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Abstract. Model checking is an automatic verification technique for
analyzing whether some properties hold in a model. Maude is a high-
performance logical framework and model checking tool where many dif-
ferent concurrent programming languages have been specified and ana-
lyzed. However, the counterexample generated by Maude when a prop-
erty fails does not correspond to the language being specified but to
the Maude rules, which makes it difficult to understand. In this paper
we present two metalevel transformations for relating counterexamples
and semantics when dealing with the semantics of concurrent languages,
hence allowing users to model check real code while easing the interpre-
tation of the counterexamples. These transformations can be applied to
any semantics following a message-passing or a shared memory approach.
These transformations have been implemented in a Maude prototype; we
illustrate the tool with examples.
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1 Introduction

Model checking [5] is an automatic technique for checking whether a property,
usually stated in modal logic, holds in a system. It starts from an initial state
and exhaustively traverses all the reachable states, which makes it a useful ver-
ification tool for concurrent systems, where complex interleaving failures might
be overlooked during the implementation and testing phases. State-of-the-art
model checkers, such as Spin [2] and NuSMV [4], allow users to analyze models
of their algorithms, but they do not check the actual application code directly.
For this reason, the relation between programs, models, and their corresponding
translations are subjects of growing concern in the model-checking community,
as shown for example by the Java PathFinder [13] community.
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Maude [6] is a high-performance logical framework where the semantics of
other programming languages can be specified and analyzed. Maude modules
correspond to specifications in rewriting logic [14], a logic that allows specifiers
to represent many models of concurrent and distributed systems. This logic
is an extension of membership equational logic [3], an equational logic that, in
addition to equations, allows the statement of membership axioms characterizing
the elements of a sort. Rewriting logic extends membership equational logic by
adding rewrite rules that represent transitions in a concurrent system and can be
nondeterministic. Moreover, an important feature of rewriting logic is that it is
reflective, that is, it can be faithfully interpreted in terms of itself. This feature
is efficiently implemented in Maude by means of the META-LEVEL module [6,
Chap. 14], which allows us to use Maude modules and terms as usual data.

Defining the semantics of a programming language in Maude presents many
advantages over other languages: first, Maude specifications are executable, so
the specification gives the specifier an interpreter of the semantics for free. More-
over, Maude provides several analysis tools, including an LTL model checker.
Hence, since the seminal proposal of using rewriting logic as a semantic frame-
work in [15], Maude has been used to specify the semantics of many languages,
such as LOTOS [19], CCS [19], and Java [10]. Moreover, the K-Maude com-
piler [18], which is able to translate K [17] specifications into Maude, has eased
the methodology to describe programming language semantics in Maude, as
shown e.g. by the C semantics in [9]. However, when using the model checker for
checking properties on programs whose semantics have been defined in Maude,
we obtain a counterexample that refers to the semantics of the language but
not directly to the actual program under analysis. Given the complex nature
of concurrent systems, this extra layer of complexity makes the counterexample
even more difficult to understand in real applications, preventing specifiers from
understanding the error and being able to fix it.

We present in this paper two generic transformations, implemented using
Maude metalevel, for relating the counterexample generated by the Maude model
checker with the semantics of the language being executed. These transforma-
tions can be applied to concurrent programs following either a message-passing
approach or a shared-memory approach. They reduce the counterexample, focus
on the main events depending on the semantics, and return a JSON-like1 result
that is easy to follow and manipulate later, in the sense that it can be parsed in
an automatic way by other applications and programming languages like Python
in order to perform other analyses. In this way Maude specifiers get, in addition
to an interpreter for their language, a model checker for the object language for
free. Moreover, we also get a model checker for real code for all those program-
ming languages included that are already specified in Maude. To the best of
our knowledge, this kind of generic, metalevel transformation is novel in model
checking.

