
Temporal Random Testing for Spark Streaming

Adrián Riesco(B) and Juan Rodŕıguez-Hortalá

Universidad Complutense de Madrid, Madrid, Spain
{ariesco,juanrh}@fdi.ucm.es

Abstract. With the rise of Big Data technologies, distributed stream
processing systems (SPS) have gained popularity in the last years.
Among them, Spark Streaming stands out as a particularly attractive
option with a growing adoption in the industry. In this work we explore
the combination of temporal logic and property-based testing for test-
ing Spark Streaming programs, by adding temporal logic operators to
ScalaCheck generators and properties. This allows us to deal with the
time component that complicates the testing of Spark Streaming pro-
grams and SPS in general. In particular we propose a discrete time linear
temporal logic for finite words, that allows to associate a timeout to each
temporal operator in order to increase the expressiveness of generators
and properties. Finally, our prototype is presented with some examples.

Keywords: Stream processing systems · Spark streaming · Property-
based testing · Random testing · Linear temporal logic · Scala · Big
data

1 Introduction

With the rise of Big Data technologies [14], distributed stream processing sys-
tems (SPS) [1,14,25] have gained popularity in the last years. These systems
are used to continuously process high volume streams of data, with applica-
tions ranging from anomaly detection [1], low latency social media data aggre-
gation [14], or the emergent IoT market. Although the first precedents of stream
processing systems come back as far as the early synchronous data-flow program-
ming languages like Lutin [18] or Lustre [10], with the boom of SPS a plethora of
new systems have arisen [12,20,25], characterized by a distributed architecture
designed for horizontal scaling. Among them Spark Streaming [25] stands out as
a particularly attractive option, with a growing adoption in the industry. In this
work we focus on Spark Streaming. Spark [24] is a distributed processing engine
that is quickly consolidating as an alternative to Hadoop MapReduce [14], due
to an extended memory hierarchy that allows for an increased performance in

This research has been partially supported by MINECO Spanish projects Strong-
Soft (TIN2012-39391-C04-04), CAVI-ART (TIN2013-44742-C4-3-R), and TRACES
(TIN2015-67522-C3-3-R), and by the Comunidad de Madrid project N-Greens
Software-CM (S2013/ICE-2731).

c© Springer International Publishing Switzerland 2016
E. Ábrahám and M. Huisman (Eds.): IFM 2016, LNCS 9681, pp. 393–408, 2016.
DOI: 10.1007/978-3-319-33693-0 25

394 A. Riesco and J. Rodŕıguez-Hortalá

scala> val cs : RDD[Char] = sc.parallelize("let’s count some letters", numSlices=3)
scala> cs.map{(_, 1)}.reduceByKey{_+_}.collect()
res4: Array[(Char, Int)] = Array((t,4), (,3), (l,2), (e,4), (u,1), (m,1), (n,1), (r,1),

(’,1), (s,3), (o,2), (c,1))

Fig. 1. Letter count in spark

many situations, and a collection-based higher level API inspired in functional
programming that together with a “batteries included” philosophy accelerates
the development of Big Data processing applications. These “batteries” include
libraries for scalable machine learning, graph processing, a SQL engine, and
Spark Streaming. The core of Spark is a batch computing framework [24], that
is based on manipulating so called Resilient Distributed Datasets (RDDs), which
provide a fault tolerant implementation of distributed multisets. Computations
are defined as transformations on RDDs, that should be deterministic and side-
effect free, as the fault tolerance mechanism of Spark is based on its ability to
recompute any fragment (partition) of an RDD when needed. Hence Spark pro-
grammers are encouraged to define RDD transformations that are pure functions
from RDD to RDD, and the set of predefined RDD transformations includes typ-
ical higher-order functions like map, filter, etc., as well as aggregations by key
and joins for RDDs of key-value pairs. We can also use Spark actions, which
allow us to collect results into the program driver or store them into an external
data store. Spark actions are impure, but idempotent actions are recommended
in order to ensure a deterministic behavior even in the presence of recomputa-
tions triggered by the fault tolerance or speculative task execution mechanisms.1

Spark is written in Scala and offers APIs for Scala, Java, Python, and R; in this
work we focus on the Scala API. The example in Fig. 1 uses the Scala Spark shell
to implement a variant of the famous word count example that in this case com-
putes the number of occurrences of each character in a sentence. For that we use
parallelize, a feature of Spark that allows us to create an RDD from a local
collection, which is useful for testing. We start with a set of chars distributed
among 3 partitions, we pair each char with a 1 by using map, and then group by
first component in the pair and sum by the second by using reduceByKey and
the addition function (+), thus obtaining a set of (char, frequency) pairs. We
collect this set into an Array in the driver with collect.

These notions of transformations and actions are extended in Spark Stream-
ing from RDDs to DStreams (Discretized Streams), which are series of RDDs
corresponding to micro batches. These batches are generated at a fixed rate
according to the configured batch interval. Spark Streaming is synchronous in
the sense that given a collection of input and transformed DStreams, all the
batches for each DStream are generated at the same time as the batch interval
is met. Actions on DStreams are also periodic and are executed synchronously for
each micro batch. The code in Fig. 2 is the streaming version of the code in Fig. 1.
Here we want to process a DStream of characters, where batches are obtained by

1 See https://spark.apache.org/docs/latest/programming-guide.html for more details.

https://spark.apache.org/docs/latest/programming-guide.html

Temporal Random Testing for Spark Streaming 395

object HelloSparkStreaming extends App {
val conf = new SparkConf().setAppName("HelloSparkStreaming")

.setMaster("local[5]")
val sc = new SparkContext(conf)
val batchInterval = Duration(100)
val ssc = new StreamingContext(sc, batchInterval)
val batches = "let’s count some letters, again and again"

.grouped(4)
val queue = new Queue[RDD[Char]]
queue ++= batches.map(sc.parallelize(_, numSlices = 3))
val css : DStream[Char] = ssc.queueStream(queue,

oneAtATime = true)
css.map{(_, 1)}.reduceByKey{_+_}.print()
ssc.start()
ssc.awaitTerminationOrTimeout(5000)
ssc.stop(stopSparkContext = true)

}

Time: 1449638784400 ms

(e,1)
(t,1)
(l,1)
(’,1)
...

