
WRLA 2008

Implementing and analyzing in Maude the
Enhanced Interior Gateway Routing Protocol ?

Adrián Riesco and Alberto Verdejo

Facultad de Informática, Universidad Complutense de Madrid, Spain

Abstract

The Enhanced Interior Gateway Routing Protocol (EIGRP) is an advanced distance-vector routing
protocol, with optimizations to minimize both the routing instability incurred after topology changes,
as well as the use of bandwidth and processing power in the router. This paper presents an executable
specification using the rewriting logic based language Maude, that allows to connect several running
instances of the protocol and on top of which concrete applications can be executed. The protocol is also
modeled in Real-Time Maude, which allows to formally analyze it in several ways.

Keywords: EIGRP, distributed applications, formal analysis, Maude, Real-Time Maude.

1 Introduction

Possibly, the most important and the most widely used computer system today is
the Internet, a worldwide, publicly accessible network of interconnected computer
networks that transmit data by packet switching using the standard Internet Pro-
tocol (IP). One of the most complex aspects of IP is routing, that is performed by
all hosts, but most importantly by inter-network routers, which typically use either
interior gateway protocols (IGPs) or external gateway protocols (EGPs) to make
forwarding decisions across IP connected networks.

The Enhanced Interior Gateway Routing Protocol (EIGRP) [2,1], one of these
IGP protocols, is an advanced distance-vector (DV) routing protocol, with opti-
mizations to minimize both the routing instability incurred after topology changes,
as well as the use of bandwidth and processing power in the router. DV protocols
require that a router periodically informs to its neighbors its knowledge about the
topology of the network. EIGRP has several advantages over other typical DV pro-
tocols such as RIP (Routing Information Protocol), IGRP (Interior Gateway Rout-
ing Protocol), and DSDV (Destination-Sequenced Distance-Vector Routing) [23].

? Research supported by MEC Spanish project DESAFIOS (TIN2006-15660-C02-01) and Comunidad de
Madrid program PROMESAS (S0505/TIC/0407).

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Riesco and Verdejo

EIGRP consumes less network resources because routing updates are sent only when
there is a change in the topology, while the other protocols use periodic updates.
Furthermore, RIP and IGRP can produce routing loops (techniques to reduce these
loops result in long convergence times), while EIGRP uses an algorithm that allows
loop-free routing and fast convergence (on the other hand, EIGRP routers must
keep more information). The other kind of IGP protocols are the link-state ones,
where the basic concept is that the updates have to be communicated to the whole
network. Although these protocols are simpler to implement and avoid loops in all
cases, we focus on EIGRP in order to minimize the bandwidth usage.

As networks increase in size and complexity, routing protocols become more so-
phisticated, and it becomes crucial to formally analyze them to ensure that impor-
tant properties hold. Rewriting logic [13,14] was proposed in the early nineties as a
unified model for concurrency in which several well-known models of concurrent and
distributed systems can be represented. Maude is a high-performance logical and
semantic framework supporting both equational and rewriting logic computations
[4]. It can be used to specify in a natural way a wide range of software models and
systems and, since (most of) the specifications are directly executable, Maude can
be used to prototype those systems. Moreover, the Maude system includes a series
of tools for formally analyzing the specifications. Since version 2.2, Maude supports
communication with external objects by means of TCP sockets, which allows the
implementation of real distributed applications. Real-Time Maude [18,16] is a nat-
ural extension of the Maude language that supports the specification and analysis
of real-time systems, including object-oriented distributed ones. It supports a wide
spectrum of formal methods, including: executable specification, symbolic simula-
tion, breadth-first search for failures of safety properties in infinite-state systems,
and linear temporal logic model checking of time-bounded LTL formulas. A formal
methodology in Maude for specifying and analyzing network systems and commu-
nication protocols, arranged as a sequence of increasingly stronger methods (formal
specification, execution of that specification, formal model-checking analysis, nar-
rowing analysis, and formal proof), was presented in [5], and successfully used for
example in [12,24,10]. In this paper we have applied the first three methods for
modeling and analyzing the EIGRP protocol. Real-Time Maude has strengthened
that analyzing power by allowing to specify sometimes crucial timing aspects. It
has been used, for example, to specify the NORM multicast protocol [11], wireless
communication protocols [19], and the AER/NCA active network protocol [15].

In this paper we first show how several Maude instances (possibly running on
different machines) can be interconnected through sockets. These instances will be
executing the EIGRP protocol, whose behavior is specified by means of succinct
rewrite rules. On top of this infrastructure (which is dynamic, where nodes can
join and leave) we can run, for example, an object-oriented application where the
configuration of objects and messages is split into several located configurations.
This is part of an ongoing project in which we are developing a methodology for im-
plementing real distributed applications in Maude. We first applied these ideas to a
distributed implementation of Mobile Maude [6], an extension of Maude that allows
mobile computations where objects can move from one configuration to another
one. However, in [6] the communication between Maude instances and the mobility

2



Riesco and Verdejo

of objects were handled by the same object. In [20], these two functionalities were
explicitly separated in the way we will present below. Later, we also showed how
algorithmic skeletons can be implemented on top of static networks that follow a
concrete topology [21]. Here those ideas are enhanced (from the point of view of the
network of Maude processes that is obtained) by allowing dynamic, reconfigurable
topologies due to the use of the EIGRP protocol. This is very interesting from a
practical point of view because it provides an application independent architecture
where messages can be sent in a transparent way. But since Maude has a precise
semantics, we can also formally analyze the protocol. To achieve this goal the time
aspects have to be made explicit. 1 We use Real-Time Maude, that allows us to
analyze the protocol in several ways (allowing, for example, to calculate the time
needed to reach some states). This is the first attempt to implement a real time
protocol in Maude and analyze it in Real-Time Maude.

