
Distributed and mobile applications in Maude

Adrián Riesco Rodrı́guez

Departamento de Sistemas Informáticos y Computación
Facultad de Informática

A Master’s Thesis Directed by
Dr. Alberto Verdejo

June 2007

Maude como marco semántico ejecutable

U
C
CM

UNIVERSIDAD
COMPLUTENSE

MADRID

TESIS DOCTORAL

José Alberto Verdejo López

Departamento de Sistemas Informáticos y Programación

Facultad de Informática

Universidad Complutense de Madrid

Enero 2003

Contents

1 Introduction 7
1.1 Related work . 9

1.1.1 Eden Skeletons . 10
1.1.2 JaSkel . 10
1.1.3 The ambient calculus . 11
1.1.4 The Seal calculus . 12
1.1.5 Mobile UNITY . 13
1.1.6 Mobile agents in Ajanta . 13

2 Maude 15
2.1 Functional modules . 15
2.2 System modules . 16
2.3 Object-oriented modules . 17
2.4 Maude main commands . 20
2.5 Reflection and metalevel computations . 21
2.6 Parameterized modules . 22

2.6.1 Predefined parameterized modules 23
2.7 Sockets provided by Maude . 25

2.7.1 Client sockets . 26
2.7.2 Server sockets . 27
2.7.3 Factorial server example . 28

2.8 Buffered sockets . 30
2.8.1 The factorial example revisited . 33

2.9 From Full Maude to Core Maude . 34

3 Architectures 37
3.1 Common infrastructure . 37
3.2 Star architecture . 42
3.3 Ring architecture . 45
3.4 Centralized ring architecture . 48
3.5 Ray tracing case study . 50

3.5.1 Sequential implementation . 51
3.5.2 Distributed implementation . 53

3

4 CONTENTS

4 Parameterized skeletons 59
4.1 Distributable applications . 59

4.1.1 Euler numbers . 59
4.1.2 Force interactions . 60
4.1.3 Mergesort . 61
4.1.4 Traveling salesman problem . 62

4.2 Parameterized skeletons . 66
4.3 Farm skeleton . 67

4.3.1 Ray tracing instantiation . 70
4.3.2 Mandelbrot instantiation . 72
4.3.3 Euler instantiations . 74

4.4 Systolic ring skeleton . 75
4.4.1 Force interaction instantiation . 80

4.5 Divide and conquer skeleton . 82
4.5.1 Mergesort instantiation . 87

4.6 Branch and bound skeleton . 90
4.6.1 Traveling salesman instantiation . 94
4.6.2 Graph bipartitioning instantiation 97

4.7 Pipeline skeleton . 100
4.7.1 Airport instantiation . 104

5 Mobile Maude 109
5.1 Mobile Maude main features . 109
5.2 Processes and mobile objects . 110
5.3 Mobile Maude interface . 113
5.4 Mobile Maude’s syntax . 114
5.5 Mobile Maude’s rewriting semantics . 115

5.5.1 Letting mobile objects do something 116
5.5.2 Object communication . 117
5.5.3 Object mobility . 120
5.5.4 The creation of mobile objects . 122
5.5.5 Mobile object destruction . 124

5.6 A buying printers example . 124
5.7 An auction example . 131
5.8 Mobile Maude skeletons . 141

5.8.1 Euler numbers case study . 141
5.8.2 The farm skeleton in Mobile Maude 144

6 Formal analysis of distributed applications 149
6.1 A taste of Maude analysis tools . 150
6.2 Redefinition of the SOCKETmodule . 153
6.3 Using different abstraction levels . 157

6.3.1 First abstraction . 157

CONTENTS 5

6.3.2 Second abstraction . 159
6.3.3 Third abstraction . 162

6.4 State space reduction . 163
6.4.1 Partial order reduction in the architectures 164
6.4.2 Partial order reduction in the skeletons 164
6.4.3 Partial order reduction in Mobile Maude 164

6.5 Verifying architectures . 165
6.5.1 Using the model checker . 165
6.5.2 Using the search command . 167

6.6 Verifying skeletons . 169
6.6.1 Euler numbers . 169
6.6.2 Ray tracing . 169
6.6.3 Force interactions . 170
6.6.4 Mergesort . 171
6.6.5 Traveling salesman problem . 171
6.6.6 Model checking skeletons . 172

6.7 Verifying Mobile Maude . 173
6.7.1 Two-level atomic propositions for the buying printers example . . 173
6.7.2 Model checking the auctions . 175

7 Conclusions 179

List of Figures

3.1 Star architecture . 42
3.2 A concrete star architecture . 44
3.3 Ring architecture . 46
3.4 Centralized ring architecture . 49

5.1 Object and message mobility . 112
5.2 Buyers and sellers configuration . 128

6.1 A concrete star architecture . 156
6.2 Initial design . 157
6.3 Design after the first abstraction . 158
6.4 Design after the second abstraction . 160
6.5 Centralized ring configuration . 167

7

Chapter 1

Introduction

Most interesting computer systems today, as well as those of the future, are distributed in
nature, including the Internet, cellular and PDA communications, biological and bio-tech
computations, international trade, multi-national corporate databases, and multi-user
games. Concretely, the popularity of the Internet has brought much attention to the world
of distributed applications development. Now, more than ever, this network is being
viewed as a platform for the development of cost-effective, mission-critical applications.

The main goal of a distributed computing system is to connect users and resources
in a transparent, open, and scalable way. Ideally, this arrangement is drastically more
fault tolerant and more powerful than stand-alone computer systems. Parallel algorithms
divide the problem into more subproblems, pass them to many processors and put the
results back together at the end. An algorithmic skeleton [25, 58] is an abstraction shared
by a range of applications which can be executed in a distributed, parallel way. The aim
is to obtain schemes that allow parallel programming where the user does not have to
handle low level features like communication and synchronization [3].

On another front, mobile code and mobile agents are emerging technologies that
promise to make much easier the design, implementation, and maintenance of distributed
systems [41]. Mobile agents may reduce the network traffic, provide an effective means of
overcoming network latency, and, perhaps more importantly, help us to construct more
robust and fault-tolerant systems, thanks to their ability to operate asynchronously and
autonomously [42].

The main issues when programming distributed applications are security and reliabil-
ity. We must make sure that applications running in a remote host do not affect it, neither
the host affects the applications, and that these applications perform the task they have
been assigned. Moreover, since systems become larger and more complex, just testing
them is not enough to assure the features shown above, and tools to formally analyze
them are needed. Intrinsically concurrent formalisms with a precise semantics seem to
be unavoidable for such a task, and declarative approaches seem quite promising.

Rewriting logic [48] was proposed in the early nineties as a unified model for concur-
rency in which several well-known models of concurrent and distributed systems can be
represented in a common framework.

The flexibility of rewriting logic for representing very different styles of communica-
tion, both synchronous or asynchronous, its facility for supporting distributed, concurrent
object-oriented systems, and its reflective capabilities for supporting metaprogramming
and dynamic reconfiguration, make it a very suitable formalism for the specification
of distributed systems based on mobile agents, on which the proof of properties about

9

10 C 1. I

security, correctness, and performance, can be based.

Maude [19] is a high level, general purpose language and high performance system
supporting both equational and rewriting logic computations. It can be used to specify
in a natural way a wide range of software models and systems, and since (most of) the
specifications are directly executable, Maude can also be used to prototype those systems.
The recently incorporated support in Maude for communication with external objects
makes many other application areas (such as mobile computing and distributed agents)
ripe for system development in Maude. The Maude language main features are briefly
explained in Chapter 2.

As said above, since its version 2.2 Maude supports rewriting with external objects,
being TCP sockets the first of such objects, allowing for the first time to connect different
Maude processes. Now it is possible to implement really distributed systems where
different process are connected through sockets. Distributed applications in Maude must
be executed on top of what we call an architecture, that is, a set of Maude processes
running on the same or different machines, and connected through sockets. We describe
in Chapter 3 how to implement several different generic architectures, on top of which
concrete applications can be implemented. One of our aims has been to implement these
architectures in a way as independent of the applications to be run on top of them as
possible.

As substantial case studies of distributed applications, we have implemented different
algorithmic skeletons and Mobile Maude, a mobile agent language extending Maude and
supporting mobile computation.

Regarding the implementation of skeletons in Maude, we do it by means of parameter-
ized object-oriented modules, that receive the basic operations needed to solve a concrete
problem as a parameter. These operations usually are part of the sequential version of
the concrete applications, thus encouraging code reusability. A skeleton can be executed
on top of different architectures/topologies. However, there is often a most suitable archi-
tecture for each skeleton that takes advantage of the task distribution specified by it. We
take advantage of the separation between the architectures and the concrete applications,
allowing us to reuse the same architecture by different skeletons. Our work on skeletons
is presented in Chapter 4, and has been published in [59].

Mobile Maude uses reflection to obtain a simple and general declarative mobile lan-
guage design and makes possible strong assurances about mobile agent behavior. The
formal semantics of Mobile Maude is given by a rewrite theory in rewriting logic. Since
this specification is executable, it can be used as a prototype of the language, in which
mobile agent systems can be simulated. The two key notions are processes and mobile ob-
jects. Processes are located computational environments where mobile objects can reside.
Mobile objects have their own code, can move between different processes in different
locations, and can communicate asynchronously with each other by means of messages.
Mobile Maude’s key characteristics include: (1) reflection as a way of endowing mobile
objects with “higher-order” capabilities; (2) object-orientation and asynchronous message
passing; and (3) a simple semantics without loss in the expressive power of application
code.

Mobile Maude was first presented in [28] by F. Durán, S. Eker, P. Lincoln, and
J. Meseguer. In that work, the authors presented an executable Maude 1.0.5 specification,
in which locations and processes were encoded as Maude terms. The implementation
effort was completed by F. Durán and A. Verdejo [30] with the release of Maude 2.0,
utilizing the builtin object system, for object/message fairness, just by simplifying and

1.1. R  11

extending the previous specification.
The really distributed implementation of Mobile Maude presented here is a joint work

with Francisco Durán and Alberto Verdejo. It is fully described in Chapter 5 and it has
been published in [29].

Model checking is a method for formally verifying finite-state concurrent systems [16].
Such systems can be seen as finite state machines, i.e., directed graphs consisting of
nodes and edges. A set of atomic propositions is associated with each node. The nodes
represent states of a system, the edges represent possible transitions which may alter the
state, while the atomic propositions represent the basic properties that hold at a point of
execution. Specifications about the system are expressed as modal logic formulas, and
efficient symbolic algorithms are used to traverse the model defined by the system and
check if the specification holds or not.

Maude’s model checker [31] allows us to prove properties on Maude specifications
when the set of states reachable from an initial state in such a system is finite. Another
Maude’s analysis tool is the search command, that allows to explore (following a breadth
first search strategy) the reachable states in different ways. Chapter 6 shows how to
formally verify, by using these tools, properties about the applications shown in the
previous chapters.

