropriately in messages. Second,
the analysis-specific behavior for each hook is defined, making use of the policy
values and of predefined reporting operations for errors and warnings (potentially
with source locations [6]). Third, the annotation language used for the policy is
defined by extending a provided base annotation language with policy-specific
annotations, e.g., @unit(E) to calculate the unit of an expression in a units
policy. These three items are then used to generate a parser for the annotation
language, used in conjunction with the language parser, and a Maude specifica-
tion of the value domain and the analysis semantics. This generation process also
creates many of the repetitive cases needed to properly handle the propagation
of error information from children to parents (ensuring errors in child expres-
sions do not trigger new, spurious errors in parents), something done manually
now.

References

1. NIST Website, International System of Units (SI).
http://physics.nist.gov/cuu/Reference/unitconversions.html.

2. C. Braga and J. Meseguer. Modular Rewriting Semantics in Practice. In Proceed-
ings of WRLA’04, volume 117 of ENTCS, pages 393–416. Elsevier, 2005.

3. F. Chen, G. Roşu, and R. P. Venkatesan. Rule-Based Analysis of Dimensional
Safety. In Proceedings of RTA’03, volume 2706 of LNCS, pages 197–207. Springer,
2003.

4. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. L.
Talcott, editors. All About Maude - A High-Performance Logical Framework, How
to Specify, Program and Verify Systems in Rewriting Logic, volume 4350 of LNCS.
Springer, 2007.

63

5. M. Hills, F. Chen, and G. Roşu. A Rewriting Logic Approach to Static Checking
of Units of Measurement in C. In Proceedings of RULE’08. Elsevier, 2008. To
Appear.

6. M. Hills, P. Klint, and J. Vinju. RLSRunner: Linking Rascal with K for Program
Analysis. In Proceedings of SLE’11, LNCS. Springer-Verlag, 2011. To Appear.

7. M. Hills and G. Roşu. A Rewriting Logic Semantics Approach To Modular Program
Analysis. In Proceedings of RTA’10, volume 6 of Leibniz International Proceedings
in Informatics, pages 151 – 160. Schloss Dagstuhl - Leibniz Center of Informatics,
2010.

8. J. Meseguer and C. Braga. Modular Rewriting Semantics of Programming Lan-
guages. In Proceedings of AMAST’04, volume 3116 of LNCS, pages 364–378.
Springer, 2004.

9. J. Meseguer and G. Rosu. The rewriting logic semantics project. Theoretical
Computer Science, 373(3):213–237, 2007.

10. G. Roşu and F. Chen. Certifying Measurement Unit Safety Policy. In Proceedings
of ASE’03, pages 304 – 309. IEEE, 2003.

11. G. Roşu and T. F. Şerbănuţă. An Overview of the K Semantic Framework. Journal
of Logic and Algebraic Programming, 79(6):397–434, 2010.

Representing Categories of Theories
in a Proof-Theoretical Logical Framework

Fulya Horozal and Florian Rabe

Computer Science, Jacobs University Bremen, Germany

Logical frameworks have been introduced as an abstract formalism for rep-
resenting logics and studying their properties. We are interested in how these
frameworks support (i) the representation of the categories of signatures or the-
ories usually associated with logics and related declarative languages and (ii) the
reasoning about and the formulation of algorithms on signatures and theories
such as type-checking or functor application.

Model theoretical logical frameworks, such as institutions [3], work with fully
abstract categories. This has the advantage that the framework is independent
of the particular logic; thus theory-related concepts such as model classes can be
formulated in full generality. However, this makes it difficult to provide generic
tool support for reasoning and algorithms about individual theories.

Proof theoretical logical frameworks, such as LF [4], on the other hand, work
with concrete theories and represent each individual theory of a logic. They
provide generic tool support for individual theories. However, they do not have an
abstract concept to represent the category of theories as a whole, and therefore,
they cannot reason about or operate on arbitrary theories.

The Logic Atlas and Integrator (LATIN) project [1] developed a foundation-
ally unconstrained logical framework [2], which unifies aspects of both model
theoretical and proof theoretical frameworks. In LATIN, logics are represented
as diagrams of theories, and translations between logics as theory morphisms be-
tween these diagrams. Below, we focus on the LF instance of the LATIN frame-
work, but our work can be generalized to other frameworks (e.g., Isabelle [5]).

In LATIN-LF, the syntax of a logic is represented as an LF signature L
and theories of the logic as inclusion morphisms L ↪→ Σ, where Σ adds the
declarations of the non-logical symbols to L. Thus, the category of theories of L
is a subcategory of the coslice category LF\L containing only inclusions.

However, this category usually contains a lot more objects than needed. For
instance, if L = FOL represents first-order logic, then Σ should only contain
declarations of function or predicate symbols. More precisely, if term and form
are the types of first-order terms and formulas, then Σ should contain only dec-
larations of the form f : term → . . . → term → term (n-ary function symbols)
and p : term → . . .→ term → form (n-ary predicate symbols).

In LATIN-LF, functors between categories of theories are represented as LF
signature morphisms. More specifically, a functor from the category of theories
of L to that of L′ is obtained by an LF signature morphism l : L → L′, and
functor application is obtained by pushout along l.

However, this is not expressive enough to cover all interesting functors. For
example, it cannot represent the translation from FOL to ZFC, where the first-

65

order declaration f : term → term is translated to a set F together with an
axiom that F is a unary ZFC function on the universe.

In this work, we introduce LFP, a major extension of the LF type theory
with what we call declaration patterns. LFP permits elegant and concise repre-
sentation of categories of theories in LF. Our extension is based on the central
observation that theories of virtually all logics L consist of a list of declarations
each of which must conform to one of a few patterns that are fixed by L. By
adding a new primitive to LF that defines such patterns, we are able to represent
these categories.

More specifically, declaration patterns use parameterized signatures with a
simple type theory built on top. Interestingly, we have to introduce one addi-
tional primitive concept in LFP that is technically independent but practically
necessary for declaration patterns: We usually need sequences of LF objects to
define the declaration patterns of a logic L even if the formulas of L do not use
sequences. For example, in FOL, we would introduce the declaration patterns
func = λn : Nat . {f : termn → term} and pred = λn : Nat . {p : termn → form}
for n-ary function and predicate symbols respectively, where Nat is the type
of natural numbers in LFP and termn denotes the sequence term, . . . , term of
length n.

Declaration patterns also prove crucial for logic translations because they
permit concise representations of functors between theory categories. We intro-
duce a notion of pattern-based functors between categories of theories. These
are defined by induction on the list of declarations in a theory using one case
for every declaration pattern. Moreover, functors that arise from pushouts can
be recovered as a special case.

LFP is being implemented as part of the MMT system [6]. This will permit
matching arbitrary LF signatures against the declaration patterns defined in an
LFP signature, and translating matching signatures along the functors described
in LFP.

References

1. M. Codescu, F. Horozal, M. Kohlhase, T. Mossakowski, and F. Rabe. Project Ab-
stract: Logic Atlas and Integrator (LATIN). In J. Davenport, W. Farmer, F. Rabe,
and J. Urban, editors, Intelligent Computer Mathematics, volume 6824 of Lecture
Notes in Computer Science, pages 287–289. Springer, 2011.

2. M. Codescu, F. Horozal, M. Kohlhase, T. Mossakowski, F. Rabe, and K. Sojakova.
Towards Logical Frameworks in the Heterogeneous Tool Set Hets. In T. Mossakowski
and H. Kreowski, editors, Recent Trends in Algebraic Development Techniques 2010,
volume 7137 of Lecture Notes in Computer Science, pages 139–159. Springer, 2012.

3. J. Goguen and R. Burstall. Institutions: Abstract model theory for specification and
programming. Journal of the Association for Computing Machinery, 39(1):95–146,
1992.

4. R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of
the Association for Computing Machinery, 40(1):143–184, 1993.

5. L. Paulson. Isabelle: A Generic Theorem Prover. Springer, 1994.
6. F. Rabe and M. Kohlhase. A Scalable Module System. see http://arxiv.org/abs/

1105.0548, 2011.

http://arxiv.org/abs/1105.0548
http://arxiv.org/abs/1105.0548

Designing DSLs – A Craftsman’s Approach for
the Railway Domain using CASL

Phillip James1, Alexander Knapp2, Till Mossakowski3, and Markus
Roggenbach1

1 Swansea University, UK
2 Augsburg University, Germany
3 DFKI GmbH Bremen, Germany

In this work, we present ongoing research concerning the formalization of
Domain Specific Languages (DSLs) [12, 6] within Casl. This work forms part of
a general programme to make systematic use of Domain Specific Languages to
ease system verification in the railway domain [9] using algebraic specification.

It is common industrial practice to describe domain specific vocabulary us-
ing DSLs, for example Invensys Rail have developed a DSL for the railway do-
main [8]. Often, such DSLs aim to capture domain concepts and relations be-
tween these concepts. Typically, such endeavours use a mixture of UML class dia-
grams (as “formal elements”) with natural language descriptions complementing
these diagrams. We take such DSLs based on UML class diagrams and natural
language as a starting point for developing a formal DSL for system verification
in Casl [13].

Fig. 1. Our Approach for developing DSLs based using Casl.

Concretely, we suggest a two step procedure – see Figure 1: Firstly, UML
class diagrams from the domain description are automatically translated into a
Casl specifications. Secondly, the complementary natural language descriptions
are manually formalized in Casl. Such a semi-automatic procedure has the ad-
vantage that the domain concepts and the static relations between them can be
captured by the domain expert in the graphical format offered by UML class dia-
grams. Also, the DSL design methodology outlined by James and Roggenbach [9]
shows that once captured in Casl, such a DSL can be used as a backbone for an

67

automatic verification framework encapsulating formal methods. That is, EM-
F/GMF [5] can be used to generate a graphical editor for DSL models. These
graphical models can then be translated via the Epsilon [10] framework to Casl
specifications. To verify such models in Casl further logical concepts are often
required in the language. Here, the Casl structuring constructs support defi-
nitional extensions of the language, which – if used in a systematic way – can
provide fully automatic verification in the domain under consideration [9].

To support this approach, we develop:

– a new institution for UML class diagrams extending the institution given by
Cengarle and Knapp [4].

– a new comorphism from this UML institution to Casl, extending a comor-
phism from OWL to Casl outlined by Luttich et al. in [11].

To illustrate the above translation is suitable, we consider and translate a
number of example DSLs [8, 2] for the railway domain. Finally, we discuss the
benefits of the approach.

With respect to domain specific languages and verification, a similar ap-
proach has been taken by Andova et al. [1], who use ASF+SDF for prototyping
a DSL and then verify the produced transition system. Also, much work also
been completed by Dines Bjørner into creating DSLs, in an academic setting,
for transport networks [2, 3] using both natural language and the RSL specifi-
cation language. To show the usefulness of our approach, we not only translate
industrial examples of DSLs, but also the DSL for the railway domain as devel-
oped by Bjørner [2].

Finally, our translation from UML class diagrams to Casl differs from the
approach proposed by Hussmann et al. [7]. Firstly, we concentrate on translating
an independently given semantics for UML whereas Hussmann et al. use Casl in
order to give a semantics to UML class diagrams. Secondly, we concentrate our
translation around static aspects only, whereas Hussmann et al. provide special
Casl sorts to deal with any dynamic aspects in order to cater for integration
with dynamic UML diagrams [14].

References

1. S. Andova, M. van den Brand, and L. Engelen. Prototyping the semantics of a
dsl using asf+sdf: Link to formal verification of dsl models. In Francisco Durán
and Vlad Rusu, editors, Proceedings Second International Workshop on Alge-
braic Methods in Model-based Software Engineering, Zurich, Switzerland, 30th June
2011, volume 56 of Electronic Proceedings in Theoretical Computer Science, pages
65–79. Open Publishing Association, 2011.

2. D Bjørner. Formal Software Techniques for Railway Systems. CTS2000: 9th IFAC
Symposium on Control in Transportation Systems, pages 1–12, 2000.

3. D Bjørner. DOMAIN ENGINEERING Technology Management, Research and
Engineering. Japan Advanced Institute of Science and Technology, 2009.

4. Mara Victoria Cengarle and Alexander Knapp. An institution for UML 2.0 static
structures. Technical Report TUM-I0807, Technische Universitt München, 2008.

68

5. Eclipse Consortium. Eclipse Graphical Modeling Framework (GMF), 2005. Avail-
able at http://www.eclipse.org/gmf.

6. M. Fowler. Domain Specific Languages. Addison-Wesley, 2010.
7. H. Hussmann, M. Cerioli, and H. Baumeister. From uml to casl (static part).

Technical Report DISI-TR-00-06, DISI-Universit di Genova, 2000.
8. Invensys Rail. Data Model – Version 1A, 2010.
9. P James and M Roggenbach. Designing domain specific languages for verifica-

tion: First steps. In Peter Hofner, Annabelle McIver, and Georg Struth, editors,
ATE-2011 – Proceedings of the First Workshop on Automated Theory Engineering,
volume 760 of CEUR Workshop Proceedings. CEUR-WS.org, 2011.

10. D.S. Kolovos, L.M. Rose, and R.F. Paige. The Epsilon Book. 2010. Available at
http://www.eclipse.org/epsilon.

11. Klaus Lüttich, Till Mossakowski, and Bernd Krieg-Brückner. Ontologies for the
semantic web in casl. In José Fiadeiro, Peter Mosses, and Fernando Orejas, editors,
Recent Trends in Algebraic Development Techniques, volume 3423 of Lecture Notes
in Computer Science, pages 106–125. Springer Berlin / Heidelberg, 2005.

12. M. Mernik, J. Heering, and A. M. Sloane. When and how to develop domain-
specific languages. ACM Computing Survey, 37(4), 2005.

13. Peter D. Mosses. CASL Reference Manual. Springer, 2004.
14. Gianna Reggio, Maura Cerioli, and Egidio Astesiano. Towards a rigorous seman-

tics of uml supporting its multiview approach. In Heinrich Hussmann, editor,
Fundamental Approaches to Software Engineering, volume 2029 of Lecture Notes
in Computer Science, pages 171–186. Springer, 2001.

