
Memory Policy Analysis for Semantics
Specifications in Maude

Adrián Riesco1, Irina Măriuca Asăvoae2, and Mihail Asăvoae3(B)

1 Universidad Complutense de Madrid, Madrid, Spain
ariesco@fdi.ucm.es

2 Swansea University, Swansea, UK
I.M.Asavoae@swansea.ac.uk

3 Inria Paris-Rocquencourt, Paris, France
mihail.asavoae@inria.fr

Abstract. In this paper we propose an approach to the analysis of
formal language semantics. In our analysis we target memory policies,
namely, whether the formal specification under consideration follows a
particular standard when defining how the language constructs work
with the memory. More specifically, we consider Maude specifications of
formal programming language semantics and we investigate these spec-
ifications at the meta-level in order to identify the memory elements
(e.g., variables and values) and how the language syntactic constructs
employ the memory and its elements. The current work is motivated by
previous work on generic slicing in Maude, in the pursuit of making our
generic slicing as general as possible. In this way, we integrate the current
technique into an existing implementation of a generic semantics-based
program slicer.

Keywords: Formal semantics · Maude · Slicing · Analysis · Memory
policies

1 Introduction

Static program analysis provides functional and non-functional guarantees with
respect to the program behavior. These guarantees, e.g., invariants, are automat-
ically computed from predefined approximations of the concrete program exe-
cutions. Examples on standard invariants include pointer behavior in sequential
code, data races in concurrent code, or bounds of execution time/memory usage.

Rewriting logic provides support to define formal and executable language
semantics. A key aspect in a language definition is the memory model—the
set of all semantic entities that are required to describe the storage compo-
nent of a program execution. Let us consider how memory is organized for two

This research has been partially supported by MICINN Spanish project Strong-
Soft (TIN2012-39391-C04-04) and by the Comunidad de Madrid project N-Greens
Software-CM (S2013/ICE-2731).

c© Springer International Publishing Switzerland 2015
M. Falaschi (Ed.): LOPSTR 2015, LNCS 9527, pp. 293–310, 2015.
DOI: 10.1007/978-3-319-27436-2 18

294 A. Riesco et al.

languages defined in rewriting logic—an imperative language with functions and
input/output support and an assembly language generated from it. For example,
the formal definition of the imperative language would require a global memory
for (global) program variables, local environment (for locals), call stack for func-
tions, and input/output buffers. A program execution is a sequence of rewrite
steps that access one or more of these storages. In a similar fashion, the formal
definition of an assembly language relies on a main memory represented as an
array of memory cells, each cell stores one value, and a set of (general purpose
or specialized) registers for everything else.

Our goal is to design generic program analysis tools based on a meta-level
analysis of the programming language semantic definition. This would allow a
certain degree of parameterization of the program analysis such that changes
in the formal language semantics should not result in the need of adapting the
corresponding analyzer, since the analyzer automatically incorporates the mod-
ifications. This approach builds on the formal executable language semantics
given as a rewriting logic theory [7,19] and on the program to be analyzed. The
generic design for program analysis tools based on language semantics comes in
two steps. The first step is a meta-analysis of the formal language semantics.
The second step is a data dependency analysis of the program. The meta-level
analysis is a fixpoint computation of the set of basic language constructs of
interest, e.g., side-effect constructs, which is then used to extract safe program
slices based on a required criterion. This methodology is instantiated in [3,26]
on the classical WHILE language augmented with a side-effect assignment and
read/write statements and, respectively, on the WhileF language—an extension
of WHILE to allow functions and scope declaration for variables.

An example program in WhileF is in Fig. 1 (left). Note however that both
intra- and inter-procedural program slicing methods are based on a less generic
assumption: the general memory update operation—the assignment statements—
has a fixed destination: its left-hand side. This is not necessarily generic as, for
example, the family of the assembly languages uses explicit memory operations
(load/store) and arithmetic/logic operations (which update registers), with flex-
ible destination placement in the language syntax. For example:

– in MIPS assembly language, in Fig. 1 (middle), the load instruction lw has a
direction right (source) to left (destination), while the store instruction sw has
a reverse direction. Moreover, mult multiplies the values in the two registers
and writes the result in a special multiplication register.

– in x86 assembly language generated by gas (Fig. 1, right top), which is the
GNU assembler and the default back-end of the standard gcc compiler, an
instruction like movl 16(%esp), %eax copies into the register %eax the value
found at the address referred by the register %esp shifted left by 16, as in
Fig. 1 (right top). The update is from left (source) to right (destination).

– in x86 assembly language, in Fig. 1 (right bottom), an instruction like mov
eax, DWORD PTR [esp+28] copies into the register eax a word-length from
the address found in the register esp shifted to the right with the offset 28.
The update is from right (source) to left (destination).

Memory Policy Analysis for Semantics Specifications in Maude 295

... ...
lw $2, 24($fp) movl 16(%esp), %eax

read i ; read j ; lw $3, 16($fp) addl %eax, 24(%esp)
s := 0 ; p := 1 ; addu $2, $2, $3 movl 28(%esp), %eax
while not (i == 0) do sw $2, 24($fp) imull 16(%esp), %eax

write (i - j) ; lw $2, 28($fp) ...
s := s + i ; lw $3, 16($fp) ----------------------------
p := p * i ; mult $2, $3 ...
read i ; mflo $2 mov eax, DWORD PTR [esp+16]

sw $2, 28($fp) add DWORD PTR [esp+24], eax
... mov eax, DWORD PTR [esp+28]

imul eax, DWORD PTR [esp+16]
...

