
Specifying and Analyzing the Kademlia
Protocol in Maude

Isabel Pita(B) and Adrián Riesco

Facultad de Informática, Universidad Complutense de Madrid, Madrid, Spain
ipandreu@sip.ucm.es, ariesco@fdi.ucm.es

Abstract. Kademlia is the most popular peer-to-peer distributed hash
table (DHT) currently in use. It offers a number of desirable features
that result from the use of a notion of distance between objects based on
the bitwise exclusive or of n-bit quantities that represent both nodes and
files. Nodes keep information about files close or near to them in the key
space and the search algorithm is based on looking for the closest node
to the file key. The structure of the routing table defined in each peer
guarantees that the lookup algorithm takes no longer than O(log(n))
steps, where n is the number of nodes in the network.

This paper presents a formal specification of a P2P network that uses
the Kademlia DHT in the Maude language. We use sockets to connect
different Maude instances and create a P2P network where the Kademlia
protocol can be used, hence providing an implementation of the protocol
which is correct by design. Then, we show how to abstract this system in
order to analyze it by using Real-Time Maude. The model is fully para-
meterized regarding the time taken by the different actions to facilitate
the analysis of various scenarios. Finally, we use time-bounded model-
checking and exhaustive search to prove properties of the protocol over
different scenarios.

Keywords: Kademlia · Distributed specification · Formal analysis ·
Maude · Real-Time Maude

1 Introduction

Kademlia based distributed hash tables (DHTs) [11] are an essential factor in
the implementation of P2P networks since the Kad DHT was incorporated in the
eMule client [5]. Among the large number of DHTs studied through theoretical
simulations and analysis, such as Chord [25], CAN [21], or Pastry [24], Kademlia
is the one that has been chosen for implementation of file sharing systems over
large networks due to its relative simplicity. Some of its advantages are that
there is only one routing algorithm from start to finish; it prevents a number of
attacks by preferring long-standing nodes over new ones in the routing tables;
and it allows nodes to learn about the network simply by participating in it.

Research supported by MICINN Spanish project StrongSoft (TIN2012-39391-C04-04)
and Comunidad de Madrid program N-GREENS Software-CM (S2013/ICE-2731).

c© Springer International Publishing Switzerland 2015
M. Leucker et al. (Eds.): ICTAC 2015, LNCS 9399, pp. 524–541, 2015.
DOI: 10.1007/978-3-319-25150-9 30

Specifying and Analyzing the Kademlia Protocol in Maude 525

DHTs are mainly used for file sharing applications and decentralized storage
systems, due to its lack of security. On the one hand, the large number of users
involved in the systems and the absence of a central authority certifying the trust
of the participants suggests that the system must be able to operate even if some
of them are malicious. On the other hand, the dynamics of the system, mainly
the arrival and departure of nodes in P2P networks, and the continuous upload
of new data, requires a precise information which is challenging to acquire. Most
of the existing studies evaluate these problems experimentally. There is a lack of
formal descriptions, even though they have obtained good results in the analysis
of other distributed networks and protocols.

This paper presents a distributed specification in Maude [6], a formal specifi-
cation language based on rewriting logic, of the behavior of a P2P network that
uses the Kademlia DHT. Rewriting logic [13] is a unified model for concurrency
in which several well-known models of concurrent and distributed systems can
be represented. The specification language Maude supports both equational and
rewriting logic computations. It can be used to specify in a natural way a wide
range of software models and systems and, since (most of) the specifications are
directly executable, Maude can be used to prototype those systems. Moreover,
the Maude system includes a series of tools for formally analyzing the specifica-
tions. Since version 2.2 Maude supports communication with external objects by
means of TCP sockets, which allows for the implementation of real distributed
applications. Real-Time Maude [19] is a natural extension of the Maude lan-
guage that supports the specification and analysis of real-time systems, including
object-oriented distributed ones. It supports a wide spectrum of formal methods,
including: executable specification, symbolic simulation, breadth-first search for
failures of safety properties in infinite-state systems, and linear temporal logic
model checking of time-bounded LTL formulas. Real-Time Maude strengthens
that analyzing power by allowing to specify sometimes crucial timing aspects. It
has been used, for example, to specify the Enhanced Interior Gateway Routing
Protocol (EIGRP) [22], embedded systems [17], and the AER/NCA active net-
work protocol [16]. Moreover, analysis of real-time systems using Maude sockets,
and thus requiring a special treatment for them, has been studied [1,26]. While
the algebraic representation of the distribution used in these works follows, as
well as our work, the approach presented in [22], the way used to relate logical
and physical time allows for a more precise and formal analysis than the one
used here, allowing the system to synchronize only when needed.

Our distributed specification of the Kademlia protocol has been implemented
on top of the routing protocol described in [22] and uses an external Java clock.
Since we formally specify the semantics of the protocol, we obtain a correct by
design application. Moreover, this distributed system can be simulated and ana-
lyzed in Maude if a “centralized” version is provided. This version is obtained
by using: (i) an algebraic specification of the sockets provided by Maude; (ii) an
abstraction of the underlying routing protocol, which allows the analysis tools to
focus on the properties; and (iii) Real-time Maude, as explained above. That is,
we abstract some implementation details but leave the protocol implementation

526 I. Pita and A. Riesco

unmodified, which allows us to use the centralized protocol to prove proper-
ties that must also hold in the distributed version. The analyses that can be
performed on the protocol include the simulation of the system to study, for
example, how its properties change when its parameters, like the redundancy
constant, are modified; examine the reaction of the system to different attacks;
and check properties such as that any published file can be found or that files
remain accessible even if their publishing peers become offline. Actually, we
present different levels of abstraction, which allows us to focus on the properties
we want to prove while discarding the unnecessary implementation details.