Satisfiability calculi: the semantic counterpart of
proof calculi in general logics

Carlos G. Lopez Pombo1,3, Pablo F. Castro2,3, Nazareno M. Aguirre2,3, and
Tomas S.E. Maibaum4

1 Department of Computing, FCEyN, Universidad de Buenos Aires
2 Department de Computing, FCEFQyN, Universidad Nacional de R Cuarto
3 Consejo Nacional de Investigaciones Cient́ıficas y Tecnológicas (CONICET)

4 Department of Computing and Software, McMaster University
clpombo@dc.uba.ar {pcastro,naguirre}@dc.exa.unrc.edu.ar tom@maibaum.org

The theory of institutions, presented by Goguen and Burstall in [1], provides
a formal and generic definition of what a logical system is from a model theo-
retical point of view. Institutions were proposed as a general version of abstract
model theory [2]. As was shown in [3, 4], they offer a suitable formal framework
for addressing heterogeneity in specifications, and have been used to provide
formal semantics to UML [5] and other languages related to computer science
and software engineering. In [6], Meseguer extended the framework of institu-
tions by providing a proof theoric point of view. To do so, he took the notion of
entailment system and described a categorical construction capable of capturing
the notion of proof. In Meseguer’s words:

A reasonable objection to the above definition of logic5 is that it
abstracts away the structure of proofs, since we know only that a set Γ of
sentences entails another sentence ϕ, but no information is given about
the internal structure of such a Γ ` ϕ entailment. This observation,
while entirely correct, may be a virtue rather than a defect, because
the entailment relation is precisely what remains invariant under many
equivalent proof calculi that can be used for a logic.

The previous remarks indicate that what is hidden behind the notion of proof
calculus is essentially the implementation of the entailment relation of a logic.
Before Meseguer’s work, there was an imbalance in the definition of a logic (in
the scope of institution theory) by not taking into account its deductive aspects.
Meseguer concentrates exclusively on the proof theoretical aspects of a logic,
providing not only the definition of entailment system, but also complementing
it with the notion of proof calculus in order to obtain what he calls a logical
system. We believe that this has tilted the imbalance in favor of the syntactic
aspect, ignoring the fact that the same lack of an operational view that can
be observed in the definition of entailment system now appears with respect to
the notion of satisfiability (i.e., the satisfaction relation of an institution). This
observation was motivated by the fact that several mathematical frameworks

5 Authors note: He refers to the definition of logic as a structure that is constituted
by an entailment system plus an institution (see [6, Def. 6]).

70

in computer science rely on model construction, either for proving properties,
e.g., with model-checkers, or for finding counterexamples, as with tableaux tech-
niques. These techniques constitute an important stream of research in logic; in
particular, these methods play an important role in automatic software valida-
tion and verification. Our goal is to provide an abstract characterization of this
class of semantics based tools for logical systems. This is accomplished by intro-
ducing a categorical characterization of the notion of satisfiability calculus which
embraces logical tools such as tableaux, resolution, sequent calculi, etc. Thus,
it can be thought of as a formalization of a semantic counterpart of Meseguer’s
proof calculus. The origins of these logical tools can be traced back to the works
of Beth [7], Herbrand [8] and Gentzen [9]; Beth’s ideas were used by Smullyan
to formulate the tableau method for first-order predicate logic [10]. Herbrand’s
and Gentzen’s work inspired the formulation of resolution systems as presented
by Robinson [11]. These methods are strongly related to the semantics of a logic;
and, therefore, they are often used for obtaining or finding models; notice that
this is not possible in pure deductive methods, such as natural deduction or
Hilbert systems, as formalized by Meseguer.

Definition: [Satisfiability calculus] A satisfiability calculus is a structure of
the form 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|,M,Mods, µ〉 satisfying the following
conditions: – 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 is an institution, – M : Th0 →
StructSC is a functor. Let T ∈ |Th0|, then M(T) ∈ |StructSC | is the canonical
model structure of T , – Mods : StructSC → Cat is a functor. Let T ∈ |Th0|,
then Mods(M(T)) is the set of canonical models of T ; the composite functor

Mods◦M : Th0 → Cat will be denoted by models, and – µ : modelsop
�→Mod

is a natural transformation such that for each T = 〈Σ,Γ 〉 ∈ |Th0| the image of
µT : modelsop(T)→Mod(T) is the category of models Mod(T). The map µT
is called the projection of the category of models of the theory T . 6

The intuition behind this definition is that functor M assigns, to every theory,
a model structure from the category StructSC . The functor Mods projects the
ones that represent canonical models. Finally, for any theory T , the functor µT
relates each of these sets of conditions to the corresponding canonical model.

Tableau method for first-order predicate logic Consider the tableau method for
first-order logic defined in [10]. Let s0

τ0−→ s1
τ1−→ s2

τ2−→ . . . be a branch in a
tableau. Every si with i < ω, is a set of formulae. In each step, the application
of a rule decomposes one formula in this set into its constituent parts, preserving
satisfiability. Thus, the limit set of the branch is a set of formulae containing
all the constituent parts of the original set of formulae for which the tableau
was built. Following this, every open branch expresses, by means of a set of
formulae, the class of models satisfying it. Now, in order to define the tableau
method as a satisfiability calculus, we must provide formal definitions for M,
Mods and µ. StructSC must be defined as the category of legal tableaux. In

6 As usual, ThI denotes the category theories of institution I and ThI0 its complete
subcategory induced by the axiom preserving morphisms.

71

this context, a tableau will be a relation between two sets of formulae; the set
of formulae for which the models are constructed, and the set of formulae from
which these models are constructed. Then, given Σ ∈ |Sign| and Γ ⊆ Sen(Σ),
StrΣ,Γ is the category of tableaux assuming Γ . In StrΣ,Γ objects are sets of
formulae over signature Σ, and morphisms represent tableaux. StructSC is then
defined to be the category in which objects are all possible structures StrΣ,Γ , and
morphisms are the homomorphic extensions of the morphisms in ||Th0|| to the
structure of the tableaux presented above. The functor M must be understood
as the relation between a theory in |Th0| and its category of legal structures
representing tableaux, so to every theory T , M associates the strict monoidal
category 〈StrΣ,Γ ,∪, ∅〉, and for every theory morphism σ : 〈Σ,Γ 〉 → 〈Σ′, Γ ′〉,
M associates a morphism σ̂ : StrΣ,Γ → StrΣ

′,Γ ′
which is the homomorphic

extension of σ to the structure of the tableaux. The functor Mods provide
the means for obtaining the category containing the closure of those structures
in StrΣ,Γ that represent the closure of the branches in saturated tableaux and,
finally, the natural transformation µ relates the structures representing saturated
tableaux with the canonical model satisfying the set of formulae denoted by the
source of the corresponding morphism.

References

1. Goguen, J.A., Burstall, R.M.: Introducing institutions. In Clarke, E.M., Kozen,
D., eds.: Procs. of the Carnegie Mellon Workshop on Logic of Programs. Volume
184 of LNCS, Springer-Verlag (1984) 221–256

2. Diaconescu, R., ed.: Institution-independent Model Theory. Volume 2 of Studies
in Universal Logic. Birkhäuser (2008)

3. Mossakowski, T., Maeder, C., Luttich, K.: The heterogeneous tool set, Hets. In
Grumberg, O., Huth, M., eds.: Procs. of the 13th. Intl. Conf. on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS 2007). Volume 4424
of LNCS, Springer-Verlag (April 2007) 519–522

4. Tarlecki, A.: Towards heterogeneous specifications. In Gabbay, D., de Rijke, M.,
eds.: Frontiers of Combining Systems. Volume 2 of Studies in Logic and Compu-
tation. Research Studies Press (2000) 337–360

5. Cengarle, M.V., Knapp, A., Tarlecki, A., Wirsing, M.: A heterogeneous approach
to UML semantics. In Degano, P., DeNicola, R., Meseguer, J., eds.: Procs. of Con-
currency, graphs and models (Essays dedicated to Ugo Montanari on the occasion
of his 65th. birthday). Number 5065 in LNCS, Springer-Verlag (2008), 383–402

6. Meseguer, J.: General logics. In Ebbinghaus, H.D., Fernandez-Prida, J., Garrido,
M., Lascar, D., Artalejo, M.R., eds.: Procs. of the Logic Colloquium ’87. Volume
129, North Holland (1989) 275–329

7. Beth, E.W.: The Foundations of Mathematics. North Holland (1959)
8. Herbrand, J.: Investigation in proof theory. In Goldfarb, W.D., ed.: Logical Writ-

ings. Harvard University Press (1969) 44–202.
9. Gentzen, G.: Investigation into logical deduction. In Szabo, M.E., ed.: The Col-

lected Papers of Gerhard Gentzen. North Holland (1969) 68–131.
10. Smullyan, R.M.: First-order Logic. Dover Publishing (1995)
11. Robinson, J.A.: A machine-oriented logic based on the resolution principle. Journal

of the ACM 12(1) (1965) 23–41

Categorical Characterization of Structure
Building Operations

Carlos G. Lopez Pombo1,2 and Marcelo F. Frias3,2

1 Department of Computing, School of Science, Universidad de Buenos Aires
2 Consejo Nacional de Investigaciones Cient́ıficas y Tecnológicas (CONICET)
3 Department of Software Engineering, Buenos Aires Institute of Technology

clpombo@dc.uba.ar mfrias@itba.edu.ar

Modularity is a key concept when aiming at good designs. In [1, 2], Parnas
extensively discusses how modular designs of software artifacts result in higher
quality software by enabling reuse, separation of concerns and better maintain-
ability. Since Parnas’s foundational work, practitioners build software artifacts
(and particularly software specifications), modularly.

In [3], Goguen and Burstall present a categorical formalization of the ab-
stract model theory of a logic using the formalism of institutions. Institutions
provide an abstract view of a logic that enables the study of properties of a for-
malism independently of notational issues. For instance, [4] surveys interesting
results about well-known properties such as interpolation, within the framework
of institutions. In [5], Sanella and Tarlecki provide a set of structure-building
operations that enable the modular construction of specifications from theories
taken from a given institution. In [6], Borzyszkowski presented a logical system
for the structure building operations (SBOs) introduced by Sanella and Tarlecki,
as well as an extensive discussion on the conditions under which the proposed
calculus is complete. Intuitively we would like to consider structured specifica-
tions as syntactically sweetened ways of describing a system whose behavior is
equivalent to a monolithic non-structured specification. This is not the case in
the SBOs presented in [5]. Let us recall their definition: 1) a flat specification
is assumed to be a legal structured specification, 2) the union of two structured
specifications over the same signature is considered as a structured specification,
3) the translation over a morphism between signatures is a structured speci-
fication, and 4) the derivation (understood as the hiding of symbols) along a
signature morphism is a structured specification. In Borzyszkowski’s work two
operations Sig and Mod are defined for the retrieval of the signature and the
class of models of a structured specification, respectively. Both operations, defin-
ing the semantics of the structuring mechanism, are defined inductively on the
structure of the specification. Therefore, in order to preserve the idea of structure
as denotation, a question arises:

Is it possible to define a function assigning a flat specification to every
structured one?

While the problem is easily solved (positively) for specifications built from unions
and translations, the class of models resulting from hiding symbols is explained
as the reducts of the models of a set of axioms described in terms of symbols

73

that no longer belong to the language. Thus, the language is many times unable
to syntactically describe the conditions needed to impose the required structure
on models.

Assume the institution under observation is a first-order language with con-
junction, and that derivations only take place on constant symbols. Thus, a
derived structured specification can be described by means of a flat specification
in which those axioms stating properties of a constant symbol c are replaced by
a single one where a variable xc is existentially quantified, as follows:

{Ax 1(c), . . . ,Axk(c)} 7→ ∃xc(Ax 1(xc) ∧ · · · ∧Axk(xc)) . (1)

This solution can be formalized by defining a family of endo institution repre-
sentations [7] indexed by an appropriate subset of signature morphisms.

Hiding symbols is the formal resource for stating that a certain symbol (usu-
ally a function or predicate) is to be considered private to a software module.
Thus, for a technique as the one hinted in (1) to be useful, we should be able
to quantify over function symbols. Higher-order logic gives us a solution, but at
the expense of missing an effective, sound and complete calculus.

In this work, given an institution I, we solve the problem of properly defining
the semantics for structured specifications in terms of flat ones, by representing
the underlying institution in a more expressive one (namely, U) in which first-
order objects provide semantics for functions in I.

First-order relational logics provide a solution. In these institutions, first-
order citizens are relations. An institution representation targeting such rela-
tional institution interprets functions and predicates as algebraic terms, thus
associating to them a relational semantics. This is done by defining the signa-
ture functor in a way that function and predicate extra logical symbols in the
source logical language are mapped to constant extra logical symbols in the
target relational algebraic language. In this way, functions become first-order
citizens of the relational institution, and the transformation presented in Eq. 1
can thus be applied.

In [6], Borzyszkowski also showed that whenever an institution representation
ρ = 〈ρSign, ρSen, ρMod〉 satisfies the weak-amalgamation property, ρ-expansion
of models and ρSign preserves pushouts, then it can be extended to ρ̂, a mapping
from structured specifications over the logical language to structured specifica-
tions over the algebraic language.

Let I = 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 be the institution of a first-order

logic, and R = 〈SignR,SenR,ModR, {|=R
Σ}Σ∈|SignR|〉 the institution of an alge-

braic relational language such that ρ = 〈ρSign, ρSen, ρMod〉 : I → R is an institu-
tion representation satisfying the weak-amalgamation property, ρ-expansion of
models and such that ρSign preserves pushouts. Let ||SignR|| |C be the restric-

tion of ||SignR|| to those morphisms that only act over constant symbols, while
preserving the rest of the signature. Lemma 1 then follows.

Lemma 1. For all σ ∈ ||Sign||, ρSign(σ) ∈ ||SignR|| |C .

74

Let {TRσ }σ∈||SignR|||C the family of endo institution representations perform-

ing the translation presented in Eq. (1).

Definition 1. The family of functions {Tσ}σ∈||Sign|| is defined as Tσ(SP) =
TRρSign(σ)(ρ̂(SP)).

Theorem 1. Mod[SP] = ρMod(Mod(Tσ(SP)))

References

1. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Communications of the ACM 15(12) (1972) 1053–1058.

2. Parnas, D.L.: Designing software for ease of extension and contraction. IEEE
Transactions on Software Engineering 5(2) (1979) 128–138.