Fig. 1. WhileF program (left) with snapshots of assembly code MIPS IV (middle),
x86 - AT&T (right - top) and x86 - Intel (right - bottom)

The direction of the memory update is an example of what we call a mem-
ory policy, meaning the way the language constructs make use of the semantic
entities that define the memory model in the formal semantics. Moreover, when
we infer the direction of the memory update operation we actually address (in
a uniform way) a wide range of low-level languages.

In this paper we propose a refinement of a previously introduced technique
in [3,26], where we described a generic intra- and inter-procedural slicing method,
respectively. In [26] we focused on inferring the language constructs that produce
side-effects from the semantics specification, i.e., language constructs inducing
memory updates. In the current work, we infer memory policies, i.e., formal
semantics properties about how the language constructs use the memory model
defined by the semantics. We particularise the memory policy to detecting the
direction of the data flow in the memory updates. Namely, given a side-effect
construct c in the considered language, we infer which are the sources and which
is the destination of the data flow detected in c. For example, in an assignment
x := y + z our memory policy detects that y and z are the sources while x is
the destination. For inferring this memory policy the meta-analysis tracks down
how each element in the construct c is used at the memory level (either read or
write) and then we trickle up this information back in the components of c.

Paper Outline. This paper is organized as follows: Sect. 2 covers related work;
Sect. 3 introduces rewriting logic and Maude as well as our view on memory
polices from the rewriting-logic perspective; Sect. 4 details the algorithm of infer-
ring memory policies; Sect. 5 describes the prototype tool. We conclude in Sect. 6.

2 Related Work

Our goal is to design and implement generic formal semantics-based tools for
program analysis in a rewriting logic environment, with focus on memory models.
Hence, we relate our approach to static program analysis and rewriting logic.

296 A. Riesco et al.

Static program analysis is a compile-time process for automatically extracting
run-time semantic information (i.e., invariants) from programs. Abstract inter-
pretation [8], which systematically derives sound approximations of the concrete
semantics, and type systems [22], which define correct programs with respect to
typing information, are two of the most used techniques for program analysis.

Program analysis based on abstract interpretation uses abstract domains and
abstract semantics. The latter is an abstract re-implementation of (some of) the
language operations as well as an abstract memory. From the point of view
of the abstract representation of the program memory, the abstract semantics
can capture a wide range of properties: functional properties, e.g., pointer and
alias analyses [15,23], data race detection [12] on shared memory programs,
stack safety [24], automated checks for coding standards [29], or non-functional
properties, e.g., computation of safe upper bounds for heap size [1] and stack
size [4]. In comparison with these approaches, we propose to infer, via meta-
analysis of the formal language semantics, certain information (which we call
policies) about the abstract memory system.

Having a formal executable semantics with precise memory models allows
verification of both sequential and concurrent code. For example, the encoding
of the x86 assembly language semantics in HOL proof assistant [28] allows rea-
soning about memory consistency in threaded applications while the encoding
of the memory model of C language in Coq [18] is suitable for pointer arithmetic
reasoning. In general, theorem proving either interactive or automated provides
the necessary infrastructure to allow meta-level reasoning for programming lan-
guage semantics, in a similar fashion with our proposal. These approaches are
complemented by the rewriting logic semantics project [21], which focuses on
how to define formal semantics of programming languages in rewriting logic
and how to construct program analysis tools directly over these semantics. The
memory component of a language definition in rewriting logic and its applica-
bility in program analysis is presented in [11,14]. The memory model of [14] is
exemplified on a simple imperative language with functions. Also, they define
pluggable program analyses by reusing parts of the concrete language semantics.
For example, the rewriting logic specification of the Java Memory Model [11] is
used for model checking Java programs. Our approach accommodates the con-
cept of pluggable program analysis via meta-level manipulation of the program
semantics, as given for program slicing in [3].

The term-slicing aspect of our proposed program slicing technique is rooted
into the notions of descendant/ancestor and origin tracking [5,16,17]. Origin
tracking, introduced in [17] is a refinement of the descendant/ancestor relation-
ship as it follows the symbols of an expression to their causes in an earlier
expression in a rewrite sequence. The origin tracking in first-order term rewrit-
ing systems [16] is intrinsic to slicing due to its strategy of reasoning on every
reduction from a term to its normal form. The term-slicing uses an extended con-
cept of origin tracking, w.r.t. the aforementioned approaches, because it tracks
changes in conditional rewriting rules, as defined in Maude, with a particular
emphasis on how to slice through rule conditions. In fact, the proposed notion of

Memory Policy Analysis for Semantics Specifications in Maude 297

term-slicing determines variable dependencies in rules and equations in Maude
specifications where the variables are subterms of a certain sort.

