
Towards a Formal Semantics-Based Technique

for Interprocedural Slicing�

Irina Măriuca Asăvoae1, Mihail Asăvoae1, and Adrián Riesco2

1 VERIMAG/UJF, France
{mariuca.asavoae,mihail.asavoae}@imag.fr
2 Universidad Complutense de Madrid, Spain

ariesco@fdi.ucm.es

Abstract. Interprocedural slicing is a technique applied on programs
with procedures which relies on how the information is passed at pro-
cedure call/return sites. Such a technique computes program slices (i.e.
program fragments restricted w.r.t. a given criterion). The existing ap-
proaches to interprocedural slicing exploit the particularities of the un-
derlying language semantics in order to compute program slices. In this
paper we propose a generic technique for interprocedural slicing. More
specifically, our approach works with inferred particularities of a lan-
guage semantics, given as a rewriting-logic specification, and computes
program slices using a term slicing-based algorithm.

Keywords: slicing, semantics, Maude, debugging.

1 Introduction

Complex software systems are built in a modular fashion, where modularity
is implemented with functions and modules, in declarative-style programming;
with classes and interfaces, in object-oriented programming; or with other means
of organizing the code. Besides their structural characteristics, the modules also
carry semantic information. The modules could be parameterized by types and
values (e.g. the generic classes of Java and C#, the template classes of C++,
or the parameterized modules of Maude and OCaml) or could have specialized
usability (e.g. abstract classes in object-oriented languages).

It is preferable, for efficiency reasons, that the modular characteristics of a sys-
tem are preserved when new analysis techniques and tool support are developed.
One possible solution to integrate both analysis and tool development is to use a
formal executable framework such as rewriting logic [13]. For any given program
(correctly constructed w.r.t. the language syntax), the formal executable seman-
tics, given as a rewriting logic specification, provides the set of all the concrete
executions, for all the possible input data. Furthermore, the notion of a concrete
execution extends to an abstract execution—as an execution with an analysis

� This research has been partially supported by MICINN Spanish project StrongSoft
(TIN2012-39391-C04-04).

E. Albert and E. Sekerinski (Eds.): IFM 2014, LNCS 8739, pp. 291–306, 2014.
c© Springer International Publishing Switzerland 2014

292 I.M. Asăvoae, M. Asăvoae, and A. Riesco

tool—and we have the set of concrete executions as the basis of any abstraction
(and implicitly abstract execution) of a program. One particular abstraction is
program slicing [26], which computes safe program fragments (also called slices)
w.r.t. a specified set of variables. A complex variant of program slicing, called
interprocedural slicing, preserves the modularity of the underlying program and
exploits how the program data is passed between these modules.

Interprocedural slicing is the slicing method applied on programs with pro-
cedures where the slice is computed for the entire program, taking into account
the procedure calls/returns. The main problem that arises in interprocedural
slicing is related to the fact that the procedure calls/returns may be analyzed
with a too coarse abstraction. Namely, the abstraction relies only on the call
graph without taking into account the context changes (i.e., the instantiation of
the local variables during a procedure execution) occurring during a procedure
call/return. Since we develop a generic, formal semantics-based slicing method,
we assume that we do not know which language constructs produce these con-
text changes. Hence, we include in our slicing method a phase for inferring these
constructs, denoted in the following as scope-update constructs.

Now, our proposed technique for interprocedural slicing has two phases which
could be described as follows: Given a programming language semantics S, in
the first phase we extract scope-update constructs c from S and, in the second
phase, we use these constructs for the interprocedural slicing of S-programs (i.e.,
programs written in the language specified by S which, in fact, are well-formed
terms in S). In this paper we focus on the second phase of the interprocedural
program slicing, meaning the term slicing-based algorithm. The first phase, (i.e.
the extraction of the scope-update constructs) follows a similar meta-analysis of
the language semantics as in [17], where side-effect constructs are extracted. We
require S to be expressed as a rewriting logic theory [13], which is executable
and benefits of tool support via the Maude system [3], an implementation of the
rewriting logic framework. The technique to obtain the scope-update constructs
is, in fact, a meta-analysis of the programming language. The interprocedural
program slicing uses c to collect and propagate abstract information according to
the scope switches from c. This technique is concretised with an implementation
into a generic semantics-based slicing tool developed in Maude.

For presentation purposes, we consider a WHILE language [10] with functions
and local variable declarations (which introduce variable scoping); we call this
extension WhileF. Then, in order to differentiate two variables based on their
scopes, we need to identify scope-update constructs at the level of the semantics.
Note that the meta-analysis for scope-updates used in the present work is slightly
more complicated than the one for side-effects described in [17], because scope-
updates usually work in pairs so now we need to analyze S targeting pairs of
operators (for procedure call and return). Such pairs could be explicitly presented
in the language semantics definitions (through different rewrite rules for call and
return) or implicitly, as in this work (with an explicit rewrite rule for call and
implicit return instruction).

Towards a Formal Semantics-Based Technique for Interprocedural Slicing 293

Another interesting difference consists in the fact that the second program slic-
ing step receives as input both scope-update and side-effect information, which
implies heavy changes. In this case, it is necessary to address the representability
of the derived scope-update constructs w.r.t. the interprocedural program slicing.
Namely, a combined representation of scope-update and side-effect constructs
could consist in terms representing generic skeletons for procedure summaries (a
succinct representation of the procedure behavior w.r.t. its input variables).

The rest of the paper is organized as follows: Section 2 presents related work.
Section 3 introduces the basic notions of program slicing and rewriting logic, used
throughout the paper, while Section 4 describes the proposed program slicing
as term slicing-based algorithm. Finally, Section 5 concludes and presents some
lines of future work.