3. Goguen, J.A., Burstall, R.M.: Introducing institutions. In Clarke, E.M., Kozen, D.,
eds.: Proceedings of the Carnegie Mellon Workshop on Logic of Programs. Volume
184 of Lecture Notes in Computer Science., Springer-Verlag (1984) 221–256

4. Tarlecki, A.: Bits and pieces of the theory of institutions. In Pitt, D.H., Abramsky,
S., Poigné, A., Rydeheard, D.E., eds.: Proceedings of the Category Theory and
Computer Programming, tutorial and workshop. Volume 240 of Lecture Notes in
Computer Science., Springer-Verlag (1986) 334–363

5. Sannella, D., Tarlecki, A.: Specifications in an arbitrary institution. Information
and computation 76(2–3) (1988) 165–210

6. Borzyszkowski, T.: Logical systems for structured specifications. Theoretical Com-
puter Science 286 (2002) 197–245

7. Tarlecki, A.: Moving between logical systems. In Haveraaen, M., Owe, O., Dahl,
O.J., eds.: Selected papers from the 11th Workshop on Specification of Abstract
Data Types Joint with the 8th COMPASS Workshop on Recent Trends in Data
Type Specification. Volume 1130 of Lecture Notes in Computer Science., Springer-
Verlag (1996) 478–502

8. Tarski, A.: On the calculus of relations. Journal of Symbolic Logic 6(3) (September
1941) 73–89

9. Haeberer, A.M., Veloso, P.A.: Partial relations for program derivation: adequacy,
inevitability and expressiveness. In: Proceedings of IFIP TC2 working conference
on constructing programs from specifications, IFIP TC2: Software: Theory and
Practice, North Holland (1991) 310–352

10. Frias, M.F.: Fork algebras in algebra, logic and computer science. Volume 2 of
Advances in logic. World Scientific Publishing Co., Singapore (2002)

11. Frias, M.F., Baum, G.A., Maibaum, T.S.E.: Interpretability of first-order dy-
namic logic in a relational calculus. In de Swart, H., ed.: Proceedings of the 6th.
Conference on Relational Methods in Computer Science (RelMiCS) - TARSKI.
Volume 2561 of Lecture Notes in Computer Science., Oisterwijk, The Netherlands,
Springer-Verlag (October 2002) 66–80

12. Frias, M.F., Lopez Pombo, C.G.: Interpretability of first-order linear temporal
logics in fork algebras. Journal of Logic and Algebraic Programming 66(2) (2006)
161–184

Execution modes as local states
— towards a formal semantics for reconfigurable

systems?

Alexandre Madeira1,2,3, Manuel A. Martins2, Lúıs S. Barbosa1

1 HASLab - INESC TEC and DI, Universidade do Minho, Portugal
2 CIDMA - Department of Mathematics, Universidade de Aveiro, Portugal

3 Critical Software S.A., Portugal

This talks aims at contributing to the on-going quest for formal logics and
semantics to specify reconfigurable systems. The qualifier reconfigurable refers to
systems whose execution modes, and not only the values stored in their internal
memory, change in response to the continuous interaction with an external en-
vironment. There are two basic approaches to formally capture requirements for
this sort of software: one of them emphasizes behaviour and its evolution; the
other is focused on data and their transformations. Within the first paradigm, re-
active systems are typically specified through (some variant of) state-machines.
Such models capture evolution in terms of event occurrences and their impact in
the system’s internal state configuration (e.g. [1]). In the dual, data-oriented ap-
proach the system’s functionality is specified in terms of input-output relations
modelling operations on data. A specification presents a theory in a suitable
logic, expressed over a signature which captures its syntactic interface. Its se-
mantics is a class of concrete algebras acting as models for the specified theory
[6, 12]. The starting point for our approach, is that both dimensions (data and
behaviour) are interconnected: the functionality offered by a reconfigurable sys-
tem, at each moment, may depend on the stage of its evolution. We model the
reconfiguration dynamics as a transition structure, whose nodes are interpreted
as different execution modes. Therefore, each of such nodes is endowed with a
first-order structure modelling its (mode) local functionality (cf. [10]). Properties
of these local models are expressed over the signature underlying the actual sys-
tems’ interface. Thus, models are structured state-machines whose states denote
first-order-structures, rather than sets.

Once chosen the semantics, the next issue concerns the definition of a suit-
able specification logic. Modal languages are the natural choice to talk about
transition systems. Modal logic, however, is not expressive enough to deal with
properties holding in specific states, a limitation which is overcome in hybrid

? On-going collaboration with Răzvan Diaconescu, namely on the hybridization
method, is greatly acknowledged.This work is funded by the ERDF through the
Programme COMPETE and by the Portuguese Government through FCT - Founda-
tion for Science and Technology, under contract PTDC/EIA-CCO/108302/2008, Centro
de Investigação e Desenvolvimento em Matemática e Aplicações of Universidade de
Aveiro, and doctoral grant SFRH/BDE/33650/2009 supported by FCT and Critical
Software S.A., Portugal.

76

logics [3, 5] by considering a special set of symbols for naming states. Addi-
tionally, we need to specify the local configurations, at each state, as first-order
structures. This entails the combination of hybrid, modal features with first-
order logic. Therefore, we resort to a variant of the hybrid first order modal
logic (e.g. [5]). Note, however, that our semantic perspective, (execution) modes-
as-(local) states, differs from the more common states-as-algebras approach (see,
e.g. [9, 4, 2]). In our own approach, each node does not correspond to a configura-
tion of variables over a unique first-order structure, but to a first-order structure
modelling its behavior and functionality. Technically, we resort to rigid vari-
ables for non rigid operations, in opposition to the usual approach where rigid
operations act on non rigid variables. Also hybrid versions of first-order modal
logics may be found in the literature as specification formalisms. For instance, in
[13] a logic is defined (for cyber-physical systems) based on a dynamical version
of first-order logic (over the reals) with nominals. Also there, as usual, nodes
are just a collection of values of system variables at a given point of execution,
evaluated in an unique first-order structure.

The ability to relate models is a key point in developing programs from spec-
ifications. On the one hand, design by stepwise refinement entails the need for
relating models at different levels of abstraction, up to some notion of behavioural
equivalence or satisfaction of “the same properties”. In axiomatic specification,
refinement corresponds to inclusion of admissible model classes. In the model
oriented paradigm, on the other hand, simulations, i.e., behaviour preserving
relations on the state spaces, are used to establish refinement. Since, our mod-
els include both a state transition system and a family of first-order-structures,
both aspects have to be considered when relating them. Therefore, we discuss a
structured notion of simulation/bisimulation and how consequence is preserved
along it.

The approach just sketched can be put into a broader perspective resort-
ing to the authors recent work on hybridisation of institutions. Reference [11]
introduces a systematic method to extend arbitrary institutions [8, 7] with hy-
brid logic features. Concretely, they are extended with Kripke semantics, for
multi-modalities with arbitrary arities, as well as nominals and local satisfaction
operators. This paves the way for the definition of an institution independent
methodology to specify reconfigurable systems. The relevance of this generali-
sation step is in line with a basic engineering concern which recommends that
the choice of a specification framework should depend on the nature of the re-
quirements one has to deal with. For example, it may happen that, in a specific
context, one would prefer to equip each local state with a partial algebra, a hid-
den algebra, a propositional valuation or even a hybrid logic model (since the
method recurs), rather than with first-order structures as above.

On this talk we will revisit hybrid models at this level of generality, charac-
terizing abstract notions of simulation and bisimulation appropriated for the job
at hands.

77

References

1. Luca Aceto, Anna Ingólfsdóttir, Kim Larsen, and Jiri Srba. Reactive Systems:
Modelling, Specification and Verification. Cambridge University Press, 2007.

2. Michel Bidoit and Rolf Hennicker. An algebraic semantics for contract-based soft-
ware components. In José Meseguer and Grigore Rosu, editors, AMAST, volume
5140 of Lecture Notes in Computer Science, pages 216–231. Springer, 2008.

3. Patrick Blackburn. Representation, reasoning, and relational structures: a hybrid
logic manifesto. Logic Journal of IGPL, 8(3):339–365, 2000.

4. E. Börger and R. Stärk. Abstract state machines: A method for high-level system
design and analysis. Springer-Verlag, 2003.

5. Torben Brauner. Hybrid Logic and its Proof-Theory. Applied Logic Series. Springer,
2010.

6. R. Diaconescu and K. Futatsugi. Logical foundations of CafeOBJ. Theor. Comput.
Sci., 285(2):289–318, 2002.

7. Razvan Diaconescu. Institution-independent Model Theory. Birkhäuser Basel,
2008.

8. Joseph A. Goguen and Rod M. Burstall. Institutions: abstract model theory for
specification and programming. J. ACM, 39:95–146, January 1992.

9. Yuri Gurevich. Evolving algebras. In IFIP Congress (1), pages 423–427, 1994.
10. A. Madeira, J. M. Faria, M. A. Martins, and L. S. Barbosa. Hybrid specification

of reactive systems: An institutional approach. In SEFM 2011, LNCS vol. 7041,
pages 269–285, 2011.

11. Manuel A. Martins, Alexandre Madeira, Razvan Diaconescu, and Lúıs Soares Bar-
bosa. Hybridization of institutions. In CALCO 2011, LNCS vol. 6859, pages
283–297, 2011.

12. Till Mossakowski, Anne Haxthausen, Donald Sannella, and Andrzej Tarlecki.
CASL: The common algebraic specification language: Semantics and proof the-
ory. Computing and Informatics, 22:285–321, 2003.

13. André Platzer. Towards a hybrid dynamic logic for hybrid dynamic systems. Elec-
tron. Notes Theor. Comput. Sci., 174:63–77, June 2007.

Constructions – Models of Signatures with
Dependency Structure

Grzegorz Marczyński

Institute of Informatics, Warsaw University
gmarc@mimuw.edu.pl

1 Introduction

This paper is the continuation of the research presented in [2]. We define models
and specifications that fully exercise the potential of signatures with dependency
structure.

Our aim is to have categorical primitives suitable to specify software sys-
tem architectures in the simplest diagrammatic way. As the basic architectural
primitive we choose parametric software modules represented by a notion of a
construction. Our constructions are similar to constructions of [3] or generic
units of architectural specifications in Casl [1].

We define construction signatures, construction models and construction
specifications. Typically (e.g. in [3]) symbols in signatures of parametric modules
are a divided in two – the required and provided parts. In such case construction
models are maps that, given the model of the required part, provide the model
of the result part.

Our approach is different. The construction signatures are fragments of sig-
natures with dependency structure from [2]. Fragments consist of the complete
signature (result part) and the set of symbols that are defined by the construc-
tion. Our construction models are simply classes of models, subject to certain
conditions formulated upon the symbol dependency from the construction sig-
nature. We define the category of construction signatures and their morphisms
that are p-morphisms, as defined in [2]. Such representation make the pushout
operation applicable to construction signatures. Therefore, constructions may
be connected via fitting spans and the sum operation on construction models is
defined.

Two constructions connected by a fitting span may be joined by a sum oper-
ation that corresponds to what is usually called an application of a generic unit
(e.g. in Casl [1]). However, in contrast to the classical application, the sum,
as we define it, is a symmetric operation. Moreover, the sum operation may be
used not only to join a parametric module and a its actual parameter module,
but also to join two parametric modules. It gives rise to the recursive parametric
module application, where two sides are mutually actual parameters for each
other. In our approach this operation is defined as the simple amalgamation of
the construction models, i.e. the classes of models.

79

We also present the results of the ongoing research concerning the notion
of construction signatures refinement morphisms and refinement of construction
specifications.

2 Preliminaries

Let Eq= = 〈Sig,Mod,Sen, |=〉 be the institution of equational logic with many
sorted algebraic signatures. We have the following functors, as defined in [2]

SigDepfrag SigDep

Sig

Sosetb↓

Set

Compl

Frag

SetSymb

DepSymb

U
Symb

SigSymb
Dep

where

– SigDep is the enrichment of Sig by strict bounded dependency structure,
with SigDep-objects being pairs Σ< = 〈Σ,<Σ〉 of Σ ∈ Sig and <Σ⊆
SetSymb(Σ)×SetSymb(Σ) – dependency relation that <SigSymb(Σ)⊆<Σ
and 〈SetSymb(Σ), <Σ〉 ∈ Sosetb↓; SigDep-morphisms are such algebraic
signature morphisms σ : Σ → Σ′, for which a function SetSymb(σ) is a
Sosetb↓-mo rphism (a p-morphism),

– SigSymb : Sig → Sosetb↓ transforms algebraic signatures to bounded strict
orders of signatures’ symbols (basic dependency <SigSymb(Σ)),

– Dep : Sig→ SigDep is the basic dependency functor (dependency of oper-
ation symbols on sort symbols),

– DepSymb and U are projections,
– Symb = DepSymb; U and SetSymb = SigSymb; U,
– SigDepfrag = (Set ↓ Symb) is the category of signature fragments, with

SigDepfrag -objects being pairs 〈f : A→ Symb(Σ<), Σ<〉 and SigDepfrag -
morphisms being pairs 〈f : A→ A′, σ : Σ< → Σ′<〉,

– Frag : SigDep→ SigDepfrag takes Σ< to 〈idSymb(Σ<), Σ<〉,
– Compl : SigDepfrag → SigDep is the completion functor that is a projec-

tion that takes 〈f : A→ Symb(Σ<), Σ<〉 to Σ<.

Given a signature fragment B = 〈f : A→ Symb(Σ<), Σ<〉 ∈ SigDepfrag

and an element b ∈ Symb(Σ<), let Sb = {a ∈ Symb(Σ<) | a < b}, the depen-
dency structure of b is Bb<⇓ = 〈f |A∩Sb

: A ∩ Sb → Symb(Σ< ∩ Sb), Σ< ∩ Sb〉;
the closed-down subsignature fragment induced by an element b is Bb<↓ = Bb<⇓ ∪
{b}.

3 Constructions and Fittings

A construction signature is a signature fragment B ∈ SigDepfrag with injective
internal mapping, i.e. for B = 〈f : A→ Symb(Σ<), Σ<〉, f is injective.