The rest of the paper is organized as follows: Sect. 2 introduces the different
types of semantics discussed throughout the rest of the paper. Section 3 presents

1 See http://www.json.org/ for details.

http://www.json.org/
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the transformation for languages based on shared memory, while Sect. 4 presents
the transformation for message-passing style. Finally, Sect. 5 concludes and out-
lines some lines of future work. The code of the tool, examples, and more infor-
mation is available at https://github.com/ariesco/MCPS.

2 Preliminaries

We present in this section how the semantics for message-passing and shared-
memory programming languages can be specified in Maude. We present one
example for each semantics and show how it is model-checked; we will show in
the next sections how the results obtained from these analyses are transformed.
Note that the semantics here are just simple examples illustrating the power of
the tool; it can be applied to any other semantics following the same principles.

2.1 Implementing Semantics in Maude

Semantics are represented in Maude by means of conditional rewrite rules, that
stand for transitions between states. In this way, each inference rule of the form:

P1 . . . Pn

state1 ⇒ state2
id

in the semantics, which indicates that state2 is reached from state1 if the
premises P1 . . . Pn hold, is written in Maude as:

crl [id] : state1 => state2 if P1 /\ ... /\ Pn .

where the conditions Pi can be either equalities (possibly involving some auxil-
iary functions), that will be solved by applying equations, or rewrite conditions,
that indicate that some extra transitions must hold.

In the following we will give the intuitive ideas underlying the syntax of our
languages and limit Maude code to some rewrite rules defining the language
semantics, so the ideas can be followed by non-experts. Type definitions, auxil-
iary functions, and much more information is available in the repository above.

2.2 Shared-Memory Semantics

We use a modification of the imperative language in [6, Chap. 13] as run-
ning example. This language includes assignments (X := E), sequential com-
position (INS ; INS’), conditional statements (if COND then INS fi), and
loops (while COND do INS od and repeat INS forever), for X a variable, E
an expression, INS and INS’ sequences of instructions, and COND a condition.
Processes executing programs written with this syntax are wrapped into pro-
cesses of the form [ID, P], with ID a natural number standing for the process
identifier and P the program being executed. Finally, the whole system is a pair
of the form [PS, M], with PS a set of processes (put together by using |) and M

https://github.com/ariesco/MCPS
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repeat

c1 := 1 ; *** It should be c2 := 1 ;

while c1 = 1 do

if turn = 1 then

c2 := 0 ;

while turn = 1 do skip od ;

c2 := 1

fi

od ;

cs2 := 1 ; *** start critical section for process 2

cs2 := 0 ; *** end critical section for process 2

turn := 1 ;

c2 := 0

forever

Fig. 1. Simplified Dekker algorithm

the memory, which consists of a set of pairs [V, N], with V a variable and N a
natural number. We assume all variables in the system are initialized beforehand.

The semantics of this system are defined by using rewrite rules for each
instruction. For example, the rule asg indicates that, given a process I where
the first instruction to be executed is the assignment Q := N (the variable S
stands for the rest of processes) and the memory contains the pair [Q, X] (M
stands for the rest of the pairs in the memory), the instruction is executed by
updating the value of the variable from X to N:2

rl [asg] : {[I, Q := N ; R] | S, [Q, X] M}

=> {[I, R] | S, [Q, N] M} .

Similarly, a repeat puts the body of the loop before repeating the instruction:

rl [repeat] : {[I, repeat P forever ; R] | S, M}

=> {[I, P ; repeat P forever ; R] | S, M} .

Using this syntax, [6, Chap. 13] describes the verification of the Dekker algo-
rithm, a well-known protocol for ensuring mutual exclusion where each process
actively waits for its turn; this turn is indicated by a variable that is only changed
by the process exiting the critical section. We present in Fig. 1 a simplification of
the algorithm for the second process (the first is defined analogously by chang-
ing the variables c1/c2, cs1/cs2, and the value in turn) where a bug has been
introduced, hence violating the mutual exclusion property. Note that the value
of csi is used to determine if process i is in the critical section.