In rewriting logic there are several approaches for analysis tools, not necessar-
ily for programs. For example, debugging [2], testing [25], and slicing [2,3,13,26].
The program slicing technique in [13] executes the term representation of a pro-
gram with the formal semantics and extracts dynamic slices. In comparison, our
approach does not execute the formal semantics; the term slicing is based on a
meta-level analysis of the semantics. In terms of genericity [13], requires transla-
tion steps from a given language semantics into an intermediate language (which
is the base for program slicing), whereas our approach works directly on the
semantics, as it is defined. The slicing technique in [2] works on generic Maude
execution traces. In comparison, we propose a static approach built around a
formal semantics and with an emphasis on computing slices for programs and
not for execution traces. The work in [25] presents an approach to generate test
cases similar to the one presented here in the sense that both use the semantics of
programming languages formally specified to extract specific information. How-
ever, in [25] the narrowing technique is used on the semantic rules to instantiate
the state of the variables in the given program. Matching logic [27] is a program
verification technique based on executing a program with a rewriting-based for-
mal semantics, by proving the necessary program invariants. In comparison, our
approach is complementary to matching logic as it attempts to compute invari-
ants from the semantics and afterwards, to apply them in program reasoning
(e.g., program slicing). Moreover, our approach uses the meta-level capabilities
of rewriting logic, which to the best of our knowledge are not available in the
matching logic framework.

The technique in the current paper follows our previous work on language-
independent program slicing in rewriting logic environment [3]. Actually, the
implementation of the current work improves the genericity aspect of the slicing
tool developed in [3], since we infer policies about memory updates applied to
imperative and assembly languages. The program slicing over the formal seman-
tics S of the language L follows the same two steps as in [3]: (1) an initial meta-
analysis of S followed by (2) a program analysis conducted over the programs in
L using term slicing.

3 Preliminaries

We present in this section the basic ideas about Maude and memory policies.

3.1 Memory Policies

A formal language semantics consists of the set of all semantic entities that
are required to fully specify all possible behaviors of any correct program, i.e.,
with respect to the semantics definition. Part of the language semantic enti-
ties describe the memory system. Examples of such semantic entities are heaps,
stacks (e.g., call stack, loop stack), environments, register file, etc. Then,

298 A. Riesco et al.

the language constructs interact, directly or indirectly, with the memory sys-
tem. Our aim is to infer information about this interaction in an automated
way.

We achieve our declared goal of designing generic program analysis tools by
employing a meta-level analysis of the formal language semantics. Such a meta-
analysis extracts semantics level properties, e.g., the sets of language constructs
that may induce side-effects or may result into context-updates. From a memory
system point of view, these properties are inferred from the semantics specifica-
tion by following how the language constructs operate on the memory system.
We call this kind of properties memory policies. For example, in the case of an
imperative language semantics as WhileF, i.e., with functions and input-output
capabilities, one memory policy could be named as “direction property”. This
would involve inferring that in the assignment statements the right-hand side is
the source and the left-hand side is the destination.

A more formal view on inferring memory policies would require reasoning at
the level of sorting relationships of the semantic entities present in the language
semantics specification (starting with a given set of memory-related sorts). For
assembly languages in Fig. 1, MIPS considers left to right direction for store
and right to left for load instructions while the two x86 styles use the same
style for both direction, although it is from left to right for one architecture and
from right to left in the other. Consequently, if we are to extend our tool for
dealing with a larger class of programming languages, we need to incorporate
this particular memory policy inference, which automatically deduces from the
semantics specification, for the side-effect constructs, what is the direction of
the data flow in each such construct. Note that this direction is crucial for the
accuracy of the slicing result, as we need to incorporate in the slicing set only the
changing points of certain variables, i.e., where those variables are destination.

3.2 Semantics in Maude

Maude modules are executable rewriting logic specifications. Rewriting logic [20]
is a logic of change very suitable for the specification of concurrent systems and
it is parameterized by an underlying equational logic, for which Maude uses
membership equational logic (MEL) [6], which, in addition to equations, allows
one to state membership axioms characterizing the elements of a sort. Rewriting
logic extends MEL by adding rewrite rules.

Maude functional modules [7, Chap. 4], introduced with syntax fmod ...
endfm, are executable membership equational specifications that allow the def-
inition of sorts (by means of keyword sort(s)); subsort relations between sorts
(subsort); operators (op) for building values of these sorts, giving the sorts of
their arguments and result, and which may have attributes such as being asso-
ciative (assoc) or commutative (comm), for example; memberships (mb) asserting
that a term has a sort; and equations (eq) identifying terms. Both memberships
and equations can be conditional (introduced by the keyword cmb and ceq,
respectively). Maude system modules [7, Chap. 6], introduced with syntax mod

Memory Policy Analysis for Semantics Specifications in Maude 299

... endm, are executable rewrite theories. A system module can contain all the
declarations of a functional module and, in addition, declarations for rules (rl)
and conditional rules (crl).

Maude has been widely used for specifying the semantics of several languages,
such as Java [10] or C [9]. The key idea for specifying semantics is, first, to define
the signature by means of declaring sorts and their respective constructors (oper-
ators). We illustrate this methodology by presenting a simple assembly language
that we will use throughout the rest of the paper. This language uses registers
to keep intermediate values and defines standard functions, such as addition and
subtraction, over them, and also has a memory where values are stored for later
sessions. The specification of this language requires a sort identifying a regis-
ter (RegId), for the value stored in a register (Register), and for the set of
such values (Registers). Note the use of the keyword subsort indicating that
Register is a particular case of Registers:

sorts RegId Register Registers . subsort Register < Registers .

We define now values for these sorts as follows: RegId are built with the
constructor reg, which receives a natural number; a Register is just a pair of
a RegId and an integer (underscores are just placeholders); finally, we can have
either the empty Registers (mtReg) or the juxtaposition of elements, which is
commutative and associative and has mtReg as identity:

op reg : Nat -> RegId [ctor] .

op <_,_> : RegId Int -> Register [ctor] .

op mtReg : -> Registers [ctor] .

op __ : Registers Registers -> Registers [ctor assoc comm id: mtReg] .