80

A construction signature morphism ω : B1 → B2 is a SigDepfrag -morphism.
A construction model of a construction signature B is Con ⊆ [[Compl(B)]]

such that, for any a ∈ B and any two models M,M ′ ∈ Con, if M |Ba⇓ = M ′|Ba⇓
then M |Ba↓ = M ′|Ba↓.

The reduct of Con2 w.r.t. ω is a B1-construction model defined as Con2|ω =
{M |Compl(ω) |M ∈ Con2}. By [[B]]

c
we denote a class of all construction models

of a construction signature B.
A construction specification over a construction signature B is a specification

SPB ∈ Spec(Compl(B)).
A construction model Con ∈ [[B]]

c
is a model of a construction specification

SPB over B, denoted by Con |=c SPB , iff for all a ∈ Compl(B), for all A ⊆
Compl(B) the following conditions hold

1. if a ∈ B, for all M ∈ Con, if M |Ba⇓ |= SPB |Ba⇓ then M |Ba↓ |= SPB |Ba↓
2. if a /∈ B, for all M |= SPB , if M |Ba⇓ ∈ Con|Ba⇓ then M |Ba↓ ∈ Con|Ba↓
3. for all M |= SPB , if for all b ∈ A, M |Bb↓ ∈ Con|Bb↓ then M |BA↓ ∈ Con|BA↓.

A construction fitting ft : B1↖↗B2 = 〈ϕ1 : F → B1, ϕ2 : F → B2〉, between

two construction signatures B1 and B2, is a span in SigDepfrag , where F is an
empty signature fragment (i.e. for F = 〈f : A→ Symb(Σ<), Σ<〉, A = ∅) and
the pushout of ϕ1 and ϕ2 , β1 and β2, yields the construction signature B, i.e.
its internal mapping is injective.

A sum of construction models Con1 and Con2 w.r.t. the fitting ft is defined
as Con1 ⊕ft Con2 = {M ∈ [[Compl(B)]] | M |β1

∈ Con1,M |β2
∈ Con2}.

Theorem 1 The sum of construction models is a construction model.

Construction specifications SPB1 and SPB2 are compatible w.r.t. a construc-
tion fitting ft = 〈ϕ1, ϕ2〉 iff the following conditions hold

1. for all a ∈ B and all ai ∈ Bi such that a = βi(ai), for i ∈ {1, 2},
for all M ∈ [[B]] such that M |Ba⇓ |= SPB |Ba⇓ if M |Ba↓ |= βiai

(SPB i|Ba1
1 ↓

)

then M |Ba↓ |= SPB |Ba↓
2. for all Con1 |=c SPB1, for all Con2 |=c SPB2, for any A ⊆ Compl(B)

let A1 = β1
−1(BA↓) ⊆ Compl(B1) and A2 = β2

−1(BA↓) ⊆ Compl(B2),
for all M |= SPB , if for i ∈ {1, 2}, (M |βi

)|BAi
i ↓
∈ Coni|BAi

i ↓
then M |BA↓ ∈

(Con1 ⊕ft Con2)|BA↓

Theorem 2 If SPB1 and SPB2 are compatible w.r.t. the fitting 〈ϕ1, ϕ2〉 and
Con1 |=c SPB1, Con2 |=c SPB2, then Con1⊕ftCon2 |=c β1(SPB1) and β2(SPB2).

References

1. CoFI. Casl Reference Manual. 2960 (IFIP Series). 2004.
2. Grzegorz Marczyński. Algebraic signatures enriched by dependency structure. In

WADT, pages 226–250, 2010.
3. D. Sannella and A. Tarlecki. Toward formal development of programs from algebraic

specifications: Implementations revisited. Acta Informatica, 25(3):233–281, 1988.

Semantics of the distributed ontology language:
Institutes and Institutions

Till Mossakowski1,3, Oliver Kutz1, and Christoph Lange1,2

1 Research Center on Spatial Cognition, University of Bremen
2 Computer Science, University of Birmingham

3 DFKI GmbH Bremen

OWL is a popular language for ontologies. Yet, the restriction to a decidable
description logic often hinders ontology designers from expressing knowledge that
cannot (or can only in quite complicated ways) be expressed in a description
logic. A practice to deal with this problem is to intersperse OWL ontologies
with first-order axioms, e.g. in the case of bio-ontologies where mereological
relations such as parthood are of great importance, though not definable in
OWL. However, these remain informal annotations to inform the human designer,
rather than first-class citizens of the ontology with formal semantics and impact
on reasoning.

A variety of languages is used for formalising ontologies.4 Some of these,
as RDF, OBO and UML, can be seen more or less as fragments and notational
variants of OWL, while others, like F-logic and Common Logic (CL), clearly go
beyond the expressiveness of OWL.

This situation has motivated the distributed ontology language (DOL), a
language currently under active development within the ISO standard 17347
Ontology Integration and Interoperability (OntoIOp). In DOL, heterogeneous
and distributed ontologies can be expressed. At the heart of this approach is a
graph of ontology languages and translations [9]. This graph will enable users to

– relate ontologies that are written in different formalisms (e.g. prove that the
OWL version of the foundational ontology Dolce is logically entailed by the
first-order version);

– re-use ontology modules even if they have been formulated in a different
formalism;

– re-use ontology tools like theorem provers and module extractors along trans-
lations between formalisms.

In this contribution, we will present the syntax and semantics of DOL. DOL
shares many features with the language HetCASL [8] which underlies the Het-
erogeneous Tool Set Hets [10]. However, it also adds a number of new features:

– ontology module extraction: give me a subtheory that contains all relevant
logical information w.r.t. some subsignature;

– projections of theories to a sublogic;
– ontology alignments, which involve partial or even relational variants of sig-

nature morphisms;

4 For the purpose of this paper, “ontology” can be equated with “logical theory”.

82

– combination of theories via colimits;
– referencing of all items by URLs, or, more general, IRIs.

What is the semantics of DOL? Previous presentations of the semantics of
heterogeneous logical theories [13, 4, 11, 7, 9] relied heavily on the theory of
institutions [6]. The central insight of the theory of institutions is that logical
notions such as model, sentence, satisfaction and derivability should be indexed
over signatures (vocabularies). In order to abstract from any specific form of
signature, category theory is used.

However, the use of category theory diminishes the set of potential readers.
Moreover, there is a line of signature-free thinking in logic and ontology research;
for example, Common Logic [3] names its signature-free approach a chief novel
feature. Likewise, many abstract studies of consequence and satisfaction systems
[5, 12, 1, 2] disregard signatures. Hence, we base our semantics on the newly
introduced notion of institutes. These start with the signature-free approach,
and then introduce signatures a posteriori, assuming that they form a preorder.
While this approach covers only signature inclusions, not renamings, it is much
simpler than the category-based approach of institutions. Of course, for features
like colimits, full institution theory is needed. We therefore show that institutes
and institutions can be integrated smoothly.

References

1. A. Avron. Simple consequence relations. Inf. Comput., 92(1):105–140, 1991.
2. W.A. Carnielli, M. Coniglio, D.M. Gabbay, P. Gouveia, and C. Sernadas. Analysis

and synthesis of logics: how to cut and paste reasoning systems. Applied logic
series. Springer, 2008.

3. Common Logic Working Group. Common Logic: Abstract syntax and semantics.
Technical report, 2003.

4. R. Diaconescu. Grothendieck institutions. Applied categorical structures, 10:383–
402, 2002.

5. G. Gentzen. Investigations into logical deduction. In M. E. Szabo, editor, The
Collected Papers of Gerhard Gentzen, pages 68–213. North-Holland, Amsterdam,
1969.

6. J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for speci-
fication and programming. Journal of the Association for Computing Machinery,
39:95–146, 1992. Predecessor in: LNCS 164, 221–256, 1984.

7. O. Kutz, T. Mossakowski, and D. Lücke. Carnap, Goguen, and the Hyperontolo-
gies: Logical Pluralism and Heterogeneous Structuring in Ontology Design. Logica
Universalis, 4(2):255–333, 2010. Special Issue on ‘Is Logic Universal?’.

8. T. Mossakowski. Hetcasl - heterogeneous specification. language summary, 2004.
9. Till Mossakowski and Oliver Kutz. The Onto-Logical Translation Graph. In Mod-

ular Ontologies—Proceedings of the Fifth International Workshop (WoMO 2011),
volume 230 of Frontiers in Artificial Intelligence and Applications, pages 94–109.
IOS Press, 2011.

10. Till Mossakowski, Christian Maeder, and Klaus Lüttich. The Heterogeneous Tool
Set. In Orna Grumberg and Michael Huth, editors, TACAS 2007, volume 4424
of Lecture Notes in Computer Science, pages 519–522. Springer-Verlag Heidelberg,
2007.

83

11. Till Mossakowski and Andrzej Tarlecki. Heterogeneous logical environments for dis-
tributed specifications. In Andrea Corradini and Ugo Montanari, editors, WADT
2008, number 5486 in Lecture Notes in Computer Science, pages 266–289. Springer,
2009.

12. D. Scott. Rules and derived rules. In S. Stenlund, editor, Logical Theory and
Semantic Analysis, pages 147–161. Reidel, 1974.

13. A. Tarlecki. Towards heterogeneous specifications. In D. Gabbay and M. de Rijke,
editors, Frontiers of Combining Systems 2, 1998, Studies in Logic and Computa-
tion, pages 337–360. Research Studies Press, 2000.

Dualities for modal algebras

Pedro Miguel Teixeira Olhero Pessoa Nora

Department of Mathematics, Universidade de Aveiro, Portugal

Motivated by questions in semantics of modal (propositional) logics, over the
past years several duality results which extend the classical Priestley and Stone
dualities to categories of algebras with operators were established (see [3, 1],
for instance). In this talk we follow an idea of Halmos [2] and consider larger
categories “of algebras with hemimorphisms” where these operators appear as
morphisms. More specifically:

1. We show how functoriality of the Kleisli construction (see [5]) can be used
to deduce in a uniform manner that these categories are dually equivalent
to full subcategories K of the Kleisli category of (variants of) the Vietoris
monad V on the category of ordered compact Hausdorff spaces [4]. That is,
we conclude that the canonical functor

hom(−, 1) : Kop → A

(where A denotes the category of Boolean algebras/Heyting algebras/ dis-
tributive lattice/. . . with hemimorphisms) is an equivalence by simply ob-
serving that the induced morphism of monads is an isomorphism. This way
we obtain Halmos duality for Stone spaces and Boolean relations (see [2, 7])
as well as a similar result for the category of Priestley spaces and certain
relations.

2. We investigate the monoidal (closed) structures on the Kleisli category of V
induced by the Cartesian product and show that in some cases the corre-
sponding operation on the algebraic side represents bimorphisms.

3. We also investigate further properties of these categories, in particular idem-
potent split completeness. In this case, using general results of [6], we con-
clude that these categories “of algebras with hemimorphisms” are also dually
equivalent to categories of certain algebras of V, and we describe these alge-
bras intrinsically.

References

1. M. M. Bonsangue, A. Kurz, and I. M. Rewitzky, Coalgebraic representations of
distributive lattices with operators, Topology Appl., 154 (2007), pp. 778–791.

2. P. R. Halmos, Algebraic logic, Chelsea Publishing Co., New York, 1962.
3. C. Kupke, A. Kurz, and Y. Venema, Stone coalgebras, Theoret. Comput. Sci., 327

(2004), pp. 109–134.
4. L. Nachbin, Topologia e Ordem, Univ. of Chicago Press, 1950. In Portuguese, English

translation: Topology and Order, Van Nostrand, Princeton (1965).
5. D. Pumplün, Eine Bemerkung über Monaden und adjungierte Funktoren, Math.

Ann., 185 (1970), pp. 329–337.

85

6. R. Rosebrugh and R. J. Wood, Split structures, Theory Appl. Categ., 13 (2004),
pp. No. 12, 172–183.

7. G. Sambin and V. Vaccaro, Topology and duality in modal logic, Ann. Pure Appl.
Logic, 37 (1988), pp. 249–296.

Formal Specification of the Kademlia and the
Kad Routing Tables in Maude

Isabel Pita1 and Maŕıa Inés Fernández Camacho1

Dpto. Sistemas Informticos y Computación.
Universidad Complutense de Madrid, Spain

{ipandreu,minesfc}@sip.ucm.es

1 Abstract

Distributed hash tables (DHTs) are designed to locate objects in distributed
environments, like P2P systems, without the need for a centralized server. There
are a large number of existing DHTs proposals; the best known are: Chord
[11], Pastry [10], CAN [9], and Kademlia [4]. However, only Kademlia has been
implemented in real networks through the eMule1 and aMule2 clients. Kad is
the name given to the implementation of Kademlia incorporated to eMule and
aMule, and it shows important differences from the original. There are also two
BitTorrent overlays that use Kademlia: one by Azureus clients3 and one by many
other clients including Mainline4 and BitComet5.

Most DHTs identify both nodes and files with n-bit quantities, and keep the
information of shared files in the nodes with an ID close to the file ID.The notion
of close difers from DHT to DHT. Each node has a routing table to store contact
information about others to access the information shared by them. Kademlia
organizes its routing table as a binary tree. Contacts are stored in the tree leaves,
in a special sort of FIFO queue called k-buckets. Each bucket is identified by
the common prefix of the IDs it contains, which is given by the path from the
root. Thus, each bucket covers some range of the ID space, and together the
buckets cover the entire ID space with no overlap. The policy to add contacts to
buckets in Kademlia is as follows: if the contact already exists, it is moved to the
tail of the queue; otherwise, if the bucket has free space it is inserted at its tail;
but if the bucket has not free space, the first contact in the bucket is contacted
and if it is still online it is moved to the tail of the bucket and the new contact
discarded; if the first bucket contact is not online, it is discarded and the new
contact inserted at the tail. This process is different in the Kad routing tables.
It does not require to contact the first bucket node, instead it has a process that
removes all contacts that are not alive from time to time. In both cases routing
tables are dynamic in the sense that they should be able to send messages to

1 http://www.emule-project.net
2 http://www.amule.org
3 http://azureus.sourceforge.net
4 http://www.bittorrent.com
5 http://www.bitcomet.com

87

other peers and they should have a notion of time for raising events and detect
no answered messages.