2 Related Work

Program slicing addresses a wide range of applications, from code paralleliza-
tion [23] to program testing [8], debugging [21], and analysis [12,11]. Since our
goal is to design and implement a semantics-based program analysis tool in a
rewriting-logic environment, we relate our method to both interprocedural slicing
in program analysis and in rewriting logic. With respect to the general problem
of program slicing, we refer the reader to the comprehensive survey of slicing
techniques, in [24].

The technique of program slicing was introduced in [26], and for a given pro-
gram with procedures, it computes slices using a limited form of context infor-
mation (i.e. before each procedure call). The approach resembles an on-demand
procedure inlining, using a backward propagation mechanism (thus, producing
backward slices). Our approach takes into consideration the context-update con-
structs (as extracted from the formal semantics) and produces forward slices (via
term slicing on the term program). Moreover, the context-update constructs play
the role of symbolic procedure summaries, as in [20,11,7,22]. A procedure sum-
mary is a compact representation of the procedure behavior, parameterized by
its input values, which in our proposed framework is the context-update con-
struct. The interprocedural slicing is explicit in [11,22] and implicit in [20,7],
and sets the support for interprocedural program analyses.

The work in [20] uses a data-flow analysis to represent how the information is
passed between procedure calls. It is applied on a restricted class of programs—
restricted by a finite lattice of data values—, while the underlying program
representation is a mix of control-flow and control-call graphs. In comparison,
our approach considers richer context information (as in [11]), while working on
a similar representation of a program (as a term). The work in [7] keeps the same
working structures but addresses the main data limitation of [20]. As such, the
procedure summaries are represented as sets of constraints on the input/output
variables. The underlying interprocedural slicing algorithm of [7] is more refined
than our approach (though not generic), just because of the richer representation
of context information. We follow closely the work in [11], which introduces a

294 I.M. Asăvoae, M. Asăvoae, and A. Riesco

new program representation for the interprocedural slicing. In comparison, our
approach does not require the explicit context representation, but uses term
matching to distinguish between different contexts.

In the rewriting logic environment, there are several approaches towards de-
bugging [1], testing [16], and analysis [17]. The dynamic slicing technique in [1]
works on execution traces of the Maude model checker. In comparison, we pro-
pose a static approach built around a formal semantics and with an emphasis
on computing slices for programs and not for given traces (e.g. of model checker
runs). The work in [16] presents an approach to generate test cases similar to
the one presented here in the sense that both use the semantics of programming
languages formally specified to extract specific information. In this case, the se-
mantic rules are used to instantiate the state of the variables used by the given
program by using narrowing; in this way, it is possible to compute the values
of the variables required to traverse all the statements in the program, the so
called coverage. The technique in the current paper follows our previous work
on language-independent program slicing in rewriting logic environment [17].
Actually, the implementation of the current work is an extension of the slicing
tool we developed in [17]. Both approaches share the methodology steps: (1)
the initial meta-analysis of S and (2) the program analysis conducted over the
S-programs. More specifically, in [17] we use the classical WHILE language aug-
mented with side-effect constructs (assignments and read/write statements) to
exemplify (1) the inference of the set of side-effect language constructs in S, and
(2) the program slicing as term rewriting.

As a semantical framework, Maude has been used to specify the semantics of
several languages, such as LOTOS [25], CCS [25], Java [6], or C [4]. These works
describe a methodology to represent the semantics of programming languages in
Maude, led to the rewriting logic semantics project [14] and to the development
of the K [19] framework. We plan to use these semantics to perform program
analysis in the future.

3 Preliminaries

Program slicing, as introduced in [26], is a program analysis technique which
computes all the program statements that might affect the value of a variable
v at a program point of interest, p. It is a common setting to consider p as the
last instruction of a procedure or the entire program. Hence, without restricting
the proposed methodology, here we consider slices of the entire program.

A classification of program slicing techniques identifies intraprocedural slicing
when the method is applied on a procedure body and interprocedural slicing
when the method is applied across procedure boundaries. The key element of a
methodology for interprocedural slicing is the notion of context (i.e. the values of
the function/procedure parameters). Next, we elaborate on how context-aware
program slicing produces better program slices than a context-forgetful one.

Let us consider, in Fig. 1, the program from [11], written as an WhileF pro-
gram term, upon which we present subtleties of interprocedural slicing. We start
the slicing with the set of variables of interest {z}.

Towards a Formal Semantics-Based Technique for Interprocedural Slicing 295

The first method, in [26], resembles an on-demand inlining of the necessary
procedures. In the example in Fig. 1, the variable {z} is an argument of procedure
Add call in Inc, hence, the sliced body of Add is included in the slice of Inc. Note
that, when slicing the body of Add, z is replaced by a. Hence, the slicing of Add
deems {a} and {b} as relevant. The return statement of procedure Inc is paired
with the call to Inc, in the body of A so the variable {y} becomes relevant for
the computed slice. When the algorithm traces the source of the variable y, it
finds the second call to Add in the body of A (with the arguments x and y) and
includes it in the program slice. When tracing the source of x and y, it leads
to include the entire body of procedure Main (through the variables sum and i,
which are used by the assignments and calls of Main). Using this method, the
program slice w.r.t. the set of variables of interest - {z}, is the original program,
as in Fig. 1. This particular slice is a safe over-approximation of a more precise
one (which we present next) because the method relies on a transitive-closure—
fixpoint computation style where all the variables of interest are collected at the
level of each procedure body. As such, the body of procedure Add is included
twice in the computed slice.