Our specification is, to the best of our knowledge, the first formal description
of a Kademlia DHT. The use of formal methods to describe the behavior of
the Kademlia DHT may help to understand the informal description of the
protocol and the algorithm given in [11], and to identify areas that are not
covered in the description and are being resolved in different ways in different
implementations. In particular, the Maude language gives us the opportunity of
executing the distributed specification taking into account the time aspects of the
protocol in order to detect weak points in the protocol that would be interesting
to study. Then using the centralized model that mirrors the distributed one,
we can analyze all possible executions of the system, either by searching in the
execution tree (which is in fact represented as a graph for efficiency reasons) or
by using model checking techniques.

The rest of the paper is structured as follows: Sect. 2 presents the Kademlia
protocol and how to specify generic distributed systems in Maude, as well as
some related work. Section 3 describes the distributed specification in Maude of
this protocol. Section 4 shows how the distributed system can be represented in
one single term, while Sect. 5 describes how to simulate and analyze it. Finally,
Sect. 6 concludes and presents some future work.

2 Preliminaries and Related Work

We present in this section the basic notions about Maude and Kademlia and the
related work.

2.1 Maude

In Maude [6] the state of a system is formally specified as an algebraic data
type by means of an equational specification. In this kind of specification we
can define new types (by means of keyword sort(s)); subtype relations between
types (subsort); operators (op) for building values of these types; and equations
(eq) that identify terms built with these operators. We can distinguish between
Core Maude [6, PartI], which is implemented in C++ and provides the basic
features, and Full Maude [6, PartII], an extension of Maude implemented in
Maude itself and used as basis for further extensions, as we explain below.

Specifying and Analyzing the Kademlia Protocol in Maude 527

The dynamic behavior of such a distributed system is then specified by
rewrite rules of the form t −→ t′ if C, that describe the local, concurrent
transitions of the system. That is, when a part of a system matches the pattern
t and satisfies the condition C, it can be transformed into the corresponding
instance of the pattern t′.

In object-oriented specifications, classes are declared with the syntax class
C | a1:S1,. . ., an:Sn, where C is the class name, ai is an attribute identifier,
and Si is the sort of the values this attribute can have, for 1 ≤ i ≤ n. An
object is represented as a term < O : C | a1 : v1, . . ., an : vn > where O
is the object’s name, belonging to a set Oid of object identifiers, and the vi’s are
the current values of its attributes. Messages are defined by the user for each
application (introduced with syntax msg).

In Maude, the state of a concurrent, object-oriented system is called a config-
uration. It has the structure of a multiset made up of objects and messages that
evolves by concurrent rewriting. The rewrite rules specify the behavior associated
with the messages. By convention, the only object attributes made explicit in a
rule are those relevant for that rule. We use Full Maude’s object-oriented notation
and conventions [6] throughout the whole paper; however, only the centralized
specification is specified in Full Maude (which is required by Real-Time Maude),
while the actual implementation of the distributed protocol is in Core Maude
because Full Maude does not support external objects. The complete Maude code
can be found at http://maude.sip.ucm.es/kademlia.

In [22], we described a methodology to implement distributed applications in
such a way that the distributed behavior remains transparent to the user by using
a routing protocol, the Enhanced Interior Gateway Routing Protocol (EIGRP).
Figure 1 presents the architecture proposed in that paper, where the lower layer
provides mechanisms to translate Maude messages from and to String (Maude
sockets can only transmit Strings); to do so, the user must instantiate a theory
requiring a (meta-represented) module with the syntax of all the transmitted
messages. The intermediate layer, EIGRP, provides a message of the form to : ,
with the first argument an object identifier (the addressee of the message) and
the second one a term of sort TravelingContents, that must be defined in
each specific application. We have slightly modified this layer to share the tick!
message obtained from the Java server in charge of dealing with time.1 This layer
provides a fault-tolerant and dynamic architecture where nodes may join and
leave at any moment, and where nodes are always reached by using the shortest
path, thus allowing us to implement realistic systems. Finally, the upper layer is
the application one, which in our case corresponds to Kademlia. It relies on the
lower layers to deliver the messages and focus on its specific tasks, just like the
real Kademlia protocol.

1 In the standard implementation, tick! messages are introduced into the configura-
tion each second. However, the time can be customized to get these messages in the
time span defined by the user.

http://maude.sip.ucm.es/kademlia

528 I. Pita and A. Riesco

Kademlia

to : / tick!

EIGRP Protocol

send

Message/String conversionBasic intrastructure

Fig. 1. Layers for distributed applications

2.2 Kademlia

Kademlia is a peer-to-peer (P2P) distributed hash table used by the peers to
access files shared by other peers. In Kademlia both peers and files are identified
with n-bit quantities, computed by a hash function. Information of shared files is
kept in the peers with an identifier close to the file identifier, where the notion of
distance between two identifiers is defined as the bitwise exclusive or of the n-bit
quantities. Then, the lookup algorithm which is based on locating successively
closer nodes to any desired key has O(log n) complexity, where n is the number
of nodes in the network.