Finally, conclusions and ongoing work are presented in Chapter 7.
Thus, the use of Maude allows us to have the description of the architecture and the

implementation of the application solving a problem in the same high-level language.
This has the following advantages:

- Since Maude has a well-defined semantics, we obtain a good basis for formal rea-
soning and correctness proofs.

- In the skeletons case, it provides much flexibility, as skeleton implementations can
easily be adapted to special cases, and if necessary, new skeletons can even be
introduced by the programmer himself.

We describe in the following section some works about algorithmic skeletons and mo-
bile agents, giving a succinct comparison with our work. The complete Maude code pre-
sented in this work is available in http://maude.sip.ucm.es/˜adrian/master-thesis/.

1.1 Related work

The first formalization attempt of distributed computation was through process algebras
such as CCS [51] and CSP [38]. These works were then extended by introducing several
notions regarding mobility; examples of such calculi are the π-calculus [52], the join
calculus [34], the ambient calculus [13], or the Seal calculus [14]. Nowadays, several
distributed languages exist, being probably the most widely used Java. We show in this
work two kinds of distributed applications: algorithmic skeletons and mobile agents.

The term skeleton, coined by Murray Cole in the late ’80s [20], originates from the
observation that many parallel applications share a common set of interaction patterns.
Most of skeletons has been implemented in imperative languages [23] such as C [24],
FORTRAN [26], and P3L [2]. From the declarative point of view, a skeleton has typically
be seen as a polymorphic higher-order function which can be applied with many different
types and parameters [58], like the skeletons implemented in Eden [44] and HaskSkel [37].

http://maude.sip.ucm.es/~adrian/master-thesis/

12 C 1. I

Lately, a new generation of object-oriented skeletons such as JaSkel [33], muskel [21], and
ASSIST [65] is being developed [22].

Mobile agents computing may be viewed as an extension of remote dispatch of script
programs or remote submission of batch jobs. The most significant of these extensions
has been the development of the security, because mobile agents carry their own code
and run in a remote host, so this execution must be safe for both the agent and the host.
Some mobile agents languages are Telescript [63], Obliq [11], Agent Tcl [36], Ajanta [64],
and Mobile UNITY [62].

1.1.1 Eden Skeletons

Eden [6, 43] is a higher-order functional language that extends the lazy funcional language
Haskell [56] by syntactic constructs for explicitly defining process. Eden’s process model
provides direct control over process granularity, data distribution, and communication
topology.

Processes communicate via unidirectional channels which connect one writer to ex-
actly one reader. When trying to access input which is not available yet threads are
temporarily suspended. The type class Trans (short for transmissible) comprises all
types which can be communicated. All primitive types belong to Trans. Using the
high-level Eden constructs:

process :: (Trans a, Trans b) => (a -> b) -> Process a b

-- to transform a function into a process abstraction and

(#) :: (Trans a, Trans b) => Process a b -> a->b

-- to instantiate a process

the programmer can partition the algorithm into parallel sub-tasks, thereby taking into
account issues like task granularity, topology, and data distribution. Skeletons in Eden
are polymorphic higher-order functions, that will receive as parameters the functions that
solve the problem and the tasks to be computed [44].

As in the Maude case, Eden has a well-defined semantics that allows to verify the
skeletons [55], and the functional specification and the parallel implementation of these
skeletons are in the same language. While the generality of these skeletons relies in
higher-order functions, we obtain the same abstraction level:

- by using parameterized modules, as shown with the parameterized skeletons in
Chapter 4; and

- by using Maude’s reflective features, that allow to use generic mobile objects to
create skeletons in Mobile Maude (see Section 5.8).

An important difference between Maude and Eden skeletons is that Eden provides
efficient transmission of messages through channels, while we can only use TCP sockets,
so we must transform the data in order to transmit messages. This difference changes
dramatically the performance of our skeletons.

1.1.2 JaSkel

JaSkel [33] is a skeleton-based framework to develop parallel and distributed applications.
The framework provides a set of Java abstract classes as a skeleton catalog, which imple-
ments recurring parallel interaction paradigms. The current JaSkel prototype provides the

1.1. R  13

programmer different versions of the farm and the pipeline skeletons (the implementation
of these skeletons in Maude is shown in Sections 4.3 and 4.7, respectively).

A JaSkel skeleton is a simple Java class that implements the Skeleton interface and
extends the Compute class. The Skeleton interface defines a method eval that must be
defined by all the skeletons. This method starts the skeleton activity. To create objects
that will perform domain-specific computations, the programmer must create a subclass
of class Compute. The Compute abstract class defines an abstract method

public abstract Object compute(Object input)
that defines the domain-specific computations involved in a skeleton.

Thus, to write an application using JaSkel, a programmer must perform the following
steps:

1. To structure the parallel program and to express it by using the available skeletons;

2. To refine the supplied abstract classes and write the domain-specific code used as
skeleton parameters; and

3. To write the code that starts the skeleton, defining other relevant parameters (such
as the number of processors, the load distribution policy, . . .).

Note that this implementation is really similar to ours. The Compute class and the
Skeleton interface correspond with our Maude theories, while the class extending Compute
and implementing Skeleton corresponds with the Maude view from the theory. We have
requested the Java code to the authors in order to translate it to Maude and prove proper-
ties about these skeletons. Although we have obtained no answer yet, we hope to work
in this translation in the future. Moreover, we can also do the inverse transformation, and
translate our Maude skeletons into JaSkel ones, in order to increase their speed-up and
obtain a more “commercial” implementation.

1.1.3 The ambient calculus

The ambient calculus [13, 12], devised by Luca Cardelli and Andrew D. Gordon in 1998,
wants to capture in an abstract way notions of locality, mobility, and ability of crossing
barriers. To this end, it focuses on mobile computational ambients; that is, places where
computation happens and that are themselves mobile.

The main characteristics of ambient calculus are:

- An ambient is a bounded place where computation happens. The boundary deter-
mines what is inside and what is outside an ambient, and therefore determines what
moves.

- Process mobility is represented as crossing of boundaries.

- Each ambient moves as a whole with all its subcomponents.

- Ambients can be nested within other ambients, forming a tree structure.

- Each ambient has a collection of local running processes.

- Each ambient has a name, that is used to control access. That name is unforgeable,
being this fact the most basic security property.

14 C 1. I

Our Mobile Maude specification also has two levels that can be considered an “am-
bient”. Each Maude process, encapsulating a whole configuration, is a place where
computation happens and that mobile objects can cross, and each mobile object contains
the (metarepresentation of) another configuration where computation can also occur, be-
ing the difference that the objects in the latter configuration cannot travel outside the
mobile objects that contains them. But when a mobile object moves, it transports all the
objects in the inner configuration.

Modal Logics for the ambient calculus

In order to describe properties of mobile computations, a modal logic that can talk about
spaces as well as time has been developed [9, 10]. In the ambient calculus context, it makes
sense to talk about properties that hold at particular locations, and it becomes natural to
consider spatial modalities for properties that hold at certain location, any some location,
or at every location. Mobility is regarded as the evolution of spatial configurations over
time. A specification logic for mobility should be able to talk about the structure of spatial
configurations and about their evolution through time; that is, it should be a modal logic
of space and time.

In Maude we can use the model checker to describe properties defined with a modal
logic of time. Furthermore, a spatial logic to describe properties in Maude specifications
has also been studied [47, 57].

1.1.4 The Seal calculus

The Seal calculus [67, 14] is a distributed process calculus with localities and mobility of
computational entities called seals. Seal is also a framework for writing secure distributed
applications over large scale open networks such as the Internet.

Seal is an extension of Milner’sπ-calculus [51] with the goal of being able to express the
essential properties of Internet programs. This language is based in five design principles
that are particularly suited to Internet programming:

- No reliance on global state. The size of the systems represented is of millions of hosts.
At this size, the language cannot afford to assume any shared state.

- Explicit localities. The location where computation occurs and the location of its
resources are essential to the efficiency and the fault tolerance of a distributed
program.

- Restricted connectivity. Failures of machines and firewalls can cause that a computa-
tion can only communicate with a subset of the other entities on the network.

- Dynamic configuration. New hosts can be added to the network.

- Access control. The security is one of the most important features of all the applica-
tions on the Internet.

Seal provides a model of mobility which subsumes message passing, remote evalua-
tion as well as process migration and which models user mobility and hardware mobility.
Moreover, it provides a hierarchical protection model, in which each level can implement
security policies. Seal unifies several concepts from distributed programming into three
abstractions, namely locations, processes, and resources:

1.1. R  15

- Locations stand for physical places such as routers and logical boundaries such as
protection domains.

- The processes stand for any flow of control like, for example, threads.

- Resources unify physical resources with services.

1.1.5 Mobile UNITY

Mobile UNITY is a model for specifying and reasoning about concurrent systems that
contain dynamically reconfigurable components [61]. In Mobile UNITY, each program
is a unit of mobility. It captures movement by augmenting the program state with a
location attribute whose change in value is used to represent motion. The Mobile UNITY
approach to mobile agents has been studied in [62].

The objective of the Mobile UNITY model is to develop techniques that facilitate the
verification and design of mobile systems. This reasoning relies on extensions to the
UNITY proof logic [53]. Safety and liveness properties can be proved by quantifying
over the statements of the program text. Properties that have already be proven correct
can be used to derive other properties without reference to the original program text by
employing established UNITY rules of inference.

The Mobile UNITY approach is similar to ours, but we allow really distribution,
so we do not need an attribute indicating the location, it is represented by each Maude
process. Maude also allows to check properties, by using its built-in model checker, about
distributed configuration, although in this case we need a “centralized” configuration
(see Chapter 6) with explicitly defined bounds, and where mobility is defined by crossing
them.

1.1.6 Mobile agents in Ajanta

Ajanta [64] is a Java-based system for programming mobile-agent applications on the
Internet. The mechanisms supported by Ajanta include:

- Generic agent and server classes that can be easily extended for building agent-based
applications.

- Mechanisms for protecting an agent’s state while it travels over insecure networks,
and to untrusted servers.

- A high-level programming abstraction based on the concept of composable patterns
of migration for building agent itineraries. These patterns separate an agent’s
computation task from the specification of its migration path.

- Mechanisms for applications to monitor the status of their agents, and control them
remotely. Applications can also provide mechanisms to handle exceptions.

- A location-independent global naming and name resolution mechanism that facili-
tates communication between mobile objects.

In Ajanta, the mobile agent implementation is based on the generic concept of a
mobile object. Agents are active mobile objects, which encapsulate code and execution
context along with data. Ajanta uses Java facilities such as object serialization, reflection,

16 C 1. I

remote method invocation, and its security model. Agent mobility is implemented by
using object serialization and dynamic class loading. The Ajanta programming primitives
allow one to create and dispatch agents, control their mobility, monitor them, and recover
from failures.

Ajanta introduces the concept of abstract migration patterns, which can be used to
simplify the task of creating complex agent itineraries by composition of some basic
patterns. These patters incorporate failure recovery for robustness.