function Main (){
sum := 0;
Local i;
i := 1;
while i < 11 do

Call A (sum, i)
}

function A (x, y) {
Call Add (x, y);
Call Inc (y)

}
function Add (a, b) {
a := a + b

}

function Inc (z) {
Local i;
i := 1;
Call Add (z, i)

}

Fig. 1. A WhileF program Px with procedures Main, A, Add, and Inc

The second approach in [11] exploits, for each procedure call, the available
information w.r.t. the program variables passed as arguments (i.e. the existing
context before the procedure call). Again, in the example in Fig. 1, the variable
z is an argument of procedure Add. Hence, upon the return of Add, its body
is included in the slice. However, because of the data dependencies between
variables a and b (with a using an unmodified value of b) only the variable a is
collected and further used in slicing. Next, upon the return statements of Add
and then Inc, the call of Inc in A (with parameter y) is included in the slice.
Note that the call to Add from A (with parameters x and y) is not included in
the slice because it does not modify the context (i.e. the variables of interest
at the call point in A). As such, the slicing algorithm collects only the second
parameter of procedure A, and following the call to A in Main, it discovers i as
the variable of interest (and not sum as it was the case of the previous method).
Hence, the sliced A with only the second argument is included in the computed
slice. Consequently, the variable sum from Main is left outside the slice. The
result is presented in Fig. 2.

Any program analysis that computes an interprocedural slice works with
the control-flow graph—which captures the program flow at the level of

296 I.M. Asăvoae, M. Asăvoae, and A. Riesco

function Main (){
Local i;
i := 1;
while i < 11 do

Call A (i)
}

function A (y) {
Call Inc (y)

}
function Add (a, b) {
a := a + b

}

function Inc (z) {
Local i;
i := 1;
Call Add (z, i)

}

Fig. 2. The result of a context-dependent interprocedural analysis for Px

procedures—and the call graph—which represents the program flow between
the different procedures—. To improve the precision of the computed program
slice, it is necessary for the analysis to use explicit representations of procedure
contexts (as special nodes and transitions). This is the case of the second method
which relies on a program representation called system dependence graph.

4 Semantics-Based Interprocedural Slicing

We present in this section the algorithm for our interprocedural slicing approach,
and illustrate it with an example. Then, we describe a Maude prototype execut-
ing the algorithm for semantics specified in Maude.

4.1 Program Slicing as Term Slicing

In [17] we described how to extract the set of side-effect instructions SE from
the semantics specification S and how to use SE for an intraprocedural slicing
method. In the current work we focus on describing the interprocedural slicing
method which is built on top of the intraprocedural slicing result from [17].

The programs written in the programming language specified by S are denoted
as p. By program variables we understand subterms of p of sortVar . If we consider
the subterm relation as �, we have v � p where v is a program variable.

We consider a slicing criterion sc to be a subset of program variables which
are of interest for the slice. We denote by SC the slicing criterion sc augmented
with data flow information that is collected along the slicing method. Hence, SC

is a set of pairs of program variables of form
�

v, v′, denoting that v depends on
v′, or just variables v, denoting that v is independent.

We assume as given the set of program functions Fp defining the program p.
We claim that Fp can be inferred from the term p, given the S-sorts defining func-
tions, variables, and instruction sequences. We base this claim on the fact that p
is formed, in general, as a sequence of function definitions hence its sequence con-
structor can be automatically identified from S. Also, we use getFnBody(f,Fp)
to obtain the function identified by f in Fp. Note that getFnBody(f,Fp) � Fp.

Furthermore, we denote the method computing the intraprocedural slicing as
$(B,SC, SE), where B is the code, i.e., the body of some function f in p (note
that B � p), while SC is a slicing criterion and SE is the set of side-effect
constructs. Hence, $ takes the body B of a function f and a slicing criterion

Towards a Formal Semantics-Based Technique for Interprocedural Slicing 297

SC (i.e. a set of variables) and keeps only the parts of B that are subterms
starting with a side-effect effect construct (from SE) and containing variables
from the slicing criterion SC. The result of $(B,SC, SE) is given as a term
SC :: fn〈fn(fp�){fs}〉 where SC is the data flow augmented slicing criterion,
fn ∈ FunctionName is a function identifier, and fs is the slice computed for fn .
Meanwhile fp� is the list of fn’s formal parameters fp filtered by SC , i.e., all
the formal parameters not appearing in SC are abstracted to a fixed additional
variable �.

Now we give a brief explanation on how the intraprocedural slicing $ works.
We say that a program subterm modifies a variable v if the top operator is in
SE and v appears as a leaf in a specific part of the subterm, e.g., the variable
v appears in the first argument of _:=_ or in Local_. When such a subterm
is discovered by $ for a slicing variable then the slicing criterion is updated by
adding the variables producing the side-effects (e.g. all variables v′ in the second

argument of _:=_) and the data flow relations
�

v, v′. We call fs a skeleton subterm
of B and we denote this as fs � B.