Although the different DHTs have been extensively studied through theoret-
ical simulations and analysis, there is a lack of formal specifications for all of
them. Bakhshi and Gurov give in [1] a formal verification of Chord’s stabilization
algorithm using the π-calculus. Lately Lu, Merz, and Weidenbach [3] have mod-
eled Pastry’s core routing algorithms in the specification language TLA+ and
have proved properties of correctness and consistency using its model checker.
There is a preliminary study of the Kademlia searching process protocol by the
first author in [7], and a distributed specification of the protocol in [8]. Based on
these preliminary studies we have realized a detailed specification of the Kadem-
lia and the eMule/aMule Kad routing tables in the Maude formal specification
language which include features not previously specified as sending messages to
update the Kademlia routing table or raising events for populate and remove
offline nodes in the Kad routing table .

The Maude algebraic specification language we use, is based on rewriting logic
[2, 6] and it supports both equational and rewriting logic computations while
it offers simple an elegant time simulation resources. Since the specifications
are directly executable, Maude can be used to prototype the systems as well as
to prove properties of them.In particular the Real-Time Maude tool provides
facilities to analyze the effect of time on the system.

As far as we know there is no other formal specification of the Kademlia
and Kad routing tables. Right now the best sources to understand both protocol
details are the original paper on the Kademlia DHT and the source code of the
Kad implementation. Thus our first contribution are the benefits of having a
formal specification of a system that is being consulted by many developers.
In addition, the formalization of the routing tables allows us to compare the
original version of Kademlia with the real implementation made in Kad. It also
allows us to detect some open issues on the original description, mainly related
with message passing.

However, our main contribution is the integration of the dynamic aspects of
the routing table with the full protocol specification. The specification includes
the ability of the routing tables to send and receive messages autonomously from
the node by using different levels of configurations. Detection of non answered
messages is done by assigning a time out when sending the message and trigger-
ing the appropriate action when the time expires. The actions that are performed
automatically in Kad from time to time, like populate almost empty buckets, or
remove offline contacts from the buckets are triggered when their time expire.
These actions require to have a notion of time defined in different parts of the
routing table and allow us to study the interleaving of actions that take place
at different points in time.

References

1. R. Bakhshi, and D. Gurov, Verification of Peer-to-peer Algoritms: A Case Study.
ENTCS 181, pages 35–47. Elsevier, 2007.

88

2. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart-Oliet, J. Meseguer, and C.
Talcott, All About Maude - A High-Performance Logical Framework. LNCS 4350.
Springer, 2007.

3. T. Lu, S. Merz, and C. Weidenbach. Model Checking the Pastry Routing Protocol.
In J. Bendisposto, M. Leuschel, and M. Roggenbach, editors, In Proceedings of
the 10th International Workshop on Automatic Verification of Critical Systems,
AVOCS 2010, pages 19–21. Universität Düsseldorf, 2010.

4. P. Maymounkov, and D. Mazieres, Kademlia: A Peer-to-peer Information System
Based on the XOR Metric. In Proceedings of the 1st International Workshop on
Peer-to Peer Systems (IPTPS02), 2002.

5. Mysicka, D., Reverse Engineering of eMule. An analysis of the implementation
of Kademlia in eMule. Semester thesis, Dept. of Computer Science, Distributed
Computing group, ETH Zurich, 2006.

6. Ölveczky, P., and Meseguer, J., Semantics and pragmatics of Real-Time Maude,
Higher Order Symbol. Comput., volume 20, number 1-2, pages 161–196. Kluwer
Academic Publishers. 2007,

7. Pita, I., A formal specification of the Kademlia distributed hash table. In V. M.
Guĺıas, J. Silva and A. Villanueva, editors, 10th Spanish Workshop on Program-
ming Languages, PROLE 2010, pages 223–234. Ibergarceta Publicaciones.2010.

8. Pita, I. and Riesco, A., Specifying and Analyzing the Kademlia Protocol in Maude.
9th International Workshop on Rewriting Logic and its Applications, WRLA 2012.

9. Ratnasamy S, Francis P, Handley M, Karp R, and Shenker S. A Scalable Content-
Addressable Network. In Proceedings of SIGCOMM, 2001.

10. Rowstron A, and Druschel P. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. Middleware 2001 : IFIP/ACM Interna-
tional Conference on Distributed Systems Platforms Heidelberg, Germany, Novem-
ber 12-16, 2001. Proceedings In Middleware ’01: Proceedings of the IFIP/ACM In-
ternational Conference on Distributed Systems Platforms Heidelberg (2001), pp.
329-350. 2001.

11. Stoica I, Morris R, Karger D, Kaashoek M, and Balakrishnan H. Chord: A scalable
peer-to-peer lookup service for Internet applications. IEEE/ACM Trans. Netw.,
volume 11, number 1, pages 17–32. 2003.

Mechanically Verifying Logic Translations

Florian Rabe1 and Kristina Sojakova2

1 Jacobs University, Bremen, Germany
2 Carnegie Mellon University, Pittsburgh, USA

Institutions and institution comorphisms [GB92, GR02] are a key tool in the
model theoretical meta-analysis of logics. Institutions form an abstract categori-
cal definition of logic based signatures, sentences, models, and satisfaction. And
institution comorphisms translate one institution into another.

While being its greatest strength, the abstractness of the institution frame-
work also leads to a major drawback: institutions cannot be represented in a
purely formalist setting, using a declarative language with simple and decidable
validity criteria. Indeed, the Hets system [MML07], the biggest implementation
of institution theory, implements the syntactical aspects of institutions in a gen-
eral purpose programming language.

Therefore, in [Rab12, CHK+12], we showed how institutions and institution
comorphisms can be represented in the proof/type theoretical logical framework
LF [HHP93]. More precisely, we gave a general construction that defines insti-
tutions and comorphisms from certain diagrams of LF signatures.

In this work, we improve upon the above results by giving a substantially
stronger construction of an institution comorphism. In the above constructions,
the proof of the satisfaction condition for comorphisms hinges on the commuta-
tivity of a certain diagram of LF signatures. Specifically two morphism have to
be equal: one of these morphisms represents the interpretation of objects in the
reduced model, the other one represents the interpretation of translated objects
in the original model.

While perfectly reasonable, this condition is very strong: It implies that all
objects are interpreted equally according to the very weak definitional equality
of the LF type theory. But to obtain the satisfaction condition of a comorphism,
it is in fact sufficient to show that the two morphisms interpret all formulas as
provably equivalent statements.

However, it has previously been very difficult to even state that condition
formally. We can now give a solution to this problem by applying our recent
work on logical relations. In [RS12], we developed a theory of logical relations
for LF and showed how they can be expressed as formal objects in the LF type
theory and thus type-checked mechanically.

Our central consists of two theorems: (i) logical relations can be used to
express the observational equivalence of two morphisms (ii) observational equiv-
alence of two morphisms can be used to show the satisfaction condition of a
comorphism.

Moreover, we show that the model expansion property can be expressed in
terms of the validity of certain LF morphisms as well. Together, these results

90

provide a simple and elegant way to formalize and mechanically institution co-
morphisms.

This permits the mechanic verification of semantic logic translations that are
commonly used to borrow theorem provers [CM97]. This is in contrast to proof
theoretic borrowing such as [MP08], which explicitly translates the found proofs
back into the main logic for verification. Our approach permits the semantic
verification of the soundness of the borrowing operation once and for all so that
no proof translation is necessary.

References

CHK+12. M. Codescu, F. Horozal, M. Kohlhase, T. Mossakowski, F. Rabe, and K. So-
jakova. Towards Logical Frameworks in the Heterogeneous Tool Set Hets.
In T. Mossakowski and H. Kreowski, editors, Recent Trends in Algebraic
Development Techniques 2010, volume 7137 of Lecture Notes in Computer
Science, pages 139–159. Springer, 2012.

CM97. M. Cerioli and J. Meseguer. May I Borrow Your Logic? (Transporting Log-
ical Structures along Maps). Theoretical Computer Science, 173:311–347,
1997.

GB92. J. Goguen and R. Burstall. Institutions: Abstract model theory for speci-
fication and programming. Journal of the Association for Computing Ma-
chinery, 39(1):95–146, 1992.

GR02. J. Goguen and G. Rosu. Institution morphisms. Formal Aspects of Com-
puting, 13:274–307, 2002.

HHP93. R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
Journal of the Association for Computing Machinery, 40(1):143–184, 1993.

MML07. T. Mossakowski, C. Maeder, and K. Lüttich. The Heterogeneous Tool Set.
In O. Grumberg and M. Huth, editor, TACAS 2007, volume 4424 of Lecture
Notes in Computer Science, pages 519–522, 2007.

MP08. J. Meng and L. Paulson. Translating Higher-Order Clauses to First-Order
Clauses. Journal of Automated Reasoning, 40(1):35–60, 2008.

Rab12. F. Rabe. A Logical Framework Combining Model and Proof Theory.
Mathematical Structures in Computer Science, 2012. to appear; see http:

//kwarc.info/frabe/Research/rabe_combining_10.pdf.
RS12. F. Rabe and K. Sojakova. Logical Relations in Twelf. see http://kwarc.

info/frabe/Research/RS_logrels_12.pdf, 2012.

http://kwarc.info/frabe/Research/rabe_combining_10.pdf
http://kwarc.info/frabe/Research/rabe_combining_10.pdf
http://kwarc.info/frabe/Research/RS_logrels_12.pdf
http://kwarc.info/frabe/Research/RS_logrels_12.pdf

A Generic Program Slicing Technique based on
Language Definitions

Adrián Riesco1, Irina Măriuca Asăvoae2, Mihail Asăvoae2

1 Universidad Complutense de Madrid, Spain
ariesco@fdi.ucm.es

2 Alexandru Ioan Cuza University, Romania
{mariuca.asavoae, mihail.asavoae}@info.uiac.ro

1 Introduction

In this paper we propose a static technique for slicing programs based on a
meta-level analysis of the programming language definition. This would allow a
certain degree of parameterization of the slicing algorithm as modification on the
language semantics could automatically be carried to it. Our approach builds on
the formal executable semantics of the language of interest, given as a rewriting
logic [6] theory and on the source program.

Our slicing methodology combines two steps: (1) a generic analysis of the
formal executable semantics followed by (2) a data dependency analysis of the
program. Step (1) is a fixpoint computation of the set of the smallest language
constructs that have side-effects which, in turn step (2) uses to extract safe
program slices based on a set of variables of interest. We exemplify our approach
on the classical WHILE language augmented with a side-effect assignment and
read/write statements, specified in Maude [3].

We make the standard assumption that equations are oriented from left to
right, hence we consider them as rewrite rules. Then the algorithm computes
the set of basic language constructs which produce side-effects, by inspecting
the conditions and the right-hand side of each rewrite rule in the definition.
For this inspection, we employ unification and an adaptation of the backward
chaining technique [7]. The results are used as contexts in step (2) to infer a
safe program slicing as described in the followings. We start with the program,
P and a set of variables of interest V . First we identify and label the contexts
containing variables of interest and increment the set V with the other variables
appearing in the currently identified context. We run this step until V stabilizes.
At the end, the sliced program is represented by the skeleton term containing
all the labeled contexts.

Program slicing is a general and well-founded technique that has a wide range
of applications in program debugging, testing and analysis. [8] contains a com-
prehensive survey on this topic, with an emphasis on the distinction between
static and dynamic slicing methods. The approach in [5] is used to apply slicing
to languages specified as unconditional term rewriting systems. It relates the
dynamic dependences tracking with reduction sequences, and, applying succes-
sive transformations on the original language semantics, it gathers the necessary

92

dependency relations via rewriting. The recent work in [1] proposes a first slicing
technique of rewriting logic computations. It takes as input an execution trace
and computes dependency relations using a backward tracing mechanism. Both
this work and its sequent extension to conditional term rewriting systems, in [2],
perform dynamic slicing by executing the semantics for an initial given state. In
comparison, we propose a static approach that is centered around the rewriting
logic theory of the language definition.

Our two steps slicing algorithm resembles the approach in [4], where an al-
gorithm mechanically extracts slices from an intermediate representation of the
language semantics definition. The algorithm relies on a well-defined transfor-
mation between a programming language semantics and this common represen-
tation. It also generalizes the notions of static and dynamic slices to that of
constrained slices. What we propose is to eliminate the translation step to the
intermediate representation and to work directly on the language semantics.

Rewriting logic based definitions of programming languages support pro-
gram executability and, at the same time, provide all the necessary information
to build analysis tools. We propose a generic algorithm based on a meta-level
analysis of the language semantics to extract useful information for program
slicing.

References

1. Alpuente, M., Ballis, D., Espert, J., Romero, D.: Backward trace slicing for rewriting
logic theories. In: CADE. pp. 34–48 (2011)

2. Alpuente, M., Ballis, D., Frechina, F., Romero, D.: Backward trace slicing for con-
ditional rewrite theories. In: LPAR. pp. 62–76 (2012)

3. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.L. (eds.): All About Maude - A High-Performance Logical Framework, How to
Specify, Program and Verify Systems in Rewriting Logic, LNCS, vol. 4350. Springer
(2007)

4. Field, J., Ramalingam, G., Tip, F.: Parametric program slicing. In: POPL. pp.
379–392 (1995)

5. Field, J., Tip, F.: Dynamic dependence in term rewriting systems and its application
to program slicing. Information & Software Technology 40(11-12), 609–636 (1998)

6. Mart́ı-Oliet, N., Meseguer, J.: Rewriting logic: roadmap and bibliography. Theor.
Comput. Sci. 285(2), 121–154 (2002)

7. Sterling, L., Shapiro, E.Y.: The Art of Prolog - Advanced Programming Techniques.
MIT Press (1986)

8. Tip, F.: A survey of program slicing techniques. J. Prog. Lang. 3(3) (1995)

Distances Between Processes: a Pure Algebraic
Approach ?

David Romero Hernández, David de Frutos Escrig

Dpto. Sistemas Informáticos y Computación
Facultad CC. Matemáticas, Universidad Complutense de Madrid, Spain

dromeroh@pdi.ucm.es, defrutos@sip.ucm.es

In order to define an (abstract) semantics for processes, we need just to de-
fine an adequate equivalence relation, ≡, relating the processes in some universe,
Proc. Then the values of this semantics are just the corresponding equivalence
classes, and two processes have the same semantics if and only if they are equiv-
alent. Once we have fixed such a semantics we can compare two processes, but
the output of this comparison is just a Boolean value. In particular, when two
processes are not equivalent we do not have a general way to measure “how far
away” they are from being equivalent.