Acknowledgements.

I thank Alberto Verdejo for his help in the development of this work, that he has read about
googol times, giving with each review several good ideas, as well as for his friendship and
patience throughout the last two years. I also thank Narciso Martı́-Oliet for his continuous
support, his help with my scholarship, and his office for almost a year!

Chapter 2

Maude

Maude [18, 19] is a language based on both equational and rewriting logic for the spec-
ification and implementation of a whole range of models and systems. It has already
been used to specify and analyze distributed applications and protocols [27, 54]. The
recently incorporated support in Maude for communication with external objects makes
many other application areas (such as mobile computing and distributed agents) ripe for
system development in Maude.

In this chapter, we first describe the Maude syntax for functional and system modules,
and the Full Maude syntax for object-oriented modules used throughout the work. In
Section 2.5 we explain the Maude reflective capabilities, that allow to use Maude modules
as data, which will be used in Chapters 3 and 5. Parameterized modules, that will be used
all over the work and specially in Chapter 4, are explained in Section 2.6. Sections 2.7
and 2.8 describe Maude sockets and buffered sockets, that will be used to implement
all the distributed applications shown in this work. Finally, since Full Maude does not
support sockets, Section 2.9 illustrates how to translate the specifications shown in the
work to Core Maude.

2.1 Functional modules

In Maude the state of a system is formally specified as an algebraic data type by means
of an equational specification. In this kind of specifications we can define new types (by
means of keyword sort(s)); subtype relations between types (subsort); operators (op)
for building values of these types, giving the types of their arguments and result, and
which may have attributes such as being associative (assoc) or commutative (comm), for
example; and equations (eq) that identify terms built with these operators. Equations are
assumed to be confluent and terminating, that is, we can use the equations to reduce a
term t to a unique, canonical form t′ that is equivalent to t (they represent the same value).
These specifications are introduced in functional modules, with syntax fmod...endfm. For
example, we can create a module with the definition of the natural numbers.

fmod NATURAL-NUMBERS is

This module defines two sorts: Nat, for all the natural numbers, and NzNat, for the
natural numbers different from 0. We declare the set of the non-zero natural numbers as
a subsort of the natural numbers.

17

18 C 2. M

sorts Nat NzNat .

subsort NzNat < Nat .

The constant 0 is a natural number.

op 0 : -> Nat .

The constructor successor (declared with notation s) receives as argument a value of
sort Nat and returns a value of sort NzNat.

op s : Nat -> NzNat .

We define the addition operator with infix notation, where the underscores indicate
where the arguments must be placed, being associative and commutative.

op _+_ : Nat Nat -> Nat [assoc comm].

Finally, the behavior of the addition function is given by means of equations. Since
it has been declared commutative, the first equation can match terms with 0 in both the
right and the left side of the operator.

vars N M : Nat .

eq 0 + N = N .

eq s(N) + s(M) = s(s(N + M)) .

endfm

Maude uses a very expressive version of equational logic, namely membership equa-
tional logic [5, 50], that (in addition to all the above) allows the statement of membership
assertions (mb) characterizing the elements of a sort. For example, we can extend the
NATURAL-NUMBERS module with the following two memberships, that specify when a
natural number is even.

sort Even .

subsort Even < Nat .

mb 0 : Even .

mb s(s(E:Even)) : Even .

Membership equational logic also has a notion of (implicit) error supersorts called
kinds, which are represented in Maude as sort names between square brackets. Using
kinds, we can declare partial operations (at the level of sorts), like for example the
following integer division operation on natural numbers:

op _div_ : Nat Nat -> [Nat] .

2.2 System modules

The dynamic behavior of a system is specified by rewrite rules, that can take the most gen-
eral possible form in the variant of rewriting logic built on top of membership equational
logic [7], that is, they can be of the form

t −→ t′ if (
∧

i

ui = vi) ∧ (
∧

j

w j : s j) ∧ (
∧

k

pk −→ qk)

2.3. O-  19

with no restriction on which new variables may appear in the righthand side or in the
condition. Conditions in rules are formed by an associative conjunction connective /\,
allowing equations (both ordinary equations t = t’, and matching equations t := t’
where new variables occurring in t become instantiated by matching [17, 19]), member-
ships (t : s), and rewrites (t => t’) as conditions.

These rules describe the local, concurrent transitions of the system. That is, when
a part of a system matches the pattern t, it can be transformed into the corresponding
instance of the pattern t′ if the conditions are satisfied. Rewrite rules are included in
system modules, with syntax mod...endm. For example, we can define a vending machine
that sells apples (denoted with the constant a) and cakes (c), and accepts dollars ($) and
quarters (q), all these constants with sort Marking.

mod VENDING-MACHINE is

sort Marking .

ops a c $ q : -> Marking .

These constants stand together in an associative and commutative “soup” by means
of the juxtaposition operator __.

op __ : Marking Marking -> Marking [assoc comm] .

This vending machine has a great limitation: it only accepts dollars. We can buy a
cake for one dollar, and pay one dollar for an apple and receive one quarter as change.
To partially solve this problem, the machine can change four quarters for a dollar. This
behavior is modeled by the following rules:

rl [buy-c] : $ => c .

rl [buy-a] : $ => a q .

rl [change] : q q q q => $.

endm

2.3 Object-oriented modules

Regarding object-oriented specifications [49], classes are declared with the syntax class
C | a1:S1,. . ., an:Sn, where C is the class name, ai is an attribute identifier, and Si is the
sort of the values this attribute can have. An object in a given state is represented as a term
< O : C | a1 : v1, . . ., an : vn > where O is the object’s name, belonging to a set
Oid of object identifiers, and the vi’s are the current values of its attributes. Messages are
defined by the user for each application (introduced with syntax msg). Subclass relations
can also be defined, with syntax subclass. We show as example a distance education
school.

omod SCHOOL-SYNTAX is

pr STRING .

We define the class Person, with attributes name and age.

class Person | name : String, age : Nat .

In this very simple example, each student is modeled as an object of class Student,
that is a subclass of Person, and adds a score attribute.

20 C 2. M

class Student | score : Nat .

subclass Student < Person .

Each teacher keeps a set of students (identified by their object identifier, of sort Oid)
and has an state: before and after sending the exams.

sort OidSet .

subsort Oid < OidSet .

op mtOidSet : -> OidSet .

op __ : OidSet OidSet -> OidSet [comm assoc id: mtOidSet] .

sort State .

ops before after : -> State .

class Teacher | students : OidSet, state : State .

subclass Teacher < Person .

The messages interchanged between the teacher and the students are:

- the teacher sends the exam to a student;

msg to_from_exam : Oid Oid -> Msg .

- the student solves the exam and sends it back to the teacher; and

msg to_from_solution : Oid Oid -> Msg .

- the teacher sends the score to the student.

msg to_score_ : Oid Nat -> Msg .

endom

In a concurrent object-oriented system the concurrent state, which is called a config-
uration, has the structure of a multiset made up of objects and messages that evolves by
concurrent rewriting (modulo the multiset structural axioms of associativity, commuta-
tivity, and identity) using rules that describe the effects of communication events between
some objects and messages. The rewrite rules in the module specify in a declarative way
the behavior associated with the messages. The general form of such rules is

M1 . . .Mn 〈O1 : F1 | atts1〉 . . . 〈Om : Fm | attsm〉

−→ 〈Oi1 : F′i1 | atts′i1〉 . . . 〈Oik : F′ik | atts′ik〉 〈Q1 : D1 | atts′′1 〉 . . . 〈Qp : Dp | atts′′p 〉

M′1 . . .M
′
q if C

where k, p, q ≥ 0, the Ms are message expressions, i1, . . . , ik are different numbers among
the original 1, . . . ,m, and C is a rule condition. The result of applying this rule is that the
messages M1, . . . ,Mn disappear; the state and possibly the class of the objects Oi1 , . . . ,Oik
may change; all the other objects O j vanish; new objects Q1, . . . ,Qp are created; and new
messages M′1, . . . ,M

′
q are sent. An important special case are rules with a single object

and at most one message on the lefthand side. These are called asynchronous rules. They
directly model asynchronous distributed interactions. Rules involving multiple objects
are called synchronous; they are used to model higher-level communication abstractions.

2.3. O-  21

By convention, the only object attributes made explicit in a rule are those relevant
for that rule. In particular, the attributes mentioned only in the lefthand side of the
rule are preserved unchanged, the original values of attributes mentioned only in the
righthand side of the rule do not matter, and all attributes not explicitly mentioned are
left unchanged. We use here the Full Maude object-oriented notation [19]. However, the
implementation of the applications shown in this work is in Core Maude because Full
Maude does not support external objects (see Section 2.7).

We show now how the behavior of the school described above can be modeled with
rules.

omod SCHOOL is

pr SCHOOL-SYNTAX .

First, the teacher sends the exams to its students. We use an auxiliary function
broadcastExam that broadcasts the message to all of them. Notice that the students
attribute only appears in the lefthand side of the rule because it is not changed, while
state appears in both sides because we require its value to be before in the lefthand side
and then updated to after in the righthand side.

vars TCHR STDNT : Oid .

var OS : OidSet .

var N : Nat .

rl [exam] :

< TCHR : Teacher | students : OS, state : before >

=> < TCHR : Teacher | state : after >

broadcastExam(OS, TCHR) .

op broadcastExam : OidSet Oid -> Configuration .

eq broadcastExam(mtOidSet, TCHR) = none .

eq broadcastExam(STDNT OS, TCHR) = to STDNT from TCHR exam

broadcastExam(OS, TCHR) .

When a student receives the exam, it solves it and sends the answer back to the teacher.

rl [solve] :

to STDNT from TCHR exam

< STDNT : Student | >

=> < STDNT : Student | >

to TCHR from STDNT solution .

The teacher corrects each exam when it is received, and sends the score to the student.
The score is calculated non-deterministically by using one of the following rules:

rl [correction] :

to TCHR from STDNT solution

< TCHR : Teacher | >

=> < TCHR : Teacher | >

to STDNT score 0 .

rl [correction] :

to TCHR from STDNT solution

< TCHR : Teacher | >

22 C 2. M

=> < TCHR : Teacher | >

to STDNT score 5 .

rl [correction] :

to TCHR from STDNT solution

< TCHR : Teacher | >

=> < TCHR : Teacher | >

to STDNT score 10 .

Finally, when the student receives the score, it keeps it in the corresponding attribute.
Notice that the score attribute only appears in the righthand side of the rule, because it
previous value does not mind for the application of the rule.

rl [score] :

(to STDNT score N)

< STDNT : Student | >

=> < STDNT : Student | score : N > .

endom

2.4 Maude main commands

We show here briefly the main Maude commands used in this work, for more information
about Maude commands see [18, 19]. First, we can evaluate expressions defined by means
of equations by using the reduce command (abbreviated as red). Maude will print the
result, prefaced by its least sort. For example, we can evaluate the expression 3 + 7 in
the predefined module NAT of natural numbers (the module can be omitted if it is the last
one loaded into Maude).

reduce in NAT : 3 + 7 .