In Fig. 3 we give the slicing method, termSlicing, which receives as input
the slicing criterion sc, the set of program functions Fp, and the set of side-
effect and context-updates syntactic constructs, SE and CU , respectively. The
output is the set of sliced function definitions slicedFnSet together with the
obtained data flow augmented slicing criterion dfsc. Note that Fp, SE , and CU
are assumed to be precomputed based on the programming language semantics
specification S. The algorithm for inferring SE is given in [17, Section 4]. The
algorithm for inferring CU goes along the same lines as the one for SE and it is
based on the automatic discovery of stack structures used in S for defining the
programming language commands. For example, in WhileF the only command
inducing context-updates is Call_(_) instruction. In the current work we assume
CU given in order to focus on the interprocedural slicing as term slicing method.
However, we claim that termSlicing is generic w.r.t. S since Fp, SE , and CU
can be automatically derived from S.

termSlicing is a fixpoint iteration which applies the current data-flow-
augmented slicing criterion over the function terms in order to discover new
skeleton subterms of the program that comply with the slicing criterion. The
protocol of each iteration step is to take each currently sliced function and slice
down and up in the call graph. In other words, the intraprocedural slicing is ap-
plied on every called function (i.e. goes down in the call graph) and every calling
function (i.e. goes up in the call graph).

Technically, termSlicing relies on incrementally building the program slice,
stored in workingSet , and the data flow augmented slicing criterion, stored in
dfsc. This process has two phases: the initialization of workingSet and dfsc (lines
0-6) and the loop implementing the fixpoint (lines 7-39).

The initialization part computes the slicing seed for the fixpoint by inde-
pendently applying the intraprocedural slicing $(, ,) with the slicing criterion
sc for each function in the program p. The notation A∪=B (line 3) stands
for “A becomes A ∪ B” where ∪ is the set union. Similarly, A �= B (line 4)

298 I.M. Asăvoae, M. Asăvoae, and A. Riesco

termSlicing
Input: sc,Fp,SE ,CU
Output: slicedFnSet , dfsc
0 workingSet ′ := ∅; dfsc := ∅;
1 for all fn(args){fnBody} ∈ Fp do
2 SCinit :: fn〈fnInitSlice〉 := $(fnBody , {x ∈ sc | x � fs or x � args}, SE);
3 workingSet ′ ∪= {SCinit :: fn〈fnInitSlice〉};
4 dfsc �= SCinit ;
5 od
6 workingSet := ∅;
7 while workingSet �= workingSet ′ do
8 workingSet := workingSet ′;
9 for all SC :: fn〈fnSlice〉 ∈ workingSet do
10 wsFnCalled := ∅;
11 for all Call ∈ CU for all Call fnCalled � fnSlice do

12 fnCldSC := SC fn	fnCalled ;
13 for all fnCldSCPrev :: fnCalled〈 〉 ∈ workingSet do
14 if fnCldSC
 fnCldSCPrev then break;
15 fnCldBd := getFnBody(fnCalled ,Fp);
16 fnCldSCNew :: fnCalled〈fnCldSlice〉 := $(fnCldBd , fnCldSC , SE);
17 wsFnCalled ∪= {fnCldSCNew :: fnCalled〈fnCldSlice〉};
18 SC �= fnCldSCNew fnCalled�fn ;
19 od
20 wsFnCalling := ∅;
21 for all Call ∈ CU for all fnCalling ∈ Fp s.t. Call fn � fnCalling do

22 fnClgSC := SC fn�fnCalling ;
23 for all fnCallingSCPrev :: fnCalling〈 〉 ∈ workingSet do
24 if fnClgSC fnCallingSCPrev then break;
25 fnClgBd := getFnBody(fnCalling,Fp);
26 fnClgSCNew :: fnCalling〈fnClgSlice〉 := $(fnClgBd , fnClgSC , SE);
27 wsFnCalling ∪= {fnClgSCNew :: fnCalling〈fnClgSlice〉};
28 SC �= fnClgSCNew fnCalling�fn ;
29 od
30 fnBd := getFnBody(fn,Fp);
31 SCNew :: fn〈fnSliceNew〉 := $(fnBd , SC, SE);
32 dfsc �= SCNew ;
33 for all Call ∈ CU for all Call fnCalled � fnSliceNew do
34 if :: fnCalled〈 {}〉 ∈ wSetFnCalled then
35 fnSliceNew := erraseSubterm(Call fnCalled , fnSliceNew)
36 od
37 workingSet ′ �= {SCNew :: fn〈fnSliceNew〉} � wsFnCalled � wsFnCalling ;
38 od
39 od
40 slicedFnSet := get〈〉Content(workingSet)

Fig. 3. Program slicing as term slicing algorithm

is the union of two data dependency graphs. Namely, A � B is the set union
for graph edges filtered by the criterion that if a variable v is independent
in A but dependent in B (i.e. there exists an edge �, with v on one of the

Towards a Formal Semantics-Based Technique for Interprocedural Slicing 299

ends) then the independent variable v is eliminated from A � B. For exam-
ple, the initialization step applied on the program in Fig. 1 produces the fol-
lowing workingSet ′: z :: Inc〈Inc(z){Call Add(z, �)}〉, ∅ :: Main〈Main(){}〉, ∅ ::
A〈A(�, �){}〉, ∅ :: Add〈Add(�, �){}〉.

The fixpoint loop (lines 7-39) discovers the call graph in an on-demand fashion
using the context-update set CU , which directs the fixpoint iteration towards
applying the slicing on the called/calling function. As such, when a context-
update (e.g. Call_(_) in the semantics of WhileF) is encountered in the current
slice, we proceed to slice the called function (lines 10-19). Next, when a context-
update of the currently considered functions is encountered, we proceed again
to slice the calling function (lines 20-29). Each time we update the current data-
flow-augmented slicing criterion and the slice of the current function (lines 30-
36). For example, the discovery of the call graph starting with the function
Inc(z){Call Add(z, �)} in the program from Fig. 1 adds, during the first iteration
of the fixpoint-loop, the called function Add(a, b){a := a + b} and the calling
function A(�, y){Call Inc(y)}. We iterate this process until the skeleton subterm
of every function is reached, i.e., workingSet is stable, e.g., see the result from
Fig. 2. Note that the stability of workingSet induces the stability of dfsc, the
data flow augmented slicing criterion.