Time: 1449638785300 ms

(i,1)
(a,2)
(g,1)

Time: 1449638785400 ms

(n,1)

Fig. 2. Letter count in spark streaming

splitting a String into pieces by making groups (RDDs) of 4 consecutive charac-
ters, using grouped. We use the testing utility class QueueInputDStream, which
generates batches by picking RDDs from a queue, to generate the input DStream
by parallelizing each substring into an RDD with 3 partitions. The program is
executed using the local master mode of Spark, which replaces slave nodes in a
distributed cluster by threads, which is useful for developing and testing.

The Problem of Testing. As the field has grown mature, several standard archi-
tectures for streaming processing like the Lambda Architecture [14] or reactive
streams [12] have been proposed for implementing a cost effective, always up-
to-date view of the data that allows the system to react on time to events.
These architectures deal in different ways with trade-offs between latency, per-
formance, and system complexity. The bar is also raised by the sophistication of
the algorithms involved. To keep up with the speed on the input data stream,
approximate algorithms with sublinear performance are used, even for otherwise
simple aggregations [8]. Similarly, specialized machine learning and data stream
mining algorithms are adapted to the stream processing context [15].

Moreover, dealing with time and events makes SPS-based programs intrin-
sically hard to test. There are several proposals in the literature that deal with
the problem of testing and modeling systems that deal with time. In this work,
we focus on Pnueli’s approach [17] based on the use of temporal logic for testing
reactive systems. Our final goal is facilitating the adoption of temporal logic as an
every day tool for testing SPS-based programs. But, how could we present tem-
poral logic in a way accessible to the average programmer? We propose exploring
how property-based testing (PBT) [7], as realized in ScalaCheck [16], can be the
answer, using it as a bridge between formal logic and software development prac-
tices like test-driven development (TDD) [5]. The point is that PBT is a testing
technique with a growing adoption in the industry, that already exposes first
order logic to the programmer. In PBT a test is expressed as a property, which
is a formula in a restricted version of first order logic that relates program input

396 A. Riesco and J. Rodŕıguez-Hortalá

and output. The testing framework checks the property by evaluating it against
a bunch of randomly generated inputs. If a counterexample for the property is
found then the test fails, otherwise it passes. The following is a “hello world”
ScalaCheck property that checks the commutativity of addition:2

class HelloPBT extends Specification with ScalaCheck {

def is = s2"""Hello world PBT spec, where int addition is commutative $intAdditionCommutative"""

def intAdditionCommutative =

Prop.forAll("x" |: arbitrary[Int], "y" |: arbitrary[Int]) { (x, y) => x + y === y + x

}.set(minTestsOk = 100) }

PBT is based on generators (the functions in charge of computing the inputs)
and assertions (the formula to be checked), that together with a quantifier form
a property. In the example above the universal quantifier Prop.forAll is used to
define a property that checks the assertion x + y === y + x for 100 values for
x and y randomly generated by two instances of the generator arbitrary[Int].
Each of those pairs of values generated for x and y is called a test case, and a test
case that refutes the assertions of a property is called a counterexample. Here
arbitrary is a higher order generator that is able to generate random values for
predefined and custom types. Besides universal quantifiers, ScalaCheck supports
existential quantifiers — although these are not much used in practice [16,22]—,
and logical operators to compose properties. PBT is a sound procedure to check
the validity of the formulas implied by the properties, because if a counterex-
ample is found it gives a definitive proof that the property is false. However, it
is not complete, as there is no guarantee that the whole space of test cases is
explored exhaustively, so if no counterexample is found then we cannot conclude
that the property holds for all possible test cases that could had been generated.
PBT is a lightweight approach that does not attempt to perform sophisticated
automatic deductions, but it provides a very fast test execution that is suitable
for the TDD cycle, and empirical studies [7,21] have shown that in practice ran-
dom PBT obtains good results, with a quality comparable to more sophisticated
techniques. This goes in the line of assuming that in general testing of non trivial
systems is often incomplete, as the effort of completely modeling all the possible
behaviors of the system under test with test cases is not cost effective in most
software development projects, except for critical systems.