Hence, given (1) the initial state {[1,p1] | [2,p2], [c1,0][c2,0]
[cs1,0] [cs2,0] [turn,1]}, with p1 and p2 the corresponding version of

2 Note that this is a small-step semantics and hence N is completely evaluated. In
general we may need to compute the expression on the righthand side in a rewrite
condition.
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Fig. 2. Counterexample fragment for mutual exclusion in the (buggy) Dekker algorithm

the Dekker algorithm for the first and the second process, respectively, and
(2) an atomic formula enterCrit that holds when the variable given as argu-
ment (either cs1 or cs2) has value 1 (i.e., the corresponding process is in the
critical section), we check whether mutual exclusion holds in Fig. 2, where we
have highlighted the command (first rectangle) and the result (second and third
rectangles). As shown in the figure, the property does not hold and hence a
counterexample is returned; it consists of a list of pairs containing a state and
the identifier of the rule used to reach the next state. In our case we just depict
the first two pairs; the first one consists of the initial state and the rule label
repeat (first inner rectangle), indicating that this rule is applied to reach the
state in the second pair, where in turn asg will be used (second inner rectangle).
This counterexample is difficult to follow not only because of the presentation, it
also gives the user information that it is useful from the Maude point of view but
not from the programming language point of view. For example, the user might
not be interested in the steps involving the repeat rule, since it does not modify
the memory. We will show in Sect. 3 how this counterexample is transformed.

2.3 Message-Passing Semantics

We consider for our message-passing semantics the simple functional language
in [19],3 which supports let and conditional expressions, as well as basic arith-
metic and Boolean operations. First, we expand it with expressions of the form
to ID : M for sending messages, with both ID and M natural numbers standing
for the identifier of the addressee and the message, respectively, and receive
expressions for receiving them. Then, we define processes as terms of the form
[ID | E | ML], with ID a natural number identifying the process, E the expres-
sion being evaluated in the process, and ML a list of natural numbers standing for
3 For the sake of conciseness we use syntactic sugar for numbers and variables.
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the messages received thus far (we consider the head of the list is the leftmost
element). Finally, the whole system is represented as a term of the form || PS,
D ||, for PS a set of processes and D a set of function declarations.

In this language we have rules of the form D, ro |- e => e’ for simplifying
expressions, given a set of declarations D, an environment ro, and expressions
e and e’. For example, rule Let1 below shows how the expression e in a let
expression is simplified by applying a rewrite condition that computes e’’. On
the other hand, rule Let2 just applies the appropriate substitution when a value
has been obtained for the variable:

crl [Let1] : D,ro |- let x = e in e’ => let x = e’’ in e’

if D,ro |- e => e’’ .

rl [Let2] : D,ro |- let x = v in e’ => e’[v / x] .

Similarly, we need rules at the process level to model how messages are sent
and received. Rule send below shows how a message being processed by id and
addressed to id’ is introduced into the list of received messages of id’, while
value 1 is used in id to indicate that the message was delivered correctly. Rule
receive is in charge of consuming messages: it substitutes a receive expression
by the first message in the list:

rl [send] :

|| [id | let x = (to id’ : n) in e | nl] [id’ | e’ | nl’] ps , D ||

=> || [id | let x = 1 in e | nl] [id’ | e’ | nl’ . n] ps , D || .

rl [receive] :

[ id | let x = receive in e | n . nl] => [ id | let x = n in e | nl] .

We will use a simple synchronization protocol between a server and two
clients to illustrate how the model checker behaves in this case. Hence, we have
the following initial state, with the server identified by 0 and the clients by 1
and 2. Note that the server receives the client identifiers as arguments, while the
clients receive the server identifier:

|| [0 | server(1, 2) | nilML] [1 | client(0) | nilML]

[2 | client(0) | nilML], decs ||

The declarations decs, shown below, indicate that the server sends a message
(0) to the process identified by the first argument (client 1 in this case), another
message (1) to the process identified by the second argument (2), then waits for
two messages and returns 1 if it receives 0 and 1 (in this order) and 0 otherwise.
In turn, the client receives a message and just returns the same message to the
server, whose identifier received as parameter:



