
CafeInMaude: A CafeOBJ Interpreter in Maude

Adrián Riesco1(B), Kazuhiro Ogata2,3, and Kokichi Futatsugi3

1 Facultad de Informática, Universidad Complutense de Madrid, Madrid, Spain
ariesco@fdi.ucm.es

2 School of Information Science, JAIST, Nomi, Japan
3 Research Center for Software Verification, JAIST, Nomi, Japan

{ogata,futatsugi}@jaist.ac.jp

Abstract. We present in this paper CafeInMaude, an interpreter for
non-behavioral CafeOBJ specifications. The interpreter has been imple-
mented in Maude. This alternative implementation combines CafeOBJ
specification and theorem proving capabilities with efficient and exten-
sible Maude commands and tools. Hence, it makes it possible to use
both CafeOBJ proof scores and reduction commands and Maude model
checking, narrowing, or theorem proving capabilities with the same tool.

Keywords: CafeOBJ · Full maude · Model checking · Theorem proving

1 Introduction

CafeOBJ [4] is a language for writing formal specifications for a wide variety of
software and/or hardware systems, and verifying properties of them. CafeOBJ
implements equational logic by rewriting and can be used as a powerful interac-
tive theorem proving system. Specifiers can write proof scores [5] also in CafeOBJ
and perform proofs by executing these proof scores. CafeOBJ, implemented in
Lisp, provides several features to ease the specification of systems. These features
include a flexible mix-fix syntax, powerful and clear typing system with ordered
sorts, parameterized modules and views for instantiating the parameters, mod-
ule expressions, operators for defining terms, equations for defining the (possibly
conditional) equalities between terms, and (possibly conditional) transitions for
specifying how a system evolves, among others.

CafeOBJ and Maude [1] are sister languages of the OBJ family. Maude mod-
ules are executable rewriting logic specifications and its C++ implementation
shares many features with CafeOBJ. However, while the CafeOBJ community
has focused on proofs via proof scores, the Maude community has focused on (i)
verification of properties via model checking and exhaustive search, efficiently
implemented in Maude, and (ii) tools implemented in Maude itself, thanks to the
reflective capabilities of Maude [1], which allows users to extend Maude with new

Research partially supported by Japanese project Kakenhi 23220002, MICINN Span-
ish project StrongSoft (TIN2012-39391-C04-04), Comunidad de Madrid project N-
Greens Software-CM (S2013/ICE-2731), and UCM-Santander grant GR3/14.

c© Springer-Verlag Berlin Heidelberg 2016
P. Stevens and A. W ↪asowski (Eds.): FASE 2016, LNCS 9633, pp. 377–380, 2016.
DOI: 10.1007/978-3-662-49665-7 22



378 A. Riesco et al.

syntax and commands.1 Among these tools we have the Maude Formal Envi-
ronment (MFE) [3], which includes tools for proving termination, confluence,
and coherence, the Constructor-based Inductive Theorem Prover (CITP) [6], a
tool for proving inductive properties of systems specified with constructor-based
logics, and the declarative debugger and test-case generator [8].

Taking into account the similarities between both languages, using Maude
reflective capabilities, and using the translation in [7] we have implemented
CafeInMaude, a CafeOBJ interpreter implemented in Maude. It defines both
the parsing mechanisms required to introduce CafeOBJ specifications into the
Maude database (hence allowing other Maude tools to be used with these specifi-
cations) and the execution strategies for faithfully executing proof scores. In this
way it is possible to combine both Maude and CafeOBJ features. For example,
it is now possible to first prove the termination and confluence of a theory using
the MFE and then prove properties on it by using proof scores.

Moreover, CafeInMaude provides a simple framework where new features
and commands can be added and tested just by using Maude code (much more
familiar to CafeOBJ programmers than the Lisp implementation of CafeOBJ or
the C++ implementation of Maude). Once these new features become mature
they can be added to the standard Lisp implementation. In fact, we have easily
added new features like the metadata and the nonexec attributes, which are
used to indicate extra information and to prevent the engine from using these
statements when executing, respectively.

We outline in the next section how to use the tool, explaining how to parse
and execute standard CafeOBJ specifications in Sect. 2.1, how to use Maude
tools with these specifications in Sect. 2.2, and how to extend CafeOBJ syntax
in Sect. 2.3, while the limitations of the tool are presented in Sect. 2.4. Section 3
concludes and outlines some lines of future work. The tool and several case
studies are available at https://github.com/ariesco/CafeInMaude.

2 Using CafeInMaude

We present in this section how to execute CafeOBJ specifications, how to com-
bine them with Maude tools, and how to extend CafeOBJ syntax and commands.
Finally, we summarize the limitations of the tool with respect to the standard
Lisp implementation.

2.1 Executing CafeOBJ Specifications

Although Maude requires some constraints to allow input/output with the user,
being the most important of them that modules and commands must be enclosed
in parentheses, standard CafeOBJ specifications can be easily loaded by CafeIn-
Maude by using the script provided in the webpage above. It executes a Java
pre-parser to the files and introduces these modified files into Maude.
1 Actually, we extend Full Maude [1, Part II], an extension of Maude written in Maude

itself that is used as base for any further extension.

https://github.com/ariesco/CafeInMaude


CafeInMaude: A CafeOBJ Interpreter in Maude 379

CafeInMaude supports any non-behavioral CafeOBJ specification and open-
close environment, including those using the search predicates available in the
latest releases of CafeOBJ [9]. As an interesting case study, we have used our
tool for the falsification of the NSPK protocol, which finds a state in which
NSPK does not enjoy the authentication property by combining bounded model
checking by means of search and induction by using proof scores. More details
are available at http://www.jaist.ac.jp/∼kokichi/class/i613-1312 and https://
github.com/ariesco/CafeInMaude.