We can also define functions on these sorts. We specify the function [] for
looking-up a value in the registers (note that it returns 0 if it is not initialized)
and update for updating the memory:

op _[_] : Registers RegId -> Int .

eq [lu1] : (< R, I > RS) [R] = I .

eq [lu2] : RS [R] = 0 [owise] .

op update : RegId Int Registers -> Registers .

eq [upd_int1] : update(R, I, < R, I’ > RS) = < R, I > RS .

eq [upd_int2] : update(R, I, RS) = < R, I > RS [owise] .

The sort for the long-term memory, Memory, is defined in a similar way. It
is also worth presenting the syntax for instructions and the whole system that
will be used when defining the semantics. Instructions have sort Ins and their
syntax depends on the specific instructions. For example, the instruction for
adding two registers and storing the result in a third one is defined below. We
will infer later the direction of this instruction, that is, we identify which one
is “the third register.” Finally, the complete system has sort System and puts

300 A. Riesco et al.

together a list of instructions (Instructions), the state of the registers (sort
Registers), the state of the memory (Memory), and the program counter (of a
predefined sort Nat):

op add_,_,_ : RegId RegId RegId -> Ins [ctor] .

op [_|_|_|_] : Instructions Registers Memory Nat -> System [ctor] .

Once the signature is established, the semantics are defined by means of
rewrite rules. Rewrite rules mimic the behavior specified by the inference rules
in the formal semantics by executing the premises in the conditions and the
conclusion in the body of the rule. The rule labeled [add] below defines the
expected behavior of the add instruction: retrieves the values stored in the second
and the third register parametrizing the instruction, adds them, and stores the
thus obtained value in the first register:

crl [add] : [IIL | RS | M | PC] => [IIL | RS’ | M | PC + 1]

if (add RI, RI’, RI’’) := getIns(IIL, PC) /\

I := RS [RI’] /\

I’ := RS [RI’’] /\

RS’ := update(RI, I + I’, RS) .

Note that we use matching conditions (:=) to indicate that the pattern in the
lefthand side matches the term in the righthand side, once it has been reduced by
means of equations. This condition binds the free variables (that is, the variables
that did not appear in the lefthand side of the rule or in previous matching
conditions) to the appropriate values.

4 Inferring Memory Policies

We describe next the refinement that extends our previous work on discovering
side-effect constructs in a programming language starting with the semantics
specification of the considered language [26]. There, we show a generic intrapro-
cedural slicing process where the generic aspect is given by the inference of what
we call side-effect language constructs, i.e., the instructions that determine mem-
ory changes. To achieve this, we construct a so called hyper-tree, whose nodes are
sets of rewrite rules and edges are dependencies between these rules. As such, we
are able to infer which constructs are going to possibly produce memory updates
by following the paths in the hyper-tree from the root to the leaves. We can see
our current work as a trickle-up in this hyper-tree. Namely, at the leaves level we
extract information regarding the source-destination relation of memory updates
and we propagate this relation up in the hyper-tree at the level of the language
constructs. Note that the method in [26] produces an over-approximation of the
side-effect constructs, which we now refine not in terms of cutting out elements
from the resulting set, but by enriching the information contained in this set
with data-flow direction.

Hence, we present in this section the ideas underlying our framework, illus-
trating them on the Maude semantics of an assembly language. The results are

Memory Policy Analysis for Semantics Specifications in Maude 301

equally applicable to other rewriting-based semantics, like the one for WhileF
language that we describe in [3]. Next, we elaborate on the semantics of the
assembly language and how to infer memory policies like the “direction of a
memory update” for programming language constructs.

We assume that the sorts for the memory (Registers and Memory in the
example in Sect. 3) are provided by the user, while the rest of information is
inferred by the system. It is important to state that these inferences work under
a natural assumption: memory sorts are composed by tuples mapping program
variables into values, possibly via addresses.

4.1 Maude Slicing

In order to narrow down the source of the changes, we first apply term-slicing
to the equations and rules in the semantics. Slicing for Maude specifications
(named in this paper term-slicing to differentiate it from the standard program
slicing component present in our work) is already used for improving the results
from Maude model checker [2]. We use here a simpler approximation of term-
slicing that traces back the source of a given set of variables by adding to this
set the variables involved in their generation. This approximation is a syntactic
procedure for computing dependencies in a single rule/equation by taking into
account that variables can be bound in the lefthand side of matching conditions
(:=) and in the righthand side of rewrite conditions (=>). Hence, starting from
an initial set of variables of interest V, we traverse the conditions following a
bottom-up strategy and, when a variable v ∈ V is bound by these conditions
we add all the variables in the “opposite” side (hence in the righthand side
of matching conditions and the lefthand side of rewrite conditions) to V. For
example, let us assume we have a rule as follows

crl f(X, Y, Z) => g(h(B, A3), Z)

if X >= 3 /\

A1 := aux1(X, Y) /\

B := other_fun(X, Y, Z) /\

aux2(Y) => A2 /\

A3 := aux3(A1, A2) .

and we want to trace back A3, since it modifies the memory. In the rule above, the
condition A3 := aux3(A1, A2) indicates that the value in A3, the variable in the
term-slicing set, depends on the value of both A1 and A2 used in function aux3, so
they are both included in the term-slicing set. The previous condition, aux2(Y)
=> A2, indicates that A2 depends on Y, and hence it is included in the slicing set.
Note however that the condition B := other fun(X, Y, Z) does not produce
any change in the term-slicing set because Y is only used and not changed by this
condition, hence B is not included in the term-slicing set. The condition A1 :=
aux1(X, Y) adds X (and Y) into the term-slicing set. Finally, the first condition,
X >= 3, has no effect because it is not a matching or rewriting condition. From
this analysis we find that A3 depends on Y and X from the lefthand side of the
rule; similarly, we can decide the dependencies of any term.