204 A. Riesco

Fig. 3. Counterexample for message-passing semantics

server(x, y) <= let a = to x : 0
in let b = to y : 1

in let c = receive
in let d = receive

in If Equal(c, 0) And Equal(d, 1)
Then 1 Else 0 &

client(x) <= let y = receive
in let z = to x : y in z

A näıve user might expect messages from clients to be received in the same
order as they were sent from the server, and hence the final state to be always
1. Figure 3 shows the command (first rectangle) and the first two states of the
counterexample for this property (second and third rectangles, respectively),
where finalValue is an atomic proposition that holds if the process identified
by the first argument contains the expression given as second argument. The
first step just substitutes the function call by the body of the function, while the
second one is in charge of sending the first message in the server, as highlighted
by the inner rectangle. We will see in Sect. 4 how to improve this trace.

2.4 Maude Metalevel and Loop Mode

The transformations presented in this paper have been implemented in an inter-
active Maude tool extending Full Maude [6, Part II] and using Maude metalevel
capabilities [6, Chap. 14].

Full Maude is an extension of Maude written in Maude itself. It provides an
input/output loop, an explicit state, and facilities to define, parse, and execute
new commands, making it the most appropriate option to develop interactive
Maude applications. It is worth noting that commands in Full Maude must be
enclosed in parentheses, as required by the Loop Maude [6, Chap. 17], the built-
in Maude module in charge of dealing with input/output information. For this
reason, all commands in Sects. 3 and 4 will follow this convention.
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On the other hand, Maude metalevel allows users to use Maude modules and
terms as usual data. This feature allows us to:

– Traverse modules and identify those rules modifying terms of a given sort (e.g.
the memory) or creating/consuming terms built with particular operators
(e.g. messages).

– Identify the subterms involved in each step. This analysis is twofold: (i) given
the whole state, we are interested in identifying the particular subterm being
rewritten (e.g. identify the process executing the code among the set of pro-
cesses), and (ii) recognize particular parts of the subterm found in the previous
step to isolate elements of interest (e.g. messages).

– Manipulate the counterexample obtained when model checking a system. In
particular, we can use the information obtained when traversing the module
to prune the counterexample and the information about subterms to distin-
guish among the different parts of each state (e.g. memory, processes, and
messages).

3 Model Checking Shared-Memory Languages

In this section we present the transformation used for programming languages
following a shared-memory approach. In this transformation we rely in the fol-
lowing assumption: properties refer to memory states. Hence, we only need to
keep those transitions in the original counterexample performed by rules that
modify the memory. For example, for the program in Sect. 2.1 we will only keep
those steps involving the asg rule. We consider this is a safe assumption, since
in these systems the access to the shared resources is critical.

Once we have decided the transitions that we want to keep, we must decide
how to display each step. We decided to follow a JSON-like format and display
the following information:

– The process executed (field unit) when the rule is applied. If the process has
an identifier it will be displayed in the id field.

– The whole system (field system) before the rewrite rule is applied.
– The state of the memory. Since the memory will be modified by the appli-

cation of the rule, we present the state before applying the rule (field
memory-before) and after applying it (field memory-after). In this way the
user can inspect the effects of the rule. Note that this field is a list, since in
general different types of memory can be used.

– Since we can work at the metalevel, we decided to display the value of all
atomic formulas before and after applying the rule, so the user can under-
stand the values taken by the LTL formula (filed props). For each atomic
proposition in the formula we display its name, arguments, and how its value
changed when the current rule is applied.

Algorithm 1 presents the transformation for shared memory, where all func-
tions but head and tail are implemented at the metalevel, since they manipulate
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Data: Counterexample c, semantics S, sorts ms for memory terms, sort p for
processes, atomic propositions aps, and (optionally) id argument.