We already have programmers using first order logic to write the proper-
ties for the test cases. So to realize our proposal, all that is left is extending
ScalaCheck to be able to use temporal logic operators from some variant of
propositional LTL [6]. We will give the details for our temporal logic in the
next section; for the time being consider that we have temporal operators with
bounded time such as always ϕ in t, which indicates that ϕ must hold for the
next t instants, or ϕ until ψ in t, which indicates that ϕ currently holds and,
before t instants of time elapse, ψ must hold. That way we would obtain a propo-
sitional LTL formula extended with an outer universal quantifier over the test
cases produced by the generators. This temporal logic should use discrete time,
as DStreams are discrete. Also, the logic should fit the simple property checking

2 Here we use the integration of ScalaCheck with the Specs2 [21] testing library.

Temporal Random Testing for Spark Streaming 397

mechanism of PBT, that requires fast evaluation of each test case. For this reason
we use a temporal logic for finite words, like those used in the field of runtime
verification [13], instead of using infinite ω-words as usual in model checking.
Although any Spark DStream is supposed to run indefinitely, so it might well
be modeled by an infinite word, in our setting we only model a finite prefix of
the DStream. This allows us to implement a simple and fast sound procedure
for evaluating test cases, because if a prefix of a DStream refutes a property
then the whole infinite DStream also refutes the property. On the other hand
the procedure is not complete because only a prefix of the DStream is evaluated,
but anyway PBT was not complete in the first place. Hence our test cases will
be finite prefixes of DStreams, that correspond to finite words in this logic. In
Sect. 2 there is a precise formulation of our logic LTLss , for now let’s consider a
concrete example in order to get a quick grasp of our proposal.

Example 1. We would like to test a Spark Streaming program that takes a
stream of user activity data and returns a stream of banned users. To keep
the example simple, we assume that the input records are pairs containing a
Long user id, and a Boolean value indicating whether the user has been hon-
est at that instant. The output stream should include the ids of all the users
that have been malicious now or in a previous instant. So, the test subject
that implement this has type testSubject : DStream[(Long, Boolean)] =>
DStream[Long]). Note that a trivial, stateless implementation of this behavior
that just keeps the first element of the pair fails to achieve this goal, as it is not
able to remember which users had been malicious in the past.

def statelessListBannedUsers(ds : DStream[(Long, Boolean)]) :

DStream[Long] = ds.map(_._1)

To define a property that captures this behavior, we start by defining a
generator for (finite prefixes of) the input stream. As we want this input to
change with time, we use a temporal logic formula to specify the generator. We
start by defining the atomic non-temporal propositions, which are generators
of micro batches with type Gen[Batch[(Long, Boolean)]], where Batch is a
class extending Seq that represents a micro batch. We can generate good batches,
where all the users are honest, and bad batches, where a user has been malicious.
We generate batches of 20 elements, and use 15L as the id for the malicious id:

val batchSize = 20

val (badId, ids) = (15L, Gen.choose(1L, 50L))

val goodBatch = BatchGen.ofN(batchSize, ids.map((_, true)))

val badBatch = goodBatch + BatchGen.ofN(1, (badId, false))

So far generators are oblivious to the passage of time. But in order to exer-
cise the test subject thoroughly, we want to ensure that a bad batch is indeed
generated, and that several arbitrary batches are generated after it, so we can
check that once a user is detected as malicious, it is also consider malicious in
subsequent instants. And we want all this to happen within the confines of the
generated finite DStream prefix. This is where timeouts come into play. In our

398 A. Riesco and J. Rodŕıguez-Hortalá

temporal logic we associate a timeout to each temporal operator, that constrains
the time it takes for the operator to resolve. For example in a use of until with a
timeout of t, the second formula most hold before t instants have passed. Trans-
lated to generators this means that in each generated DStream prefix a batch for
the second generator is generated before t batches have passed, i.e. between the
first and the t-th batch. This way we facilitate that the interesting events had
enough time to happen during the limited fraction of time considered during the
evaluation of the property.

val (headTimeout, tailTimeout, nestedTimeout) = (10, 10, 5)

val gen = BatchGen.until(goodBatch, badBatch, headTimeout) ++

BatchGen.always(Gen.oneOf(goodBatch, badBatch), tailTimeout)

The resulting generator gen has type Gen[PDStream[(Long, Boolean)]],
where PDStream is a class that represents sequences of micro batches corre-
sponding to a DStream prefix. Here headTimeout limits the number of batches
before the bad batch occurs, while tailTimeout limits the number of arbitrary
batches generated after that. The output stream is simply the result of applying
the test subject to the input stream. Now we define the assertion that completes
the property, as a temporal logic formula.

type U = (RDD[(Long, Boolean)], RDD[Long])

val (inBatch, outBatch) = ((_ : U)._1, (_ : U)._2)

val formula : Formula[U] = {

val allGoodInputs = at(inBatch)(_ should foreachRecord(_._2 == true))

val badInput = at(inBatch)(_ should existsRecord(_ == (badId, false)))

val noIdBanned = at(outBatch)(_.isEmpty)

val badIdBanned = at(outBatch)(_ should existsRecord(_ == badId))

((allGoodInputs and noIdBanned) until badIdBanned on headTimeout) and

(always { badInput ==> (always(badIdBanned) during nestedTimeout) }

during tailTimeout) }

Atomic non-temporal propositions correspond to assertions on the micro-
batches for the input and output DStreams. That is expressed by the type alias
U for the universe of atomic propositions. The functions inBatch and outBatch
can be combined with at and a Specs2 assertion to define non-temporal atomic
propositions like allGoodInputs, that states that all the records in the input
DStream correspond to honest users. But we know that this will not be hap-
pening forever, because gen eventually creates a bad batch, so we combine the
atomic propositions using temporal operators to state things like “we have good
inputs and no id banned until we ban the bad id” and “each time we get a bad
input we ban the bad id for some time.” Here we use the same timeouts we used
for the generators, to enforce the formula within the time interval where the
interesting events are generated. Also, we use an additional nestedTimeout for
the nested always. Timeouts for operators that apply an universal quantification
on time, like always, limit the number of instants that the quantified formula
needs to be true for the whole formula to hold. In this case we only have to check

Temporal Random Testing for Spark Streaming 399

badIdBanned for nestedTimeout batches for the nested always to be evaluated
to true. Following ideas from the field of runtime verification [3,4], we consider a
3-valued logic where the third value corresponds to an inconclusive result used as
the last resort when the input finite word is consumed before completely solving
the temporal formula. Timeouts for universal time quantifiers help relaxing the
formula so its evaluation is conclusive more often, while timeouts for existential
time quantifiers like until make the formula more strict. We consider that it is
important to facilitate expressing properties with a definite result, as quantifiers
like exists, that often lead properties to an inconclusive evaluation, have been
abandoned in practice by the PBT user community [16,22].