302 A. Riesco et al.

Data: A specification and the sorts for the memory M.
Result: Set of sorts for values V.
V = ∅;
foreach constructor c(s0, . . . , sn, v) of sort S, n ≥ 0, S ∈ M do

foreach function f : ar → v do // Explicit inference
if S ∈ ar then V = V ∪ {v};

end
foreach rule l → r if cond do // Implicit inference

vm = varsOfSortMemory(r,M);
vs = slicing(l, cond , vm);
V = V ∪ getVarsInConstructor(vs, c);

end

end
Algorithm 1. Algorithm for inferring the sort for the values

4.2 Inferring the Sorts for the Values in the Memory

We now emphasize on the settings characterizing the memory part in the class of
language semantics specifications that we consider. As previously mentioned, we
assume that the memory component of the specification is connecting the pro-
gram variables to their current values, either directly as in a simplified memory
model, or via a chain of “addresses” as in a more accurate representation of the
machine. Note that by “values” we understand those terms building the mem-
ory that are used by the semantics to modify the state, while by “addresses” we
understand those terms used to access the values. We now show how to obtain
the sorts for the values stored in the memory given by the, e.g., Registers sort
in the considered language specification.

We present the algorithm for inferring these sorts in Algorithm1. We traverse
the constructors for the sorts specifying the memory and check all the possible
outcomes for them. The first inner loop deals with explicit access to the memory:
functions that receive the memory and return one of the sorts used in the con-
structor.1 This case is illustrated by the function look-up ([]) in Sect. 3. The
look-up function is defined by the equations [lu1] and [lu2] and it extracts a
term of sort Int, which is used to build a Register, which is, in turn, a subsort
of the sort of a specific part of the memory, i.e., Registers. Since this function is
used in the semantics of the language, we infer that Int is the sort of a possible
value.

We can also find implicit access to the memory: patterns in the lefthand side
of rules or in matching/rewrite conditions can be used to retrieve values from
the memory, as illustrated in the second inner loop of Algorithm1. In this case,
we trace back the variables modifying the memory and keep only those obtained
1 We have placed the sort v as the last sort in the arity to ease the presentation, but

it is not required.

Memory Policy Analysis for Semantics Specifications in Maude 303

Data: A specification, the sorts for the memory M, and the sorts standing for
values V.

Result: Set of functions F modifying the memory annotated with the variables
responsible for the modifications.

F = ∅;
foreach function f : s0, . . . , sn → s, s ∈ M,∃i.si ∈ V do // Explicit inference

F = F ∪ {fsi}
end
foreach rule l → r if cond do // Implicit inference

vm = varsOfSortMemory(r,M);
vs = slicing(l, cond , vm);
vv = varsOfSortValue(vm,V);
if vv �= ∅ then F = F ∪ {fvv};

end
Algorithm 2. Algorithm for inferring the functions modifying the memory

from the memory. For example, assume we modify the rule [add] from Sect. 3
to avoid the look-up function, obtaining [addv2].2

crl [addv2] : [IIL | RS | M | PC] => [IIL | RS’’ | M | PC + 1]

if (add RI, RI’, RI’’) := getIns(IIL, PC) /\

< RI’, I > < RI’’, I’ > RS’ := RS /\

RS’’ := update(RI, I + I’, RS) .

In this case, we know that it is possible for the memory to be modified (we
have a new variable RS’’ for a memory sort), so we consider the term-slicing set
to initially contain only this variable. We then trace back its related variables
using the technique described in Sect. 4.1, obtaining RI, I, I’, RS, IIL, and PC.
We can now filter the obtained term-slicing set and retain only the values in the
memory (in this case both I and I’), which have the sort Int that we previously
inferred. Note that it is possible to use a matching with unrequited information
to make the method above to include some sorts that are not proper values.
However, this is not a threat for soundness, because our technique computes
over-approximations, so adding a sort that is not memory related will just worsen
the granularity of the slice computed later.

4.3 Inferring the Functions Modifying the Memory

At this step we look for the functions that introduce new values into the mem-
ory. As presented in Algorithm 2, in this case we can also find both explicit
and implicit access to the memory. Note that the algorithm returns the set of
functions annotated with the variables responsible for the effects. The explicit
case, shown in the first loop, is easy to detect: we just traverse the operators
2 We would need extra rules to take care of non-initialized registers, but this is not

relevant for the technique.

304 A. Riesco et al.

looking for those creating/modifying the memory (i.e., the memory appears in
the coarity). We then trace the source of this modifications by using the slicing
technique in Sect. 4.1 to annotate those arguments responsible for the changes
and having one of the sorts annotated in the previous step. For instance, the
function update from Sect. 3 modifies the memory by introducing the element
of sort Int received as the second parameter.