In Section 2 we describe Maude’s and EIGRP’s main features. A general method-
ology for interconnecting Maude processes is presented in Section 3; it is made con-
crete in Section 3.1 with the description of process connection and in Section 4 with
the implementation of the EIGRP protocol on top of it. How to use Real-Time
Maude to model and formally analyze this protocol is shown in Section 5. Finally,
we present some conclusions and future work. For a more detailed explanation of
the topics shown in this paper, we refer the reader to the technical report [22].

2 Preliminaries

We give in this section a brief overview of the Maude system and the EIGRP
protocol.

2.1 Maude and object-oriented specifications

In Maude [4] the state of a system is formally specified as an algebraic data type by
means of an equational specification. In this kind of specification we can define new
types (by means of keyword sort(s)); subtype relations between types (subsort);
operators (op) for building values of these types; and equations (eq) that identify
terms built with these operators.

The dynamic behavior of such a distributed system is then specified by rewrite
rules of the form t −→ t′ if C, that describe the local, concurrent transitions of the
system. That is, when a part of a system matches the pattern t and satisfies the
condition C, it can be transformed into the corresponding instance of the pattern t′.

In object-oriented specifications, classes are declared with the syntax class C

| a1:S1,. . ., an:Sn, where C is the class name, ai is an attribute identifier, and Si

is the sort of the values this attribute can have. An object is represented as a term
< O : C | a1 : v1, . . ., an : vn > where O is the object’s name, belonging to
a set Oid of object identifiers, and the vi’s are the current values of its attributes.
Messages are defined by the user for each application (introduced with syntax msg).

In a concurrent object-oriented system the concurrent state, which is called a

1 In the real distributed implementation of the protocol, the time aspects are solved by using an external
clock implemented in a Java class and connected with Maude through a socket.

3



Riesco and Verdejo

configuration, has the structure of a multiset made up of objects and messages that
evolves by concurrent rewriting. The rewrite rules specify the behavior associated
with the messages. By convention, the only object attributes made explicit in a rule
are those relevant for that rule. We use Full Maude’s object-oriented notation [4];
however, the actual implementation of the distributed protocol is in Core Maude
because Full Maude does not support external objects. The complete Maude code
can be found at http://maude.sip.ucm.es/eigrp.

2.2 EIGRP

EIGRP [2,1] is a Cisco proprietary distance-vector routing protocol based on its
original IGRP. Unlike traditional distance-vector protocols such as RIP and IGRP,
EIGRP does not rely on periodic updates: routing updates are sent only when
there is a change in the network. EIGRP relies on small hello messages to establish
neighbor relationships and to detect the loss of a neighbor. The rest of the messages,
that is, the routing information and the disconnection queries and results, have a
sequence number and must be acknowledged.

Each router that implements EIGRP uses three tables to keep the information
about the net: the neighbors table stores information about the adjacent routers,
namely the cost to reach them, the time that we can wait for their hello messages,
a queue of messages waiting for acknowledgment, and the sequence numbers for
sending and receiving messages; the topology table contains, for each known desti-
nation, information about all the possible next routers to be followed to reach the
destination together with the total cost of that concrete route, and the state of that
information (active if it is being calculated and passive when it has been computed);
and the routing table points for each destination the best next router that has to
be followed in order to reach that destination.

As we have said above, routers implementing EIGRP send small hello messages
periodically. When a router receives this message, it sets a timer to expire after a
certain time interval, and each time the next hello is received, the timer is reset.
Thus, a link is discovered when the first hello message from a new router is received.
In this case, the routers interchange their routing tables and update all their tables
accordingly; the changes are communicated to the neighbors by using the Diffusing
Update ALgorithm (DUAL). When the timer of hello messages expires, the link is
declared down and DUAL is also used.

EIGRP uses DUAL [9] for all route computations. Its convergence times are
an order of magnitude smaller than those of traditional distance-vector algorithms.
DUAL is able to achieve such small convergence times by maintaining a table of
loop-free paths to every destination (as part of the topology table), in addition to
the least-cost path (the routing table). When the topology table is updated (for
example, by the discovery of a new neighbor), a message with the information about
the changes is sent to all neighbors, that will use it to update their own topology
tables, which provokes to send this information again until it remains stable, hence
the name “Diffusing” Update ALgorithm. When a link failure is detected, the
topology table allows very quick convergence if another loop-free path is available.
If a route from A to B has cost n and there is a route from A’s neighbor C to B

with cost n′ < n, then it is said that C is a feasible successor of A to reach B. The

4

http://maude.sip.ucm.es/eigrp


Riesco and Verdejo

Motivation

Distributed configurations

• Traditionally, in Maude a configuration of objects and messages is
represented as a “soup” (modulo associativity and commutativity):

< O1 : C1 | atr1 : v1 > < O3 : C3 | atr3 : v3 >

to O1 : msg1 < O4 : C4 | atr4 : v4, atr5 : v5 >

< O2 : C2 | atr2 : v2 > to O3 : msg3

• We want to represent this soup as a distributed configuration, made up of
located configurations:

< O1 : C1 | atr1 : v1 >

< O4 : C4 | atr4 : v4,

atr5 : v5 >

< O3 : C3 | atr3 : v3 >

< O2 : C2 | atr2 : v2 >

to O1 : msg1

“to O3 : msg3”

Riesco and Verdejo (UCM) Skeletons in Maude June 6, 2007 4 / 4
Figure 1. Distributed configuration

6

Application

!
to :

Election of the next hostEIGRP protocol

!
send

Basic infrastructure Message/String conversion

Figure 7: Design after the first abstraction
Figure 2. Layers for distributed applications

usage of feasible successors guarantees loop-free routes. If there is no such feasible
successor, the route is set to active in the topology table and a recomputation must
occur, during which DUAL queries its neighbors if they have a feasible successor,
who, in turn, may query their neighbors, until a new route is found or the destination
is declared unreachable. That information is transmitted back to the neighbors who
asked for it until the information reaches the router who detected the link failure.
If a new path was found, the route’s state is set to passive and it is communicated
to all neighbors by DUAL.