2.2 Using Maude Commands

CafeInMaude considers both CafeOBJ and Maude specifications first-order citi-
zens, so it is possible to import Maude modules into CafeOBJ modules and vice
versa. Hence, it is possible to import, for example, the MODEL-CHECKER module.
Once this module is imported, it is possible to define, using CafeOBJ syntax,
the type for the states and the atomic formulas to be used in our LTL formulas.
Then, it is possible to verify whether some initial CafeOBJ configurations fulfill
these formulas by using the predefined modelCheck predicate.

In the same way, any command can be applied to CafeOBJ specifications.
Therefore, it is possible to use Maude commands such as narrowing [2], which
allows the user to perform symbolic search starting with non-ground terms.

Finally, additional tools extending Maude can also be used. In order to use
these tools the user must indicate that the grammar used by the tool is an
extension of the CafeOBJ grammar: CafeGrammar. Using this idea, we have
already integrated the Maude Formal Environment (MFE) [3], the Constructor-
based Inductive Theorem Prover (CITP) [6], and the declarative debugger and
test-case generator [8].

2.3 Extending CafeOBJ

Since the implementation of CafeInMaude depends on a grammar defined in
Maude, it is easy for Maude and CafeOBJ programmers to extend it. Extensions
just require two steps: (i) defining the type (if it does not exist yet) and the syntax
of the new feature and (ii) define how to parse it, which includes its translation
into Maude. The former is straightforward and just requires to define some
operators in the grammar module, while the latter, though complex, is greatly
eased by the parsing functions that we provide for parsing and translating any
CafeOBJ term. Using these ideas we have added the metadata, nonexec, and
owise attributes to add information, prevent from executing, and apply only
when it is the only applicable equation, respectively.

2.4 Limitations

Since CafeInMaude is based in a translation from CafeOBJ to Maude, it is con-
strained by the constructions available in CafeOBJ that are not available in

http://www.jaist.ac.jp/~kokichi/class/i613-1312
https://github.com/ariesco/CafeInMaude
https://github.com/ariesco/CafeInMaude


380 A. Riesco et al.

Maude. These limitations mainly affect the modules with loose semantics: in
Maude these modules cannot be parameterized and can only be imported by
other modules with loose semantics, and only in including mode (indicating
that junk and confusion are allowed). We deal with these restriction in a conser-
vative way: if the user allows a non-strict translation (which is enough for the
tools currently integrated in CafeInMaude), they are translated as modules with
tight semantics, while a warning message indicates the changes performed in the
modules; otherwise, the translation fails.

Moreover, Maude does not allow modules with free parameters to be used
to instantiate parameterized modules. In this case the tool cannot translate the
module and it displays an error message.

3 Concluding Remarks and Ongoing Work

We have presented in this paper CafeInMaude, a tool to introduce CafeOBJ
specifications into the Maude database. This tool provides an alternative imple-
mentation of CafeOBJ that allows us to use Maude modules and commands with
CafeOBJ specifications, improves the performance of some of its commands, and
eases the task of connecting CafeOBJ specifications with tools implemented on
top of Full Maude. As future work we plan to use the narrowing techniques
implemented in Maude [2] to analyze protocols previously defined in CafeOBJ.

References

1. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: Reflection, metalevel computation, and strategies. In: Clavel, M., Durán, F.,
Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott, C. (eds.) All About
Maude - A High-Performance Logical Framework. LNCS, vol. 4350, pp. 419–458.
Springer, Heidelberg (2007)

2. Clavel, M., Durán, F., Escobar, S., Eker, S., Lincoln, P., Mart́ı-Oliet, N.,
Meseguer,J., Talcott, C.: Maude Manual (Version 2.7), March 2015. http://maude.
cs.uiuc.edu/maude2-manual

3. Durán, F., Rocha, C., Álvarez, J.M.: Towards a maude formal environment. In:
Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems,
Biological Systems. LNCS, vol. 7000, pp. 329–351. Springer, Heidelberg (2011)

4. Futatsugi, K., Diaconescu, R.: CafeOBJ report. World Scientific, AMAST Series
(1998)

5. Futatsugi, K., Gâinâ, D., Ogata, K.: Principles of proof scores in CafeOBJ. Theor.
Comput. Sci. 464, 90–112 (2012)

6. Găină, D., Zhang, M., Chiba, Y., Arimoto, Y.: Constructor-based inductive the-
orem prover. In: Heckel, R., Milius, S. (eds.) CALCO 2013. LNCS, vol. 8089, pp.
328–333. Springer, Heidelberg (2013)

7. Riesco, A.: An integration of CafeOBJ into full maude. In: Escobar, S. (ed.) WRLA
2014. LNCS, vol. 8663, pp. 230–246. Springer, Heidelberg (2014)

8. Riesco, A., Verdejo, A., Mart́ı-Oliet, N., Caballero, R.: Declarative debugging of
rewriting logic specifications. JLAP 81(7–8), 851–897 (2012)

9. Sawada, T., Futatsugi, K., Preining, N.: CafeOBJ Reference Manual (version 1.5.3),
February 2015

http://maude.cs.uiuc.edu/maude2-manual
http://maude.cs.uiuc.edu/maude2-manual

	CafeInMaude: A CafeOBJ Interpreter in Maude
	1 Introduction
	2 Using CafeInMaude
	2.1 Executing CafeOBJ Specifications
	2.2 Using Maude Commands
	2.3 Extending CafeOBJ
	2.4 Limitations

	3 Concluding Remarks and Ongoing Work
	References