Maude elicits the response

reduce in NAT : 3 + 7 .

rewrites: 1 in 0ms cpu (0ms real) (˜ rewrites/second)

result NzNat: 10

We can use the rewrite command (abbreviated as rew) to explore the behavior of a
system module by using a leftmost, outermost rule fair strategy. The frewrite command
(abbreviated as frew) rewrites a term using a depth-first position-fair strategy that makes
it possible for some rules to be applied that could be starved using the rewrite strategy.
For example, given the module VENDING-MACHINE from Section 2.2, we can rewrite a
marking composed by two dollars with the following command:

rew $ $.

The response given by Maude is:

rewrite in VENDING-MACHINE : $ $.

rewrites: 2 in 0ms cpu (0ms real) (˜ rewrites/second)

result Marking: a c q

2.5. R    23

While the rewrite and frewrite commands explore just one possible behavior (se-
quence of rewrites) of a system, the search command allows to explore (following a
breadth-first strategy) the reachable state space. This command provides several options
like search in 0 or more steps (=>*), in 1 or more steps (=>+), and search for final states
(=>!). For example, if we want to know if we can obtain three apples with four dollars
we use the command:

search [1] $ $ $ $ =>* a a a M:Marking .

where [1] stands for the first solution, and M:Marking matches the rest of the marking.
The response obtained is:

Solution 1 (state 9)

states: 10 rewrites: 12 in 0ms cpu (2ms real) (˜ rewrites/second)

M:Marking --> q q q $

That is, we can buy three apples and obtain one dollar and three quarters of change. The
search command can also be used to check invariants, as we will see in Section 6.1.

2.5 Reflection and metalevel computations

Informally, a reflective logic is a logic in which important aspects of its metatheory can be
represented at the object level in a consistent way, so that the object-level representation
correctly simulates the relevant metatheoretic aspects. In other words, a reflective logic
is a logic which can be faithfully interpreted in itself. Maude implementation makes sys-
tematic use of the fact that rewriting logic is reflective [18]. We explain here the semantic
principles and implementation techniques through which efficient ways of performing
reflective computations are achieved in Maude through its predefined META-LEVELmod-
ule.

The META-LEVELmodule uses the following modules:

- META-TERM, where sorts and kinds are metarepresented as data in specific subsorts
(Sort and Kind, both subsorts of Type) of the sort Qid of quoted identifiers, and
terms are metarepresented as elements of the data type Term of terms; and

- META-MODULE, where functional and system modules are metarepresented data of
the sorts FModule, SModule, being the sort Module the supersort of both of them.

It has several built-in descent functions that provide useful and efficient ways of reducing
metalevel computations to object-level ones, as well as several useful operations on sorts
and kinds.

One of the most important functions we are going to use is upModule, that takes as
arguments the metarepresentation of the name of a module and a Boolean value, and
returns the metarepresentation of the module. The second argument indicates if the data
imported by the module is also metarepresented. In a similar way, we can “move up” a
term by using the function upTerm, that takes a term and returns the metarepresentation
of its canonical form.

We can reduce the Term t in the Module M by means of the function metaReduce(M,
t), that returns the metarepresentation of the canonical form of t, using the equations in
M, together with the metarepresentation of its corresponding sort or kind.

24 C 2. M

sort ResultPair .

op {_,_} : Term Type -> ResultPair [ctor] .

op metaReduce : Module Term ˜> ResultPair [special (...)] .

The (partial) operation metaRewrite takes as arguments the metarepresentation of a
module M, the metarepresentation of a term t, and a value b of the sort Bound, i.e., either
a natural number or the constant unbounded.

sort Bound .

subsort Nat < Bound .

op unbounded :-> Bound [ctor] .

op metaRewrite : Module Term Bound ˜> ResultPair [special (...)] .

The result of metaRewrite(M, t, b) is the metarepresentation of the term obtained
from t after at most b applications of the rules in M using the rewrite strategy, together
with the metarepresentation of its corresponding sort or kind.

Finally, the operation metaSearch takes as arguments the metarepresentation of a
module, the metarepresentation of the starting term for search, the metarepresentation of
the pattern to search for, the metarepresentation of a condition to be satisfied, the kind of
search to carry on, a Bound value, and a natural number.

op metaSearch :

Module Term Term Condition Qid Bound Nat ˜> ResultTriple? [special (...)] .

The searching strategy used by metaSearch coincides with the object-level search
command in Maude. The Qid values that are allowed as arguments are: ’* for a search
involving zero or more rewrites (corresponding to =>* in the search command), ’+ for
a search consisting in one or more rewrites (=>+), and ’! for a search that only matches
canonical forms (=>!). The Bound argument indicates the maximum depth of the search,
and the Nat argument is the solution number. To indicate a search consisting in exactly
one rewrite, we set the maximum depth of the search to the number 1.

2.6 Parameterized modules

Most of the data types that we consider are generic, that is, they are constructions on
top of other data types that appear as parameters in the construction. Therefore, these
specifications are parameterized.

For example, lists can be constructed on top of any data, but sorted lists only make
sense for data that have a total order; for a binary operation to be a total order, several
properties have to be satisfied, which are written in the corresponding parameter theory
as equations. Parameterized modules use theories to specify the requirements that the pa-
rameter must satisfy. A (functional) theory is also a membership equational specification
but since its equations are not used for equational simplication, they need not satisfy any
requirement about variables in the righthand side, confluence, or termination.

The simplest theory is the one requiring just the existence of a sort, as follows:

fth TRIV is

sort Elt .

endfth

2.6. P  25

This theory is used as requirement for the parameter of parameterized data types such
as stacks, queues, lists, multisets, sets, and binary trees.

A more complex theory is the following, requiring a (strict) total order over elements
of a given sort. Notice the new variable E2 in the righthand side of the first conditional
equation. This makes this equation non-executable, as stated by the attribute nonexec
next to the equation.

fth TOSET< is

protecting BOOL .

sort Elt .

ops _<_ _>_ : Elt Elt -> Bool .

vars E1 E2 E3 : Elt .

eq E1 < E1 = false .

ceq E1 < E3 = true if E1 < E2 and E2 < E3 [nonexec] .

ceq E1 < E2 or E2 < E1 = true if E1 =/= E2 .

eq E1 > E2 = E2 < E1 .

endfth

This theory imports in protecting mode the predefined module BOOL of Boolean
values, meaning that the Boolean values are not disturbed in any way. In addition to the
usual Boolean values and operations, the module BOOL adds equality _==_ and inequality
=/= operations on the sort Elt.

Theories are used in a parameterized module as in the following example:

fmod EXAMPLE{X :: TRIV} is ... endfm

where X :: TRIV denotes that X is the label of the formal parameter, and that it must be
instantiated with modules satisfying the requirement expressed by the theory TRIV. The
way to express this instantiation is by means of views. A view shows how a particular
module satisfies a theory, by mapping sorts and operations in the theory to sorts and
operations (or, more generally, terms) in the target module, in such a way that the induced
translations on equations and membership axioms are provable in the module. In general,
this requires theorem proving that is not done by the system, so the user must take care
of it. However, in many simple cases the proof of obligations associated to views is
completely obvious, as for example in the following view from the theory TRIV to the
predefined module NAT of natural numbers, where, since TRIV has no equations, no proof
obligations are generated.

view Nat from TRIV to NAT is

sort Elt to Nat .

endv

Then, the module expression EXAMPLE{Nat} denotes the instantiation of the parame-
terized module EXAMPLE{X :: TRIV} by means of the above view Nat.

2.6.1 Predefined parameterized modules

We show here the predefined parameterized modules that will be used in the following
chapters. The LIST{X :: TRIV} module constructs lists over a given sort of elements
(provided by the theory TRIV). The constructors used are nil for the empty list and __
for list concatenation, which is associative and has nil as its identity. The sorts provided

26 C 2. M

by this module are List{X} for general lists and NeList{X} for non-empty lists, where X
is the sort of elements received as parameter. It also provides several functions over lists
such as size, occurs, and append.

fmod LIST{X :: TRIV} is

protecting NAT .

sorts NeList{X} List{X} .

subsort X$Elt < NeList{X} < List{X} .

op nil : -> List{X} [ctor] .

op __ : List{X} List{X} -> List{X} [ctor assoc id: nil prec 25] .

op __ : NeList{X} List{X} -> NeList{X} [ctor ditto] .

op __ : List{X} NeList{X} -> NeList{X} [ctor ditto] .

...

endfm

We can create for example lists of natural numbers by importing in a module the
parameterized LISTmodule instantiated with the view Nat.

fmod NAT-LIST is

pr LIST{Nat} .

endfm

A very similar parameterized module is SET{X :: TRIV}. This module constructs
sets over the sort received in its parameter, with constructors empty for the empty set and
, for the union, which is associative and commutative and has empty as identity, while
the idempotence property is fulfilled by means of an equation.

fmod SET{X :: TRIV} is

protecting EXT-BOOL .

protecting NAT .

sorts NeSet{X} Set{X} .

subsort X$Elt < NeSet{X} < Set{X} .

op empty : -> Set{X} [ctor] .

op _,_ : Set{X} Set{X} -> Set{X} [ctor assoc comm id: empty prec 121] .

op _,_ : NeSet{X} Set{X} -> NeSet{X} [ctor ditto] .

eq N, N = N . *** Idempotence

...

endfm

Partial functions are defined in the module MAP{X :: TRIV, Y :: TRIV}, where X
defines the sort of the keys whileYdefines the sort of the values. Maps are constructed with
the associative and commutative operator _,_ and the constant empty. The constructor
for each Entry (subsort of Map) is _|->_. When a map is consulted about a key that does
not appear in the map, it returns the special value undefined, a constant defined at kind
level [Y$Elt].

fmod MAP{X :: TRIV, Y :: TRIV} is

protecting BOOL .

2.7. S  M 27

sorts Entry{X,Y} Map{X,Y} .

subsort Entry{X,Y} < Map{X,Y} .

op _|->_ : X$Elt Y$Elt -> Entry{X,Y} [ctor] .

op empty : -> Map{X,Y} [ctor] .

op _,_ : Map{X,Y} Map{X,Y} -> Map{X,Y} [ctor assoc comm id: empty prec 121] .

op undefined : -> [Y$Elt] [ctor] .

Maps offer the functions insert, to update the map, and _[_], to look up for the value
associated to the given key.

var D : X$Elt .

vars R R’ : Y$Elt .

var M : Map{X,Y} .

op insert : X$Elt Y$Elt Map{X,Y} -> Map{X,Y} .

eq insert(D, R, (M, D |-> R’)) =

if $hasMapping(M, D) then insert(D, R, M)

else (M, D |-> R)

fi .

eq insert(D, R, M) = (M, D |-> R) [owise] .

op _[_] : Map{X,Y} X$Elt -> [Y$Elt] [prec 23] .

eq (M, D |-> R)[D] =

if $hasMapping(M, D) then undefined

else R

fi .

eq M[D] = undefined [owise] .

op $hasMapping : Map{X,Y} X$Elt -> Bool .

eq $hasMapping((M, D |-> R), D) = true .

eq $hasMapping(M, D) = false [owise] .

endfm

For example, a map from natural numbers to integers is defined as follows:

fmod EXAMPLE is

pr MAP{Nat, Int} .

endfm

where Int is a view, from TRIV to the predefined module of integer numbers INT, mapping
the sort Elt to the sort Int.