3 Interconnecting Maude processes

Our aim is to have a configuration of objects and messages distributed in several
Maude processes in such a way that this distribution is transparent to the communi-
cating (application) objects. For example, in Figure 1 the object O1 communicates
with the objects O4 and O3 in the same way. We achieve our goal by means of
different layers (Figure 2) built on top of the TCP sockets provided by Maude. The
first layer consists in one extra object in each process, which is in charge of using
these sockets; it connects pairs of Maude processes and interchanges strings between
them. 2 This layer offers to the upper one the functionality of transmitting messages
of the form send(O, MSG) where O is the addressee’s identifier and MSG is a term of
sort Msg. O must be the identifier of an object located in one of the neighbors.

The second layer assigns to each process another extra object controlling the
routing of messages. This layer offers to the application layer the functionality
of transmitting messages of the form to O : MSG where the addressee O can be

2 TCP sockets do not preserve boundaries, so the messages are sent through buffered sockets [4], a Maude
class that adds a special character at the end of the messages, in order to separate them once they are
received.

5



Riesco and Verdejo

anywhere because this layer is in charge of selecting the next host to be traversed
in the path to O.

We show below a possible implementation of the basic infrastructure. In Sec-
tion 4 we describe how to use it to implement the EIGRP protocol, an advanced
way of implementing the second layer.

3.1 Basic infrastructure

As said above, we use Maude sockets [4, Chapter 11] to create the basic infrastruc-
ture: each location offers its services as a server, and other locations can ask for
its services as clients. We consider that every Maude instance rewrites a (located)
configuration that has exactly one object of class Location, that is in charge of
the connections. To be able to redirect a message to the appropriate location, the
architecture must be able to obtain the location where the addressee resides. Since
each application can define its own syntax for Oids, we specify the infrastructure as
a parameterized module, that receives as part of the parameter a function getLoc
that extracts the location identifier from the object identifier. Since Maude sockets
can only transmit strings, we must translate all the messages into strings and con-
vert them back once they are received. To do it in a general way (independently of
the concrete application) we use the reflective features of Maude [4, Chapter 14],
using a (metarepresented) module with the definition of all the operators that are
going to be transmitted, that is also included in the theory.

Each location has a table with information about the locations it wants to con-
nect to. For each of them it is indicated the IP address, the port through which it
offers its services, and the time until the next connection attempt.

The infrastructure defines messages to communicate the identifier of a location
when a connection is established (new-socket), to indicate that some time has
elapsed (tick), to exchange messages between objects (send), and to broadcast
messages.

The Location class has the following attributes: the port through which the
location is going to accept clients; the state of the location, that directs the con-
nection procedure; the time that a location waits when it fails to establish the
connection with another one (connectionTimeout); the connections we want to
establish; the identifier of the location that we are currently trying to connect to;
the sockets used to reach each neighbor; the IP address of the javaServer and
the javaPort; and once the connection has been established, the javaSocket used
to exchange messages. Thus, the Location class is defined as follows:

class Location | port : Nat, state : LocationState, connectionTimeout : Nat,
connections : Connections, current : Maybe{Oid}, sockets : Sockets,
javaServer : String, javaPort : Nat, javaSocket : Maybe{Oid} .

where Connections is a partial function (specified in the predefined Maude module
MAP) from location identifiers to values of sort ConnectionField, that keep the IP
and port of the host and the time to retry the connection
sort ConnectionField .
op <_,_,_> : String Nat Nat -> ConnectionField .

and Sockets is another partial function that associates locations with their corre-

6



Riesco and Verdejo

sponding sockets.
Since Maude has no built-in features to deal with real time, we have implemented

these features in a Java class and connected it with Maude through sockets. Objects
of this Java class receive messages of the form wait(N), where N is a natural number
expressing the time in milliseconds that they must wait until they send back a tick
message. Each time a tick message is received, it is used to update the attributes
related with time and another wait message is sent.

The first thing a location tries to do is to connect to the Java server. Once the
connection has been established, the location makes a request to be notified when
one second elapses (all the timeouts will be a multiple of one second). Then the
location offers its services on port, in order to allow other locations to connect to
it. When a new connection is established, the server starts listening through the
new socket and continues accepting more clients. When it receives a new-socket
message, it updates its sockets table.

When a connection timer reaches 0 and the location is not trying to connect with
another one, it tries to establish a new connection, updating the current attribute
and the timer.
rl [be-client] :

< L : Location | state : waiting-connections, connectionTimeout : N,
connections : (L’ |-> < IP, PORT, 0 >, MLC), current : null >

=> < L : Location | connections : (L’ |-> < IP, PORT, N >, MLC), current : L’ >
CreateClientTcpSocket(socketManager, L, IP, PORT) .

If the connection is successful, the client sends a new-socket message to the
server and updates its attributes. If the connection fails, the location just sets
current to null and another one will be inspected. Finally, when the connections
table becomes empty, the location reaches the active state.

The send messages are redirected through the appropriate socket, first convert-
ing the message into a string.

msg send : Oid Msg -> Msg .

crl [send] :
send(O, MSG) < L : Location | sockets : MLO >

=> < L : Location | > Send(MLO[getLoc(O)], L, msg2string(MSG))
if MLO[getLoc(O)] =/= undefined .

where Send is the message provided by the buffered sockets to transmit complete
strings. The broadcast service sends a message to all the locations connected
through sockets by putting all the messages with the corresponding addressee into
the configuration. Finally, when a message is received its data is transformed from
string to message and put into the configuration.

4 EIGRP in Maude

We implement EIGRP on top of the previous infrastructure. We have formalized
the informal description given in [2], only simplifying the messages format. As far
as we know, this is the first formalization of this protocol.