Finally, we use our temporal universal quantifier forAllDStream to put
together the temporal generator and formula, getting a property that checks
the formula for all the finite DStreams prefixes produced by the generator:

forAllDStream(gen)(testSubject)(formula).set(minTestsOk = 20)

The property fails as expected for the faulty trivial implementation above,
and succeeds for a correct stateful implementation [19].

The rest of the paper is organized as follows: Sect. 2 describes our logic
for testing stream processing systems, while Sect. 3 presents its implementation
for Spark. Section 4 discusses some related work. Finally, Sect. 5 concludes and
presents some subjects of future work. An extended version of this paper can be
found in [19].

2 A Temporal Logic for Testing Spark Streaming
Programs

We present in this section a linear temporal logic for defining properties on
stream processing systems. We first define the basics of the logic and then show
some interesting properties to prove formulas in an efficient way.

2.1 A Linear Temporal Logic with Timeouts for Practical
Specification of Stream Processing Systems

We present in this section LTLss , a linear temporal logic that specializes LTL3 [3]
by allowing timeouts in temporal connectives. LTL3 is an extension of LTL for
runtime verification that takes into account that only finite executions can be
checked, and hence a new value ? (inconclusive) can be returned if a property
cannot be evaluated to either true (�) or false (⊥). These values form a lattice
with ⊥ ≤ ? ≤ �.

LTLss pays closer attention than LTL3 to finite executions by limiting the
scope of temporal connectives. This allows users (i) to obtain either � or ⊥ for
any execution given it has a given length, which can be computed beforehand,
and (ii) to define more precise formulas, since it is possible to indicate in an easy
way the period when it is expected to hold. Moreover, as we will see in Sect. 2.2,
we have devised an efficient algorithm for evaluating these formulas.

400 A. Riesco and J. Rodŕıguez-Hortalá

Formulae Syntax. In line with [3], assume a finite set of atomic propositions
AP . We consider the alphabet Σ = P(AP). A finite word over Σ is any u ∈ Σ∗,
i.e. any finite sequence of sets of atomic propositions. We use the notation u =
a1 . . . an to denote that u has length n and ai is the letter at position or time i
in u. Each letter ai corresponds to a set of propositions from AP that hold at
time i. LTLss is a variant of propositional lineal temporal logic where formulas
ϕ ∈ LTLss are defined as:

ϕ ::= ⊥ | � | p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ → ϕ | Xϕ | ♦tϕ | �tϕ | ϕ Ut ϕ | ϕ Rt ϕ

for p ∈ AP , and t ∈ N
+ a timeout. We will use the notation Xnϕ, n ∈ N

+, as
a shortcut for n applications of the operator X to ϕ. The intuition underlying
these formulas, that are formally defined below, is:3

– Xϕ, read “next ϕ,” indicates that ϕ holds in the next state.
– ♦tϕ, read “eventually ϕ in t,” indicates that ϕ holds in any of the next t states

(including the current one).
– �tϕ, read “always ϕ in t,” indicates that ϕ holds in all of the next t states

(including the current one).
– ϕ1 Ut ϕ2, read “ϕ1 holds until ϕ2 in t,” indicates that ϕ1 holds until ϕ2 holds

in the next t states, including the current one. It is enough for ϕ1 to hold until
the state previous to the one where ϕ2 holds.

Note that if t = ∞ then LTLss would correspond to LTL3. However, since our
programs can only process finite words, we only work with t ∈ N

+. In this case
it is possible to discard the inconclusive value and obtain only definite values if
some constraints hold between the word and the formula being tested.

Logic for Finite Words. The logic for finite words proves judgements u, i � ϕ : v
for u ∈ Σ∗, i ∈ N

+, and v ∈ {�,⊥, ?}.

u, i � ♦tϕ :

⎧
⎨

⎩

� if ∃k ∈ [i,min(i + (t − 1), len(u))]. u, k � ϕ : ⊥
⊥ if i + (t − 1) ≤ len(u) ∧ ∀k ∈ [i, i + (t − 1)]. u, k � ϕ1 : ⊥
? otherwise

u, i � �tϕ :

⎧
⎨

⎩

� if i + (t − 1) ≤ len(u) ∧ ∀k ∈ [i, i + (t − 1)]. u, k � ϕ : �
⊥ if ∃k ∈ [i,min(i + (t − 1), len(u))]. u, k � ϕ : ⊥
? otherwise

u, i � ϕ1 Ut ϕ2 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

� if ∃k ∈ [i,min(i + (t − 1), len(u))]. u, k � ϕ2 : � ∧
∀j ∈ [i, k). u, j � ϕ1 : �

⊥ if ∃k ∈ [i,min(i + (t − 1), len(u))]. u, k � ϕ1 : ⊥ ∧
∀j ∈ [i, k]. u, j � ϕ2 : ⊥

⊥ if i + (t − 1) ≤ len(u) ∧ ∀k ∈ [i, i + (t − 1)]. u, k � ϕ1 :� ∧
∀l ∈ [i,min(i + (t − 1), len(u))]. u, l � ϕ2 : ⊥

? otherwise
3 Due to space limitations, the results for release are available in [19].