It is well-known the use of these equivalences to formalize the notion of imple-
mentation: a process implements some specification (given by another process)
when they are equivalent w.r.t. the adequate semantics. But, if we follow this
approach, we have no flexibility at all: our process has to satisfy in a precise way
all of the constraints imposed by the specification, or it will not be a correct im-
plementation. Instead, in the real world we often use other, more flexible quality
requirements, where the specification establishes the ideal behavior of the sys-
tem but some (limited) deviations from it are allowed without invalidating the
correctness of the implementation.

We need a notion of distance between processes to make precise how far
away two processes are from being equivalent w.r.t. some given semantics. It is
true that metrics have been used for a long time to formalize the semantics of
infinite processes by means of (the limit of) those of their finite approximations.
But these metrics were just a very particular case that only cared for “the first”
disagreement between the compared processes. Instead, now we look for more
general distances which would be applicable to any syntactic process algebra
(i.e. to any signature Σ) and any semantics (by means, for instance, of the
axiomatization of the desired semantics).

We have already introduced the basic ideas of our approach in [4], comparing
our distances with other proposals based on the simulation game that has been
presented in papers such as [1]. Here, we will discuss how to define these distances
in a general way by introducing metric algebras and their algebraic specification
by means of distance equations.

? Partially supported by the Spanish projects TESIS (TIN2009-14312-C02-01), DE-
SAFIOS10 (TIN2009-14599-C03-01) and PROMETIDOS S2009/TIC-1465.

94

Definition 1. Let D an adequate domain for distance values (e.g. N, R+, Q+)
and Σ a (classic) signature. A (D, Σ)-algebra is a Σ-algebra 〈A, ΣA〉 and a
collection of relations 〈≡d, d ∈ D〉, ≡d ⊆ D ×D, such that:

1. a ≡0 a for all a ∈ A.
2. a ≡d b ⇔ b ≡d a for all a, b ∈ A for all d ∈ D.
3. d ≤ d′, a ≡d b ⇒ a ≡d′ b for all a, b ∈ A for all d, d′ ∈ D.
4. (a ≡d b ∧ b ≡d′ c) ⇒ a ≡d+d′ c for all a, b, c ∈ A for all d, d′ ∈ D.
5. f ∈ Σ, ar(f) = k, ai ≡di bi for all i ∈ 1..k ⇒ f(a) ≡Σidi f(b).

Definition 2. A deduction system for distances between terms in TΣ(X) is a
collection of rules including:

1. Partial reflexivity: t ≡0 t.
2. Symmetry: t ≡d t′ ⇒ t′ ≡d t.
3. Triangular transitivity: t ≡d t′, t′ ≡d′ t′′ ⇒ t ≡d+d′ t′′.
4. Linear substitution: If t is linear in x and t′ ≡d t′′ then t[t′/x] ≡d t[t′′/x].
5. Instantiation: t ≡d t′ ⇒ t[t′′/x] ≡d t′[t′′/x].
6. A set of distance equations ED = {ti ≡di t′i | i ∈ I}.

Remark 1. i) The intuitive meaning of t ≡d t′ is “t and t′ are at most d-far
away”.
ii) The set ED will include the adequate axioms to characterize the desired
distance w.r.t. to some semantics for processes ∼sem, so that we expect that ≡0

= ∼sem.

Finite processes can be represented by terms in the free (0, Act,+)-algebra
which correspond to the classic domain of BCCSP(Act) processes.

Definition 3. Given a set of actions Act, the set BCCSP(Act) of processes is
that defined by the BNF-grammar: p ::= 0 | ap | p+ q.

Example 1. 1. Given a distance d : Act × Act → D between the basic ac-
tions in Act, the basic bisimulation distance over Σ = (0, Act,+), defining
BCCSP(Act) as in Def. 3, will be defined by extending Def. 1, taking

(PD) at ≡d(a,b) bt for all a, b ∈ Act

and the set of bisimulation axioms transmuted into ≡0

(B1) x+ y ≡0 y + x (B2) x+ x ≡0 x

(B3) (x+ y) + z ≡0 x+ (y + z) (B4) z + 0 ≡0 z

For instance, let us take Act = {a, b, c} and define d(a, b) = 1, d(a, c) = 2
and d(b, c) = 1. Now we can show that ab0+bb0 ≡3 ac0+cc0, since by (PD)

b0 ≡1 c0 ⇒

ab0 ≡1 ac0 (Def. 1.5 taking a as f)

∧
bb0 ≡1 bc0 (Def. 1.5 taking b as f)

∧
bc0 ≡1 cc0 (by(PD))

 (Def. 1.4)⇒ bb0 ≡2 cc0

95

and again applying Def. 1.5 taking + as f we can conclude ab0 + bb0 ≡3

ac0 + cc0
2. The basic distance associated to any semantics for processes which can be ax-

iomatized is obtained by replacing the axiomatization for bisimulation in the
previous example by the corresponding axiomatization of the corresponding
semantics, using again the relation ≡0.
We will compare those “global” algebraic distances with those based on
games in [2]. As we have seen in [4], these game-based distances are “more
local”. They are defined taking into account only isolated computations,
while we consider the set of computations as a whole. In fact, is the use
of Σidi in Def. 1.5 which generates this global treatment. Using maxidi we
would obtain the algebraic characterization of the game-based distances.

The basic distances above are based on the idea of adding the distances
for the actions that do no match when comparing two processes, looking for
the pairings which produce the minimal disagreements. Although the algebraic
approach above only considers finite terms, following [3] we can extend it also to
infinite processes, by considering continuous metric algebras, so that even two
processes with infinitely many disagreements between them could be proved to
be at some finite distance. Following the classic approach (see e.g. [1]) we will
use weighted distances, which are introduced here by adapting the concept of
guarded recursion.

Definition 4. A (D, Σ)-weighted algebra for the collection of reducing weights
factors rwf : Σ → D is a (D, Σ)-algebra which satisfies:

6. f ∈ Σ, ar(f) = k, ai ≡di bi for all i ∈ 1..k ⇒ f(a) ≡rwf(f)∗Σidi f(b).

We will change our deduction system in a similar way and also introduce the
corresponding versions of continuous algebras. Following [3] we will consider the
particular case of acceptance trees thus getting algebraic support for a notion of
distance for the testing semantics, which is well-known to be very close to the
failures semantics.

References

1. U. Fahrenberg, A. Legay, and C. R. Thrane. The quantitative linear-time–branching-
time spectrum. In S. Chakraborty and A. Kumar, editors, FSTTCS, volume 13 of
LIPIcs, pages 103–114. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

2. Uli Fahrenberg, Claus R. Thrane, and Kim G. Larsen. Distances for weighted
transition systems: Games and properties. In Mieke Massink and Gethin Norman,
editors, QAPL, volume 57 of EPTCS, pages 134–147, 2011.

3. M. Hennessy. Algebraic theory of processes. MIT Press, 1988.
4. D. Romero-Hernández and D. Frutos-Escrig. Defining distances for all process se-

mantics. In FORTE 2012, LNCS, to appear. Springer.

Multiset Rewriting for the Verification of
Depth-Bounded Processes with Name Binding ?

Fernando Rosa-Velardo and Maŕıa Martos-Salgado ??

Sistemas Informáticos y Computación, Universidad Complutense de Madrid
E-mail: mrmartos@estumail.ucm.es, fernandorosa@sip.ucm.es

Multiset rewriting. Multiset Rewriting Systems (MSR) [3] is a specification
language for security protocols, in which facts are first-order atomic formulae and
transitions are given by means of rewriting rules with existential quantifications.
For instance, the rule

A0(k), Ann(k′)→ ∃x.(A1(k, x), N(enc(k′, 〈x, k〉)), Ann(k′))

specifies the first rule of the Needham-Schroeder protocol, in which a principal
A with key k (A0(k)) decides to talk to another principal, with a key k′ that
has been announced (Ann(k′)), for which it creates a nonce x and sends to the
network the pair 〈x, k〉 ciphered under k′. Another formalism based on multiset
rewriting is Constraint Multiset Rewriting Systems (CMRS) [4]. In CMRS facts
are first-order atomic formulae, but the terms that can appear as part of such
formulae must belong to a constraint system, and no existential quantification
is considered. For instance, the rule count(x), visit→ count(x+ 1), enter(x+ 1)
could be used to count the number of visits to a web site.

ν-MSR. In [7] we combined the features of MSR and CMRS, obtaining ν-MSR.
On the one hand, we maintain the existential quantifications in [3] to keep a
compositional approach, closer to that followed in process algebra with name
binding. On the other hand, we restrict terms in atomic formulae to be pure
names, that can only be compared with equality or inequality, unlike the arbi-
trary terms over some syntax in MSR, or terms in a constraint system in CMRS.
With this minimal set of primitives we can specify process algebra with name
binding, which allows us to obtain new decidability results for those formalisms
in a common framework.

A ν-MSR term can be of the form 0, p(a1, . . . , an), M1 +M2 or νaM , where
M , M1 and M2 are terms. We denote by M the set of ν-MSR terms. Terms
are identified up to a congruence relation ≡, the least congruence where α-
conversion of bound names is allowed, such that (M,+,0) is a commutative
monoid and the three following equations hold: νa.νb.M ≡ νb.νa.M , νa.0 ≡ 0,
and νa.(M1 +M2) ≡ νa.M1 +M2 if a /∈ fn(M2). A rule t is an expression of the
form t : X1 + . . .+Xn → νã.(Y1 + . . .+ Ym). Then, a ν-MSR system is given by
an initial term and a set of rules R. The semantics are defined by three standard

? This abstract describes the work in [7].
?? Authors partially supported by the MEC Spanish project DESAFIOS10 TIN2009-

14599-C03-01, and the CAM program PROMETIDOS S2009/TIC-1465.

97

rules, stating that rewritings can happen inside + and ν, and modulo ≡, and
the rule schema (t), that assumes σ(Var(t)) ∩ ã = ∅, as follows:

(t)
t = l→ r ∈ R σ : Var(t)→ Id

σ(l)→ σ(r)

M1 ≡M ′1 →M ′2 ≡M2

M1 →M2
(≡)

(+)
M1 →M2

M1 +M →M2 +M

M1 →M2

νa.M1 → νa.M2
(ν)

For instance, let t : p(x), q(x) → νb.p(b) be a rule in R. Then the rewriting
p(a), q(a)→ νb.p(b) can take place. Consider now the term p(b), q(b). In order to
apply the previous rule, one must necessarily consider the substitution σ given
by σ(x) = b, that does not satisfy σ(Var(t)) ∩ {b} = ∅. Therefore, we need to
first rename b in the right handside of the rule, obtaining (e.g. if we replace b by
c) νc.p(c).

Depth-boundedness. Depth-boundedness is a semantic restriction recently
introduced for the π-calculus [6]. Intuitively, a process is depth-bounded when-
ever the interdependence of names is bounded in any process reachable from
it. We have introduced this notion for ν-MSR. For instance, if we can reach
all the terms of the form νa1, . . . , νan.(p(a1, a2), p(a2, a3), . . . , p(an−1, an)) then
the ν-MSR is not depth-bounded. However, if all the reachable terms are of the
form νa.νa1.νan.(p(a, a1), . . . , p(a, an)) then the ν-MSR is depth-bounded.
Following [6], we have proved that depth-bounded ν-MSR belong to the class of
(strict) Well Structured Transition Systems (WSTS) [5] which are basically tran-
sition systems endowed with a well quasi-order for which the transition relation
is monotonic. For them, properties like termination, boundedness or coverability
are decidable.

Application to other formalisms. Then we have applied the verification
results obtained for depth-bounded ν-MSR for other process algebra like the
π-calculus (already considered in [6]), MSR [3] and the Ambient Calculus (AC) [2].
We sketch here the results obtained for AC. AC is a process algebra for the spec-
ification of concurrent systems executing in a dynamical hierarchical topology.
Its syntax is defined as follows:

Processes Actions

P,Q ::= processes π ::= capabilities
(νn)P restriction in n can enter in n
0 inactivity out n can exit n
P | Q composition open n can open n
!P replication
n[P] ambient
π.P capability action

98

The main concept is that of an ambient, a place where computations happen.
Thus, n[P] describes an ambient named n, containing a process P . There are
several operations that an ambient (actually, the processes it contains) may
perform: entering another ambient, exiting from its parent ambient, and being
opened by its parent ambient. The reduction rules managing these operations
are the following:

n[in m.P | Q] | m[R]→ m[n[P | Q] | R] (In)
m[n[out m.P | Q] | R]→ n[P | Q] | m[R] (Out)
open n.P | n[Q]→ P | Q (Open)

In [7] we encode AC inside ν-MSR and see that, with this encoding, depth-
boundedness corresponds to mobile ambients in which the interdependence of
names is bounded, and in which the height in the hierarchy of ambients is also
bounded.

We encode a process P inside an ambient called x by a multiset of ν-MSR
predicates JP Kx. We represent the ambient hierarchy using predicates of the
form amb(x, y, z), meaning that y is an ambient with name x, inside ambient z.
Moreover, we represent sequential processes by predicates as, for example, in x.P
or out x.P . Then, we define ν-MSR rules that encode the transition relation of
AC. For example, the rules managing entering or exiting an ambient are:

ok, amb(x, y, z), (in t.P)y, amb(t, u, z)→ ok, amb(x, y, u), amb(t, u, z), JP Ky

ok, amb(x, y, z), amb(t, u, y), (out x.P)u → ok, amb(x, y, z), amb(t, u, z), JP Ku

Given an ambient name n and a process P , the name convergence problem
is that of deciding whether P →∗ n[Q] | R for some Q and R. For depth-
bounded processes (even with name restriction and with the open capability)
the name convergence problem is decidable (unlike in general, even without
name restriction and without the open capability [1]). Indeed, it is enough to
decide whether νa.amb(n, a,>) can be covered from JP K>, where > is the top
ambient in the hierarchy.