Result: Transformed counterexample.
rule labels = memoryRules(S);
c = close(S, c, rule labels);
while not empty(c) do

(term, label) = head(c);
c = tail(c);
if label ∈ rule labels then

(term’, label’ ) = head(c);
sub = match(S, term, label, term’ );
lhs = apply(sub, getLefthandSide(S, label));
m info = getMemoryInfo(term, term’, ms);
s info = getStateInfo(term, ms);
p info = getProcessInfo(lhs, p, [id ]);
props info = getPropsInfo(term, term’, aps);
display(m info, s info, p info, props info);

end

end
Algorithm 1. Transformation for shared-memory semantics

modules, rules, and terms. We first extract from the semantics those rules that
modify the memory by using memoryRules. Then, we make sure the last tran-
sition in the counterexample does not use a rule in this set; if this is the case,
the function close explicitly adds the next state4 and uses a special label not
in rule labels to make sure the condition in the while loop skips it. Then the
loop traverses all the states in the counterexample; when we find a step whose
label is in rule labels then we take the next state to find the matching (function
match) that was used in the rule. This is required because, given a term and a
rule, many different matchings are possible, so we need to ensure that we use the
correct one. Then, we apply this matching to instantiate the lefthand side of the
rule being used, hence obtaining lhs (function apply). This subterm is the one
containing the information about the process being executed, while the term
in the counterexample (term) contains the information about the whole sys-
tem. We use appropriate pretty-printing functions to display the corresponding
information.

The current version of the system cannot infer the sort for the memory or the
sort for the processes (that we call units). Hence, we require the user to introduce
these sorts. In our example, we would start by introducing Memory as the sort
used for the memory and Process as the sort used for processes. Moreover, we
indicate that the first argument for Process stands for the identifier:5

4 Since a cycle is required to evaluate an LTL formula, this new state has appeared
before in the counterexample and there is no need to explore it again.

5 If the constructor does not include an identifier we would use (unit Process .).
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Maude> (memory sorts Memory .)

Memory sorts introduced: Memory

Maude> (unit Process id 1 .)

Unit sort introduced: Process

It is identified by the 1 argument.

Fig. 4. Transformed counterexample for shared-memory semantics

Note that the first command allows the user to introduce several sorts for the
memory, since different representations can be used for registers, main memory,
etc. Once this information has been introduced into the system, it infers that
the single rule modifying the memory is asg, so only the steps using this rule in
the counterexample will be displayed. Now, we can execute the shared memory
analysis command with the same model-checking command that we used in
Sect. 2.2. We present a fragment of the transformed trace in Fig. 4, where unit
and system are not shown for the sake of readability. The step shown in the
figure corresponds to the rewrite step that violates mutual exclusion: the process
identified by 1 is executed and it goes into the critical section (variable cs1
changes its value from 0 to 1, as we have highlighted in the figure), satisfying
the corresponding property (enterCrit(cs1)); since the second process was into
the critical section as well (as we can see by checking cs2 or the corresponding
property), the formula fails. However, we also notice that the process 1 behaved
appropriately, since it was its turn (see variable turn), so we would inspect the
trace for the second process to find the error.

Hence, the trace now can be read more easily, it contains less states (while
the original counterexample had 89 states, the transformed one has 58), and it
is displayed in a format that can be parsed and analyzed later if required.
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4 Model Checking Message-Passing Languages

We present in this section two different ways to transform counterexamples like
the one shown in Sect. 2.3, so the Maude semantics become transparent to the
user. While the first one summarizes the actions performed by the processes
during the computation, the second one presents trace-like information with the
main actions that took place.

We denote as summary mode our first approach, which presents the expression
reached in each process, as well as the sent and consumed messages. In order
to do so, we need the user to introduce the sort for the processes (and the
argument standing for its identifier, if it exists) and the constructors for sending
and consuming messages. The tool will use this information to identify those
rules in charge of dealing with messages and to locate the processes and their
identifiers, as well as the messages sent and consumed, so they can be displayed.
Hence, this transformation presents the following information for each process:

– Its identifier (id field).
– Its final value (value field). Note that in some cases this value will not be a

normal form, since some functions (e.g. servers) might be non-terminating.
– The list of messages it has sent (sent field).
– The list of messages it has consumed (consumed field).

