
Slicing from Formal Semantics: Chisel

Adrián Riesco1(B), Irina Măriuca Asăvoae2, and Mihail Asăvoae2

1 Universidad Complutense de Madrid, Madrid, Spain
ariesco@fdi.ucm.es

2 Inria Paris, Paris, France
{irina-mariuca.asavoae,mihail.asavoae}@inria.fr

Abstract. We describe Chisel—a tool that synthesizes a program slicer
directly from a given algebraic specification of a programming language
operational semantics. This semantics is assumed to be a rewriting logic
specification, given in Maude, while the program is a ground term of
this specification. We present the tool on two types of language para-
digms: high-level, imperative and low-level assembly languages. We con-
duct experiments with standard benchmarking used in avionics.

1 Introduction

Lately we observe an increased interest in defining programming languages
semantics as rewriting systems. This desideratum is stated in the rewriting logic
semantics project [5], where the languages semantics are defined as rewriting
systems using Maude [3], and it is followed by the K framework [8]. Our work
complements the rewriting logic semantics project by developing static analysis
methods, e.g., slicing, for programs written in languages with semantics already
defined in Maude. Here we present Chisel—a Maude tool for generic slicing.

Slicing is an analysis method employed for program debugging, testing, code
parallelization, compiler tuning, etc. In essence, a slicing method evaluates data
flow equations over the control flow graph of the program. Tip gives in [9] a com-
prehensive survey on the standard program slicing techniques applied over differ-
ent programming language concepts. All these techniques are built using different
models that represent augmentations of the control flow graph. Hence, the trans-
lation of the programs into these models has to be automatized and this has to
be produced at the level of the programming language under consideration.

Chisel aims to advance the generic synthesis of program models from any
programming language, provided the algebraic semantics of the language is given
as a rewriting system. Namely, from a programming language semantics, given
as a Maude specification, Chisel extracts pieces of interest for slicing, and uses
these pieces to augment the program term and to produce the model, which
is then sliced. We use for experiments two semantics: one for an imperative

Research partially supported by MINECO Spanish projects StrongSoft (TIN2012-
39391-C04-04) and TRACES (TIN2015-67522-C3-3-R), and Comunidad de Madrid
project N-Greens Software-CM (S2013/ICE-2731).

c© Springer-Verlag GmbH Germany 2017
M. Huisman and J. Rubin (Eds.): FASE 2017, LNCS 10202, pp. 374–378, 2017.
DOI: 10.1007/978-3-662-54494-5 21



Slicing from Formal Semantics: Chisel 375

programming language with functions, WhileFun, and another for the MIPS
assembly language. Chisel analyzes these semantics and extracts key information
for slicing (e.g. side-effect constructs and their data flow direction) that are used
when traversing the program term in order to obtain the program slice.

With Chisel we target sequential imperative code generated from synchro-
nous designs—a class of applications used in real-time systems, e.g., avionics.
Note that Chisel is not yet able to handle pointers, but the synchronous pro-
grams do not contain pointers either. For the evaluation of Chisel on industrial
benchmarks, the pointers are transformed into function calls.

Related Work: An early work on generic slicing is presented in [4] where the
tool compiles a program into a self slicer. Generic slicing is also the focus of the
ORBS [2] tool which proposes observation-based slicing, a statement deletion
technique for dynamic slicing. In rewriting logic [1] implements dynamic slic-
ing for execution traces of the Maude model checker. In comparison with these
tools, Chisel proposes a static approach to generating slicers for programming
languages starting from their formal semantics. Given its static base, Chisel
computes slices for programs and not for (model checker) runs. In [7] we refer
to more technical details of the approach. Nevertheless, the developing platform
of Chisel—Maude allows us to approach other types of slicing, e.g., dynamic
or amorphous. Note that while dynamic slicing methods (either the classic or
deletion-based) let us preserve genericity, determining generic statements equiv-
alence for amorphous slicing might prove difficult. For the later case, we envision
heuristics that start with our data dependence inference and compute some form
of transitive closure.

The rest of the paper is organized as follows: Sect. 2 gives an overview of
the tool, Sect. 3 describes the experimental results obtained, while Sect. 4 con-
cludes and outlines some lines of future work. The complete code of the tool and
examples are available at https://github.com/ariesco/chisel.

2 Chisel Design

In this section we describe the ideas underlying the tool. The main observation
we use for Chisel is the fact that side-effects induce an update in the memory
afferent to the program. Hence, Chisel first detects the operators used by the
semantics to produce memory updates. Then, the usage of the memory update
operators is traced through semantics up to the language constructs. Any lan-
guage construct that may produce a memory update is classified as producing
side-effects. Moreover, following the direction of the memory updates, we infer
also the data flow details for each side-effect language construct. Finally, the
information gathered by Chisel about language constructs is used to traverse
the term representing the program and to extract the subterms representing the
slice.

In Fig. 1 we depict the structure of Chisel by components and their input-
output relation. We present next details about each of Chisel’s components that
work with S—the Maude specification of the programming language semantics.

https://github.com/ariesco/chisel


376 A. Riesco et al.

Side-Effects
Analysis

Memory Policies
Analysis

Context-Update
Analysis

S Language Semantics

Term Analysis

C M C
memory
write

memory
stack

Fig. 1. Chisel components: the formal language semantics and the analyses.

Memory Policies Semantics Analysis: Let us define M as the part of S that
defines some (abstract) form of the memory used during program execution. Our
assumption about the structure of the memory is that it connects the variables
in the program with their values possibly via a chain of intermediate addresses.
We define a memory policy as a particular type of operators specified using M.
For example, a memory-read is the set of operators in M that contain in their
arity the sort for variables and for memory, and in their co-arity the sort for
values. A memory-write operator contains in the arity the memory, the variable,
and a value, in the co-arity the memory, and the rules defining this operator
change the memory variable by updating the value.