In Kademlia, every node keeps the following contact information: IP address,
UDP port, and node identifier, for nodes of distance between 2i and 2i+1 from
itself, for i = 0, . . . , n and n the identifier length. In the Kademlia paper [11]
these lists, called k-buckets, have at most k elements, where k is chosen such
that any given k nodes are very unlikely to fail within an hour of each other.
k-buckets are kept sorted by the time they were last seen. When a node receives
any message (request or reply) from another node, it updates the appropriate
k-bucket for the sender’s node identifier. If the sender node exists, it is moved to
the tail of the list. If it does not exist and there is free space in the appropriate
k-bucket it is inserted at the tail of the list. Otherwise, the k-bucket has not free
space, the node at the head of the list is contacted and if it fails to respond it is
removed from the list and the new contact is added at the tail. In the case the
node at the head of the list responds, it is moved to the tail, and the new node
is discarded. This policy gives preference to old contacts, since the longer a node
has been up, the more likely it is to remain up another hour and also prevents
attacks by preferring long-standing nodes.

k-buckets are organized in a binary tree called the routing table. Each k-
bucket is identified by the common prefix of the identifiers it contains. Internal
tree nodes are the common prefix of the k-buckets, while the leaves are the
k-buckets. Thus, each k-bucket covers some range of the identifier space, and
together the k-buckets cover the entire identifier space with no overlap. Figure 2
shows a routing table for node 00000000 and a k-bucket of length 5. Identifiers
have 8 bits.

Specifying and Analyzing the Kademlia Protocol in Maude 529

Fig. 2. A routing table example for node 00000000

The Kademlia protocol consists of four Remote Procedure Calls (RPCs):

– PING checks whether a node is online.
– STORE instructs a node to store a file identifier together with the contact of

the node that shares the file to publish it to other nodes.
– FIND-NODE takes an identifier as argument and the recipient returns the con-

tacts of the k nodes it knows that are closest to the target identifier.
– FIND-VALUE takes an identifier as argument. If the recipient has information

about the argument, it returns the contact of the node that shares the file;
otherwise, it returns a list of the k contacts it knows that are closest to the
target.

In the following we summarize the dynamics of looking for a value and pub-
lishing a shared file from the Kademlia paper [11].

Looking for a Value. To find a file identifier, a node starts by performing a
lookup to find the k nodes with the closest identifiers to the file identifier. First,
the node sends a FIND-VALUE RPC to the α nodes it knows with an identifier
closer to the file identifier, where α is a system concurrency parameter. As nodes
reply, the initiator sends new FIND-VALUE RPCs to nodes it has learned about
from previous RPCs, maintaining α active RPCs. Nodes that fail to respond
quickly are not considered. If a round of FIND-VALUE RPCs fails to return a node
any closer than the closest one already seen, the initiator resends the FIND-VALUE
to all of the k closest nodes it has not queried yet. The process terminates when
any node returns the value or when the peer that started the query has obtained
the responses from its k closest nodes.

Publishing a Shared File. Publishing is performed automatically whenever a file
needs it. To maintain persistence of the data, files are published by the node

530 I. Pita and A. Riesco

that shares them from time to time. Those nodes that have information about
the whereabouts of a file publish it more frequently than the node sharing it.

To share a file, a peer locates the k closest nodes to the key, as it is done in
the looking for a value process, although it uses the FIND-NODE RPC. Once it
has located the k closest nodes, it sends them a STORE RPC.

2.3 Related Work

One of the first proposals about using formal methods for analyzing the DHT
behavior is due to Borgströn et al., who prove in [4] the correctness of the lookup
operation of the DHT-based DKS system, developed in the context of the EU-
project [9], for a static model of the network using value-passing CCS. Besides,
Bakhshi and Gurov give in [3] a formal verification of Chord’s stabilization algo-
rithm using the π-calculus. Lately Lu, Merz, and Weidenbach [10,12] have mod-
eled Pastry’s core routing algorithms in the specification language TLA+. The
model has been validated using the TLC model checker and they have proved
the CorrectDelivery safety property stating that there can be only one node
responsible for any key at any time using the interactive theorem prover TLAPS
of TLA. A different approach is used by P. Zave in [27] to analyze correctness
of the Chord DHT protocol. She uses the Alloy language and checks properties
with the Alloy analyzer. Properties are expressed as invariants of the system and
proved by an exhaustive enumeration of instances over a bounded domain. The
analysis revealed some flaws in the original description of the algorithm, which
allowed the author to propose some improvements.

Regarding the Kademlia DHT there is a previous work of the first author [20]
focused on the Kademlia and the Kad routing tables. The paper highlights the
main differences between the Kademlia proposal [11] and its first real implemen-
tation in the eMule network. Both routing tables were specified in the Maude
formal specification language. The network specification presented in this paper
uses the Kademlia routing table. The specification is designed in a modular way
to support other Kademlia style routing tables, like the one from Kad. This will
allow us to compare the behavior of different systems only changing the routing
table specification.

3 Protocol Specification

We present in this section the main details of the distributed implementation of
the Kademlia protocol. The Kademlia network is modeled as a Maude configu-
ration of objects and messages, where the objects represent the network peers
and the messages represent the protocol RPCs.

3.1 Peers

Peers in our specification are objects of class Peer, defined as follows:

Specifying and Analyzing the Kademlia Protocol in Maude 531

class Peer | RT : RoutingTable, Files : TFileTable,

Publish : TPublishFile, SearchFiles : TSearchFile,

SearchList : TemporaryList .

which indicates that the class Peer has the attributes RT, of sort RoutingTable;
Files, of sort TFileTable; Publish, of sort TPublishFile; SearchFiles, of
sort TSearchFile; and SearchList, of sort TemporaryList These attributes
are defined as follows:

– RT is a list that keeps the information of the routing table.
– Files is a table that keeps the information of the files the peer is responsible

for publishing. It includes the file identifier, the identification of the peer that
shares the file, a time for republishing the file and keep it alive, and a time to
remove the file from the table.

– Publish is a table that keeps the information of the files shared by the peer.
The information includes the file identifier, the file location in the peer, and a
time for republishing the file. This time is greater than the time for republish-
ing of the Files table and prevents the information in the Files table from
being removed.