Temporal Random Testing for Spark Streaming 401

u, i � Xϕ :
{

? if i = len(u)
v if i < len(u) ∧ u, i + 1 � ϕ : v

The intuition underlying this definition is that, if the word is too short to
check all the steps indicated by a temporal operator and neither � or ⊥ can be
obtained before finishing the word, then ? is obtained. Otherwise, the formula
is evaluated to either � or ⊥ just by checking the appropriate sub-word. In the
following we say u � ϕ iff u, 1 � ϕ : �. Note that these formulas, when used as
generators, produce finite words that fulfill the formula. In our tool these words
are minimal in the sense that it stops as soon as the word fulfills the formula. By
using temporal logic not only for the formulas but also for the data generators,
we obtain a simple setting that is easy to grasp for average programmers.

Example 2. Assume the set of atomic propositions AP ≡ {a, b, c} and the word
u ≡ {b} {b} {a, b} {a} . Then we have the following results:

– u � (♦4 c) : ⊥, since c does not hold in the first four states.
– u � (♦5 c) : ?, since we have consumed the whole word, c did not hold in those

states, and the timeout has not expired.
– u � �4 (a ∨ b) : �, since either a or b is found in the first four states.
– u � �5 (a ∨ b) : ?, since the property holds until the word is consumed, but

the user required more steps.
– u � �5 c : ⊥, since the proposition does not hold in the first state.
– u � (b U2 a) : ⊥, since a holds in the third state, but the user wanted to check

just the first two states.
– u � (b U5 a) : �, since a holds in the third state and, before that, b held in all

the states.
– u � �4(a → Xa) : ?, since we do not know what happens in the fifth state,

which is required to check the formula in the fourth state (because of next).
– u � �2(b → ♦2 a) : ⊥, since in the first state we have b but we do not have a

until the third state.
– u � b U2 X(a ∧ Xa) : �, since X(a ∧ Xa) holds in the second state (that is,

a ∧ Xa holds in the third state, which can also be understood as a holds in
the third and fourth states).

Example 3. The generator defined by the formula �2(b → ♦2 a) above would
randomly generate words such as {b} {a, b} {a} , {a} {a} {a} , or
{a} {b} {a} , among others.

We need now a decision procedure for evaluating formulas. Although we
can use the formal definitions above to define it, we would obtain a procedure
that requires the whole stream to be traversed before taking the next step,
greatly worsening the performance of the tool. We propose in the next section
a transformation that allows us to implement a stepwise algorithm. Details on
the näıve procedure can be found in [19].

402 A. Riesco and J. Rodŕıguez-Hortalá

2.2 A Transformation for Stepwise Evaluation

In order to define this stepwise evaluation, it is worth noting that all the prop-
erties are finite (that is, all of them can be proved or disproved after a finite
number of steps). It is hence possible to express any formula only using the
temporal operator X, which leads us to the following definition.

Definition 1 (Next Form). We say that a formula ψ ∈ LTLss is in next form
iff. it is built by using the following grammar:

ψ ::= ⊥ | � | p | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | ψ → ψ | Xψ

It is possible to obtain the next form of any formula ϕ ∈ LTLss as:

Definition 2 (Next Transformation). Given an alphabet Σ and a formula
ϕ ∈ LTLss , the function nt(ϕ) computes another formula ϕ′ ∈ LTLss , such that
ϕ′ is in next form and ∀u ∈ Σ∗.u � ϕ ⇐⇒ u � ϕ′.

nt(a) = a, a ∈ {�,⊥, p}
nt(¬ϕ) = ¬nt(ϕ)
nt(ϕ1 op ϕ2) = nt(ϕ1) op nt(ϕ2), with op either ∨ , ∧ , or → .
nt(Xϕ) = Xnt(ϕ)
nt(♦tϕ) = nt(ϕ) ∨ Xnt(ϕ) ∨ . . . ∨ Xt−1nt(ϕ)
nt(�tϕ) = nt(ϕ) ∧ Xnt(ϕ) ∧ . . . ∧ Xt−1nt(ϕ)
nt(ϕ1 Ut ϕ2) = nt(ϕ2) ∨ (nt(ϕ1) ∧ Xnt(ϕ2))∨

(nt(ϕ1) ∧ Xnt(ϕ1) ∧ X2nt(ϕ2)) ∨ . . . ∨
(nt(ϕ1) ∧ Xnt(ϕ1) ∧ . . . ∧ Xt−2nt(ϕ1) ∧ Xt−1nt(ϕ2))

for p ∈ AP and ϕ,ϕ1, ϕ2 ∈ LTLss .

It is easy to see that the formula obtained by this transformation is in next
form, since it only introduces formulas using the X operator. The equivalence
between formulas is stated in Theorem 1 (the proof is available in [19]):

Theorem 1. Given an alphabet Σ and formulas ϕ,ϕ′ ∈ LTLss , such that ϕ′ ≡
nt(ϕ), we have ∀u ∈ Σ∗.u � ϕ ⇐⇒ u � ϕ′.