References

1. Boneva, I., Talbot, J.-M. When Ambients Cannot be Opened! TCS 333(1-2):127-
169, 2005.

2. Cardelli, L., Gordon, A.D.: Mobile ambients. TCS 240(1) (2000) 177–213
3. Cervesato, I., Durgin, N.A., Lincoln, P., Mitchell, J.C., Scedrov, A.: A meta-

notation for protocol analysis. In: CSFW. (1999) 55–69
4. Delzanno, G.: An overview of MSR(C): A CLP-based framework for the symbolic

verification of parameterized concurrent systems. ENTCS 76 (2002)
5. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! TCS

256(1-2) (2001) 63–92
6. Meyer, R.: On boundedness in Depth in the pi-calculus. In IFIP TCS. Volume 273

of IFIP, Springer (2008) 477–489
7. Rosa-Velardo, F., Martos-Salgado, M.: Multiset Rewriting for the Verification of

Depth-Bounded Processes with Name Binding. Inf. Comput. 215 (2012) 68–87

Deriving architectural reconfigurations

Alejandro Sanchez1,2, Luis S. Barbosa2, and Daniel Riesco1

1 Departamento de Informática, Universidad Nacional de San Luis,
Ejécito de los Andes 950, D5700HHW San Luis, Argentina

{asanchez,driesco}@unsl.edu.ar
2 HASLab INESC TEC & Universidade do Minho,

Campus de Gualtar, 4710-057 Braga, Portugal
lsb@di.uminho.pt

Complex software systems are built by plugging together heterogenous com-
putational entities in very large, often loosely coupled, highly dynamic configu-
rations. Change being the norm, rather than the exception, dynamic reconfigu-
ration emerged as a main theme in architectural design.

Archery [5, 4] is an architectural description language that aims at addressing
reconfigurability as a first class concern. It is based on two kinds of entities: com-
ponents, the typical loci of computation, and connectors representing interaction
protocols between them. The language supports the specification of architectural
types, called patterns in this context, and their instances which form the concrete
building blocks of architectural designs. A specific language extension provides a
set of operations to (re)configure pattern instances. Another extension is envis-
aged for the specification of logic constraints that pattern instances are supposed
to fulfil.

Archery behavioural and structural semantics are given, respectively, by a
translation to mCRL2 [2] and by an encoding into bigraphical reactive systems
[3]. mCRL2 is a specification language for reactive systems which combines a
process algebra [1], for describing system’s behaviours, with higher-order ab-
stract equational data types, for handling structured data domains. Behavioural
properties can also be described in the µ-calculus. Translating the behavioural
component of Archery descriptions into mCRL2, provides access to the associated
toolset enabling simulation, visualisation, behavioural reduction and verification.
Bigraphical reactive systems (BRS) and their theory, on the other hand, were
developed to study systems in which locality and linking of computational agents
varies independently. They provide a general unifying theory in which different
calculi for concurrency and mobility can be represented. In particular, if some
conditions are met, it is possible to automatically derive from a given BRS, a
labelled transition system (LTS), in which behavioural equivalence is a congru-
ence.

This fact is explored in the present paper to represent and further analyse
architectural reconfigurations as transitions in a LTS, systematically derived
from the bigraphical encoding of an Archery specification. States in the derived
LTS stand for configurations which can be reached by applying a sequence of
Archery reconfiguration operations. Each transition s → s′ stands for a recon-
figuration process leading from a configuration s to another s′. Such a process
can be atomic, i.e. corresponding to the application of a single reconfiguration

100

operation, or structured, abstracting a whole sequence of such operations. Since,
typically, the space of possible configurations is infinite, a quotient space, up to
some notion of configuration equivalence, needs to be considered.

The possibility to derive a LTS from a given Archery specification requires
a number of conditions to be met. First, the semantics presented in [4] needs
to be refined by providing a sorting that rules out the representation of any
invalid Archery configuration. Then, the encoding in a category Bg(K,R), for
a particular signature K and set R of reaction rules, has to be restricted to a
category Bg(Σ,R), where Σ = (Θ,K, Φ) is a sorting over sorts Θ, signature K,
and formation rule Φ. We also need to ensure that the sorting defined does not
prevent the necessary underlying structure required for the derivation. This is
equivalent to proving that the forgetful functor F : Bg(Σ,R) → Bg(K,R) is
safe [3].

Once the LTS is obtained from a configuration, it can be used as any other
LTS. Thus, reconfigurations can be animated, visualised, analysed and verified.
One may even go a step further and define reconfiguration constraints as µ-
calculus formulae over the derived LTS. After translation, constraints can be
verified within the mCRL2 toolset.

For example, consider the Client-Server pattern. It prescribes configurations
arranged by instances of two element types: client and server. The main design
principle of the pattern is that clients can only connect to servers and vice-
verse. Such a principle can be expressed as a modal property indicating that an
operation connecting a client with another client cannot occur, and similarly for
servers.

References

1. J. C. M. Baeten, T. Basten, and M. A. Reniers. Process Algebra: Equational Theories
of Communicating Processes. Cambridge University Press, 2010.

2. J. F. Groote, A. Mathijssen, M. Reniers, Y. Usenko, and M. van Weerdenburg. The
formal specification language mCRL2. In Methods for Modelling Software Systems:
Dagstuhl Seminar 06351, 2007.

3. R. Milner. The space and motion of communicating agents, volume 54. Cambridge
University Press, 2009.

4. Alejandro Sanchez, Luis S. Barbosa, and Daniel Riesco. Bigraphical modelling of
architectural patterns (to appear). In Post-proceedings of the Eighth International
Symposium on Formal Aspects of Component Software, FACS 2011. Springer, 2011.

5. Alejandro Sanchez, Luis S. Barbosa, and Daniel Riesco. A language for behavioural
modelling of architectural patterns. In Proceedings of the Third Workshop on Be-
havioural Modelling, BM-FA ’11, pages 17–24, New York, NY, USA, 2011. ACM.

Verifying Parallel Recursive Programs
by Regular Approximations of Context-Free

Languages

Pierre-Yves Schobbens

Precise Research Center, University of Namur

Abstract. Given a context-free grammar, we propose families of regular
approximations of the language of this grammar based on the character-
istic LR automata. We also present two applications: generating a lexer
directly from the grammar to solve LR conflicts, and heuristically check-
ing the intersection of context-free languages, which is used to verify
parallel recursive programs.

1 Introduction

Context-free grammars, also called algebraic grammars, have widespread use
in compute science, but we focus here on two main uses: the description and
parsing of languages [3, 1], and the description and verification of the executions
of recursive programs [14, 7, 2]. Unfortunately, many problems about context-
free grammars (universality, ambiguity, language inclusion and intersection) are
undecidable, in contrast to the corresponding problems on regular expressions.
It is thus natural to look for regular approximations of context-free languages,
that can heuristically solve these problems in some practically useful instances.
Many fixed schemes are available [4, 5, 9, 8, 10, 11, 12, 13], but we need a family
of approximations whose precision can be increased incrementally. To formalise
this intuition, we introduce the notion of k-precise approximation, and show that
existing schemes are not k-precise.

Our approximations are based on the LR(k) items. It is easy to build a non-
deterministic pushdown automaton with items in its stack, that recognizes the
language of the grammar. We show that the possible contents of this stack after
reading a given word form a regular language (that we represent by an inner
automaton), and similarly after reading a viable prefix.

2 Applications

Building a lexer
Our regular over-approximation can be used to build an automaton that will

read the input ahead of the parser [1], and give it information to solve conflicts in
deterministic parsers, such as LR, LALR, LL. This effect is classically obtained

102

by manually crafting an ad-hoc lexer. We express the lexer and the parser rules
in a single grammar, and let our approximation scheme build a contextual lexer
automatically. The context conditions are then provided by the grammar itself,
and the cooperation between the parser and the lexer is automatic.

For each LR state, we need their predecessors on the stack. We can naturally
associate predecessors to each LR state by following the structure of the LR
automaton. The loops in the LR automaton give rise to loops inside the inner
automaton, and the directed acyclic graph of loop-free part give rise to a similar
dag in the inner automaton.

For each conflictual state S of the LR automaton, we group the items of S
according to their action: either shift (G→), or reduce a given production r (Gr).
The initial state of each group is then completed by adding its predecessors (as
explained above), then reductions and expansions.

The automata are then constructed using abstraction to keep them finite. We
take the product of these automata, in order to follow the possibilities in parallel.
A state of the product is final if all the components but one (corresponding to
the decision taken) are empty. The decision of the surviving automaton is then
taken by the LR parser, that proceeds until next conflict. If no decision can be
taken, the product automaton will comprise a loop on the end-of-input symbol.
The technique then fails to generate a deterministic parser. It is then possible to
either use a finer abstraction, in the hope to resolve the conflict, or to generate
a non-deterministic parser (e.g., a GLR parser [15]).

Recursive parallel program verification

A programme with recursive procedure calls can be naturally modelled as a
context-free language, presented in the form of a recursive automata, also called
“railroad diagrams’: each procedure corresponds to a non-terminal, and the flow
graph of the body of the procedure forms corresponds to the automaton [14].
If several parallel threads Pi are synchronized (e.g. by rendez-vous or global
variables), the problem is naturally modelled as an intersection of context-free
languages.We can also check properties if their complement P0 (the bad execu-
tions) is a context-free language. Each Pi can be over-approximated by a regular
language Ri, and we can check whether their intersection

⋂
iRi = I is empty.

If yes, we are guaranteed to have no bad executions; else, the intersection may
contain spurious executions due to the over-approximation. We thus focus on
some Pi and compute Pi ∩ I, that is context-free. We use the method of [6],
that is based on on-the-fly construction of the GLR automaton. Our method
similarly builds a determinized automaton on-the-fly, and they blend easily to
compute the product. The method only generates reachable elements, and the
intersection is not empty iff it generates a tuple of states, all of which are final.
If Pi ∩ I is empty, we are done. Otherwise, the algorithm can provide a specific
sentence w leading to this final tuple. We then check if w is accepted by the other
Pj . If yes, we found a counterexample; else we found a Rj needing refinement,
and we increase the precision to eliminate the spurious counterexample.

103

References

1. Manuel E. Bermudez and Karl M. Schimpf. A practical arbitrary look-ahead LR
parsing technique. In SIGPLAN Symposium on Compiler Construction, pages
136–144. ACM, 1986.

2. O. Burkart and B. Steffen. Model checking for context-free processes. In CON-
CUR’92, pages 123–137. Springer, 1992.

3. K. Culik II and R. Cohen. Lr-regular grammars–an extension of lr (k) grammars*.
Journal of Computer and System Sciences, 7(1):66–96, 1973.

4. Ömer Eğecioğlu. Strongly regular grammars and regular approximation of context-
free languages. In Proceedings of the 13th International Conference on Develop-
ments in Language Theory, DLT ’09, pages 207–220, Berlin, Heidelberg, 2009.
Springer-Verlag.

5. Edmund Grimley Evans. Approximating context-free grammars with a finite-state
calculus. In ACL ’98, pages 452–459, Stroudsburg, PA, USA, 1997. Association
for Computational Linguistics.

6. Thomas Hanneforth. A practical algorithm for intersecting weighted context-free
grammars with finite-state automata. In FSM-NLP, pages 57–64, Blois, France,
July 2011. Association for Computational Linguistics.

7. Zhenyue Long, Georgel Calin, Rupak Majumdar, and Roland Meyer. Language-
theoretic abstraction refinement. In Juan de Lara and Andrea Zisman, editors,
FASE, volume 7212 of LNCS, pages 362–376. Springer, 2012.

8. M. Mohri and M.J. Nederhof. Regular approximation of context-free grammars
through transformation. Robustness in language and speech technology, 17:153–163,
2001.

9. M. Mohri and F.C.N. Pereira. Dynamic compilation of weighted context-free
grammars. In Proceedings of the 17th international conference on Computational
linguistics-Volume 2, pages 891–897. Association for Computational Linguistics,
1998.

10. M.J. Nederhof. Context-free parsing through regular approximation. In Proceed-
ings of the International Workshop on Finite State Methods in Natural Language
Processing, pages 13–24. Association for Computational Linguistics, 1998.

11. M.J. Nederhof. Practical experiments with regular approximation of context-free
languages. Computational Linguistics, 26(1):17–44, 2000.

12. M.J. Nederhof. Regular approximation of cfls: a grammatical view. Advances in
Probabilistic and other Parsing Technologies, 16:221–241, 2000.

13. F.C.N. Pereira and R.N. Wright. Finite-state approximation of phrase structure
grammars. In Proceedings of the 29th annual meeting on Association for Com-
putational Linguistics, pages 246–255. Association for Computational Linguistics,
1991.

14. G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM Trans. Program. Lang. Syst., 22(2):416–430, March 2000.

15. M. Tomita. Generalized LR parsing. Springer, 1991.

From Bialgebraic Semantics to
Universal Simulators of Cellular Automata

Extended Abstract

Baltasar Trancón y Widemann

Computer Science and Ecological Modelling, University of Bayreuth, DE

The structural operational semantics (SOS) approach of Plotkin [4] is one of
the most popular variants of operational semantics, and has been applied prac-
tically to a wide variety of programming calculi and languages. It has gained
considerable theoretical interest after the categorization by Turi and Plotkin [6].
There, a certain well-behaved SOS rule format is shown to correspond to a
distributive law of a syntactical functor Σ over a behavioral functor B. This
view entails numerous nice mathematical properties: Both a syntactical and a
denotational model arise automatically as the initial Σ-algebra and the final
B-coalgebra, respectively. A unique bialgebra homomorphism connects the two,
giving denotational and operational semantics simultaneously: Denotational se-
mantics because a homomorphism from the initial Σ-algebra can be seen as a
syntax-directed interpretation in a semantic domain; operational semantics be-
cause a homomorphism into the final B-coalgebra can be seen as a fully abstract
specification of machine transitions. For well-behaved behaviour B, there is only
one form of bisimulation, and that is a Σ-congruence, making the semantics fully
abstract by construction.

The practical status of bialgebraic SOS is dialectic: On the one hand, it has
been noted in [1] that the semantics are directly executable, and hence yield
interpreters for embedded domain-specific languages, in a host language with
support for recursion and corecursion, such as the lazy functional programming
language Haskell. On the other hand, applied cases apparently remain largely
confined to the field of process calculi; see [2] for an overview. The paradigmatic
issue of existing applications is the compositional treatment of sequential, con-
current and/or nondeterministic process steps, in the style of classical process
algebras such as CCS and CSP, or the more recent π-calculus.