– SearchFiles is a table that keeps the files a peer is looking for. The informa-
tion includes the file identifier and a waiting time to proceed with the search.
This time is used when the file is not found and it should be researched later.

– SearchList is an auxiliary list used in the search and publish processes to
keep the information of the nodes that have been already contacted by the
searcher/publisher and the state in which the searching/publishing process is.
As the searcher/publisher finds out new closer nodes to the file identifier, it
stores them in this file, and starts sending them messages.

Following is an example of an object of class Peer. We identify the peers
by 6-bit quantities, represented by its decimal value to improve readability in
the examples presented in this paper. This size provides us with enough nodes
for our example network. However the specification may use any n-bit quantity
or the complete Kademlia contact information, since it is parameterized with
respect to the peers identification.

< peer(c(48)): Peer |

RT : (empty-bucket ! c(14)! c(0)! c(16))!! (empty-bucket ! c(33))!!

(empty-bucket ! c(60)! c(58)! c(56))!!

(empty-bucket ! c(50)) +

c(8)+ PING(c(48),c(14),5,1)+ c(60)c(50) + 4,

Files : < 32 & c(48);; 19 > # < 38 & c(0);; 4 > # < 54 & c(0);; 8 >,

Publish : < 22 &"File4"@ 25 > # < 32 &"File5"@ 26 >,

SearchFiles : < 12 &"File7"; 1 >,

SearchList : temp-empty >

The routing table has four buckets, the first one with the contacts which
have its first bit set to 0 (values between 0 and 31), the second with the contacts
with its first two bits set to 10 (values between 32 and 47), and so on. The
bucket dimension, which is also a parameter of the specification, is set to 3 in
our example. We observe that the first and the third buckets are full. In the

532 I. Pita and A. Riesco

snapshot shown in the example, the peer has had knowledge of a new contact
c(8), but since it should be located in the first bucket, which is full, the peer
has sent a PING message to the first contact in the bucket, to verify whether it is
still alive. The peer will wait four more time units for the reply before it decides
that the contact is not alive and removes the PING message. Meanwhile it has
had knowledge of two more contacts c(60) and c(50), which are waiting to be
processed. See [20] for a detailed explanation of the routing table specification.

The peer keeps information about three files which has been published by
other peers in the Files attribute. These are file 32, which has been published
by peer c(48), and files 38 and 54, published by the peer c(0). These files are
kept in this peer because it is one of the closest nodes to the file identification.
We can choose the redundancy parameter in our specification, in the example it
is set to three. The time parameter that appears at the end of each file represents
the time remaining for republishing the files to keep them up to date. Each time
a peer receives a STORE message for a node that it is already keeping it, updates
this time value to the time chosen in the specification for republishing. In this
way Kademlia prevents all the redundant peers that keep a file from republishing
it at the same time.

The Publish attribute presents two files upload to the network by the peer.
The first parameter is the file identifier, next is the file name, and the last
parameter is the time remaining for republishing the files to keep them alive.

We observe in the SearchFiles attribute the identifier of a file that the
peer wants to search for. Again the last parameter is the time remaining for
the process to take place. The searched files are removed from the list when the
search process succeed, if it fails the search process is repeated after some time.

Finally, the searchList attribute is a list of contacts used in the publish
and look-for processes to find the closest nodes to the file identification. In our
example, it is empty since the peer is not performing any of these tasks.

3.2 RPCs

There is a Maude message for each RPC defined in the Kademlia protocol. For
example, the FIND-VALUE RPC and its two possible replys are defined as follows:

op FIND-VALUE : MyContact BitString -> TravelingContents [ctor] .

op FIND-VALUE-REPLY1 : MyContact BitString

Set{vCONTACT}{vContact-BitString} -> TravelingContents [ctor] .

op FIND-VALUE-REPLY2 : MyContact BitString MyContact [ctor] .

Note that terms of this form will be used to form messages with the operator
to : described in Sect. 2.1, where the first parameter is the identifier of the
addressee. The first parameter of these operators identifies the peer sending the
message, while the second one represents the key the sender is looking for. The
reply has also an additional parameter that keeps a set of the k nodes the peer
knows that are the closest ones to the target, where k is the bucket dimension
or the contact of the owner of the file.

Specifying and Analyzing the Kademlia Protocol in Maude 533

For example, a message from node c(14) to node c(48) requesting for infor-
mation about file 54 has the form:

to peer(c(48)) : FIND-VALUE(c(14),54) .

this message will be in the Maude configuration of nodes and messages.
The reply message sended by node c(48) to node c(14) if the node does not

have information about file 54 in its Files attribute list, which is not the case
in our example, will be:

to peer(c(14)) : FIND-VALUE-REPLY1(c(48),54,c(56),c(58),c(50)) .

since the closest nodes to file 54 in the routing table of node c(48) are the nodes
c(56), c(58) and c(50). The order in which these contacts are returned is not
important, since they will be ordered by their distance to the given file in the
node that ask for them.

Since node c(48) is one of the closest nodes in the network to file 54 in our
example, and it has this file in its File attribute list, the message that it will
return contains the contact of the owner of the file, which is node c(0).

to peer(c(14)) : FIND-VALUE-REPLY2(c(48),54,c(0)) .