Example 4. We show how to transform some of the formulas from Example 2:

– nt(♦4 c) = c ∨ Xc ∨ X2c ∨ X3c
– nt(b U2 a) = a ∨ (b ∧ Xa)
– nt(�2(b → ♦2 a)) = (b → (a ∨ Xa)) ∧ X(b → (a ∨ Xa))
– nt(b U2 X(a ∧ Xa)) = X(a ∧ Xa) ∨ (b ∧ X2(a ∧ Xa))

Once the next form of a formula has been computed, it is possible to evaluate
it for a given word just by traversing its letters. We just evaluate the atomic
formulas in the present moment (that is, those properties that does not contain
the next operator) and remove the next operator otherwise, so these properties
will be evaluated for the next letter. This method is detailed as follows:

Temporal Random Testing for Spark Streaming 403

Definition 3 (Letter Simplification). Given a formula ψ in next form and
a letter s ∈ Σ, the function ls(ψ, s) simplifies ψ with s as follows:

– ls(�, s) = �.
– ls(⊥, s) = ⊥.
– ls(p, s) = p ∈ s.
– ls(¬ψ, s) = ¬ls(ψ).

– ls(ψ1 ∨ ψ2, s) = ls(ψ1) ∨ ls(ψ2).
– ls(ψ1 ∧ ψ2, s) = ls(ψ1) ∧ ls(ψ2).
– ls(ψ1 → ψ2, s) = ls(ψ1) → ls(ψ2).
– ls(Xψ, s) = ψ.

Using this function and applying propositional logic when definite values are
found it is possible to evaluate formulas in a step-by-step fashion.4 This trans-
formation gives also the intuition that inconclusive values can be avoided if we
use a word as long as the number of next operators nested in the transformation
plus 1. A formal definition for this property can be found in [19].

3 Temporal Logic for Property-Based Testing

Our prototype extends ScalaCheck to support LTLss formulas for testing Spark
Streaming programs. We use Spark’s local mode to execute the test locally, so
it is limited by the computing power of a single machine, but can be easily inte-
grated in a continuous integration pipeline (e.g. the one for this same project
https://travis-ci.org/juanrh/sscheck). Besides, our system is able to test pro-
grams without any modification. The system is available at https://github.com/
juanrh/sscheck/releases.

Mapping Spark Streaming Programs into LTLss . Instead of using wall-
clock time, like e.g. in Specs2’s future matchers [21], we consider the logical time
as discretized by the batch interval. At each instant, for each DStream we can see
an RDD for the current batch as it was computed instantaneously. In practice the
synchronization performed by Spark Streaming makes it appear like that, when
enough computing resources are available. We define our atomic propositions as
assertions over those RDDs. We have implemented an algebraic data type as a
Scala trait Formula, that is parameterized on a universe type for the alphabet.
The universe is a tuple of RDDs with one component for each DStream: e.g. in
the example at the end of Sect. 1 the universe was defined by the alias type U =
(RDD[Double], RDD[Long]), where the first component is the current batch for
the input DStream and the second the current batch for the output DStream.
Formula has a child case class for each of the constructions in LTLss , with a
couple of exceptions. ⊥, �, and atomic propositions are all represented by the
case class Now, which is basically a wrapper for a function from the universe
into a ScalaCheck Prop.Status value, that represents a truth value. We need
a function because we have to repeatedly apply it to each of the batches that
are generated for each DStream. We provide suitable Scala implicit conversions
for defining these functions more easily, using specs2 matchers: for example, at
the end of Sect. 1, the argument of the always used to define the value formula
is implicitly converted into a Now object. The other exception is Solved, that
4 Note that the value? is only reached when the word is consumed and this simplifi-
cation cannot be applied.

https://travis-ci.org/juanrh/sscheck
https://github.com/juanrh/sscheck/releases
https://github.com/juanrh/sscheck/releases

404 A. Riesco and J. Rodŕıguez-Hortalá

is used to represented formulas that have been evaluated completely. Although
LTLss is a propositional temporal logic, in our prototype we add an additional
outer universal quantifier on the test cases, as usual in PBT, so the test passes
iff none of the generated test cases is able to refute the formula. Currently we do
not support nesting of first order ScalaCheck quantifiers inside LTLss formulas.

We have also implemented higher-order ScalaCheck generators correspond-
ing to temporal operators, where each generated test case represents a finite
prefix of a DStream. For that we use the classes Batch[A] and PDStream[A]—
that stands for prefix DStream—extending Seq[A] and Seq[Batch[A]] with
additional operations like batch-wise union of PDStream.

Evaluating Temporal Properties. We provide a trait DStreamTLProperty
with a method forAllDStream, as described in Sect. 1, for specifying properties
on functions that transform DStreams, using the logic LTLss . The class Formula
has methods for computing the next form, and for performing a step in the
letter simplification process from Definition 3 by consuming a value of the type
of the universe. On property evaluation we use TestInputStream from [11] to
transform each PDStream[A] into a DStream[A], and apply the test subject to
create a derived DStream. Then we register a foreachRDD action on the input
DStream that updates a Formula object for each new generated batch. For each
test case we create a fresh streaming context, which is important for test case
isolation in stateful transformations. We then start the Spark streaming context
to start the computation, and then run a standard ScalaCheck forall property
to generate the test cases. As soon as a Solved formula with failing status is
reached, we stop the streaming context and return a failing property, and so
ScalaCheck reports the current test case as a counterexample for the formula.

The resulting system has a reasonable performance. On a more realistic exam-
ple based on official Spark training (computing the most popular hastag in a
stream of tweets5), our system evaluates 50 test cases in 2 min and 4 s running
in an Intel i7-4810MQ CPU with 16 GB RAM. The batchDuration parameter
can be tuned according to the power of the machine: smaller values for faster
machines, to complete the test earlier, and bigger values for slower machines, so
the machine has more time to compute each of the batches.