We now describe in more details each of the three parts of the fixpoint loop:
the called (lines 10-19), the calling (lines 20-29), and the current (lines 30-36)
functions. The called and calling parts have a similar flow with slight differences
in the operators used. They can be summarized as:

SC �= SC fn�fnCalled filtered$(fnCalled ,) fnCalled
fn

SC �= SC fn�fnCalling filtered$(fnCalling ,�) fnCalling fn
where fn is the name of the current function, fnCalled is the name of a functions
called from fn , and fnCalling is the name of a function which is calling fn.

The operators � and
 stand for the abstraction of the slicing criterion
downwards in the calling graph from fn into fnCalled and back, respectively.
The abstraction fn�fnCalled pivots on the actual parameters of fnCalled and,
based on patterns of function calls, it maps the actual parameters of fnCalled
from the current environment SC :: fn into the environment of fnCalled . The
abstraction fnCalled
fn renders the reverse mapping from the (sliced) called en-
vironment back into the current one. Similarly for the � and operators,
which perform the abstraction upwards in the call graph from fn to fnCalling,
pivoting on the parameters of fn. For example, for program Px from Fig. 1 we

have
�

z, i Inc�Add
�

a, b Add
Inc
�

z, i and
�

z, i Inc�A
�

y, � =y AInc �

z, i. For the cur-
rent work, the only pattern of function calls that we have experimented is the
complete list of call-by-reference parameters.

The operator filtered$(fnC , rel) (lines 13-17 and 23-27) is a filtered slicing of
fnC , where the filter is a relation between the current abstraction of SC and
previously computed slicing criterions for the called/calling function fnC . We
say that SC 	 SCPrev if SC is a subgraph of SCPrev such that there is no edge

300 I.M. Asăvoae, M. Asăvoae, and A. Riesco

�

v, v′ in SCPrev where v is a node in SC and v′ is a function parameter which is
not in SC . This means that SC has no additional dependent data v′ among the
function parameters that should participate to the current slicing criterion. For
example, this relation is exploited for the call of function Add in function A from

Fig. 1. Namely, the algorithm discovers the relation
�

a, b for Add’s parameters
upon the call of Add from function Inc. Later, when function Add is called in A

only with parameter b, the subgraph relation b 	 �

a, b shows that the already
sliced Add(a, b) contains the slice of Add(�, b) hence, there is nothing else to be
done for this function. Meanwhile, SC � SCPrev is defined as SCPrev 	 SC
due to the fact that now the sense in the dependency graph is reversed and
so the slicing criterion in the calling function (SCPrev) is the one to drive the
reasoning. Hence, if the filter relation is true then the new slice is not computed
anymore (lines 14 and 24) because the current slicing criterion is subsumed by
the previous computation.

In lines 30-36 we compute a new slice for the current function fn and in line 37
we collect the slices currently computed for the program functions.

Lines 30-36 are more of a beautification of the slice of the currently sliced
function fn. This beautification is made by the elimination from the slice of any
context-update subterm Call fnCalled having an empty body for the currently
computed slice (lines 33-36). For example, the call to function Add from function
A, i.e., CallAdd(�, b), is eliminated from the slice computed for function A due
to the emptiness of the sliced body of function Add starting with the slicing
criterion b. Note that this fact can be concluded only from the data-flow relation
among the parameters of a function, provided that we add a special symbol � for
the local variables such that any function parameter v depending on some local

variable is going to appear as connected to �, i.e., either
�

v, � or
�

�, v. Namely, in

function Inc from Fig. 1 we have
�

z, � due to the fact that Add brings
�

z, i in the
SC of Inc. However, in what follows we do not insist on the data dependency
on local variables in order not to burden the notation.

Finally, in line 37 we collect all the slices computed at the current iteration in
workingSet ′. Note that � operator from line 37 is an abstract union which first
computes the equivalence class of slices for each function, based on the graph
inclusion of the data-flow-augmented slicing criterion, and then performs the
union of the results. Namely, if there is a function with F with three parameters

x, y, z such that
�

x, y and z is independent, and if at some iteration of the fixpoint
we have the slice F (x, y, �){Bx,y,�} in the set wsFnCalled and F (�, �, z){B�,�,z}
in the set wsFnCalling , then in workingSet ′ we have Fx, y, z{Bx,y,z} where in
Bx,y,z we put together the two skeletons Bx,y,� and B�,�,z.

Recall that, in Section 3, we described two interprocedural slicing methods
presented in [26] and [11], being the second one more precise than the first one.
In our approach the difference is based solely on the data flow relation we use for
$. Hence, we can distinguish two types of termSlicing: the näıve one where the
data flow relations are ignored and the savvy one which collects and uses data
flow relations. Note that the data flow relation is currently assumed as given.