3.3 Process Specification in Maude

The specification of the different processes follows their definition. For exam-
ple, the searching process starts automatically when there are identifiers in the
SearchFiles attribute of some connected peer with time for searching equal
to one. A greater value indicates that the file has already been searched for, it
was not found, and now it is waiting for repeating the search. When the search
starts, the auxiliary list SearchList is filled with the closest nodes the searcher
has in its routing table, and the time of this file in the searchFiles table is
set to INF. It will remain with this value until the search process ends. The
number of closest nodes used to initialize the auxiliary list is a parameter of the
specification. The original Kademlia paper [11] indicates that it is a system wide
concurrency parameter, such as 3. Notice that in the implementation the file is
ordered by the distance of the contact to the file identification. In our example,
when node c(48) starts searching file 12 we have:

< peer(c(48)): Peer |

RT : (empty-bucket ! c(14)! c(0)! c(16)) !! (empty-bucket ! c(33)) !!

(empty-bucket ! c(60)! c(58)! c(56))!! (empty-bucket ! c(50)) +

c(8)+ PING(c(48),c(14),5,1)+ c(60)c(50) + 4,

Files : < 32 & c(48) ;;19 > # < 38 & c(0) ;;4 > # < 54 & c(0) ;;8 >,

Publish : < 22 &"File4"@ 25 > # < 32 &"File5"@ 26 >,

SearchFiles : < 12 &"File7"; INF >,

SearchList : < c(14),2,20,0 > < c(16),4,20,0 > < c(0),12,20,0 >

where the first value of the nodes in the SearchList is the contact, the second
value is the distance from the contact to the searched file, the third is the time
that the node will remain in the list if no response is received from a sended

534 I. Pita and A. Riesco

RPC, and the fourth value is a flag that indicates if the contact has already sent
the FIND-VALUE RPC, has received the response, or has sent a STORE message
and is waiting a response.

The searching process continues by sending FIND-VALUE RPCs to the first
nodes in the list to find closer nodes to the file identifier. The process is controlled
by the rewrite rule:

crl [lookfor-file21] :

< peer(SENDER) : Peer | SearchFiles : < I1 & (S1 ; INF) > # SF,

SearchList : SL >

=> < peer(SENDER) : Peer | SearchFiles : < I1 & (S1 ; INF) > # SF,

SearchList : set-flag(Tr,SrchListRmve,SL) >

to peer(Tr) : FIND-VALUE(SENDER, I1)

if not all-sended(SL) /\ Tr := first-not-send(SL) /\

messages-in-process(SL) < ParallelSearchRPC /\

number-nodes-reply(SL) < kSearched .

which states that the RPC is only sent if the number of parallel messages is
less than the given constant, ParallelSearchRPC, the peer in charge of the
search has not received response yet from a certain number of peers given by the
kSearched constant, and there are nodes in the search list that have not been
contacted yet. Once the RPC is sent, a flag is activated in the search list that
marks this node as in process with set-flag.

Following our example, when peer c(48) sends the first RPCs, the configu-
ration will have among other peers and messages the following:

to peer(c(14)) : FIND-VALUE(c(48),12)

to peer(c(16)) : FIND-VALUE(c(48),12)

to peer(c(0)) : FIND-VALUE(c(48),12)

< peer(c(48)) : Peer |

RT :(empty-bucket ! c(14) ! c(0) ! c(16)) !! (empty-bucket ! c(33))!!

(empty-bucket ! c(60) ! c(58) ! c(56)) !!

(empty-bucket ! c(50)) +

c(8) + PING(c(48), c(14),5,1) + c(60) c(50) + 4,

Files : < 32 & c(48);; 19 > # < 38 & c(0);; 4 > # < 54 & c(0);; 8 >,

Publish : < 22 &"File4"@ 25 > # < 32 &"File5"@ 26 >,

SearchFiles : < 12 &"File7" ; INF >,

SearchList : < c(14), 2, 20, 1 > < c(16), 4, 20, 1 >

< c(0), 12, 20, 1 >

The receivers of the FIND-VALUE messages may find the file the searcher is
looking for in its table or it may return the closest nodes it knows about. In
the first case, it sends a FIND-VALUE-REPLY2 message to the searcher including
the node identifier of the peer that shares the file. When the searcher receives
this reply the process finishes by sending a FILE-FOUND message and the file is
removed from its searching table. The FILE-FOUND message is a ghost message
that remains in the configuration to show the files that have been searched and
found, hence easing the description of some properties, that just check whether
this message appears in the configuration. In the second case, the receiver sends
a FIND-VALUE-REPLY1 message to the searcher including the closest nodes to
the file identifier it knows about. When the searcher receives this message it
changes its search list, adding the nodes ordered by the distance to the objective.

Specifying and Analyzing the Kademlia Protocol in Maude 535

Only nodes closer than the one which proposes them are added. When the full
list is traversed, a flag is activated to mark this node as done in the search
list. Additionally, the searcher routing table is updated with the move-to-tail
operation that puts the identifier of the message sender first in the list, so that
it will not be removed from the routing table, as it is the last peer the searcher
knows it is alive. The searching process continues by sending new FIND-VALUE
messages to the new nodes in the SearchList that have not been asked yet, and
are closer to the searched file identifier than the nodes that have already answer
the RPC. If the process does not find the file in any of the contacted nodes, it
does not remove the file from the SearchFile table and initializes its time for a
new search.

4 Centralized Simulation

We use Real-Time Maude [19] to analyze our system. Real-Time Maude is an
extension of Maude that allows to perform time-bound analyses such as breadth-
first search or model checking. However, Real-Time Maude does not support
distributed applications, so in order to use it we need to “centralize” our config-
uration. We discuss below how to achieve this and how to improve (or abstract)
this representation. In this case, we distinguish between “architecture abstrac-
tions,” which simplify the state by removing the transitions not related to the
properties we want to verify, and “formal abstractions,” which refers to estab-
lished techniques that allow to improve the proofs by different means. It is worth
noting that this transformation does not introduce an important overhead on
the complexity of the specification: while the distributed implementation of the
protocol has around 3100 lines of code, the centralized one has 3300 lines of
code, approximately.