We have recently reported a rather different application of bialgebraic SOS [5]:
multi-dimensional cellular automata and their high-level application, agent-based
models. They show some potential of the approach not fully realized in process
calculus examples: The intricate spatio-temporal structure of cellular automata
decomposes neatly, with spatial configurations of states and temporal evolution
relegated orthogonally to Σ and B, respectively. The distributive law specifies
the topology and neighbourhood shapes, in the form of SOS rules for all spa-
tially composite cases, and the local transition rule of the particular cellular
automaton, in the form of the single-cell base case. The approach affords a com-
positionality not usually found in accounts of cellular automata, having the same
automata-theoretic view on individual states as on spatial composites, and en-

105

courages the definition of nontrivial topologies that do not have straightforward
mappings to classical implementations, based on arrays and index manipulation.

The compound inductive–coinductive principle entailed by the bialgebraic
approach has been used to prove the equivalence of the SOS-style semantics
to classical array-based simulation algorithms that compute convolutions of the
state matrix with a neighbourhood kernel. The bialgebra decomposition also
has interesting implications for a philosophical analysis of the modelled systems,
with the distributive law axiomatically stating an equivalence between ontic
(algebraic) and epistemic (coalgebraic) states. In particular, from the fact men-
tioned above that bisimulation is a congruence, it follows directly that no proper
emergent properties can exist in such models: the behaviour of spatial aggregates
is always a direct functional consequence of the behaviour and arrangement of
their parts. This finding is in remarkable contradiction to the prominent role of
emergence in scientific literature discussing the models.

Here, we discuss real-world aspects of the derivation of a universal simula-
tor for cellular automata, as an embedded domain-specific language in Haskell,
from the bialgebraic semantics. We describe how to implement the underlying
coupled recursion–corecursion scheme, how to abstract from concrete neighbour-
hood shapes, and how to separate the generic, topological part of the distributive
law from the specific, local transition part. We demonstrate how laziness can be
exploited in a theoretically sound way for dealing with spatially unbounded
state. We indicate how relevant practical properties of the simulator, such as
parallelism and optimization potential, can be read off the SOS rules.

We show how the simulator can be turned into a potentially massively paral-
lel Haskell program by a minuscule and straightforward change. Some measure-
ments from a first experiment on a multicore machine and the implied potential
for larger applications are discussed. We describe how the key idea underlying
the distributive law for cellular automata can be understood, and potentially
generalized to other scenarios, by analogy to the design of divide-and-conquer-
parallel algorithms. As such, the bialgebraic approach to system semantics could
potentially be understood as a canonical representation of inherent parallelism.
Finally, we comment the analogy of the parallelism as specified by bialgebraic
interpreters to methods from parallel numerical functional programming, namely
data distribution algebras [3], a formalized approach to parallel algorithmic skele-
tons which gives effectively executable specifications for divide-and-conquer so-
lutions to data-parallel problems.

References

1. Jaskelioff, M., Ghani, N., Hutton, G.: Modularity and implementation of mathe-
matical operational semantics. Electronic Notes in Theoretical Computer Science
229(5), 75–95 (2011)

2. Klin, B.: Bialgebras for structural operational semantics: an introduction. Theoret-
ical Comp.uter Science 412(38), 5043–5069 (2011)

106

3. Pepper, P., Sdholt, M.: Deriving parallel numerical algorithms using data distri-
bution algebras: Wang’s algorithm. Tech. Rep. 96-2, Technische Universitt Berlin,
Fachbereich Informatik (1996)

4. Plotkin, G.D.: A structural approach to operational semantics. Tech. Rep. DAIMI
FN-19, Computer Science, Aarhus University, Denmark (1981)

5. Trancn y Widemann, B., Hauhs, M.: Distributive-law semantics for cellular au-
tomata and agent-based models. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.) Pro-
ceedings 4th International Conference on Algebra and Coalgebra (CALCO 2011).
pp. 344–358. No. 6859 in Lecture Notes in Computer Science, Springer (2011)

6. Turi, D., Plotkin, G.D.: Towards a mathematical operational semantics. In: Pro-
ceedings 12th International Conference on Logic in Computer Science (LICS 1997).
pp. 280–291. IEEE (1997)

On the Instantiation of Parameterised
Specifications

Ionuţ Ţuţu

1 Department of Computer Science, University of Leicester, United Kingdom
2 “Simion Stoilow” Institute of Mathematics of the Romanian Academy, Romania

We present an overview of the formalization of parameterised specifications
in the abstract framework of institution theory [7]. The goal of our work is to
identify a set of distinctive features of specifications languages that have a fun-
damental role in defining and instantiating parameterised specifications. The
investigations follow the recent developments in the field of abstract structured
specifications [2], and in this way are independent not only of the underlying log-
ical system but also of the actual structuring operators. We consider both simul-
taneous and sequential instantiation of parameters, and allow sharing between
the body of the parameterised specification and the instances of the parameters,
as well as between the various parameters of a generic specification.

From the point of view of formal specifications, parameterisation plays an
essential role in increasing the expressive power of the underlying specification
formalisms that support this mechanism. When certain conditions are met by
the base specification language, the systematic use of parameterisation allows
the development of complex module expressions in which new parameterised
specifications can be obtained by partially instantiating existing generic speci-
fications, or instantiating their parameters with other generic specifications. As
it was pointed out in [6], we can gain in this way both the specification power
of richer languages and the desired properties for specification and verification
of the simpler ones.

The first part of our study is dedicated to the examination of parameterised
objects and their instantiation in categories endowed with an auxiliary structure
that is rich enough for the study of parameterisation – a distributive quasi-
inclusion system. The new concept arises as a slight generalization of the well
known notion of inclusion system [5] that allows the existence of distinct quasi-
inclusions opposite one to the other. Its main advantage is the possibility to lift
quasi-inclusions from the signatures of the underlying logical system to struc-
tured specifications. Furthermore, we require that the considered category sa-
tisfies a number of properties that are essential to parameterisation such as
the existence of free extensions [3] for a specific class of morphisms. We begin
with the analysis of the simpler case of objects that have only one parameter,
and then generalize the constructions for the more elaborated case of multiple
parameterised objects. For the later we discuss two distinct instantiation proce-
dures and identify a set of conditions that are sufficient for guaranteeing that
the possible instantiation scenarios produce isomorphic results.

Since the aforementioned properties are too restrictive for numerous cate-
gories of signatures belonging to the foundations of various specification lan-

108

guages (for example the OBJ family of languages [8, 4]), in the second part of
our study we concentrate on the basic properties of functors that would assist
the analysis of parameterisation in the framework of abstract structured spec-
ifications. In this sense, we introduce the property of strongly lifting co-cones
which, together with faithfulness, allows functors to lift both quasi-inclusion sys-
tems and co-limits. These results (applied to the structuring functor), combined
with those developed for the signatures of the base institution, allow us to fo-
cus on the examination of multiple parameterised specifications at the level of
structured institutions.

The present work extends the theory of pushout-style parameterisation [1]
in two directions. First, it imposes minimum restrictions on the instantiation of
parameters, thus allowing both sharing between the parameters, and between
the body of the parameterised specification and the instances of the parameters.
Second, it was developed within the high level context of abstract structured
specifications and in this way it is independent of both the underlying logical
system and the concrete structuring operators.

Our efforts concentrate on the study of two main instantiation procedures,
distinct not only by their inner workings but also by the situations in which
they can be employed. When both can be applied, the results of all possible
instantiations of a parameterised specification prove to be isomorphic, assuming
that a specified set of sufficient conditions hold. We investigate these conditions
for a number of base logical systems and structuring formalisms and show they
are smoothly satisfied.

References

1. Rod M. Burstall and Joseph A. Goguen. Putting theories together to make spec-
ifications. In International Joint Conferences on Artificial Intelligence, volume 2,
pages 1045–1058, 1977.

2. Răzvan Diaconescu. An axiomatic approach to structuring specifications. Theoret-
ical Computer Science, 433:20–42, 2012.

3. Răzvan Diaconescu and Ionuţ Ţuţu. On the algebra of structured specifications.
Theoretical Computer Science, 412(28):3145–3174, 2011.

4. Răzvan Diaconescu and Kokichi Futatsugi. CafeOBJ report: the language, proof
techniques, and methodologies for object-oriented algebraic specification. AMAST
series in computing. World Scientific, 1998.

5. Răzvan Diaconescu, Joseph A. Goguen, and Petros Stefaneas. Logical support for
modularisation. In Gerard Huet and Gordon Plotkin, editors, Logical Environments,
pages 83–130. Cambridge, 1993.

6. Joseph A. Goguen. Higher-order functions considered unnecessary for higher-order
programming, pages 309–351. Addison-Wesley, 1990.

7. Joseph A. Goguen and Rod M. Burstall. Institutions: Abstract model theory for
specification and programming. Journal of the ACM, 39(1):95–146, 1992.

8. Joseph A. Goguen, Timothy Winkler, José Meseguer, Kokichi Futatsugi, and Jean-
Pierre Jouannaud. Introducing OBJ. In Joseph A. Goguen and Grant Malcolm,
editors, Software engineering with OBJ: algebraic specification in action, Advances
in formal methods. Kluwer Academic, 2000.

Author Index

Aguirre, Nazareno M., 69
Asăvoae, Irina Măriuca, 91
Asăvoae, Mihail, 16, 91
Asăvoae, Irina Măriuca, 9, 12

Barbosa, Lúıs S., 75, 99
Baumeister, Hubert, 18
Bentea, Lucian, 21
Bettaz, Mohamed, 18
Bodei, Chiari, 1
Bonsangue, Marcello M., 12
Brodo, Linda, 1
Bruni, Roberto, 1, 25

Cassano, Valent́ın, 28
Codescu, Mihai, 31, 34
Corradini, Andrea, 25, 37

Danylenko, Antonina, 40
de Boer, Frank, 12
Diaconescu, Răzvan, 44
Diskin, Zinovy, 46
Durán, Francisco, 4

Eckhardt, Jonas, 48

F. Castro, Pablo, 69
Fábregas, Ignacio, 51
Fernández Camacho, Maŕıa Inés, 86
Frias, Marcelo F., 72
Frutos Escrig, David de, 51, 93

Gadducci, Fabio, 25, 54, 57
Gottmann, Susann, 37

Heckel, Reiko, 37
Hennicker, Rolf, 59
Hermann, Frank, 37
Hills, Mark, 61
Horozal, Fulya, 31, 34, 64

Ignatov, Iulia, 31

James, Phillip, 66

Knapp, Alexander, 59, 66
Kutz, Oliver, 81

Lange, Christoph, 81
Larsen, Kim G., 6

Lluch Lafuente, Alberto, 25
Lopez Pombo, Carlos G., 28, 69, 72
Lucanu, Dorel, 12
Löwe, Welf, 40

Mühlbauer, Tobias, 48
Madeira, Alexandre, 75
Maibaum, Thomas S.E., 28
Maibaum, Tom, 46
Maibaum, Tomas S.E., 69
Maouche, Mourad, 18
Marczyński, Grzegorz, 78
Martins, Manuel A., 75
Martos-Salgado, Maŕıa, 96
Meseguer, José, 48
Monreale, Giacoma Valentina, 57
Montanari, Ugo, 57
Mossakowski, Till, 34, 66, 81
Mosteghanemi, Mhamed, 18

Nachtigall, Nico, 37
Nora, Pedro, 84

Ölveczky, Peter Csaba, 21

Palomino, Miguel, 51
Pita, Isabel, 86

Rabe, Florian, 31, 34, 64, 89
Riesco, Adrián, 91
Riesco, Riesco, 99
Roggenbach, Markus, 66
Romero Hernández, David, 93
Rosa-Velardo, Fernando, 96
Rot, Jurriaan, 12

Sanchez, Alejandro, 99
Schobbens, Pierre-Yves, 101
Sojakova, Kristina, 89

Trancón y Widemann, Baltasar, 104
Ţuţu, Ionuţ, 107

Valentina Monreale, Giacoma, 54
Vandin, Andrea, 25

Wirsing, Martin, 48

Zimmermann, Wolf, 40
Zschaler, Steffen, 4

	cover
	volume
	Open Multiparty Interaction
	On the modularity and reusability of the rule-based specification of QoS properties of systems
	Quantitative Modal Transition Systems
	Systematic Design of Abstractions in K
	Bounded Model Checking of Recursive Programs with Pointers in K
	A K-Based Methodology for Modular Design of Embedded Systems
	An Object-Z Institution for Specifying Dynamic Object Behavior
	A History-Dependent Probabilistic Strategy Language for Probabilistic Rewrite Theories
	Adaptable Transition Systems
	Entailment Systems for Default Reasoning
	Representing CASL in a Proof-Theoretical Logical Framework
	Compiling Logics
	On the Concurrent Semantics of Transformation Systems with Negative Application Conditions
	Decision Algebra: Parameterized Specification of Decision Models
	A module algebra for behavioural specifications
	Query Languages are Cartesian Monads (Extended abstract)
	Statistical Model-Checking for Composite Actor Systems
	On Linear Contravariant Semantics
	Soft Constraints with Lexicographic Ordering
	On Open Semantics for Reactive Systems
	From Interface Theories to Assembly Theories Extended Abstract
	Streamlining Policy Creation in Policy Frameworks
	Representing Categories of Theories in a Proof-Theoretical Logical Framework
	Designing DSLs – A Craftsman's Approach for the Railway Domain using CASL
	Satisfiability calculi: the semantic counterpart of proof calculi in general logics
	Categorical Characterization of Structure Building Operations
	Execution modes as local states — towards a formal semantics for reconfigurable systems
	Constructions – Models of Signatures with Dependency Structure
	Semantics of the distributed ontology language: Institutes and Institutions
	Dualities for modal algebras
	Formal Specification of the Kademlia and the Kad Routing Tables in Maude
	Mechanically Verifying Logic Translations
	A Generic Program Slicing Technique based on Language Definitions
	Distances Between Processes: a Pure Algebraic Approach
	Multiset Rewriting for the Verification of Depth-Bounded Processes with Name Binding
	Deriving architectural reconfigurations
	Verifying Parallel Recursive Programs by Regular Approximations of Context-Free Languages
	From Bialgebraic Semantics to Universal Simulators of Cellular Automata
	On the Instantiation of Parameterised Specifications