2.7 Sockets provided by Maude

Since version 2.2, Maude supports communication with external objects by means of TCP
sockets, which allows the implementation of real distributed applications. Currently only
IPv4 TCP sockets are supported; however, other protocol families and socket types may
be added in the future. This section explains Maude’s support for rewriting with external
objects and an implementation of sockets as the first such external objects. Most of the
material in this section has been extracted from [19].

Configurations that want to communicate with external objects must contain at least
one portal, where

28 C 2. M

sort Portal .

subsort Portal < Configuration .

op <> : -> Portal [ctor] .

is part of the predefined module CONFIGURATION in the file prelude.maude. Rewriting
with external objects is started by the external rewrite command erewrite (abbreviated as
erew), which behaves as frewrite (see Section 2.4) and allows messages to be exchanged
with external objects that do not reside in the configuration. The expected behavior of
these (external objects) sockets is formally defined by means of rewrite rules in Section 6.2.

Note that, even if there are no more possible rewrites, erewrite may not terminate;
if there are requests made to external objects that have not yet been fulfilled because of
waiting for external events from the operating system, the Maude interpreter will suspend
until at least one of those events occurs, at which time rewriting will resume. Due to this
fact, it is recommended to execute these applications with the trace on. In this way, we
can see what is happening in each Maude process. When the execution of a concrete
example seems to be finished, because we do not see evolution in any of the involved
processes, we can finish it by typing ˆC.

The first example of external objects is sockets, which are declared in the SOCKET
module, included in the file socket.maude which is part of the Maude distribution. The
external object named by the socketManager constant is a factory for socket objects.
Almost everything in the socket implementation is done in a nonblocking way; so, for
example, if you try to open a connection to some webserver and that webserver takes
5 minutes to respond, other rewriting and transactions may happen in the meanwhile
as part of the same command erewrite. The one exception is DNS resolution, which
is done as part of the createClientTcpSocket message handling and which cannot be
nonblocking without special tricks.

2.7.1 Client sockets

To create a client socket, you send socketManager a message

createClientTcpSocket(socketManager, ME, ADDRESS, PORT)

where ME is the name of the object the reply should be sent to, ADDRESS is the name of the
server you want to connect to (say “www.google.com”), and PORT is the port you want to
connect to (say 80 for HTTP connections). You may also specify the name of the server as
an IPv4 dotted address or as “localhost” for the same machine where the Maude system
is running on.

The reply will be either

createdSocket(ME, socketManager, NEW-SOCKET-NAME)

or

socketError(ME, socketManager, REASON)

where NEW-SOCKET-NAME is the name of the newly created socket (an object identifier of
sort Oid) and REASON is the operating system’s terse explanation of what went wrong.

You can then send data to the server with a message

2.7. S  M 29

send(SOCKET-NAME, ME, DATA)

which elicits either

sent(ME, SOCKET-NAME)

or

closedSocket(ME, SOCKET-NAME, REASON)

Notice that all errors on a client socket are handled by closing the socket.
Similarly, you can receive data from the server with a message

receive(SOCKET-NAME, ME)

which elicits either

received(ME, SOCKET-NAME, DATA)

or

closedSocket(ME, SOCKET-NAME, REASON)

When you are done with the socket, you can close it with a message

closeSocket(SOCKET-NAME, ME)

with reply

closedSocket(ME, SOCKET-NAME, "")

Once a socket has been closed, its name may be reused, so sending messages to a
closed socket can cause confusion and should be avoided.

Notice that TCP does not preserve message boundaries, so sending “one” and “two”
might be received as “on” and “etwo”. Delimiting message boundaries is the responsi-
bility of the next higher-level protocol, such as HTTP. We will present an implementation
of buffered sockets in Section 2.8 which solves this problem.

In [19] an implementation using sockets of a HTTP/1.0 client that requests one web
page to a HTTP server is shown.

2.7.2 Server sockets

To have communication between two Maude interpreter instances, one of them must
take the server role and offer a service on a given port; generally ports below 1024 are
protected. You cannot in general assume that a given port is available for use. To create
a server socket, you send socketManager a message

createServerTcpSocket(socketManager, ME, PORT, BACKLOG)

30 C 2. M

wherePORT is the port number andBACKLOG is the number of queue requests for connection
that you will allow (5 seems to be a good choice). The response is either

createdSocket(ME, socketManager, SERVER-SOCKET-NAME)

or

socketError(ME, socketManager, REASON)

Here SERVER-SOCKET-NAME refers to a server socket. The only thing you can do with a
server socket (other than close it) is to accept clients, by means of the following message:

acceptClient(SERVER-SOCKET-NAME, ME)

which elicits either

acceptedClient(ME, SERVER-SOCKET-NAME, ADDRESS, NEW-SOCKET-NAME)

or

socketError(ME, socketManager, REASON)

Here ADDRESS is the originating address of the client and NEW-SOCKET-NAME is the name
of the socket you use to communicate with that client. This new socket behaves just like
a client socket for sending and receiving. Note that an error in accepting a client does not
close the server socket. You can always reuse the server socket to accept new clients until
you explicitly close it.

2.7.3 Factorial server example

The following modules illustrate a very naive two-way communication between two
Maude interpreter instances.1 The issues of port availability and message boundaries are
deliberately ignored for the sake of illustration (and thus if you are unlucky this example
could fail).

The first module describes the behavior of the server.

omod FACTORIAL-SERVER is

inc SOCKET .

pr CONVERSION .

op _! : Nat -> NzNat .

eq 0 ! = 1 .

eq (s N) ! = (s N) * (N !) .

class Server | .

op aServer : -> Oid .

1In this section and the following ones we use the (more convenient) object-oriented notation provided by
Full Maude [19, Chapter 14]. However, since Full Maude does not support external objects yet, this notation
has to be translated (in a straightforward way) to Core Maude object-based notation in system modules. The
transformation process will be explained in Section 2.9.

2.7. S  M 31

Using the following rules, the server waits for clients. If one client is accepted, the
server waits for messages from it. When the message arrives, the server converts the
received data to a natural number, computes its factorial, converts it into a string, and
finally sends this string to the client. Once the message is sent, the server closes the socket
with the client.

vars SERVER SOCKET-MANAGER SOCKET NEW-SOCKET LISTENER : Oid .

var N : Nat .

var REASON IP NUMBER : String .

rl [createdSocket] :

createdSocket(SERVER, SOCKET-MANAGER, LISTENER)

< SERVER : Server | >

=> < SERVER : Server | >

acceptClient(LISTENER, SERVER) .

rl [acceptedClient] :

acceptedClient(SERVER, LISTENER, IP, NEW-SOCKET)

< SERVER : Server | >

=> < SERVER : Server | > receive(NEW-SOCKET, SERVER)

acceptClient(LISTENER, SERVER) .

rl [received] :

received(SERVER, SOCKET, NUMBER)

< SERVER : Server | >

=> < SERVER : Server | >

send(SOCKET, SERVER, string(rat(NUMBER, 10)!, 10)) .

rl [sent] :

sent(SERVER, SOCKET)

< SERVER : Server | >

=> < SERVER : Server | >

closeSocket(SOCKET, SERVER) .

rl [closedSocket] :

closedSocket(SERVER, SOCKET, REASON)

< SERVER : Server | >

=> < SERVER : Server | > .

endom

The Maude command that initializes the server is as follows, where the configuration
includes the portal <>.

Maude> erew <> < aServer : Server | none >

createServerTcpSocket(socketManager, aServer, 8811, 5) .

The second module describes the behavior of the clients.

omod FACTORIAL-CLIENT is

inc SOCKET .

class Client | .

op aClient : -> Oid .

32 C 2. M

Using the following rules, the client connects to the server (clients must be created
after the server), sends a message representing a number,2 and then waits for the response.
When the response arrives, there are no blocking messages and rewriting ends.

vars CLIENT SOCKET-MANAGER NEW-SOCKET SOCKET : Oid .

var N : Nat .

rl [createdSocket] :

createdSocket(CLIENT, SOCKET-MANAGER, NEW-SOCKET)

< CLIENT : Client | >

=> < CLIENT : Client | >

send(NEW-SOCKET, CLIENT, "6") .

rl [sent] :

sent(CLIENT, SOCKET)

< CLIENT : Client | >

=> < CLIENT : Client | >

receive(SOCKET, CLIENT) .

endom

The initial configuration for the client will be as follows, again with portal <>.

Maude> erew <> < aClient : Client | none >

createClientTcpSocket(socketManager, aClient, "127.0.0.1", 8811) .

2.8 Buffered sockets

As we said before, TCP does not preserve message boundaries; to guarantee it we have
implemented a filter class BufferedSocket, defined in the module BUFFERED-SOCKET.

When a buffered socket is created, in addition to the socket object through which the
information will be sent, a BufferedSocket object is also created on each side of the socket
(one in each one of the configurations between which the communication is established).
All messages sent through a buffered socket are manipulated before they are sent through
the socket underneath. When a message is sent through a buffered socket, a mark is
placed at the end of it; the BufferedSocket object at the other side of the socket stores
all messages received on a buffer, in such a way that when a message is requested the
marks placed indicate which part of the information received must be given as the next
message.

An object of class BufferedSocket has two attributes: read, of sort String, which
stores the concatenation of the strings already received but not handled yet, and complete,
that keeps information relative to the fact that a complete message (with the mark) has
already arrived.

omod BUFFERED-SOCKET is

inc SOCKET .

class BufferedSocket | read : String, complete : FindResult .

The identifiers of the BufferedSocket objects are marked with a b operator, i.e., the
buffers associated with a socket SOCKET have identifier b(SOCKET). Note that there is a

2In this quite simple example, it is always the number 6 already represented as the string "6".

2.8. B  33

BufferedSocket object on each side of the socket, that is, may be two objects with the
same identifier, but in different configurations.

op b : Oid -> Oid .

We interact with buffered sockets in the same way we interact with sockets, with the
only difference that all messages in the module SOCKET have been capitalized to avoid
confusion. Thus, to create a client with a buffered socket, you send to the socketManager
a message

CreateClientTcpSocket(socketManager, ME, ADDRESS, PORT)

instead of a message

createClientTcpSocket(socketManager, ME, ADDRESS, PORT).