4.1 First Architecture Abstraction

As explained above, in order to use the analysis features provided by Real-
Time Maude, we need to represent the distributed configuration described in
the previous section as a single term. This centralized specification must fulfill
the following requirements:

– The underlying architecture must be simulated. This simulation includes not
only redirecting the messages, but also possible delays and errors.

– Nodes can connect and disconnect during the process.

In order to solve the first issue, we provide a class Process with a single
attribute conf that keeps the configurations in different locations2 separated
from each other:

class Process | conf : Configuration .

2 We will use the word location to denote the different Maude instances appearing in
the distributed system.

536 I. Pita and A. Riesco

Besides “separating” the processes, we must provide an algebraic specification
of the built-in sockets. In our case, we use an object of class Socket for each two
connected locations in the distributed (real) protocol. This class has attributes
sideA and sideB, indicating the two sides of the socket; delay, which stores the
delay associated to this socket; and listA and listB, the lists of DelayedMsg
(pairs of messages and time) sent to sideA and sideB, respectively:

class Socket | sideA : Oid, sideB : Oid, delay : Time,

listA : List{DelayedMsg}, listB : List{DelayedMsg} .

In this way, we can simulate the delay due to the network and specify the
architecture with only four rules, two for moving messages into the socket and
two more for putting the messages into the target configuration, depending of
the side of the socket. For example, the rule moving a message from the list
to the side of the socket indicated by sideA is specified as follows, where it is
important to note that the time of the element being moved has reached 0:

rl [receive1] :

< S : Socket | sideA : O, listA : dl(to O’ : TC, 0) DML >

< O : Process | conf : CONF >

=> < S : Socket | listA : DML >

< O : Process | conf : (to O’ : TC CONF) > .

In order to simulate errors and disconnections in the peers we have added
two attributes to the Peer class: Life and Reconnect, containing values of sort
TimeInf. Basically, when the Life attribute reaches the value 0, it is set to INF,
the peer cannot receive nor send messages, and the Reconnect attribute is set
to a random value. Similarly, when Reconnect reaches 0, it is set to INF, Life
is set to a random time, and the peer works again.

4.2 Second Architecture Abstraction

Note that the abstraction in the previous section provides an exact correspon-
dence between the distributed system and the centralized one. However, it is
possible that most of the properties are either independent of the underlying
architecture, independent of the disconnections from the peer, or both. For this
reason, we can define more refined abstractions that omit some of these aspects.
To abstract the architecture we just use a multiset of peers and messages, so
messages sent by a peer reach the addressee immediately; to abstract the con-
nections and disconnections we just remove the Life and Reconnect attributes
introduced above and the associated rules, hence preventing the nodes from
unwanted disconnections. In this way we obtain two main advantages: (i) the
analysis is optimized, since the number of reachable states is greatly reduced;
and (ii) it is easier to understand the results and trace back the causes.

4.3 Formal Abstractions

Beyond simplifying the state with the abstractions above, we can also apply
other techniques to improve our proofs. The state space reduction technique

Specifying and Analyzing the Kademlia Protocol in Maude 537

in [8] allows us to turn rules (which generates transitions and hence new states
during the search and model checking processes) into equations given they ful-
fill some properties: the specification thus obtained is still a correct executable
Maude specification (that is, it is terminating, confluent, and coherent; see [6]
for details) and the property is invisible for the rules transformed into equations.
This invisibility concept informally requires the rules to preserve the satisfiabil-
ity of the atomic predicates involved in the formulas being proved, and is also
the basis for our own abstractions. Another interesting way of reducing the state
space can be found in [18].

Regarding infinite systems, an important abstraction can be found in [14].
This abstraction turns an infinite-state system into a finite one by collapsing
states by means of equations. This kind of abstraction was not necessary in our
case, since our system becomes finite by setting a bound in the execution time.

5 Analysis

We can use now Real-Time Maude in two different ways: to execute the cen-
tralized specification and to verify different properties. The former is achieved
by using the Maude commands trew and tfrew, that execute the system (the
second one applies the rules in a fair way) given a bound in the time; with find
earliest and find latest, that allow the user to check the paths that lead to
the first and last (in terms of time) state fulfilling a given property; and with
tsearch, that checks whether a given state is reachable in the given time. The
latter is accomplished by using the tsearch command to check that an invariant
holds; by looking for the negation of the invariant we can examine whether there
is a reachable state that violates it. The specification can also be analyzed by
using timed model checking with the command mc, that allows the user to state
linear temporal logic formulas with a bound in the time.

Note that, before starting the analysis, we need to relate “real-time,” as
defined by our external Java clock in the distributed specification, and the “real-
time” defined by Real-Time Maude. Our distributed specification contains a
number of timeouts, defined by natural numbers, and we ask to the Java server
to wait this number of seconds. We just mimic this strategy in the centralized
specification, using natural numbers (or a constant INF standing for infinite time)
and we ask Real-Time Maude to wait the maximal possible amount.

We have verified our system with networks form 6 to 20 nodes. We abstract
the concrete connections and assume total network connectivity. The life time of
each node is randomly chosen, although we use an upper bound life constant to
control the ratio of alive nodes. We change the peers that share and search files,
as well as the number and time of published and searched files. The analysis of
networks with hundreds of nodes using a model checker requires the use of some
of the abstraction techniques explained in Sect. 4.3 and it is left as future work.