We model EIGRP routers as objects of the Maude class Router which has the
following attributes:

7



Riesco and Verdejo

• The customizable timeouts of the protocol: the router sends a new hello message
to its neighbors every helloInterval seconds; the time that a router waits for
a hello message before it decides that the connection with the neighbor is bro-
ken is neighborTimeout (this time is usually three times the helloInterval);
the time a router waits before it resends a message whose acknowledgment has
not been received is kept in ackTimeout; when a dead query is broadcasted,
deadQueryTimeout is used to decide if the consulted neighbors are stuck-in-
active [2].

• The clock which keeps the remaining time to broadcast a hello message.
• The neighbors table, that is defined as a partial function (named Neighborhood)

from router identifiers (the neighbors) to NeighborField, that keeps the cost to
reach the neighbor, the time to wait for its next hello message, a list of message
and time pairs (the messages waiting for acknowledgment), the next sequence
number to be used with this neighbor, and the next sequence number that must
be accepted.
sort NeighborField .
op <_,_,_,_,_> : Float Nat List{MsgPair} Nat Nat -> NeighborField .

• The topology table, which is specified as a partial function (named Topology)
assigning to each router identifier (the destination) a pair with all the possible
next routers to reach there and the state of the route. The possible routes are
represented by a set of RouteInformation, that contains the next “hop” to be
used to reach the destination, the cost of the path from there, and the total cost
of the route.
sorts RouteInformation StateTT TopologyField .
op <_,_,_> : Oid Float Float -> RouteInformation .
ops active passive unreachable : -> StateTT .
op pair : Set{RouteInformation} StateTT -> TopologyField .

• The routing table, which is defined as a partial function (named Routing) from
router identifiers (the destinations) to RoutingField, that keeps the router to be
used and the path cost.
sort RoutingField .
op <_,_> : Oid Float -> RoutingField .

• The deadQueries attribute, which keeps the information about the broadcasting
of dead messages with another partial function, from router identifiers to values of
sort DeadQuery, that contains information about who made the request (if any),
the neighbors that must respond to the message, the time to wait for them, and
the current best route received from the neighbors, that will be maybe initially:

sort DeadQuery .
op <_,_,_,_> : Set{Oid} Set{Oid} Nat Maybe{RoutingField} -> DeadQuery .

The class Router is defined as follows:
class Router | helloInterval : Nat, neighborTimeout : Nat, ackTimeout : Nat,

deadQueryTimeout : Nat, clock : Nat, neighbors : Neighborhood,
topology : Topology, routing : Routing, deadQueries : Map{Oid, DeadQuery} .

We define messages to communicate the cost of the path between neighbors, 3

3 This cost is kept initially by one of the sides of the socket, and must be calculated by the user. This is

8



Riesco and Verdejo

to send updates of the routing table, to query another router about a disconnection,
and to answer this query. All these messages have a sequence number and require
an acknowledgment. In addition to them we have the hello and ack messages, that
do not have a sequence number and do not need acknowledgment. For example,
the hello message communicates the name of the router that sent it, and the
dead message indicates the identifier of the router that was connected through the
broken connection, who sent the message, the cost of the broken connection, and
the sequence number.
msg hello : Oid -> Msg .
msg dead : Oid Oid Float Nat -> Msg .

We give here a flavor of the rules that define EIGRP in Maude by presenting
how hello messages are sent and received and by giving an overview of how DUAL
works when a link fails; for a more detailed explanation of the whole protocol and
the complete set of Maude rules we refer to [22].

When a router’s clock reaches 0, a new hello message is broadcasted.
rl [timeout] :

< R : Router | clock : 0, helloInterval : N >
=> < R : Router | clock : N >

broadcast(hello(R)) .

When a router R receives a hello(R’) message that is not the first one from the
router R’ (that is, R has it in its neighbors table), it resets the neighbor timer.

rl [hello] :
hello(R’)
< R : Router | neighbors : (R’ |-> < F, N, LMP, SEQ, SEQ’ >, NG),

neighborTimeout : N’ >
=> < R : Router | neighbors : (R’ |-> < F, N’, LMP, SEQ, SEQ’ >, NG) > .

If a router does not receive hello messages from a neighbor for a certain period,
it considers that the connection has been broken and it tries to find a new path
to get it. If the router has a feasible successor, it updates its routing table and
broadcasts a message with it. However, if this feasible successor does not exist
(getSuccessor returns empty), the router sets to active the route to the neighbor
whose connection has failed in order to indicate that it is recalculating this path,
and sends a dead message to its neighbors in order to obtain the new route. Notice
that the new neighbors table is calculated at the same time that the messages are
sent by means of the broadcastDead function, allowing to update the sequence
numbers and the queue of messages waiting for acknowledgment. The router keeps
track of the dead messages sent by means of the updateQueries function.

crl [dead-without-successor] :
< R : Router | neighbors : (R’ |-> < F, 0, LMP, SEQ, SEQ’ >, NG),

topology : TP, routing : (R’ |-> < R’’, F’ >, RT),
ackTimeout : N, deadQueries : MLD, deadQueryTimeout : DQT >

=> < R : Router | neighbors : NG’, topology : TP’, deadQueries : MLD’ >
MSGS

if getSuccessor(R’, F’, TP) == empty /\
TP’ := setState(R’, delete(R’, TP), active) /\
< NG’, MSGS > := broadcastDead(R’, R, F’, NG, N) /\
MLD’ := updateQueries(delete(R’, MLD), R’, NG, DQT) .

part of the setup of an EIGRP router [2].