All the messages have exactly the same declarations, the only difference being their initial
capitalization:

msg CreateClientTcpSocket : Oid Oid String Nat -> Msg .

msg CreateServerTcpSocket : Oid Oid Nat Nat -> Msg .

msg CreatedSocket : Oid Oid Oid -> Msg .

msg AcceptClient : Oid Oid -> Msg .

msg AcceptedClient : Oid Oid String Oid -> Msg .

msg Send : Oid Oid String -> Msg .

msg Sent : Oid Oid -> Msg .

msg Receive : Oid Oid -> Msg .

msg Received : Oid Oid String -> Msg .

msg CloseSocket : Oid Oid -> Msg .

msg ClosedSocket : Oid Oid String -> Msg .

msg SocketError : Oid Oid String -> Msg .

For most of these messages, a buffered socket just converts them into the corresponding
uncapitalized message.

vars SOCKET NEW-SOCKET SOCKET-MANAGER O : Oid .

vars ADDRESS IP IP’ DATA S S’ REASON : String .

vars PORT BACKLOG N : Nat .

var FR : FindResult .

rl [CreateServerTcpSocket] :

CreateServerTcpSocket(SOCKET-MANAGER, O, PORT, BACKLOG)

=> createServerTcpSocket(SOCKET-MANAGER, O, PORT, BACKLOG) .

rl [AcceptClient] :

AcceptClient(SOCKET, O)

=> acceptClient(SOCKET, O) .

34 C 2. M

rl [CloseSocket] :

CloseSocket(b(SOCKET), SOCKET-MANAGER)

=> closeSocket(SOCKET, SOCKET-MANAGER) .

rl [CreateClientTcpSocket] :

CreateClientTcpSocket(SOCKET-MANAGER, O, ADDRESS, PORT)

=> createClientTcpSocket(SOCKET-MANAGER, O, ADDRESS, PORT) .

Note that in these cases the buffered socket versions of the messages are just translated
into the corresponding socket messages.

A BufferedSocket object can also convert an uncapitalized message into the capital-
ized one. The rule socketError shows this:

rl [socketError] :

socketError(O, SOCKET-MANAGER, REASON)

=> SocketError(O, SOCKET-MANAGER, REASON) .

BufferedSocket objects are created and destroyed when the corresponding sockets
are, and they start listening as soon as they are created. Thus, we have rules

rl [createdSocket] :

createdSocket(O, SOCKET-MANAGER, SOCKET)

=> < b(SOCKET) : BufferedSocket | read : "", complete : notFound >

CreatedSocket(O, SOCKET-MANAGER, b(SOCKET))

receive(SOCKET, b(SOCKET)) .

rl [acceptedclient] :

acceptedClient(O, SOCKET, IP’, NEW-SOCKET)

=> AcceptedClient(O, b(SOCKET), IP’, b(NEW-SOCKET))

< b(NEW-SOCKET) : BufferedSocket | read : "", complete : notFound >

receive(NEW-SOCKET, b(NEW-SOCKET)) .

rl [closedSocket] :

closedSocket(O, SOCKET, DATA)

< b(SOCKET) : BufferedSocket | >

=> ClosedSocket(O, SOCKET, DATA) .

Once a connection has been established, and a BufferedSocket object has been created
on each side, messages can be sent and received. When a Send message is received by
a buffered socket, it converts it in a send message with the same data plus a mark3 to
indicate the end of the message.

rl [Send] :

Send(b(SOCKET), O, DATA)

< b(SOCKET) : BufferedSocket | >

=> < b(SOCKET) : BufferedSocket | >

send(SOCKET, O, DATA + "#") .

rl [sent] :

sent(O, SOCKET)

=> Sent(O, b(SOCKET)) .

3We use the character ‘#’ as the mark; therefore, the user data sent through the sockets should not contain
such a character.

2.8. B  35

The key is then in the reception of messages. A BufferedSocket object is always
listening through the associated socket. A Receive message is then handled if there is a
complete message in the buffer (the number N in the complete attribute is the position of
the mark), and then the part of the string before the mark is put in a Received message,
updating the corresponding attributes.

op getComplete : FindResult String -> FindResult .

eq getComplete(N, S) = N .

eq getComplete(notFound, S) = find(S, "#", 0) .

rl [received] :

received(b(SOCKET), O, DATA)

< b(SOCKET) : BufferedSocket | read : S, complete : FR >

=> < b(SOCKET) : BufferedSocket | read : (S + DATA),

complete : getComplete(FR, S + DATA) >

receive(SOCKET, b(SOCKET)) .

crl [Receive] :

Receive(b(SOCKET), O)

< b(SOCKET) : BufferedSocket | read : S, complete : N >

=> < b(SOCKET) : BufferedSocket | read : S’, complete : find(S’, "#", 0) >

Received(O, b(SOCKET), DATA)

if DATA := substr(S, 0, N) /\

S’ := substr(S, N + 1, length(S)) .

endom

2.8.1 The factorial example revisited

We illustrate how to use buffered sockets with the factorial example shown above. Both
modules FACT-SERVER and FACT-CLIENT must include the BUFFERED-SOCKET module in-
stead of SOCKET, and translate its messages, capitalizing their first letter.

omod FACT-SERVER is

pr BUFFERED-SOCKET .

...

rl [CreatedSocket] :

CreatedSocket(SERVER, SOCKET-MANAGER, LISTENER)

< SERVER : Server | >

=> < SERVER : Server | >

AcceptClient(LISTENER, SERVER) .

rl [AcceptedClient] :

AcceptedClient(SERVER, LISTENER, IP, NEW-SOCKET)

< SERVER : Server | >

=> < SERVER : Server | >

Receive(NEW-SOCKET, SERVER)

AcceptClient(LISTENER, SERVER) .

rl [Received] :

Received(SERVER, SOCKET, NUMBER)

< SERVER : Server | >

=> < SERVER : Server | >

36 C 2. M

Send(SOCKET, SERVER, string(rat(NUMBER, 10)!, 10)) .

rl [Sent] :

Sent(SERVER, SOCKET)

< SERVER : Server | >

=> < SERVER : Server | >

CloseSocket(SOCKET, SERVER) .

rl [ClosedSocket] :

ClosedSocket(SERVER, SOCKET, REASON)

< SERVER : Server | >

=> < SERVER : Server | > .

endom

omod FACT-CLIENT is

pr BUFFERED-SOCKET .

...

rl [CreatedSocket] :

CreatedSocket(CLIENT, SOCKET-MANAGER, NEW-SOCKET)

< CLIENT : Client | >

=> < CLIENT : Client | >

Send(NEW-SOCKET, CLIENT, "6") .

rl [Sent] :

Sent(CLIENT, SOCKET)

< CLIENT : Client | >

=> < CLIENT : Client | >

Receive(SOCKET, CLIENT) .

endom

2.9 From Full Maude to Core Maude

In this section we illustrate how Full Maude object-oriented specifications can be trans-
lated to Core Maude ones. We use the distance school example shown in Section 2.3.

First, we show how to transform the SCHOOL-SYNTAXmodule. Since Full Maude object-
oriented modules imports implicitly the module CONFIGURATION, we must import it now
explicitly. When a class is found, we declare a new sort with its name, that should be
a subsort of Cid. Each one of its attributes are declared as constructors with result sort
Attribute.

mod SCHOOL-SYNTAX is

pr STRING .

pr CONFIGURATION .

sort Person .

subsort Person < Cid .

op Person : -> Person .

The subclasses are defined in a similar way to the classes, with the exception that they
are not directly a subsort of Cid, but a subsort of their superclass.

2.9. F FM  CM 37

sort Student .

subsort Student < Person .

op Student : -> Student .

op score :_ : Nat -> Attribute [ctor] .

sort State .

ops before after : -> State .

sort Teacher .

subsort Teacher < Person .

op Teacher : -> Teacher .

sort OidSet .

subsort Oid < OidSet .

op mtOidSet : -> OidSet .

op __ : OidSet OidSet -> OidSet [comm assoc id: mtOidSet] .

op students :_ : OidSet -> Attribute [ctor] .

op state :_ : State -> Attribute [ctor] .

The messages are defined as operators with result sort Msg and attributes ctor and
msg.

op to_from_exam : Oid Oid -> Msg [ctor msg] .

op to_from_solution : Oid Oid -> Msg [ctor msg] .

op to_score_ : Oid Nat -> Msg [ctor msg] .

endm

Now, we show how to change the rules from the SCHOOLmodule:

mod SCHOOL is

pr SCHOOL-SYNTAX .

- We use new variables of the form V@Class of sort Class for each class, that will be
used in the rules as class identifier in order to allow inheritance.

- We add to each object in a rule a different variable of sort AttributeSet to match
with the attributes do not shown. For example, applying these two changes the
rules correcting exams are:

vars TCHR STDNT : Oid .

var OS : OidSet .

vars N N’ : Nat .

var V@Student : Student .

var V@Teacher : Teacher .

var AtS : AttributeSet .

rl [correction] :

to TCHR from STDNT solution

< TCHR : V@Teacher | AtS >

=> < TCHR : V@Teacher | AtS >

to STDNT score 0 .

38 C 2. M

rl [correction] :

to TCHR from STDNT solution

< TCHR : V@Teacher | AtS >

=> < TCHR : V@Teacher | AtS >

to STDNT score 5 .

rl [correction] :

to TCHR from STDNT solution

< TCHR : V@Teacher | AtS >

=> < TCHR : V@Teacher | AtS >

to STDNT score 10 .

- When an attribute that appears in the righthand side of a rule does not appear in
the lefthand side it means that its value does not matter, and we use a new variable
to match with all its possible values. For example, the rule where a student receives
its score is now:

rl [score] :

(to STDNT score N)

< STDNT : V@Student | score : N’, AtS >

=> < STDNT : V@Student | score : N, AtS > .

- When an attribute that appears in the lefthand side of a rule does not appear in the
righthand side it means that it has not changed, so we copy it from the lefthand
side. For example, the rule where the exams are sent is:

rl [exam] :

< TCHR : V@Teacher | students : OS, state : before, AtS >

=> < TCHR : V@Teacher | students : OS, state : after, AtS >

broadcastExam(OS, TCHR) .

The rest of the module looks as follows:

op broadcastExam : OidSet Oid -> Configuration .

eq broadcastExam(mtOidSet, TCHR) = none .

eq broadcastExam(STDNT OS, TCHR) = to STDNT from TCHR exam

broadcastExam(OS, TCHR) .

rl [solve] :

to STDNT from TCHR exam

< STDNT : V@Student | AtS >

=> < STDNT : V@Student | AtS >

to TCHR from STDNT solution .

endm

Chapter 3

Architectures

In this chapter we show how distributed configurations, made up of located configurations,
can be built in Maude, in such a way that the architecture is transparent to the concrete
application. Each located configuration is executed in a Maude process, and they are
connected through sockets. In the following sections we present how to define three
different architectures, namely, a star network, a ring network, and a centralized ring
network, but we start with the part that is common to all of them.

3.1 Common infrastructure

In this section we describe the elements that are common to all the architectures we
define below. They basically correspond to the way messages are redirected to reach their
addressees. The different parts among the architectures correspond to the way the nodes
are connected.