We can simulate how different attacks may affect a network. For example, in
the node insertion attack, an attacking peer intercepts a search requests for a
file, which are answered with bogus information [15]. The attacking peer creates

538 I. Pita and A. Riesco

its own identifier such that it matches the hash value of the file. Then the search
requests are routed to the attacking peer, that may return its own file instead
of routing the search to the original one. Since the Kademlia network sends the
request not only to the closest peer the searcher may find the original file. The
find earliest command can be used to study different network parameters
and check whether this attack is effective. We study if a file may be found in a
node that is not the closest one to the file identifier, with the following command:

Maude> (find earliest init =>* {< O : Process | conf :

(to O’ : FILE-FOUND(SENDER, N2) CONF) > CONF’} .)

Note that, since the FILE-FOUND message returns in its first parameter the peer
that is publishing the file, we only need to check whether the peer identifier is
the closest to the file identifier.

From the model-checking point of view, there are several properties that can
be proved over this protocol. The basic property all P2P networks should fulfill
is that if a peer looks for a file that is published somewhere, the peer even-
tually finds it. We define three propositions (of sort Prop, imported from the
TIMED-MODEL-CHECKER module defined in Real-Time Maude) over the configu-
ration expressing that a peer publishes a file; a peer is looking for that file; and
the peer that searches the file finds it. Note that, as in the command above,
all the properties are defined taking into account that the configurations are
wrapped into objects of class Process, that may contain other objects and mes-
sages on the conf attribute (hence the CONF variable used there) and that other
processes may also appear in the initial configuration (hence the CONF’ variable
used at the Process level):

op PublishAFile : Nat -> Prop [ctor] .

eq {< O : Process | conf : (< O’ : Peer | Publish :

< I1 & (S1 @ TC4) > # PF > CONF) > CONF’} |= PublishAFile(I1) = true .

op SearchAFile : MyContact Nat -> Prop [ctor] .

eq {< O : Process | conf : (< peer(Searcher) : Peer | SearchFiles :

< I1 & (S1 ; TC3) > # SF > CONF) > CONF’} |=

SearchAFile(Searcher,I1) = true .

op FindAFile : MyContact Nat -> Prop [ctor] .

eq {< O : Process | conf : (to peer(Searcher) : FILE-FOUND(I2,I1)

CONF) > CONF’} |= FindAFile(Searcher,I1) = true .

Assuming an initial configuration where a peer publishes the file 54, that is
searched by peer(c(33)), we can use the following command to check that the
property holds:

Maude> (mc init’ |=t PublishAFile(54) /\ SearchAFile(c(33),54) =>

<> FindAFile(c(33),54) in time < 20 .)

Result Bool : true

Another basic property is that once a file is published it remains published
in some peers unless the publisher is disconnected. We can define the properties
FilePublished, stating that a peer publishes a file, and PeerOffline, indicating
that a peer is offline, similarly to the properties above and use the following
command to check the property:

Specifying and Analyzing the Kademlia Protocol in Maude 539

Maude> (mc init |=t (<> [] (FilePublished(53,c(0))) U PeerOffline(c(0))

in time < 40 .)

Result ModelCheckResult : counterexample(...)

In a network where peer(c(0)) has published file 53. Notice that the model
checker finds a counterexample. The reason is that all the peers that share the
file may be offline at the same time. The property should be reformulated, stating
that if the file is published it will always be published again or the publisher will
be disconnected:

Maude> (mc init |=t ([] <> (FilePublished(53,c(0)) \/ PeerOffline(c(0)))

in time < 40 .)

Result Bool : true

6 Conclusion and Ongoing Work

We have presented in this paper a distributed implementation of the Kademlia protocol
in Maude. This distributed system uses sockets to connect different Maude instances
and, moreover, to connect each one of these instances to a Java server that takes care
of the time. It can be used to share files (only text files in the current specification)
using this protocol, allowing peers to connect and disconnect in a dynamic way, adding
and searching for new files. Moreover, we also provide a centralized specification of the
system, which abstracts most of the details of the underlying architecture to focus on
the Kademlia protocol. This centralized specification allows us to simulate and analyze
the system using Real-Time Maude to represent the real time implemented in Java in
the distributed implementation of the protocol. This centralized implementation of the
protocol just mapped real-time to natural numbers. Although this “time sampling”
is usual, the relation between physical time and logic time can be refined further. For
example, the paper [1], which describes a theory for the orchestration of service-oriented
solutions, or [26], which presents a theory for medical devices, provide a much more
refined relation, taking into account small deviations due to hardware.

As future work we plan to use the narrowing techniques implemented in Maude
[7] to analyze the Kademlia DHT protocol. In this way, we could apply the analyses
described in recent works (see e.g. [2,23]) to our system and check whether an error
state is reachable from a generic state (a state with variables).

Another line of research is to compare the performance of the routing tables under
different parameters, like the bucket dimension or the concurrency parameters used in
the node lookup procedure. The comparison can also be done for the different variants
of the routing tables taking advantage of the fact that the specification is parametric
on the routing table. We also plan to study more complex properties that could apply
under other scenarios.