4 Related Work

We can consider the system presented in this paper an evolution of the data-
flow approaches devised for reactive systems in the past decades; we focus here
in Lustre [10] and Lutin [18], since we consider they present a number of fea-
tures that are representative of this kind of systems. In fact, the idea underlying
both stream processing systems and data-flow reactive systems is very similar:

5 See https://github.com/juanrh/sscheck-examples/blob/master/src/test/scala/es/
ucm/fdi/sscheck/spark/demo/twitter/TwitterAmpcampDemo.scala and https://
github.com/juanrh/sscheck-examples/wiki/TwitterAmpcampDemo-execution for
the execution logs.

https://github.com/juanrh/sscheck-examples/blob/master/src/test/scala/es/ucm/fdi/sscheck/spark/demo/twitter/TwitterAmpcampDemo.scala
https://github.com/juanrh/sscheck-examples/blob/master/src/test/scala/es/ucm/fdi/sscheck/spark/demo/twitter/TwitterAmpcampDemo.scala
https://github.com/juanrh/sscheck-examples/wiki/TwitterAmpcampDemo-execution
https://github.com/juanrh/sscheck-examples/wiki/TwitterAmpcampDemo-execution

Temporal Random Testing for Spark Streaming 405

precessing a potentially infinite input stream while generating an output stream.
Moreover, they usually work with formulas considering both the current state
and the previous ones, which are similar to the “forward” ones presented here.
There are, however, some differences between these two approaches, being an
important one that sscheck is executed in a parallel way using Spark.

Lustre is a programming language for reactive systems that is able to verify
safety properties by generating random input streams. The random generation
provided by sscheck is more refined, since it is possible to define some patterns
in the stream in order to verify some behaviors that can be omitted by purely
random generators. Moreover, Lustre specializes in the verification of critical sys-
tems and hence it has features for dealing with this kind of systems, but lacks
other general features as complex data-structures, although new extensions are
included in every new release. On the other hand, it is not possible to formally
verify systems in sscheck; we focus in a lighter approach for day-to-day programs
and, since it supports all Scala features, its expressive power is greater. Lutin is a
specification language for reactive systems that combines constraints with tem-
poral operators. Moreover, it is also possible to generate test cases that depend
on the previous values that the system has generated. First, these constraints
provide more expressive power than the atomic formulas presented here, and
thus the properties stated in Lutin are more expressive than the ones in sscheck.
Although more expressive formulas are an interesting subject of future work,
we have focused in this work in providing a framework where the properties are
“natural” even for engineers who are not trained in formal methods; once we
have examined the success of this approach we will try to move into more com-
plex properties. Second, our framework completely separates the input from the
output, and hence it is not possible to share information between these streams.
Although sharing this information is indeed very important for control systems,
we consider that stream processing systems usually deal with external data and
hence this relation is not so relevant for the present tool. Finally, note that an
advantage of sscheck consists in using the same language for both programming
and defining the properties.

In a similar note, we can consider runtime monitoring of synchronous systems
like Lola [9], a specification language that allows the user to define properties
in both past and future LTL. Lola guarantees bounded memory for monitoring
and allows the user to collect statistics at runtime. On the other hand, and
indicated above, sscheck allows to implement both the programs and the test
in the same language and provides PBT, which simplifies the testing phase,
although actual programs cannot be traced. TraceContract [2] is a Scala library
that uses a shallow internal DSL for implementing a logic for trace analysis.
That logic is a hybrid between state machines and temporal logic, that is able to
express both past time and future time temporal logic formulas, and that allows
a form of first order quantification over the events that constitute the traces. On
the other hand TraceContract is not able to generate test cases, and it is not
integrated with any standard testing library like Specs2.

406 A. Riesco and J. Rodŕıguez-Hortalá

Regarding testing tools for Spark, the most clear precedent is the unit test
framework Spark Test Base [11], which also integrates ScalaCheck for Spark but
only for Spark core. To the best of out knowledge, there is no previous library
supporting property-based testing for Spark Streaming.

5 Conclusions and Ongoing Work

In this paper we have explored the idea of extending property-based testing with
temporal logic and its application to testing programs developed with a stream
processing system. Instead of developing an abstract model of stream processing
systems that could be applied to any particular implementation and performing
testing against a translation of actual programs into that model, we have decided
to work with a concrete system, Spark Streaming, in our prototype. In this way
the tests are executed against the actual test subject and in a context closer
to the production environment where programs will be executed. We think this
could help with the adoption of the system by professional programmers, as
it integrates more naturally with the tool set employed in disciplines like test
driven development. For this same reason we have used Specs2, a mature tool
for behavior driven development, for dealing with the difficulties integrating
of our logic with Spark and ScalaCheck. Along the way we have devised the
novel finite-word discrete-time linear temporal logic LTLss , in the line of other
temporal logics used in runtime verification. We think it allows to easily write
expressive and strict properties about temporal aspects of programs.

Our next movement will be showing the system to programmers and draw
conclusions from their opinions and impressions. There are many open lines
of future work. On the practical side our prototype still needs some work to
get a robust system. Also, adding support for arbitrary nesting of ScalaCheck
forall and exists quantifiers inside LTLss formula would be an interesting
extension. We also consider developing versions for other languages with Spark
API, in particular Python, or supporting other SPS, like Apache Flink. Besides,
we plan to explore whether the execution of several test cases in parallel minimize
the test suite execution time. In the theoretical side, we should give a formal
characterization of the language generated by our generators. Finally, we intend
to explore other formalisms for expressing temporal and cyclic behaviors [23].