We assume that each located configuration contains one and only one router,1 plus
messages and possibly objects of other classes. The names of routers range over the sort
Loc (subsort of Oid, the sort for objects identifiers declared in the predefined Maude
module CONFIGURATION), and have the form l(IP, N) with the string IP the IP address
of the machine in which the process is being executed and N a number used to distinguish
locations in the same machine. We assume global uniqueness of router names in a
distributed configuration.

fmod LOC is

pr STRING .

pr CONFIGURATION .

sort Loc .

subsort Loc < Oid .

op l : String Nat -> Loc . *** Router Oid

endfm

All objects can communicate with each other by using the message to_:_, that has
as arguments the identifier of the addressee and a term of sort TravelingContents. We
can communicate the name of a location when a socket is created by using the message
new-socket.

1We identify the router and the location where it is.

39

40 C 3. A

fmod TRAVELING-CONTENTS is

sort TravelingContents .

endfm

omod ARCHITECTURE-MSGS is

pr LOC .

pr TRAVELING-CONTENTS .

msg to_:_ : Oid TravelingContents -> Msg .

msg new-socket : Loc -> Msg .

endom

To be able to redirect the message to the appropriate location, the architecture must be
able to obtain the location where the addressee resides. Since each application can define
its own Oid syntax, we define a theory, that defines a function that extracts a Loc from the
object identifier.

fth ARCH-COMPLEMENT is

inc META-MODULE .

inc LOC .

op getLoc : Oid -> Loc .

Maude sockets can only transmit strings, so we must translate all the messages into
strings and convert them back once they are received. To do it in a general way (indepen-
dently of the concrete application) we use the reflective features of Maude. Concretely,
we use a (metarepresented) module MOD with the definition of all the operators used to
construct messages that are going to be transmitted, that is also included in the theory.

op MOD : -> Module .

endfth

We suggest o(L, N), with L the location where the object was created and N a number
not used to name other objects, as the syntax for object identifiers, and we provide it and
its corresponding getLoc function in the OIDmodule.

fmod OID is

pr LOC .

op o : Loc Nat -> Oid .

var L : Loc .

var N : Nat .

op getLoc : Oid -> Loc .

eq getLoc(o(L, N)) = L .

endfm

We define views for Loc and Oid, that will be used by the architectures.

view Loc from TRIV to LOC is

sort Elt to Loc .

endv

view Oid from TRIV to CONFIGURATION is

sort Elt to Oid .

endv

3.1. C  41

The module MAYBE{X :: TRIV} adds a default value maybe to the sort used in the
instantiation of the module.

fmod MAYBE{X :: TRIV} is

sort Maybe{X} .

subsort X$Elt < Maybe{X} .

op maybe : -> Maybe{X} .

endfm

The COMMON-INFRASTRUCTUREmodule is parameterized by the ARCH-COMPLEMENT the-
ory shown above.

omod COMMON-INFRASTRUCTURE{A :: ARCH-COMPLEMENT} is

pr BUFFERED-SOCKET .

pr ARCHITECTURE-MSGS .

pr MAP{Loc, Oid} .

pr MAYBE{Oid} * (op maybe to null) .

pr META-LEVEL .

The Router class is defined as follows:

class Router | state : RouterState, port : Nat, neighbors : Map{Loc, Oid},

defNeighbor : Maybe{Oid} .

This class will be specialized in the different architectures.
A router may be in states idle, waiting-connection, or active, although other values

can be added in concrete architectures. The attribute statewill take one of these values.

sort RouterState .

ops idle waiting-connection active : -> RouterState .

The attribute port keeps information about the port through which a server can offer
its services or a client can ask for them.

To solve the routing problem we assume a very simple, although quite general, ap-
proach consisting in having a routing table in each router. Such a table gives the socket
through which a message must be sent if one wants to reach a particular location. If
there is a socket between the source and the target of the message then it reaches its
destination in a single step; otherwise forwarding has to be repeated several times. The
neighbors attribute maintains such a routing table as a map associating socket object
identifiers to location identifiers. That is, the attribute neighbors stores in the partial
function Map{Loc, Oid} information about the sockets through which data must be sent
to reach a particular location. As we will see, each concrete architecture will use the
new-socket message to update this attribute. The following rule describes how a mes-
sage is redirected through the appropriate socket. If a message is sent to an object O
and the message is in a location L, with L , getLoc(O), that is connected to L (that
is, LSPF[getLoc(O)] , undefined), then the message is sent through the socket after
converting it to a string with the function msg2string explained below.

vars O O’ SOCKET : Oid .

vars L L’ : Loc .

vars DATA S S’ S’’ : String .

42 C 3. A

var N : Nat .

var MSG : Msg .

var C : Contents .

var LSPF : Map{Loc, Oid} .

var Q : Qid .

var QIL : QidList .

crl [redirect] :

to O : TC

< L : Router | neighbors : LSPF >

=> < L : Router | >

Send(LSPF[getLoc(O)], L, msg2string(to O : TC))

if getLoc(O) =/= L /\ LSPF[getLoc(O)] =/= undefined .

In case there is no socket associated to a particular location in the map neighbors,
there can be a default socket stored in the attribute defNeighbor. Nevertheless, the value of
the defNeighbor attribute may also be unspecified, that is, since defNeighbor is declared
of sort Maybe{Oid}, it can take as value either an object identifier (representing a socket)
or null. The rule redirectDef illustrates this behavior when there exists a default socket.

crl [redirectDef] :

to O : TC

< L : Router | neighbors : LSPF, defNeighbor : O’ >

=> < L : Router | >

Send(O’, L, msg2string(to O : TC))

if getLoc(O) =/= L /\ LSPF[getLoc(O)] == undefined .

Notice that defNeighbor cannot be null when this rule is applied because we use the
variable O, of sort Oid (subsort of Maybe{Oid}). If defNeighbor should be used but it is
null, then the data is not delivered.

When a router sees a Received message, it extracts the message from the string (by
means of the function string2msg) and puts a new message in the configuration, and
keeps listening with a new Receivemessage:

crl [Received] :

Received(L, SOCKET, DATA)

< L : Router | >

=> < L : Router | >

MSG

Receive(SOCKET, L)

if MSG := string2msg(SOCKET, DATA) .

The Sentmessages are just removed from the configuration:

eq Sent(O, O’) = none .

Finally, we show how the MOD module from the theory ARCH-COMPLEMENT is used.
This module must contain the definition (the operator declarations) of all the possible
values that the message can take. The function msg2string uses the functions upTerm
and metaPrettyPrint from module META-LEVEL to generate a QidList from the message.
Then, the function qidList2String is used to generate a string from the QidList.

3.1. C  43

op msg2string : Msg -> String .

eq msg2string(MSG) = qidList2String(metaPrettyPrint(MOD, upTerm(MSG), none)) .

op qidList2String : QidList -> String .

op qidList2String* : QidList String -> String .

eq qidList2String(QIL) = qidList2String*(QIL, "") .

eq qidList2String*(nil, S) = S .

eq qidList2String*(Q QIL, S) = qidList2String*(QIL, S + string(Q) + " ") .

The function string2msg uses a similar strategy. It uses string2QidList to generate a
QidList from a string. Then, the function metaParse is used, that needs the same module
than metaPrettyPrint as first parameter, to generate the message. We handle errors by
putting an errormessage in the configuration.

op string2msg : Oid String -> Msg .

ceq string2msg(O, S)

= if new-socket?(MSG) then new-socket(getLoc(MSG), O) else MSG fi

if MSG :=

downTerm(getTerm(metaParse(MOD, string2QidList(S), ’Msg)), error(S)) .

op error : String -> Msg [ctor] .

op string2QidList : String -> QidList .

op string2QidList* : String QidList -> QidList .

eq string2QidList(S) = string2QidList*(S, nil) .

eq string2QidList*("", QIL) = QIL .

ceq string2QidList*(S, QIL)

= string2QidList*(S’’, QIL qid(S’))

if N := find(S, " ", 0)

/\ S’ := substr(S, 0, N)

/\ S’’ := substr(S, N + 1, length(S)) .

eq string2QidList*(S, QIL) = QIL qid(S) [owise] .

op new-socket : Loc Oid -> Msg .

op getLoc : Msg ˜> Loc .

eq getLoc(new-socket(L)) = L .

op new-socket? : Msg -> Bool .

eq new-socket?(new-socket(L)) = true .

eq new-socket?(MSG) = false [owise] .

endom

Notice that string2msg receives the socket through where the message have arrived.
It is used to put in the configuration the new-socket messages received, because the
location that sends the message only knows the socket name in its side, so the name of the
socket when the message arrives to the addressee is obtained from the Receivedmessage,
putting into the configuration a slightly different new-socket message with the socket
identifier in addition to the location name.

44 C 3. A

StarNode StarNode

StarCenter

StarNode StarNode

StarNode

l(ip5,0) l(ip1,0)

l(ip0,0)

l(ip4,0) l(ip2,0)

l(ip3,0)

1

Figure 3.1: Star architecture

3.2 Star architecture

The architecture we present here consists of a location with a server router, and several
locations with client routers. The server is connected to all clients, and each client is
connected only to the server. That is, we have a star network, with the center redirecting
the messages between the nodes, as illustrated in Figure 3.1.

We distinguish between the center and the nodes by declaring two subclasses of
Router: StarCenter with no additional attributes; and StarNode, with an attribute
center, that keeps the center IP address. These classes must define how the locations are
connected by filling the neighbors and defNeighbor attributes.

omod STAR-CENTER{A :: ARCH-COMPLEMENT} is

pr COMMON-INFRASTRUCTURE{A} .

class StarCenter | .

subclass StarCenter < Router .

The center plays the server role from the point of view of the sockets so it declares
itself as a TCP server socket, and offers its services on its port.

vars SOCKET NEW-SOCKET SOCKET-MANAGER : Oid .

vars L L’ : Loc .

vars DATA IP : String .

var N : Nat .

var LSPF : Map{Loc, Oid} .

rl [connect] :

< L : StarCenter | state : idle, port : N >

=> < L : StarCenter | state : waiting-connection >

CreateServerTcpSocket(socketManager, L, N, 5) .

Note that it goes from state idle to waiting-connection, so this rule is applied
only once. The response is handled by the rule connected below. Once it receives the

3.2. S  45

CreatedSocket message, it becomes active and sends a message indicating that it is
ready to accept clients through the server socket.

rl [connected] :

CreatedSocket(L, SOCKET-MANAGER, SOCKET)

< L : StarCenter | state : waiting-connection >

=> < L : StarCenter | state : active >

AcceptClient(SOCKET, L) .