Towards a Formal Semantics-Based Technique for Interprocedural Slicing 301

Main () {
sum := 0;
Local i, j;
i := 1; j := − 1;
While i < 11 Do

Call A (sum, i);
Call B (sum, j);
Call A (j, i)

}

A (x, y) {
If x > 1 Then

Call Add(x, y);
Call Inc (y)

}
B (x, y) {
If x > 0 Then

Call B(x + y, y)
}

Add (a, b) {
a := a + b

}
Inc (z) {
Local i, j;
i := 1; j := i;
Call Add (z, i);
Call Inc (j)

}
Fig. 4. PX—the extension of the WhileF program Px

For example, the iterations of the savvy termSlicing for the program PX in
Fig. 4 and the slicing criterion {z} are listed in Fig. 5. Namely, in the first boxed
rows the slicing criterion {z} is applied on FPX to produce the skeleton subterms
used as the fixpoint seed. Hence, the fixpoint seed contains one nonempty skele-
ton as z appears only in Inc. Note that i—the second parameter of Call Add—is
abstracted to � as no data dependency is currently determined for it.

In the second box of rows we consider the slicing criterion for Inc—the
only one nonempty from the seed—and we iterate the fixpoint for it. The first
row deals with the (only) called function appearing in Inc’s skeleton, namely
Add(z, �). Note that the slicing criterion z is abstracted downwards in the call
graph so the slicing criterion becomes a, the first formal parameter of Add. The
slice of Add with {a} as slicing criterion is showed in the third column while

the slicing criterion becomes
�

a, b, i.e., a depends on b. Because b is a formal
parameter, it gets abstracted back in Inc as Add’s actual parameter i. Hence,

the updated criterion used in Inc is
�

z, i and it is used for the calling function
A, in the second row, and also for the recursive call to Inc itself, in the third
row. In these rows, the slicing criterion is abstracted upwards in the call graph
and the formal parameter z becomes y in A and j in Inc. Meanwhile i is ruled
out (becomes �) because it is not a parameter and hence it is not relevant in a
calling function. The fourth row shows the computation of Inc’s skeleton based

on the current slicing criterion
�

z, i. Furthermore, upon performing the abstract
union � at the end of the fixpoint iteration, then Inc’s skeleton is:

Inc(z){Local i, j; i := 1; j := i; Call Add (z, i); Call Inc (j)}
The fixpoint iteration continues in the third box by adding to the slice the

function Main due to the upward phase (since Main contains a call to A). The
upward parameter substitution of y from A is i in Main and the slice of Main
is updated in the third row. Note that the � in all the other rows signifies the
reach of the break in lines 14 or 24 in termSlicing and stands for “nothing
to be done.” The fourth box contains the final step of the fixpoint when there
is nothing else changed in workingSet ′ (i.e. all the rows contain � in the last
column). Hence, for the example in Fig. 4 we obtain the slice in Fig. 2 with the
only difference that the sliced Inc is now the entire Inc from Fig. 4 (due to the
newly added assignment “j:=i”).

302 I.M. Asăvoae, M. Asăvoae, and A. Riesco

Slicing Function Computed slice

variables contexts (identified subterms)

z :: � �	Inc z → z Inc�� Inc(z) {Call Add(z, �)}
�	Main � = ∅ Main��, . . . Main(){}, A(�, �){}, B(�, �){}, Add(�, �){}

z ::Inc Inc	Add a → �

a, b Add�Inc
�

z, i Add(a, b) {a := a+ b}
�

z, i::Inc Inc�A
�

y, �→
�

y, � A�Inc
�

z, i A(�, y) {Call Inc(y)}
�

z, i::Inc Inc�Inc
�

j, �→ �

j, i Inc�Inc
�

z, i Inc(�){Local i, j; i:=1; j:=i; Call Add(�, i); Call Inc(j)}
�

z, i::Inc
�

z, i→ �

z, i Inc(z){Local i; i:=1; Call Add(z, i)}
y :: A A	Add b
 �

a, b::Add Add�A y �
y :: A A	Inc(z
 �

z, i::Inc) Inc�A y �
y :: A A�Main i → i Main�A y Main(){Local i;i:=1;While i<1 Do Call A(�, i)}
y :: A y = y :: A �

�

a, b::Add Add�Inc(
�

z, i �

z, i::Inc) Inc�Add y �
�

a, b::Add Add�A(�

x, y y :: A)A�Add y �
�

a, b::Add
�

a, b=
�

a, b::Add �
�

z, i::Inc Inc	Add(
�

a, b
 �

a, b::Add) Add�Inc y �
�

z, i::Inc Inc�A(
�

y, � y :: A)A�Inc y �
�

z, i::Inc
�

z, i=
�

z, i::Inc �

y :: A A	Add(b
 �

a, b::Add) Add�A y �
y :: A A	Inc(z
 �

z, i::Inc) Inc�A y �
y :: A A�Main(i i :: Main)Main�A y �
y :: A y = y :: A �

�

a, b::Add Add�Inc(
�

z, i �

z, i::Inc) Inc�Add y �
�

a, b::Add Add�A(�

x, y y :: A)A�Add y �
�

a, b::Add
�

a, b=
�

a, b::Add �
�

z, i::Inc Inc	Add(
�

a, b
 �

a, b:: Add) Add�Inc y �
�

z, i::Inc Inc�A(
�

y, � y :: A)A�Inc y �
�

z, i::Inc
�

z, i=
�

z, i::Inc �
i :: Main Main	A(y
 y ::A) A�Main i �
i :: Main Main	B(�
 ∅ ::B) B�Main i �
i :: Main i = i :: Main �

Fig. 5. Program slicing as term slicing - the fixpoint iterations

termSlicing terminates because there exists a finite set of function skeleton
subterms, a finite set of data flow graphs, a finite set of edges in the call graph
for each function, and any loop in the call graph is solved based on the data flow
graph ordering. Moreover, termSlicing produces a valid slice because it exhaus-
tively saturates the slicing criterion. However, the obtained slice is not minimal
due to the skeletons union �. Still, there is a consistent difference between the
näıve and the savvy methods. In order to achieve a better degree of minimality
we have to apply abstractions on the data-flow-augmented slicing criterion.