Side-Effect Semantics Analysis: Let us denote as C the part of S that defines
the operators representing the programming language constructs, i.e., language
instructions. We name side-effect constructs those operators in C that may pro-
duce a memory-write over some of its variable component. The side-effect analy-
sis starts with the rules with C operators in the left-hand side and constructs a
hyper-tree T whose nodes are sets of rewrite rules and edges are unification-based
dependencies between these rules. The paths P in T with leaves that contain
rules classified by the memory policy phase as memory-writes are signalling the
side-effect constructs. Next, by trickling-up the paths in P, Chisel determines
the data flow (source-destination) produced by the side-effect constructs.

Context-Update Semantics Analysis: We see the program p as a term t ∈ S
that can be flattened into a list L of elements from C by a preorder traversal of
the tree associated to t. We define as context-update constructs those operators in
C that, during p execution using S, produce changes to L. For example, function
calls and gotos are context-updates. The inference of a set of constructs that
may produce context-updates filters the paths in T by using a stack memory
policy at the leaves level. This analysis is work in progress, which we only brief
here. Currently, we provide these constructs for each S.

Term Augmentation and Traversal: The algorithm for slicing a program
takes as input a slicing criterion S consisting in a set of program variables.
In this step, Chisel takes the list L of C subterms obtained from the program
term and traverses it repeatedly until the set S stabilizes. While traversing the
list L, whenever a side-effect construct is encountered, if the destination of this
construct is from S then all the source variables are added to S. Moreover, when-
ever a context-update construct is encountered, the traversal of L is redirected



Slicing from Formal Semantics: Chisel 377

towards the element of L matching a particular subterm in the context-update
construct.

3 Chisel Experiments

We run Chisel on a standard benchmark for real-time systems called
PapaBench [6], a code snapshot extracted from an actual real-time system
designed for Unmanned Aerial Vehicle. We report the results of Chisel for the
core functionalities (rows 1, 2), and the complete PapaBench benchmark (rows
3, 4). For both WhileFun and MIPS variants of the benchmarks, we quantify the
number of functions and function calls (columns #Funs and respectively #Calls),
the code size (LOC), and the slicing reduction factor, red(%). The reduction fac-
tor captures the slicing performance w.r.t. the original code on both WhileFun
and MIPS variants (Fig. 2).

No Name # Funs # Calls LOC red (%) LOC red (%)

(WhileFun) (WhileFun) (MIPS) (MIPS)

1 scheduler fbw 14 18 103 72.8 % 396 44.4 %

2 periodic auto 21 80 225 73.3 % 779 36.3 %

3 fly by wire 41 110 638 91.1 % 1913 41 %

4 autopilot 95 214 1384 92 % 5639 41.5 %

Fig. 2. Chisel performance on PapaBench benchmark

The lower percentages obtained for the MIPS code appear because of the cur-
rent limitation of Chisel in handling memory addresses. Moreover, any function
call in a small sized function involves setting the function stack with registers
global and stack pointer, which dominate the code size yielding longer slices.

4 Conclusions

In this paper we have presented Chisel, a Maude tool that, given the seman-
tics of a programming language written as a rewriting specification in Maude,
can (both intra- and interprocedural) slice programs written in that language.
We tested Chisel with different semantics: WhileFun (imperative) and MIPS
(assembly), both with different variations (e.g. different memory models and
data flow styles). In future work, we plan to extend the language with pointers,
hence supporting more complex memory policies, based on more refined memory
models.

References

1. Alpuente, M., Ballis, D., Frechina, F., Sapiña, J.: Combining runtime checking
and slicing to improve Maude error diagnosis. In: Mart́ı-Oliet, N., Ölveczky, P.C.,
Talcott, C. (eds.) Logic, Rewriting, and Concurrency. LNCS, vol. 9200, pp. 72–96.
Springer, Cham (2015). doi:10.1007/978-3-319-23165-5 3

http://dx.doi.org/10.1007/978-3-319-23165-5_3


378 A. Riesco et al.

2. Binkley, D., Gold, N., Harman, M., Islam, S., Krinke, J., Yoo, S.: ORBS: language-
independent program slicing. In: SIGSOFT FSE 2014, pp. 109–120. ACM (2014)

3. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-71999-1

4. Danicic, S., Harman, M.: Espresso: a slicer generator. In: SAC 2000, pp. 831–839.
ACM (2000)

5. Meseguer, J., Roşu, G.: The rewriting logic semantics project. Theoret. Comput.
Sci. 373(3), 213–237 (2007)

6. Nemer, F., Cassé, H., Sainrat, P., Bahsoun, J.P., Michiel, M.D.: PapaBench: a free
real-time benchmark. In: WCET 2006. IBFI, Schloss Dagstuhl (2006)

7. Riesco, A., Asavoae, I.M., Asavoae, M.: Memory policy analysis for semantics spec-
ifications in Maude. In: Falaschi, M. (ed.) LOPSTR 2015. LNCS, vol. 9527, pp.
293–310. Springer, Cham (2015). doi:10.1007/978-3-319-27436-2 18

8. Roşu, G., Şerbănuţă, T.F.: An overview of the K semantic framework. J. Logic
Algebraic Program. 79(6), 397–434 (2010)

9. Tip, F.: A survey of program slicing techniques. JPL 3(3), 121–189 (1995)

http://dx.doi.org/10.1007/978-3-540-71999-1
http://dx.doi.org/10.1007/978-3-319-27436-2_18

	Slicing from Formal Semantics: Chisel
	1 Introduction
	2 Chisel Design
	3 Chisel Experiments
	4 Conclusions
	References