However, in some cases it is also useful to understand the interleaving between
different messages and processes. For this reason, we decided to present a trace-
like counterexample, that we call trace mode. However, in this semantics is
not clear the notion of “step,” so we first decided to focus on messages and
display information when a message is sent or consumed. Then, we noticed that
some properties might change some steps after a message was sent or received,
and hence we decided to include in the trace those steps where at least one
atomic property changes its truth value. As explained in the previous section,
this information is used by executing at the metalevel all the atomic properties in
the state reached in the corresponding state. In this approach each step contains
the following information:

– The identifier of the process that performed the action (id field).
– The action that took place (action field), which can be either msg-consumed,

msg-sent, and prop-changed, which stand for messages consumed, messages
sent, and truth value of atomic propositions changed, respectively.

– The messages involved in the action (messages field). This field is omitted
when the action is not referred to message creation or consumption.

– The state of all processes before and after applying the rule
(processes-before and processes-after fields, respectively).

– How the properties changed with the rewrite rule (props field), which are
displayed as explained in the previous section for shared memory.

Algorithm 2 presents this transformation, where again all functions but head
and tail must be implemented at the metalevel. It first analyzes the semantics to
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extract those rules in charge of sending and consuming messages, respectively.
This step requires the function to traverse all rules and choose those whose
righthand side either creates terms built with operators in os or removes terms
built with oc (both actions with respect to the lefthand side). As explained in
the previous section, we use the function close to add an extra final state if
needed (i.e., if a message is involved or the properties change), since we need
pairs of states to infer the matching. Then, we initialize the list of processes
and start the loop: if the current label involves messages then we compute the
substitution and the lefthand side of the rule as we did in the previous section and
distinguish whether the event consisted of sending or consuming messages. We
use the appropriate operators (either os or oc) to obtain the current process, the
messages, and the event that took place. Note that this inference is more complex
than the one for shared memory, since in the case of synchronous communication
many processes might appear in the rule and we must select the one being
executed, that is, containing terms built with the operators os or oc. Finally,
we update the appropriate process in the list (if it did not exist a new process
with that identifier is created) with the update function and the information is
displayed depending on the selected mode.

In our example, we would indicate that processes are terms of sort Process
and their identifier is its first argument. Similarly, we would state to : as the
instruction for sending messages and receive for the one consuming them:

Maude> (unit Process id 1 .)

Unit sort introduced: Process

It is identified by the 1 argument.

Maude> (msg creation to_:_ .)

Message creation operators introduced: to_:_

Maude> (msg consumption receive .)

Message consumption operators introduced: receive

Similarly, if we want a summary of the execution we would set the mode to
summary (which is the default one) as follows:

Maude> (set mode summary .)

Mode summary selected.

Figure 5 shows the result when using this transformation to the example in
Sect. 2.3. We see that the server, identified by 0, finished with value 0 after
consuming the messages in the order 1, 0, while the clients finished as expected.
With this information the user realizes that a different interleaving is possible
and can fix its program. On the other hand, to use the trace mode in our
example we would use the following command:

Maude> (set mode trace .)

Mode trace selected.

Figure 6 shows the instant when process 0 (the server) consumes the mes-
sage from client 1. We have omitted processes 1 and 2 for the sake of readability,
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Data: Counterexample c, semantics S, operators os for sending messages,
operators oc for consuming messages, sort p for processes, atomic
propositions aps, and (optionally) id argument.