Towards a Formal Semantics-Based Technique for Interprocedural Slicing 303

4.2 System Description

We briefly present in this section our prototype which is implemented in Maude
[3]. The source code is available at http://maude.sip.ucm.es/slicing/. A key
distinguishing feature of Maude is its systematic and efficient use of reflection (i.e.
Maude’s capability of handling and reasoning about terms that represent speci-
fications described in Maude itself) through its predefined META-LEVEL module
[3, Chapter 14]. We have used these features to implement a tool that receives a
set of definitions, a sort where the computations take place, and a set of slicing
variables. Since all these elements can be used as usual data, we can traverse
the semantic rules, analyze them, and execute the program using them. Note
that the user has to provide the rules responsible for context-update while the
parameter passing operators �
 and � are particularized here to an
all-parameters-ordered-pass-by-reference pattern.

The tool is started by loading into Maude the slicing.maude file available at
the webpage above. It starts an input/output loop where modules and commands
can be introduced by enclosing them in parentheses. Once the module with the
semantics has been loaded, we have to introduce ESt, the sort for the mapping
between variables and values, and RWBUF, the sort for the read/write buffer, as
the sorts responsible for the side effects. Similarly, we indicate that CallF is the
rule for context-update:

Maude> (set side-effect sorts ESt RWBUF .)

ESt RWBUF selected as side effect sorts.

Maude> (set context-update rules CallF .)

CallF selected as context-update rules.

We can now start the slicing process by indicating that Statement is the sort
for instructions, myFuns is a constant standing for the definition of the functions
Main, A, Add, and Inc from Figure 4, and z is the slicing variable. The tool
displays the relevant variables and the sliced code for each function as:

Maude> (islice Statement with defs myFuns wrt z .)

The variables to slice ’Inc are {i, j, z}

’Inc(z){

Local i ; Local j ;

i := _ ; j := _ ;

Call ’Add(z,i);

Call ’Inc(j)

}

...

We test our proposed method for interprocedural slicing on a set of bench-
marks addressing embedded and real-time applications. As such, we use a set of
small examples, grouped under the name bundle, from a survey [24] on program
slicing techniques, automatically-generated code from typical Scade designs [5],
as well as a standard set of real-time benchmarks—called PapaBench [15]. In
Figure 6, each program is identified by name, a short description, size param-
eters (LOC, number of functions, #funs, and function calls, #calls), and the

http://maude.sip.ucm.es/slicing/

304 I.M. Asăvoae, M. Asăvoae, and A. Riesco

Name Program Description LOC #funs #calls red (%)

bundle A collection of (extended) 71 7 25 38 %

examples from [24]

selector 2 Generated code from 426 6 11 91 %

SCADE design - 2 SSM

selector 3 Generated code from 455 7 19 85 %

SCADE design - 3 SSM

autopilot PapaBench - autopilot 1384 95 214 74 %

fbw PapaBench - fly by wire 638 41 110 78 %

Fig. 6. Set of benchmark programs for interprocedural slicing

average reduction in the number of statements, for several runs with different
sets of slicing variables. This reduction shows that the methodology works better
on bigger programs (the bundle, with very small examples, presents the lowest
reduction, because all variables are closely related). The Scade benchmarks, ex-
plained below, present the greatest reduction because the variables have very
specific behaviors, hence allowing a very efficient use of slicing.

The Scade Suite development platform [5] is a mixed synchronous language,
combining variants of Lustre [9] (i.e. data-flow) and Esterel [2] (i.e. control-flow).
Scade facilitates the design of embedded and real-time systems in a modular
fashion, and the modularity is preserved in the generated C code. The two Scade
designs—selector 2 and selector 3—consist of two, and respectively three,
parallel state machines (called SSM - Safe State Machines) which embed in their
states calls to external functions and constrain (via shared variables) how these
state machines communicate among them.

PapaBench is extracted from an actual real-time system for Unmanned Aerial
Vehicle (UAV) and consists of two programs fly by wire and autopilot, de-
signed to run on different processors. The application consists of a number of
tasks which are executed in a control loop. For example, the autopilot program
focuses on the UAV airframe and has eight different tasks (e.g. for controlling
the navigation, stabilisation, altitude or communication - radio or GPS).

We test our interprocedural slicing at the level of the entire program as well
as at the level of each task. Let us consider the function radio control task

(in autopilot) which manages radio orders based on various operation modes
(e.g. PITCH, ROLL, THROTTLE, etc) and sets new values for several flight
parameters (e.g. desired roll or desired pitch). This particular function has a call
graph of about 21 nodes. We could use, for example, a slicing criterion which
consists of all program variables used in radio control task in order to in-
vestigate the tasks which are depending (i.e. their intraprocedural slice is not
empty) or not on the computation of radio control task. The interprocedu-
ral slice shows a dependence of the radio control task with tasks such as

Towards a Formal Semantics-Based Technique for Interprocedural Slicing 305

altitude control task and climb control task, which rely on global flight
parameters used by the radio controller. This testing strategy is applied on all
benchmarks and, together with the resulting traces and the Scade designs, are
available on the tool webpage at http://maude.sip.ucm.es/slicing/.