9



Riesco and Verdejo

If a router R’’ is queried by R’ about the route to R, R’’ is not recalculating
this route (isPassive? is true), it has no feasible successor, and it has neighbors
(different from R’, that is, NG =/= empty), then it re-sends the message. Note that
the sequence number SEQ’ in the message and in the neighbors table is the same,
that an ack is sent, and that the state of R in the topology table is set to active.

crl [dead-msg-without-successor] :
dead(R, R’, F, SEQ’)
< R’’ : Router | neighbors : (R’ |-> < F’, N, LMP, SEQ, SEQ’ >, NG),

topology : TP, routing : RT, ackTimeout : N’,
deadQueries : MLD, deadQueryTimeout : DQT >

=> < R’’ : Router | neighbors : (R’ |-> < F’, N, LMP, SEQ, s(SEQ’) >, NG’),
topology : setState(R, TP, active), deadQueries : MLD’ >

MSGS
send(R’,ack(R’’))

if isPassive?(R, TP) /\
getSuccessor(R, R’, F, TP, RT) == empty /\
NG =/= empty /\
< NG’, MSGS > := broadcastDead(R, R’’, F, NG, N’) /\
MLD’ := updateQueries(MLD, R, R’, NG, DQT) .

Eventually, the routers will find a successor or return that the destination is
unreachable, sending a response that will be used by the receiver to update its dead
queries table. In the successful case, when the topology table contains a successor,
the router sends the entry of the routing table referring to this path.
crl [dead-msg-with-successor] :

dead(R, R’, F, SEQ’)
< R’’ : Router | neighbors : (R’ |-> < F’, N, LMP, SEQ, SEQ’ >, NG),

topology : TP, routing : RT, ackTimeout : N’ >
=> < R’’ : Router | neighbors : (R’ |-> < F’, N, LMP msg-pair(MSG, N’),

s(SEQ), s(SEQ’) >, NG) >
MSG
send(R’, ack(R’’))

if isPassive?(R, TP) /\
RT’ := getSuccessor(R, R’, F, TP, RT) /\ RT’ =/= empty /\
MSG := send(R’, new-route(R, R’’, RT’, SEQ)) .

Once all the neighbors have replied (the second component of the DeadQuery
is empty), the intermediate routers send the result to the router that requested it.
When the replies reach the initial router (with the first component of DeadQuery
also empty), it updates its topology and routing tables (by means of the functions
new-route-topology and updateRT), communicating the latter to its neighbors
with the broadcastRouting function.

crl [initial-solved] :
< R : Router | deadQueries : (R’ |-> < empty, empty, N, < R’’, F > >, MLD),

neighbors : NG, topology : TP, routing : RT, ackTimeout : N’ >
=> < R : Router | deadQueries : MLD, neighbors : NG’, topology : TP’,

routing : RT’ >
MSGS

if < F’, N’’, LMP, SEQ, SEQ’ > := NG[R’’] /\
TP’ := new-route-topology(R’ |-> < R’’, F >, TP, F’) /\
RT’ := updateRT(TP’, RT) /\
< NG’, MSGS > := broadcastRouting(R, NG, RT’, N’) .

Since this protocol implements the intermediate layer in Figure 2, it must handle
messages of the form to O : MSG coming from the application layer. We show below

10



Riesco and Verdejo

how the routing table is used to redirect these messages. The location where the
addressee resides is extracted with the getLoc function. Since router identifiers are
of the form r(L) (with L the location where the destination router resides), the
router uses r(getLoc(O)) to look in the routing table RT for the next “hop” in the
path to reach the destination, and use it to redirect the message.
crl [send] :

to O : TC
< R : Router | routing : RT >

=> < R : Router | >
send(R’, to O : TC)

if < R’, F > := RT[r(getLoc(O))] .

5 Analyzing the EIGRP

This section shows how to analyze the distributed system introduced in the previ-
ous section. In order to use the analysis tools provided by Maude and Real-Time
Maude, the state of the distributed system must be represented as a single term,
making explicit the temporal behavior. There are several ways of representing the
distributed system, varying the abstraction level. We have decided to abstract as
less as possible, making explicit the process boundaries and the links between them.
In this analysis all the code from the EIGRP module is reused.

5.1 Representing time

We use Real-Time Maude to specify our timed system. It declares modules defining
the natural numbers as the time values of sort Time, with operations like plus, <=,
monus, and a supersort TimeInf, which in addition contains the constant INF repre-
senting∞ [16]. To ensure that time advances uniformly in all the parts of a state, a
new sort GlobalSystem is used, with constructor {_} : System -> GlobalSystem.

In [18], some techniques for specifying object-oriented systems in Real-Time
Maude, that have proved useful in large case studies [11,19,17], are presented. Here
we follow those techniques that are briefly described in the following. An object-
oriented system is represented as a term of sort Configuration, and since it has a
rich structure, it is useful to have an explicit operation delta, that defines the effect
of time elapse on each object and message in a configuration. An operation mte
giving the maximum time elapse permissible to ensure timeliness of time-critical
actions, and defined separately for each object and message, is also useful. Then,
time elapse is modeled by the tick rule
crl [tick] :

{ SYSTEM }
=> { delta(SYSTEM, T) } in time T
if T <= mte(SYSTEM) [nonexec] .

Real-Time Maude deals with in principle non-executable tick rules by offering
a choice of different “time sampling” strategies, so that instead of covering the
whole time domain, only some moments are visited. We have selected the sampling
strategy that advances time by the maximal possible amount. This strategy should
only be used when the tick rules have the form shown above and the operation mte
never returns ∞ [18].

11



Riesco and Verdejo

For example, in a router object, the neighbors table keeps track of the remaining
time for the hello messages timer to expire and the time to re-send the messages
waiting for an acknowledgment; the deadQueries table keeps track of the time to
wait for the neighbors’ responses; the clock keeps the remaining time to broadcast
a hello message. Thus, all these values have to be taken into account when defining
delta and mte. Notice that auxiliary functions for those attributes with complex
values are used; for illustration’s sake we show below the Neighborhood case.

eq mte(< R : Router | neighbors : NG, deadQueries : MLD, clock : T >) =
min(T, min(mte(NG), mte(MLD))) .

eq delta(< R : Router | neighbors : NG, deadQueries : MLD, clock : T >, T’) =
< R : Router | neighbors : delta(NG, T’),

deadQueries : delta(MLD, T’), clock : T monus T’ > .

op mte : Neighborhood -> TimeInf .
eq mte(empty) = INF .
eq mte((R |-> < F, T, DML, N, N >, NG)) = min(mte(NG), min(T, mte(DML))) .

op delta : Neighborhood Time -> Neighborhood .
eq delta(empty, T) = empty .
eq delta((R |-> < F, T, DML, N, N >, NG), T) =

R |-> < F, T monus T, delta(DML, T), N, N >, delta(NG, T) .