Result: Transformed counterexample.
send labels = sendRules(S, os);
cons labels = consumeRules(S, oc);
c = close(S, c, rule labels);
proc list = [];
while (|c| > 1) do

(term, label) = head(c);
c = tail(c);
(term’, label’ ) = head(c);
p info = getPropsInfo(term, term’, aps);
if label ∈ (send labels ∪ cons labels) then

sub = match(S, term, label, term’ );
lhs = apply(sub, getLefthandSide(S, label));
if label ∈ send labels then

p info = getProcessInfo(lhs, p, [id ], os);
msgs = getMsgProcessed(lhs, os);
event = send;

else
p info = getProcessInfo(lhs, p, [id ], cs);
msgs = getMsgProcessed(lhs, cs);
event = consume;

end
proc list [p info] = update(proc list, p info, event, msgs);
display(proc list, p info, event, msgs, p info) ; // only in trace mode

end
else if changed(p info) then

display(term, term’, p info) ; // only in trace mode

end

end
display(proc list) ; // only in summary mode

Algorithm 2. Transformation for message-passing semantics

while changes have been highlighted. Note that this message is the first one con-
sumed by the server (in the state before the rule the list of consumed messages)
because they have arrived in this order (the third argument of the value field,
the ordered list of messages, has value 1 . 0); after applying the rule the mes-
sage has disappeared from the list, message 1 appears in the list of consumed
messages, and the first receive in the state has been replaced by 1. Once the
user realizes this behavior was expected, he/she should change the program to
take this interleaving into account.

Finally, it is worth noting that, in addition to improving the readability
and providing a friendly representation, the number of steps in trace mode is
reduced from 24 in the original counterexample to 8.
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Maude> (msg passing analysis modelCheck(init, <> [] finalValue(0, 1)) .)

{processes =[

{ id = 0,

value = [0 | 0 | nilML],

sent = [to 1 : 0, to 2 : 1],

consumed = [1, 0]},

{ id = 1,

value = [1 | 1 | nilML],

sent = [to 0 : 0],

consumed = [0]},

{ id = 2,

value = [2 | 1 | nilML],

sent = [to 0 : 0],

consumed = [1]}

Fig. 5. Final state for message-passing semantics

Fig. 6. Trace-like representation: message consumption

5 Concluding Remarks and Ongoing Work

In this paper we have presented two transformations that allow specifiers to
model check real code and interpret the counterexamples obtained. These trans-
formations are restricted to languages following either a shared-memory or a
message passing approach. They have been implemented using Maude metalevel
and are available online. To the best of our knowledge this is the first generic
transformation that allows users to model check real code based on its semantics.
Hence, this tool sets the basis for further development in this direction.
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On the theoretical side, it is interesting to study how this approach relates
to similar approaches, like the partial evaluation transformations in [7,12].

On the tool side, it would be interesting to define transformations for other
approaches, in particular for hybrid ones implementing both shared memory
and message passing. We are also interested in performing a pre-analysis of the
semantics to infer information about the language and hence save time and work
to the user. Notably, following the analyses proposed in [16] it would be possible
to identify the sorts for the memory.

Then, it would be interesting to see whether the current transformations
can be improved. In [1] the authors use slicing, a technique to keep only those
instructions related to the values reached by a set of variable of interest, to
reduce the size of Maude traces. When applying this technique we face again the
problems outlined in the introduction, since it works on Maude variables but we
need it to work on program variables, which depend on the semantics. We would
need to follow the ideas in [16] to obtain the desired result.

Regarding efficiency, following the ideas in [11] it is possible to reduce the
number of states when model checking Maude specifications, hence avoiding the
state-space explosion problem, by transforming rules (that generate transitions
when model checking a system) into equations (that do not generate transitions)
if some properties hold. These properties are the executability requirements (ter-
mination, confluence, and coherence), which can be proved in some cases using
the Maude Formal Environment [8], and invisibility, which requires that the
transformed rules do not change the truth value of the predicates. Hence, in our
shared-memory model we would transform all those rules that do not modify
the memory; further assumptions on the message-passing approach would be
required to ensure soundness.

Overall, our long-term goal is to obtain a parameterized transformation for
real languages, in the same way as Java PathFinder [13] works for Java. In this
sense we will probably need to generalize other aspects of the tool, so it deals
with structures such as objects.
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