5 Concluding Remarks and Ongoing Work

The formal language definitions based on the rewriting logic framework sup-
port program executability and create the premises for further development of
program analyzers. In this paper we have presented a generic algorithm for inter-
procedural slicing based on results of meta-level analysis of the language seman-
tics. In summary, the slicing prerequisites are: side-effect and context-update
language constructs with data flow information for the side-effect constructs
and parameter passing patterns for the context-update constructs. The actual
program slicing computation, presented in the current work, is done through
term slicing and is meant to set the aforementioned set of prerequisites. This
work complements the recent advances in semantics-constructed tools for de-
bugging [18], automated testing [16], and program analysis [17].

From the prototype point of view, we also plan to investigate the auto-
matic inference of the newly identified slicing prerequisites, i.e., meta-analysis for
context-updates deduction and parameter passing pattern inference. This would
greatly simplify the user task, since he will just introduce the program and the
slicing criterion and the tool would be in charge of computing all the required
constructors. We also have to further develop the already existing side-effect ex-
traction with data flow information. Finally, we aim to develop the method for
language semantics defined in Maude but also in K [19].

References

1. Alpuente, M., Ballis, D., Espert, J., Romero, D.: Backward trace slicing for rewrit-
ing logic theories. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS, vol. 6803, pp. 34–48. Springer, Heidelberg (2011)

2. Berry, G., Gonthier, G.: The esterel synchronous programming language: Design,
semantics, implementation. Sci. Comput. Program (SCP) 19(2), 87–152 (1992)

3. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

4. Ellison, C., Rosu, G.: An executable formal semantics of c with applications. In:
POPL, pp. 533–544 (2012)

5. Esterel Technologies Scade Language Reference Manual 2011 (2011)
6. Farzan, A., Chen, F., Meseguer, J., Roşu, G.: Formal analysis of java programs in

javaFAN. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 501–505.
Springer, Heidelberg (2004)

7. Gulwani, S., Tiwari, A.: Computing procedure summaries for interprocedural anal-
ysis. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 253–267. Springer,
Heidelberg (2007)

http://maude.sip.ucm.es/slicing/

306 I.M. Asăvoae, M. Asăvoae, and A. Riesco

8. Harman, M., Danicic, S.: Using program slicing to simplify testing. Journal of
Software Testing, Verification and Reliability 5, 143–162 (1995)

9. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow
programming language lustre. In: Proc. of the IEEE, pp. 1305–1320 (1991)

10. Hennessy, M.: The Semantics of Programming Languages: An Elementary Intro-
duction Using Structural Operational Semantics. John Wiley & Sons (1990)

11. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs.
In: Conference on Programming Language Design and Implementation, PLDI 1988,
pp. 35–46 (1988)

12. Jhala, R., Majumdar, R.: Path slicing. In: Proc. of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2005,
pp. 38–47. ACM Press (2005)

13. Mart́ı-Oliet, N., Meseguer, J.: Rewriting logic: roadmap and bibliography. Theor.
Comput. Sci. 285(2), 121–154 (2002)

14. Meseguer, J., Roşu, G.: The rewriting logic semantics project. Theoretical Com-
puter Science 373(3), 213–237 (2007)

15. Nemer, F., Cassé, H., Sainrat, P., Bahsoun, J.P., De Michiel, M.: PapaBench: a
Free Real-Time Benchmark. In: WCET 2006 (2006)

16. Riesco, A.: Using semantics specified in Maude to generate test cases. In: Roy-
choudhury, A., D’Souza, M. (eds.) ICTAC 2012. LNCS, vol. 7521, pp. 90–104.
Springer, Heidelberg (2012)

17. Riesco, A., Asăvoae, I.M., Asăvoae, M.: A generic program slicing technique based
on language definitions. In: Mart́ı-Oliet, N., Palomino, M. (eds.) WADT 2012.
LNCS, vol. 7841, pp. 248–264. Springer, Heidelberg (2013)

18. Riesco, A., Verdejo, A., Mart́ı-Oliet, N., Caballero, R.: Declarative debugging of
rewriting logic specifications. Journal of Logic and Algebraic Programming (2012)

19. Şerbănuţă, T., Ştefănescu, G., Roşu, G.: Defining and executing P systems with
structured data in K. In: Corne, D.W., Frisco, P., Păun, G., Rozenberg, G., Sa-
lomaa, A. (eds.) WMC 2008. LNCS, vol. 5391, pp. 374–393. Springer, Heidelberg
(2009)

20. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In:
Program Flow Analysis, pp. 189–233 (1981)

21. Silva, J., Chitil, O.: Combining algorithmic debugging and program slicing. In:
PPDP, pp. 157–166. ACM Press (2006)

22. Sridharan, M., Fink, S.J., Bod́ık, R.: Thin slicing. In: PLDI, pp. 112–122 (2007)
23. Tian, C., Feng, M., Gupta, R.: Speculative parallelization using state separation

and multiple value prediction. In: Proc. of the 2010 International Symposium on
Memory Management, ISMM 2010, pp. 63–72. ACM Press (2010)

24. Tip, F.: A survey of program slicing techniques. J. Prog. Lang. 3(3) (1995)
25. Verdejo, A., Mart́ı-Oliet, N.: Executable structural operational semantics in

Maude. Journal of Logic and Algebraic Programming 67, 226–293 (2006)
26. Weiser, M.: Program slicing. In: Proc. of the 5th International Conference on Soft-

ware Engineering, ICSE 1981, pp. 439–449. IEEE Press (1981)

	Towards a Formal Semantics-Based Technique for Interprocedural Slicing
	Introduction
	Related Work
	Preliminaries
	Semantics-Based Interprocedural Slicing
	Program Slicing as Term Slicing
	System Description

	Concluding Remarks and Ongoing Work