5.2 Representing distribution

Now, we show how to represent our distributed system in a single term. We have
implemented a module that mimics the behavior of Maude sockets. We use a class
Process with attributes conf, to keep the configuration of each Maude process,
and connected to keep the identifier of other processes connected with it. We
make explicit the connections among processes by using a class Link that keeps
information about the two sides of the link, the delay of the link, the lists of messages
between both sides, and the number of messages that it will transmit (that will be
used to simulate errors in the connections). To simulate the delay in the transmission
of messages we define pairs of messages and time. The time of each pair refers to
the time that remains for the message to be sent. The links extract messages from
one side and push them into the corresponding list, creating a pair dl(MSG, T)
with the delay T of the connection. We also define lists of pairs and their mte and
delta functions.
eq mte(nil) = INF .
eq mte(dl(MSG, T) DML) = min(T, mte(DML)) .
eq delta(nil, T) = nil .
eq delta(dl(MSG, T) DML, T’) = dl(MSG, T monus T’) delta(DML, T’) .

Once the delay of a message reaches 0, it can be inserted in the destination
configuration. Notice that only the links with a number of numMessages greater
than 0 transmit the messages. When this attribute reaches 0 we consider that the
connection has failed, thus simulating disconnections.
rl [receive] :

< O : Process | conf : CONF >
< LINK : Link | sideA : O, listB : dl(MSG, 0) DML, numMessages : s(N) >

=> < O : Process | conf : (CONF MSG) >
< LINK : Link | listB : DML, numMessages : N > .

12



Riesco and Verdejo

The delta function for the links updates the time values in the messages,
whereas the mte function is slightly more difficult. While the link is able to transmit
new messages, the mte is defined as the minimum of the values from the delayed
messages lists. But once the link is “broken” its value is infinite, because the mes-
sages cannot be transmitted anymore.
eq mte(< LINK : Link | listA : DML, listB : DML’, numMessages : s(N) >) =

min(mte(DML), mte(DML’)) .
eq mte(< LINK : Link | listA : DML, listB : DML’, numMessages : 0 >) = INF .

Notice that the representation of the system in a single term does not affect the
router’s definition and behavior.

5.3 Formal analysis

The prototypes specified with Real-Time Maude can be executed by using the timed
rewrite and timed fair rewrite commands, obtaining one behavior of the system
starting with a given initial state. Real-Time Maude also allows to check how much
time some actions could take. It provides two commands: find earliest looks for
the shortest time interval to reach a certain state, while find latest looks for the
longest time interval to reach a state for the first time.

For example, we can calculate how much time elapses since a connection is broken
and until all the routes are passive again. Starting with an initial configuration,
we first look for the time when the disconnection is detected. We define a function
connectionActive that checks if there is a route marked as active in the topology
table. This function traverses the configuration looking for a router with an active
route.

Now we use the command find earliest to obtain the configuration where the
first disconnection occurs.
Maude> (find earliest initial =>* S:GlobalSystem

such that connectionActive(S:GlobalSystem) with no time limit .)
Result: GS1 in time 558

where initial is a configuration with eight routers where some links will break and
DUAL will be applied. The concrete GS1 obtained in the output has been omitted.
We use this intermediate state to find the time until the routes are passive again.
Maude> (find latest GS1 =>* S:GlobalSystem

such that not connectionActive(S:GlobalSystem) with no time limit .)
Result: GS2 in time 18

That is, in this network a successor is found in at most 18 time units (1.8 seconds).
Another method to formally analyze finite-state concurrent systems is model

checking [3]. It has several important advantages, the most important is that the
procedure is completely automatic. The main disadvantage is the state space ex-
plosion, that can occur if the system being checked has many components that can
make transitions in parallel. A host of techniques to tame this problem has been
developed, which could be collectively described as state space reduction techniques.
We have used a reduction technique based on the idea of invisible transitions [8],
that generalize a similar notion in partial order reduction techniques. By using
this technique we can select a set of rewriting rules R that fulfill some executabil-

13



Riesco and Verdejo

ity requirements (such as termination, confluence, and coherence [4]) as well as an
application-dependent requirement called P -invisibility, and convert them into equa-
tions, thus reducing the number of states. To fulfill the P -invisibility requirement
we must assure that the application of rules in R does not change the satisfaction
of the properties P being analyzed. In our case, we cannot transform the rules that
change the value of the routing table, because the properties defined in the following
sections depend on it. For those properties, the rest of rules can be safely converted
into equations.

Maude’s model checker [7] allows us to prove linear temporal logic properties
of specifications when the set of states reachable from an initial state is finite.
To use the model checker we just need to make explicit two things: the intended
sort of states (GlobalSystem here), and the relevant state predicates, that is, the
relevant LTL atomic propositions. The latter are defined by means of equations
that specify when a state S satisfies a property P . Real-Time Maude extends
Maude’s model checker to provide time-bounded model checking as well as untimed
model checking. Adding a time bound to consider only behaviors up to that bound
restricts a potentially infinite set of reachable states to a finite set which can be
model checked.

Sometimes all the power of model checking is not needed. Another of Maude’s
analysis tools is the search command, that allows to explore (following a breadth-
first search strategy) the reachable states in different ways. By using the search
command we check invariants [4, Chapter 12]. If an invariant holds, then we know
that something “bad” can never happen, namely, the negation ¬I of the invariant
is impossible. Thus, if the command
search init =>* S:GlobalSystem such that not I(S:GlobalSystem) .

has no solution, then I holds. Real-Time Maude takes advantage of Maude’s search
capabilities to provide timed and untimed search commands which can analyze all
behaviors from an initial state, relative to the chosen time sampling strategy, by
searching for certain state.