Note that since update is found to modify the memory, then also the [addv2]
rule modifies the memory since it uses update to match the memory variable
RS’’. This connection between the rules and functions that modify the memory
is already presented in our previous work [26]. There we describe the construc-
tion of a hyper-tree containing in its nodes rules from the language semantics
specification while its arcs are given by relations as the one mentioned above. For
instance, [addv2] is a parent of [upd int1] and [upd int2] in the hyper-tree
because it uses the update function which is described by the two [upd] rules.

The implicit modifications to the memory, shown in the second loop of
Algorithm 2, occur when a rewrite rule modifies the memory directly, i.e., with-
out using any auxiliary function. In this case, we must slice again the rule using
the updated memory criteria and keep those variables that have the sort obtained
in the previous step. We illustrate this with a third version of the [add] rule
from Sect. 3, called [addv3].3

crl [addv3] : [IIL | RS | M | PC] => [IIL | RS’’ | M | PC + 1]

if (add RI, RI’, RI’’) := getIns(IIL, PC) /\

< RI, I > < RI’, I’ > < RI’’, I’’ > RS’ := RS /\

RS’’ := < RI, I’ + I’’ > < RI’, I’ > < RI’’, I’’ > RS’ .

In this case, the last matching condition updates the memory onsite by using
the values I’ and I’’. Consequently, I’ and I’’ are annotated as side-effect
sources, i.e., sources of changes in the memory.

4.4 Inferring the Data-Flow Information

By using the results obtained in the previous steps, we have enough informa-
tion to infer the data-flow relation that is of interest here, i.e., the source-
destination relation in the language constructs producing side-effects. As shown
in Algorithm 3, we take for each rewrite rule the variables modifying the mem-
ory (obtained from either explicit or implicit change) and apply enriched slicing
to them. This enriched slicing takes into account the assumption stated at the
beginning of the section: the memory is composed of cells (tuples) connecting the
program variables (or registers in the case of assembly languages) with their val-
ues. Hence, when facing a matching condition involving the memory we extend
the slicing set to all the elements in the tuple in order to make sure we consider
all the “addresses” connecting the program variables with their values. Finally,
we need to recognize the instruction being executed. This term is the one that
3 Note that we would need another rule to deal with the case where RI is not initialized,

but this does not change the inference.

Memory Policy Analysis for Semantics Specifications in Maude 305

Data: A specification and the functions modifying the memory F .
Result: Data-flow information D.
D = ∅;
foreach rule rl ≡ l → r if cond do

vs = getVarsFromAnnotations(rl ,F);
vss = slicing(rl , vs);
ins = getInstruction(rl, vss);
active = getVars(ins) ∩ vss;
passive = getVars(ins) \ vss;
D = D ∪ {ins : active �→ passive}

end
Algorithm 3. Algorithm for inferring the data-flow information

fulfills the following properties: (i) must be (or depend on) a subterm that con-
tains the complete state, including the memory and any other sort required by
the semantics and (ii) contains all the variables from the slicing set not related
with the memory. The variables appearing in this term and in the slicing set
are responsible for the modifications we are tracing in the memory. Note that
many rules can specify the behavior of the same instruction. In this case, we put
together all the possible sources of change.

For example, this method infers for the rule [add] from Sect. 3, that:

1. The term being executed is add RI, RI’, RI’’, since it is not related to the
memory and contains RI’ and RI’’, which in turn generate I and I’ from
the slicing set.

2. The variables RI’ and RI’’, which appear in both the term and the slicing
set, modify the rest of the variables (RI). Hence, this instruction works from
right to left.

The same result is easily obtained for addv2 and addv3. Moreover, note that
the same approach can be easily followed to analyze the direction of a standard
assignment instruction in any imperative language.

5 Prototype

The ideas presented in the previous sections have been used to extend the slicing
tool in [3]. It allows us to apply our generic slicing framework to semantics of
imperative languages, like the WhileF language in [3], to languages with mixed
data-flow policies, like the assembly language presented in this paper, or to
“eccentric” semantics, such as, languages with a left to right assignment state-
ment. The source code of the tool, examples, and more explanations are available
at http://maude.sip.ucm.es/slicing/.

The tool is started by loading in a Maude session the slicing.maude file
available at the webpage. This starts an input/output loop where other Maude
modules can be introduced and analyzed. We introduce the semantics for the
language, e.g., the assembly language partially presented throughout the paper.

http://maude.sip.ucm.es/slicing/

306 A. Riesco et al.

One of the tool’s features is to infer the data flow information for the basic
language constructs. For example, add presented in more detail in Sect. 4 has a
right to left direction, i.e., add R1, R2, R3 stores R2 + R3 in R1; the direction
of the load instruction is from left to right, i.e., load R1, R2 loads in R2 the
data stored in the memory cell indicated by R1; while for the store instruction
the tool infers a data flow direction from right to left, i.e., str R1, R2 stores in
the register indicated by R1 the value in the cell indicated by R2.

Because we have at hand an executable semantics, we can use the assembly
language semantics to execute the program pow, which computes xy (assuming x
and y are stored in the memory cells 0 and 1, respectively) and stores the result
in the cell 2:

op pow : -> InsList .

eq pow = load R1, R1 *** Load M[0] in R1 (left to right)

addi R2, R2, 1 *** Add 1 and save it in R2

load R2, R2 *** Load M[1] in R2

addi R4, R4, 1 *** Add 1 and save it in R4

’loop beq R2, R3, ’out *** Jump to out when R2 and R3 are equal

mul R4, R4, R1 *** Store in R4 the result of R4 * R1

*** (function from right to left)

subi R2, R2, 1 *** Update the counter

jmp ’loop *** Jump to loop

’out addi R5, R5, 2 *** Add 2 and save it in R5

str R5, R4 *** Store the value of R4 in M[R5]

*** (function from right to left)

break . *** end

The execution of the program needs the user’s input of initial state, e.g., the
function testPow introduces 3 and 5 in the memory cells 0 and 1, respectively:

op testPow : -> System .

eq testPow = [pow | mtReg | [0, 3] [1, 5] | 0] .