References

1. AlTurki, M., Meseguer, J.: Executable rewriting logic semantics of Orc and for-
mal analysis of Orc programs. J. Logic. Algebraic Meth. Program. 84(4), 505–533
(2015)

2. Bae, K., Escobar, S., Meseguer, J.: Abstract logical model checking of infinite-
state systems using narrowing. In: van Raamsdonk, F. (ed.) 24th International
Conference on Rewriting Techniques and Applications, RTA 2013, LIPIcs 21, pp.
81–96. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2013)

540 I. Pita and A. Riesco

3. Bakhshi, R., Gurov, D.: Verification of peer-to-peer algorithms: a case study. In:
Combined Proceedings of the 2nd International Workshop on Coordination and
Organization, CoOrg 2006, and the Second International Workshop on Methods
and Tools for Coordinating Concurrent, Distributed and Mobile Systems, MTCo-
ord 2006, ENTCS, vol. 181, pp. 35–47. Elsevier (2007)

4. Borgström, J., Nestmann, U., Onana, L., Gurov, D.: Verifying a structured peer-
to-peer overlay network: the static case. In: Priami, C., Quaglia, P. (eds.) GC 2004.
LNCS, vol. 3267, pp. 250–265. Springer, Heidelberg (2005)

5. Breitkreuz, H.: The eMule project. http://www.emule-project.net
6. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,

C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

7. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: Maude Manual, version 2.6. http://maude.cs.uiuc.edu/maude2-manual

8. Farzan, A., Meseguer, J.: State space reduction of rewrite theories using invisible
transitions. In: Johnson, M., Vene, V. (eds.) AMAST 2006. LNCS, vol. 4019, pp.
142–157. Springer, Heidelberg (2006)

9. Haridi, S.: EU-project PEPITO IST-2001-33234. Project funded by EU IST FET
Global Computing (GC) (2002). http://www.sics.se/pepito/

10. Lu, T.: Formal Verification of the Pastry Protocol. Doctoral dissertation, Univer-
sität des Saarlandes, December 2013

11. Maymounkov, P., Mazières, D.: Kademlia: a peer-to-peer information system based
on the XOR metric. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS
2002. LNCS, vol. 2429, pp. 53–65. Springer, Heidelberg (2002)

12. Lu, T., Merz, S., Weidenbach, C.: Towards verification of the pastry protocol using
TLA+. In: Bruni, R., Dingel, J. (eds.) FORTE 2011 and FMOODS 2011. LNCS,
vol. 6722, pp. 244–258. Springer, Heidelberg (2011)

13. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theo.
Comput. Sci. 96(1), 73–155 (1992)

14. Meseguer, J., Palomino, M., Mart́ı-Oliet, N.: Equational abstractions. Theo. Com-
put. Sci. 403(23), 239–264 (2008)

15. Mysicka, D.: eMule attacks and measurements. Master’s thesis, Swiss Federal Insti-
tute of Technology (ETH) Zurich (2007)

16. Ölveczky, P., Meseguer, J., Talcott, C.: Specification and analysis of the AER/NCA
active network protocol suite in Real-Time Maude. Form. Meth. Syst. Des. 29,
253–293 (2006)

17. Ölveczky, P.C.: Formal model engineering for embedded systems using Real-Time
Maude. In: Durán, F., Rusu, V., (eds.) Proceedings of the 2nd International Work-
shop on Algebraic Methods in Model-based Software Engineering, AMMSE 2011,
EPTCS, vol. 56, pp. 3–13 (2011)

18. Ölveczky, P.C., Meseguer, J.: Abstraction and completeness for Real-Time Maude.
In: Proceedings of the 6th International Workshop on Rewriting Logic and its
Applications, WRLA 2006, ENTCS, vol. 176(4), pp. 5–27 (2007)

19. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude. High.
Ord. Symbolic Comput. 20, 161–196 (2007)

20. Pita, I., Fernández-Camacho, M.I.: Formal specification of the Kademlia and the
Kad routing tables in Maude. In: Mart́ı-Oliet, N., Palomino, M. (eds.) WADT
2012. LNCS, vol. 7841, pp. 231–247. Springer, Heidelberg (2013)

http://www.emule-project.net
http://maude.cs.uiuc.edu/maude2-manual
http://www.sics.se/pepito/

Specifying and Analyzing the Kademlia Protocol in Maude 541

21. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: ACM SIGCOMM Computer Communication Review -
Proceedings of the 2001 SIGCOMM Conference, vol. 31, pp. 161–172, October
2001

22. Riesco, A., Verdejo, A.: Implementing and analyzing in Maude the enhanced inte-
rior gateway routing protocol. In: Roşu, G. (ed.) Proceedings of the 7th Interna-
tional Workshop on Rewriting Logic and its Applications, WRLA 2008. ENTCS,
vol. 238(3), pp. 249–266. Elsevier (2009)

23. Rocha, C., Meseguer, J., Muñoz, C.: Rewriting modulo SMT and open system
analysis. In: Escobar, S. (ed.) WRLA 2014. LNCS, vol. 8663, pp. 247–262. Springer,
Heidelberg (2014)

24. Rowstron, A., Druschel, P.: Pastry: scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

25. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: a
scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM
Comput. Commun. Rev. 31, 149–160 (2001)

26. Sun, M., Meseguer, J.: Distributed real-time emulation of formally-defined patterns
for safe medical device control. In: Ölveczky, P.C. (ed.) Proceedings of the 1st
International Workshop on Rewriting Techniques for Real-Time Systems, RTRTS
2010, EPTCS, vol. 36, pp. 158–177 (2010)

27. Zave, P.: Using lightweight modeling to understand Chord. SIGCOMM Comput.
Commun. Rev. 42(2), 49–57 (2012)

	Specifying and Analyzing the Kademlia Protocol in Maude
	1 Introduction
	2 Preliminaries and Related Work
	2.1 Maude
	2.2 Kademlia
	2.3 Related Work

	3 Protocol Specification
	3.1 Peers
	3.2 RPCs
	3.3 Process Specification in Maude

	4 Centralized Simulation
	4.1 First Architecture Abstraction
	4.2 Second Architecture Abstraction
	4.3 Formal Abstractions

	5 Analysis
	6 Conclusion and Ongoing Work
	References