5.3.1 Loop-free routing
One of the main features of EIGRP is that it provides loop-free routes; we show here
how this property can be checked. In order to define this property we use a function
that calculates the path between two routers by traversing the path defined by the
routing tables, checking that there are no repeated routers. This function returns
a pair with the updated table of paths and a Boolean indicating if the paths are
loop-free.
sort LFPair .
op lfp : Map{LocPair, LocList} Bool -> LFPair .
op calculatePath : Loc Loc Configuration Map{LocPair, LocList} -> LFPair .

We can define now the loop-free property for global systems. It traverses the
system looking for all possible routes and checks if they are loop-free by using the
function calculatePath.

op loop-free : GlobalSystem -> Bool .

eq loop-free({ C }) = loop-free(C, initialTable(C)) .

14



Riesco and Verdejo

ceq loop-free(C, ([L, L’] |-> nil, MLL)) = if B then loop-free(C, MLL’)
else false fi

if lfp(MLL’, B) := calculatePath(L, L’, C, ([L, L’] |-> nil, MLL)) .
eq loop-free(C, MLL) = true [owise] .

where initialTable computes all the possible pairs of locations, associating to
each pair the empty list of locations that indicates that the corresponding route
has not been calculated yet. As long as any of these pairs have still associated the
nil list, it calculates the corresponding path and, if this is loop-free, it continues
checking the other pairs.

We use now the tsearch command to check that this property is fulfilled by all
the reachable states in a certain time by checking that there is no state that satisfies
the negation of loop-free, that is, this property is an invariant of the system.
Maude> (tsearch initial =>* S:GlobalSystem s.t. not loop-free(S:GlobalSystem)

in time < 100 .)
No solution

where initial is a configuration with eight routers, where one connection fails after
transmitting 25 messages. One side of the connection finds a feasible successor, while
the other must query its neighbors for a new route (that is, DUAL is applied). Of
these neighbors, one finds a feasible successor, another answers that the destination
is unreachable, and a third one applies DUAL itself, checking in this way all the
possible behaviors of the algorithm. No undesirable state was found by the search,
so the property is fulfilled by all the reachable states.

5.3.2 Best path routing
We can also check that this protocol keeps in each routing table the best path to
each router. Notice that this property is not an invariant, because at the beginning
and each time a connection fails several routes must be recalculated, so there are
intermediate states where the property is not satisfied. We use Dijkstra’s algorithm
to calculate the best paths from each router to all others, and then we compare the
results with each routing table. We define the property best-path, that will check
that all the routers have the same routing table as the one obtained with Dijkstra’s
algorithm.
op best-path : -> Prop [ctor] .
eq {C} |= best-path = compare(C, getNames(C)) .

where compare traverses all the routers checking that each table and the result from
the algorithm are equivalent, that is, if the algorithm returns that there is a path
with cost F between two locations, the routing table must indicate the same for the
corresponding routers.

Now we can check properties in linear temporal logic such as it is always the
case that eventually best-path holds.
Maude> (mc initial |=t [] <> best-path in time < 10000 .)
Result Bool : true

Once the command is executed, Maude returns that the property holds.

15



Riesco and Verdejo

6 Conclusions

We have improved earlier distributed architectures presented in [21] by allowing
dynamic addition and deletion of hosts. Other protocols can also be implemented
using the same techniques. Concrete Maude applications can be executed on top of
this enriched infrastructure, where the distribution of the configuration of objects
and messages is transparent. For example, Mobile Maude [6] or the algorithmic
skeletons [21] can be executed on top of this new architecture without changes. Al-
though having the implementation of the architecture and the concrete application
in the same language facilitates its connection, we plan to study how the implemen-
tation of the protocol in other languages such as C and its connection with Maude
improves the overall performance.

We have also studied new uses for Maude sockets. We have connected each
Maude process to a Java object that allows Maude to notice how time elapses. This
Java class has been implemented in a general way, so that the same technique can
be used to take advantage of other Java features from Maude.

This specification can be represented in Real-Time Maude, that offers a way to
formally analyze the protocol. To obtain the timed specification most of the code
is reused from the distributed version. The analyses rely on the search (and the
timed version tsearch) command, that allows to check that something “bad” never
happens, and timed linear temporal logic model checking, that examines if a certain
LTL formula is fulfilled by the specification.

Finally, although we have minimized the number and size of the messages by se-
lecting EIGRP among several other protocols, we have noticed that the performance
of these distributed applications is negatively influenced by the fact that messages
to be communicated need to be translated into strings to be transmitted and back
again to messages when received. Moreover, the generality we obtain by using the
reflective capabilities of Maude in order to discharge the user from giving concrete
translation functions for each operator worsens this performance. The existence in
Maude of a send operator at the socket level to transmit general terms could solve
this problem.

Acknowledgments We thank Javier Setoain for introducing us to the IP proto-
cols world and the anonymous referees and Narciso Mart́ı-Oliet for their suggestions
to improve the paper.

References

[1] R. Albrightson, J. J. Garcia-Luna-Aceves, and J. Boyle. EIGRP – a fast routing protocol based on
distance vectors. In Proceedings of Networld/Interop 94, 1994.

[2] Cisco. Enhanced interior gateway routing protocol. White paper, 2005. http://www.cisco.com/warp/
public/103/eigrp-toc.html.

[3] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.

[4] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Talcott. All About
Maude: A High-Performance Logical Framework, volume 4350 of Lecture Notes in Computer Science.
Springer, 2007.

[5] G. Denker, J. Meseguer, and C. Talcott. Formal specification and analysis of active networks
and communication protocols: The Maude experience. In Proc. DARPA Information Survivability
Conference and Exposition DICEX 2000, Vol. 1, Hilton Head, South Carolina, January 2000, pages
251–265. IEEE, 2000.