Furthermore, in order to obtain the slicing results, the user introduces the
sorts corresponding to the memory with the command:

Maude> (set side-effect sorts Memory Registers .)

Memory Registers selected as side effect sorts.

Once these sorts are set, we can start the slicing process by indicating the
program to slice, e.g., testPow, and the initial slicing set, e.g., the singleton set
containing R5 the variable storing the final result of pow:

Maude> (slice testPow wrt R5 .)

Note that the initial state of the program is not used by the slicer, which
performs static analysis in the true sense, i.e., without using any information
from the current state of the program. The program’s state is there just to
exemplify the executing capabilities of the programming language semantics used
in our tool. Now, for slicing, the tool analyzes the list of instructions of the
program, given in pow, and returns:

Memory Policy Analysis for Semantics Specifications in Maude 307

– The rules producing side effects, obtained by using the sorts for values and
checking which rules modify them:

The rules causing side effects are: add addi and load mul muli

str sub subi

– The data-flow information for each rule producing side-effects. It is interesting
to see the difference between load and store, as discussed above:

The inferred data-flow information is:

- For function add RI:RegId,RI’:RegId,RI’’:RegId :

Variable(s) RI:RegId are modified by RI’:RegId RI’’:RegId

- For function load RI:RegId,RI’:RegId :

Variable(s) RI’:RegId are modified by RI:RegId

- For function str RI:RegId,RI’:RegId :

Variable(s) RI:RegId are modified by RI’:RegId ...

– The final slicing set. In this case, the value stored in the position R5 is updated
with the contents of R4, which was in turn updated with the contents in R1.
Hence, these registers compose the final slicing set:

The variables obtained by the slicing process are: R5 R4 R1

It is important to remember that the tool works for any programming lan-
guage whose semantics has been defined in Maude. Hence, we can use the WhileF
language from [3] to further test the semantics. Briefly, WhileF is an imperative
language with functions and input-output capabilities. Henceforth, the algorithm
that infers memory policy information on the WhileF semantics works with the
sorts of the underlying memory model: a state sort ST mapping variables to
values (the global memory), a sort ESt for the program environment (the local
memory), and a sort for the read/write buffer RWBUF. Hence, we can introduce
the code from Fig. 1(left) in WhileF as follows:

op whileExample : -> Com .

eq whileExample = Read i ; Read j ; s := 0 ; p := 1 ;

While Not Equal(i, 0) Do

Write (i -. j) ; s := s +. i ; p := p *. i ; Read i .

Our tool will traverse the semantics, find the sort of values, and show that the
assignment works from left to right. Moreover, it also indicates that the variable
related to p is just i, used in the multiplication:

Maude> (slice whileExample wrt p .)

The inferred data-flow information is:

- For function X:Var := e:Exp :

Variable(s) X:Var are modified by e:Exp

The variables obtained by the slicing process are: p i

308 A. Riesco et al.

6 Concluding Remarks and Future Work

In this paper we used formal language semantics to infer a certain type of mem-
ory policy, i.e., data-flow information for language constructs which produce
memory updates. This inference has allowed us to improve on the genericity of
our slicing technique [3] and to make another step towards a complete design
of a automatized semantics-based slicing tool. Moreover, this addition to the
slicing tool allowed testing the tool on other class of programming language
specifications such as the assembly languages.

We are currently investigating the automatic inference of other slicing pre-
requisites for interprocedural methods such as the automatic deduction of func-
tion call/returns and the inference of their parameter passing patterns. These
improvements would further automatize our generic slicing tool as the language
designer would roughly need only to define the semantics of the programming
language, to give the input program, and the slicing criterion, then our generic
slicer will generate all the necessary information for slicing. From a language per-
spective, we aim to extend the language, for example with pointers and hence,
to be able to accommodate more complex memory policies, based on a more
refined memory model. Note that the addition of pointers to our framework will
allow us to use arrays as well. Finally, our aim is to introduce concurrency in
the framework, so we can cover and test out proposed methodology on a larger
and significant class of programming languages.

Acknowledgments. We thank the anonymous reviewers for their valuable comments
and suggestions, which greatly improved the quality of the paper.