References

1. Akidau, T., Balikov, A., Bekiroğlu, K., Chernyak, S., Haberman, J., Lax, R.,
McVeety, S., Mills, D., Nordstrom, P., Whittle, S.: MillWheel: fault-tolerant stream
processing at internet scale. Proc. VLDB Endowment 6(11), 1033–1044 (2013)

2. Barringer, H., Havelund, K.: TraceContract: A scala DSL for trace analysis. In:
Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 57–72. Springer,
Heidelberg (2011)

3. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In:
Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 260–272.
Springer, Heidelberg (2006)

Temporal Random Testing for Spark Streaming 407

4. Bauer, A., Leucker, M., Schallhart, C.: The good, the bad, and the ugly, but how
ugly is ugly? In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp.
126–138. Springer, Heidelberg (2007)

5. Beck, K.: Test Driven Development: By Example. Addison-Wesley Professional,
Boston (2003)

6. Blackburn, P., van Benthem, J., Wolter, F. (eds.): Handbook of Modal Logic.
Elsevier, Philadelphia (2006)

7. Claessen, K., Hughes, J.: QuickCheck: A lightweight tool for random testing of
Haskell programs. ACM Sigplan Not. 46(4), 53–64 (2011)

8. Cormode, G., Muthukrishnan, S.: An improved data stream summary: The count-
min sketch and its applications. J. Algorithms 55(1), 58–75 (2005)

9. D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B.,
Sipma, H.B., Mehrotra, S., Manna, Z.: LOLA: runtime monitoring of synchronous
systems. In: Proceedings of the 12th International Symposium on Temporal Rep-
resentation and Reasoning, TIME, pp. 166–174. IEEE Computer Society (2005)

10. Halbwachs, N.: Synchronous programming of reactive systems. Springer Interna-
tional Series in Engineering and Computer Science, vol. 215. Kluwer Academic
Publishers, Dordrecht (1992)

11. Karau, H.: Spark-testing-base (2015). http://blog.cloudera.com/blog/2015/09/
making-apache-spark-testing-easy-with-spark-testing-base/

12. Kuhn, R., Allen, J.: Reactive Design Patterns. Manning Publications, Greenwich
(2014)

13. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Alge-
braic Program. 78(5), 293–303 (2009)

14. Marz, N., Warren, J.: Big Data: Principles and Best Practices of Scalable Realtime
Data Systems. Manning Publications Co., Stamford (2015)

15. Morales, G.D.F., Bifet, A.: SAMOA: Scalable advanced massive online analysis. J.
Mach. Learn. Res. 16, 149–153 (2015)

16. Nilsson, R.: ScalaCheck: The Definitive Guide. IT Pro, Artima Incorporated, Upper
Saddle River (2014)

17. Pnueli, A.: Applications of temporal logic to the specification and verification of
reactive systems: a survey of current trends. In: de Bakker, J.W., de Roever, W.-P.,
Rozenberg, G. (eds.) Current Trends in Concurrency. LNCS, vol. 224, pp. 510–584.
Springer, Heidelberg (1986)

18. Raymond, P., Roux, Y., Jahier, E.: Lutin: a language for specifying and executing
reactive scenarios. EURASIP J. Emb. Syst. 2008, 1–11 (2008). Article ID: 753821

19. Riesco, A., Rodŕıguez-Hortalá, J.: A lightweight tool for random testing of stream
processing systems (extended version). Technical Report SIC 02/15, Departa-
mento de Sistemas Informáticos y Computación de la Universidad Complutense
de Madrid, September 2015. http://maude.sip.ucm.es/∼adrian/pubs.html

20. Schelter, S., Ewen, S., Tzoumas, K., Markl, V.: All roads lead to Rome: optimistic
recovery for distributed iterative data processing. In: Proceedings of the 22nd ACM
international conference on Conference on information & knowledge management,
pp. 1919–1928. ACM (2013)

21. Shamshiri, S., Rojas, J.M., Fraser, G., McMinn P.: Random or genetic algorithm
search for object-oriented test suite generation? In: Proceedings of the on Genetic
and Evolutionary Computation Conference, pp. 1367–1374. ACM (2015)

22. Venners, B.: Re: Prop.exists and scalatest matchers (2015). https://groups.google.
com/forum/#!msg/scalacheck/Ped7joQLhnY/gNH0SSWkKUgJ

23. Wolper, P.: Temporal logic can be more expressive. Inf. Control 56(1/2), 72–99
(1983)

http://blog.cloudera.com/blog/2015/09/making-apache-spark-testing-easy-with-spark-testing-base/
http://blog.cloudera.com/blog/2015/09/making-apache-spark-testing-easy-with-spark-testing-base/
http://maude.sip.ucm.es/~adrian/pubs.html
https://groups.google.com/forum/#!msg/scalacheck/Ped7joQLhnY/gNH0SSWkKUgJ
https://groups.google.com/forum/#!msg/scalacheck/Ped7joQLhnY/gNH0SSWkKUgJ

408 A. Riesco and J. Rodŕıguez-Hortalá

24. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing. In: Proceedings of the 9th USENIX con-
ference on Networked Systems Design and Implementation, p. 2. USENIX Assoc
(2012)

25. Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., Stoica, I.: Discretized streams:
fault-tolerant streaming computation at scale. In: Proceedings of the 24th ACM
Symposium on Operating Systems Principles, pp. 423–438. ACM (2013)

	Temporal Random Testing for Spark Streaming
	1 Introduction
	2 A Temporal Logic for Testing Spark Streaming Programs
	2.1 A Linear Temporal Logic with Timeouts for Practical Specification of Stream Processing Systems
	2.2 A Transformation for Stepwise Evaluation

	3 Temporal Logic for Property-Based Testing
	4 Related Work
	5 Conclusions and Ongoing Work
	References