16

http://www.cisco.com/warp/public/103/eigrp-toc.html
http://www.cisco.com/warp/public/103/eigrp-toc.html


Riesco and Verdejo

[6] F. Durán, A. Riesco, and A. Verdejo. A distributed implementation of Mobile Maude. In G. Denker and
C. Talcott, editors, Proceedings Sixth International Workshop on Rewriting Logic and its Applications,
WRLA 2006, volume 176 of Electronic Notes in Theoretical Computer Science, pages 113–131. Elsevier,
2007.

[7] S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL model checker. In F. Gadducci
and U. Montanari, editors, Proceedings Fourth International Workshop on Rewriting Logic and its
Applications, WRLA 2002, Pisa, Italy, September 19–21, 2002, volume 71 of Electronic Notes in
Theoretical Computer Science, pages 115–141. Elsevier, 2002.

[8] A. Farzan and J. Meseguer. State space reduction of rewrite theories using invisible transitions. In
M. Johnson and V. Vene, editors, Algebraic Methodology and Software Technology, 11th International
Conference, AMAST 2006, Kuressaare, Estonia, July 5-8, 2006, Proceedings, volume 4019 of Lecture
Notes for Computer Science, pages 142–157. Springer, 2006.

[9] J. J. Garcia-Lunes-Aceves. Loop-free routing using diffusing computations. IEEE/ACM Transactions
on Networking, 1(1):130–141, 1993.

[10] S. Gutierrez-Nolasco, N. Venkatasubramanian, M.-O. Stehr, and C. Talcott. Exploring adaptability of
secure group communication using formal prototyping techniques. In Proceedings Third Workshop on
Adaptive and Reflective Middleware (RM2004), pages 232–237, Toronto, Ontario, Canada, October 19,
2004. ACM Press.

[11] E. Lien. Formal modeling and analysis of the NORM multicast protocol in Real-Time Maude. Master’s
thesis, Department of Linguistics, University of Oslo, April 2004. http://wo.uio.no/as/WebObjects/
theses.woa/wo/0.3.9.

[12] I. A. Mason and C. L. Talcott. Simple network protocol simulation within Maude. In K. Futatsugi,
editor, Proceedings Third International Workshop on Rewriting Logic and its Applications, WRLA
2000, Kanazawa, Japan, September 18–20, 2000, volume 36 of Electronic Notes in Theoretical
Computer Science, pages 277–294. Elsevier, 2000.

[13] J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical Computer
Science, 96(1):73–155, 1992.

[14] J. Meseguer. Rewriting logic and Maude: A wide-spectrum semantic framework for object-based
distributed systems. In S. F. Smith and C. L. Talcott, editors, Proceedings IFIP Conference on
Formal Methods for Open Object-Based Distributed Systems IV, FMOODS 2000, September 6–8, 2000,
Stanford, California, USA, pages 89–117. Kluwer Academic Publishers, 2000.

[15] P. Ölveczky, J. Meseguer, and C. Talcott. Specification and analysis of the AER/NCA active network
protocol suite in Real-Time Maude. Formal Methods in System Design, 29:253–293, 2006.

[16] P. C. Ölveczky. Real-Time Maude 2.3 Manual, 2007. http://heim.ifi.uio.no/~peterol/
RealTimeMaude.

[17] P. C. Ölveczky and M. Caccamo. Formal simulation and analysis of the CASH scheduling algorithm in
real-time maude. In L. Baresi and R. Heckel, editors, Fundamental Approaches to Software Engineering,
9th International Conference, FASE 2006, volume 3922 of Lecture Notes in Computer Science, pages
357–372. Springer, 2006.

[18] P. C. Ölveczky and J. Meseguer. Semantics and pragmatics of Real-Time Maude. Higher-Order and
Symbolic Computation, 20:161–196, 2007.

[19] P. C. Ölveczky and S. Thorvaldsen. Formal modeling and analysis of wireless sensor network algorithms
in Real-Time Maude. In 20th International Parallel and Distributed Processing Symposium, IPDPS
2006, Rhodes Island, Greece, April 2006. IEEE Computer Society Press, 2006.

[20] A. Riesco. Distributed and mobile applications in Maude. Master’s thesis, Facultad de Informática,
Universidad Complutense de Madrid, 2007.

[21] A. Riesco and A. Verdejo. Distributed applications implemented in Maude with parameterized
skeletons. In M. Bonsangue and E. Johnsen, editors, Formal Methods for Open Object-Based Distributed
Systems: 9th IFIP WG 6.1 International Conference, FMOODS 2007, Paphos, Cyprus, June 5-8, 2007,
Proceedings, volume 4468 of Lecture Notes for Computer Science, pages 91–106. Springer, 2007.

[22] A. Riesco and A. Verdejo. The EIGRP protocol in Maude. Technical Report SIC-3-07, Dpto. Sistemas
Informáticos y Computación, Universidad Complutense de Madrid, April 2007. http://maude.sip.
ucm.es/eigrp.

[23] A. S. Tanenbaum. Computer Networks. Prentice-Hall, 2002.

[24] A. Verdejo, I. Pita, and N. Mart́ı-Oliet. Specification and verification of the tree identify protocol of
IEEE 1394 in rewriting logic. Formal Aspects of Computing, 14(3):228–246, 2003.

17

http://wo.uio.no/as/WebObjects/theses.woa/wo/0.3.9
http://wo.uio.no/as/WebObjects/theses.woa/wo/0.3.9
http://heim.ifi.uio.no/~peterol/RealTimeMaude
http://heim.ifi.uio.no/~peterol/RealTimeMaude
http://maude.sip.ucm.es/eigrp
http://maude.sip.ucm.es/eigrp

	Introduction
	Preliminaries
	Maude and object-oriented specifications
	EIGRP

	Interconnecting Maude processes
	Basic infrastructure

	EIGRP in Maude
	Analyzing the EIGRP
	Representing time
	Representing distribution
	Formal analysis

	Conclusions
	References