References

1. Albert, E., Genaim, S., Gómez-Zamalloa, M.: Live heap space analysis for lan-
guages with garbage collection. In: Proceedings of the International Symposium
on Memory Management, ISMM 2009, pp. 129–138. ACM (2009)

2. Alpuente, M., Ballis, D., Frechina, F., Romero, D.: Using conditional trace slicing
for improving Maude programs. Sci. Comput. Program. 80, 385–415 (2014)

3. Asăvoae, I.M., Asăvoae, M., Riesco, A.: Towards a formal semantics-based tech-
nique for interprocedural slicing. In: Albert, E., Sekerinski, E. (eds.) IFM 2014.
LNCS, vol. 8739, pp. 291–306. Springer, Heidelberg (2014)

4. Baufreton, P., Heckmann, R.: Reliable and precise WCET and stack size determina-
tion for a real-life embedded application. In: ISoLA 2007, Workshop On Leveraging
Applications of Formal Methods, Verification and Validation, Revue des Nouvelles
Technologies de l’Information, pp. 41–48. (2007)

5. Bethke, I., Klop, J.W., de Vrijer, R.C.: Descendants and origins in term rewriting.
Inf. Comput. 159(1–2), 59–124 (2000)

6. Bouhoula, A., Jouannaud, J.-P., Meseguer, J.: Specification and proof in member-
ship equational logic. Theor. Comput. Sci. 236(1–2), 35–132 (2000)

7. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C. (eds.): All About Maude. LNCS, vol. 4350. Springer, Heidelberg (2007)

Memory Policy Analysis for Semantics Specifications in Maude 309

8. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Conference
Record of the Symposium on Principles of Programming Languages, POPL 1977,
pp. 238–252. ACM (1977)

9. Ellison, C., Rosu, G.: An executable formal semantics of C with applications. In:
Proceedings of the Symposium on Principles of Programming Languages, POPL
2012, pp. 533–544. ACM (2012)

10. Farzan, A., Chen, F., Meseguer, J., Roşu, G.: Formal analysis of Java programs in
JavaFAN. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 501–505.
Springer, Heidelberg (2004)

11. Farzan, A., Meseguer, J., Roşu, G.: Formal JVM code analysis in JavaFAN. In:
Rattray, C., Maharaj, S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116, pp.
132–147. Springer, Heidelberg (2004)

12. Ferrara, P.: A generic static analyzer for multithreaded java programs. Softw.,
Pract. Exper. 43(6), 663–684 (2013)

13. Field, J., Tip, F.: Dynamic dependence in term rewriting systems and its applica-
tion to program slicing. Inf. Softw. Technol. 40(11–12), 609–636 (1998)

14. Hills, M., Rosu, G.: A rewriting logic semantics approach to modular program
analysis. In: Proceedings of the International Conference on Rewriting Techniques
and Applications, RTA 2010, LIPIcs, vol. 6, pp. 151–160. (2010)

15. Hind, M., Pioli, A.: Evaluating the effectiveness of pointer alias analyses. Sci. Com-
put. Program. 39(1), 31–55 (2001)

16. Huet, G.P., Lévy, J.: Computations in orthogonal rewriting systems, I. In: Com-
putational Logic - Essays in Honor of Alan Robinson, pp. 395–414. (1991)

17. Klop, J.W.: Term rewriting systems from Church-Rosser to Knuth-Bendix and
beyond. In: Paterson, M.S. (ed.) Automata, Languages and Programming. LNCS,
vol. 443, pp. 350–369. Springer, Heidelberg (1990)

18. Leroy, X., Blazy, S.: Formal verification of a C-like memory model and its uses for
verifying program transformations. J. Autom. Reason. 41(1), 1–31 (2008)

19. Mart́ı-Oliet, N., Meseguer, J.: Rewriting logic: roadmap and bibliography. Theor.
Comput. Sci. 285(2), 121–154 (2002)

20. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor.
Comput. Sci. 96(1), 73–155 (1992)

21. Meseguer, J., Rosu, G.: The rewriting logic semantics project. Theor. Comput. Sci.
373(3), 213–237 (2007)

22. Pierce, B.C.: Types and Programming Languages. MIT Press, London (2002)
23. Ramalingam, G.: The undecidability of aliasing. ACM Trans. Program. Lang. Syst.

16(5), 1467–1471 (1994)
24. Regehr, J., Reid, A., Webb, K.: Eliminating stack overflow by abstract interpre-

tation. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 306–322.
Springer, Heidelberg (2003)

25. Riesco, A.: Using semantics specified in maude to generate test cases. In:
Roychoudhury, A., D’Souza, M. (eds.) ICTAC 2012. LNCS, vol. 7521, pp. 90–104.
Springer, Heidelberg (2012)

26. Riesco, A., Asăvoae, I.M., Asăvoae, M.: A generic program slicing technique based
on language definitions. In: Mart́ı-Oliet, N., Palomino, M. (eds.) WADT 2012.
LNCS, vol. 7841, pp. 248–264. Springer, Heidelberg (2013)

27. Rosu, G., Stefanescu, A.: Matching logic: a new program verification approach. In:
Proceedings of the International Conference on Software Engineering, ICSE 2011,
pp. 868–871. ACM (2011)

310 A. Riesco et al.

28. Sarkar, S., Sewell, P., Nardelli, F.Z., Owens, S., Ridge, T., Braibant, T., Myreen,
M.O., Alglave, J.: The semantics of x86-cc multiprocessor machine code. In: Pro-
ceedings of the Symposium on Principles of Programming Languages, POPL 2009,
pp. 379–391. ACM (2009)

29. Venkitaraman, R., Gupta, G.: Static program analysis of embedded executable
assembly code. In: Proceedings of the International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems, CASES 2004, pp. 157–166.
ACM (2004)

	Memory Policy Analysis for Semantics Specifications in Maude
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Memory Policies
	3.2 Semantics in Maude

	4 Inferring Memory Policies
	4.1 Maude Slicing
	4.2 Inferring the Sorts for the Values in the Memory
	4.3 Inferring the Functions Modifying the Memory
	4.4 Inferring the Data-Flow Information

	5 Prototype
	6 Concluding Remarks and Future Work
	References