In the rule acceptedClient below, in addition to sending messages AcceptClient
and Receive indicating, respectively, that it is ready to accept new nodes as clients
through the server socket, and messages through the new socket, the object that gets
the AcceptedClientmessage sends to the node the message new-socket communicating
its identifier. These new-socket messages are interchanged between the center and the
nodes in both directions so they can know their Maude identifiers besides the socket that
connects them.

rl [acceptedClient] :

AcceptedClient(L, SOCKET, IP, NEW-SOCKET)

< L : StarCenter | state : active >

=> < L : StarCenter | >

AcceptClient(SOCKET, L)

Receive(NEW-SOCKET, L)

Send(NEW-SOCKET, L, msg2string(new-socket(L))) .

When a new-socketmessage is received from a node with its name L’, it is stored in
the neighbors attribute.

rl [new-socket] :

new-socket(L’, SOCKET)

< L : StarCenter | state : active, neighbors : LSPF >

=> < L : StarCenter | neighbors : insert(L’, SOCKET, LSPF) > .

endom

When a StarNode is created, it first tries to establish a connection with the center by
sending a CreateClientTcpSocket message that uses the IP address and the port of the
center.

omod STAR-NODE{A :: ARCH-COMPLEMENT} is

pr COMMON-INFRASTRUCTURE{A} .

class StarNode | center : String .

subclass StarNode < Router .

vars SOCKET SOCKET-MANAGER : Oid .

vars L L’ : Loc .

vars DATA IP : String .

var N : Nat .

rl [connect] :

< L : StarNode | state : idle, center : IP, port : N >

=> < L : StarNode | state : waiting-connection >

CreateClientTcpSocket(socketManager, L, IP, N) .

46 C 3. A

l(ip5,0) l(ip1,0)

l(ip0,0)

l(ip4,0) l(ip2,0)

l(ip3,0)

l(ip5,0) l(ip1,0)

l(ip0,0)

l(ip4,0) l(ip2,0)

l(ip3,0)

1

Figure 3.2: A concrete star architecture

Nodes go to the waiting-connection state as a result of the application of this rule.
The response to a star node’s socket connection request is handled by the following rule
connected, where the node also sends the new-socket message right after the socket is
created. In this very simple architecture the node does not need to wait for the new-socket
message from the center, because it only updates the defNeighbor attribute, that only
needs the socket through which messages have to be sent, so when the new-socket
message is found, it is removed from the configuration. Nodes start listening with the
Receivemessage.

rl [connected] :

CreatedSocket(L, SOCKET-MANAGER, SOCKET)

< L : StarNode | state : waiting-connection, defNeighbor : null >

=> < L : StarNode | state : active, defNeighbor : SOCKET >

Send(SOCKET, L, msg2string(new-socket(L)))

Receive(SOCKET, L) .

rl [new-socket] :

new-socket(L’, SOCKET)

< L : StarNode | >

=> < L : StarNode | > .

endom

We show how this architecture works by means of an example. The initial configura-
tion for the node l(ip0, 0) in Figure 3.2 (that is, the star center) is:

< l(ip0, 0) : StarCenter |

state : idle,

neighbors : empty,

defNeighbor : null,

port : 60039 >

The initial configuration for the node l(ip1, 0) in the same figure (the unique differ-
ence between the star nodes is their names) is:

3.3. R  47

< l(ip1, 0) : StarNode |

state : idle,

neighbors : empty,

defNeighbor : null,

center : ip0,

port : 60039 >

Once all the connections has been established, the node l(ip0, 0) keeps in its
neighbors attribute the buffered sockets (see Section 2.8) it must use to reach all the
star nodes. The final state reached by the center is:

< l("127.0.0.1", 0) : StarCenter |

state : active,

neighbors : (l(ip1, 0) |-> b(socket(6)), l(ip2, 0) |-> b(socket(7)),

l(ip3, 0) |-> b(socket(10)), l(ip4, 0) |-> b(socket(8)),

l(ip5, 0) |-> b(socket(9))),

defNeighbor : null,

port : 60039 >

The star nodes, such as the l(ip1, 0) node, only have updated their defNeighbor
attribute.

< l(ip1, 0) : StarNode |

state : active,

neighbors : empty,

defNeighbor : b(socket(5)),

port : 60039,

center : ip0 >

Notice that the same socket have different names in each side. l(ip0, 0) sends
messages to l(ip1, 0) through b(socket(6)), but l(ip1, 0) receives the messages
through b(socket(5)).

3.3 Ring architecture

In a ring topology, each node is connected to two nodes, the previous and the next one.
We show here how to implement a unidirectional ring where each node receives data
from the previous one and sends data to the next one.

In this architecture, each node must be declared as a (Maude) server for the previous
one and as a (Maude) client of the next one. However, to declare a node as a client it
needs another one working as a server, what it is impossible for the first executed Maude
instance. We have decided to distinguish between the last Maude instance executed
(which knows that all other instances are already running) and the other ones by declaring
two subclasses of Router:

- RingNode defines the behavior of all the nodes but the last one.2 They first declare
themselves as servers and then wait until someone ask to be their client. Once they
have accepted a client, they try to be clients themselves of the next node in the ring.

2Although in a ring there is no “last” node, we refer to the order in which the nodes must be started to be
executed.

48 C 3. A

28 Chapter 3. Architectures

RingLast RingNode

RingNode RingNode

· · ·

1

2

3n − 1

n

Figure 3.1: Ring architecture.

In this architecture, each node must be declared as a (Maude) server for the previous
one and as a (Maude) client of the next one. However, to declare a node as a client it
needs another one working as a server, what it is impossible for the first executed Maude
instance. We have decided to distinguish between the last Maude instance executed (which
knows that all other instances are already running) and the other ones by declaring two
subclasses of Router:

- RingNode defines the behavior of all the nodes but the last one.1 They first declare
themselves as servers and then wait until someone ask to be their client. Once they
have accepted a client, they try to be clients themselves of the next node in the ring.

- RingLast defines the behavior of the last node, that asks the next one (that must
exist, because this node is the last one) to be its server, and then waits to be a server
itself.

The order in which the connections are established is illustrated in Figure 3.1.

Both RingNode and RingLast will reach the same states, although in different order
(thus they need the same attributes), and will declare themselves as server at start-up, so
we can have a module containing the common behavior. We define a new class RingRouter,
a subclass of Router with attributes nextIP and nextPort that keep, respectively, the IP
address and the port of the next node in the ring.

omod COMMON-RING{A :: ARCH-COMPLEMENT} is
pr COMMON-INFRASTRUCTURE{A} .

class RingRouter | nextIP : String, nextPort : Nat .
subclass RingRouter < Router .

ops connecting2next waiting4previous : -> RouterState .

The port attribute inherited from class Router is the port used by the ring objects to
declare themselves as servers and accept clients through it.

var L : Loc .
var N : Nat .

1Although in a ring there is no “last” node, we refer to the order in which the nodes must be started
to be executed.

Figure 3.3: Ring architecture

- RingLast defines the behavior of the last node, that asks the next one (that must
exist, because this node is the last one) to be its server, and then waits to accept
clients.

The order in which the connections are established is illustrated in Figure 3.3.
In addition to the states inherited from Router, we define the connecting2next and

waiting4previous states, that will be traversed respectively when a node tries to be client
of the next node and when a node waits to accept the previous as a client. Both RingNode
and RingLast will reach the same states although in different order (thus they need the
same attributes), and will declare themselves as servers at start-up, so we define first a
superclass RingRouter containing the common behavior. It is a subclass of Router with
attributes nextIP and nextPort that keep, respectively, the IP address and the port of the
next node in the ring.

omod COMMON-RING{A :: ARCH-COMPLEMENT} is

pr COMMON-INFRASTRUCTURE{A} .

ops connecting2next waiting4previous : -> RouterState .

class RingRouter | nextIP : String, nextPort : Nat .

subclass RingRouter < Router .

The port attribute inherited from class Router is the port used by the ring objects to
declare themselves as servers and accept clients through it.

var L : Loc .

var N : Nat .

rl [connect] :

< L : RingRouter | state : idle, port : N >

=> < L : RingRouter | state : waiting-connection >

CreateServerTcpSocket(socketManager, L, N, 5) .

endom

3.3. R  49

As we have said, all the nodes but the last one wait for clients after declaring them-
selves as servers (by using the rule connect above), reaching the state waiting4previous.

omod RING-NODE{A :: ARCH-COMPLEMENT} is

pr COMMON-RING{A} .

class RingNode | .

subclass RingNode < RingRouter .

vars SOCKET NEW-SOCKET SOCKET-MANAGER : Oid .

var L : Loc .

vars IP IP’ : String .

var N : Nat .

rl [connected] :

CreatedSocket(L, SOCKET-MANAGER, SOCKET)

< L : RingNode | state : waiting-connection >

=> < L : RingNode | state : waiting4previous >

AcceptClient(SOCKET, L) .

Once a client is accepted, the server tries to be client of the next node in the ring,
reaching the state connecting2next. Note that there is not a new AcceptClientmessage
on the righthand side of the rule, because each server has only one client.

rl [acceptedClient] :

AcceptedClient(L, SOCKET, IP’, NEW-SOCKET)

< L : RingNode | state : waiting4previous, nextIP : IP, nextPort : N >

=> < L : RingNode | state : connecting2next >

Receive(NEW-SOCKET, L)

CreateClientTcpSocket(socketManager, L, IP, N) .

When a node is accepted as client by the next node, the former keeps the socket in
the attribute defNeighbor, in order to use it to redirect all the messages, and reaches the
active state. Notice that the neighbors attribute remains empty in this architecture and
that no Receive message has been put in the configuration, because a client does not
receive data from the server in this architecture.

rl [connected2next] :

CreatedSocket(L, SOCKET-MANAGER, SOCKET)

< L : RingNode | state : connecting2next, defNeighbor : null >

=> < L : RingNode | state : active, defNeighbor : SOCKET > .

endom

The last node traverses the states in different order. When it is accepted as a server, it
tries to connect to the next node in the ring, reaching the connecting2next state.

omod RING-LAST{A :: ARCH-COMPLEMENT} is

pr COMMON-RING{A} .

class RingLast | .

subclass RingLast < RingRouter .

vars SOCKET NEW-SOCKET SOCKET-MANAGER : Oid .

var L : Loc .

50 C 3. A

var IP : String .

var N : Nat .

rl [connected] :

CreatedSocket(L, SOCKET-MANAGER, SOCKET)

< L : RingLast | state : waiting-connection, nextIP : IP, nextPort : N >

=> < L : RingLast | state : connecting2next >

AcceptClient(SOCKET, L)

CreateClientTcpSocket(socketManager, L, IP, N) .

Once it is accepted as client, it saves the socket identifier in defNeighbor in order to
redirect all the messages using it, and reaches the waiting4previous state. Again, no
Receivemessage is needed, because the server does not send data to the clients.

rl [connected2next] :

CreatedSocket(L, SOCKET-MANAGER, SOCKET)

< L : RingLast | state : connecting2next, defNeighbor : null >

=> < L : RingLast | state : waiting4previous, defNeighbor : SOCKET > .

Finally, when it accepts a client it starts to receive data through the socket and becomes
active.

rl [acceptedClient] :

AcceptedClient(L, SOCKET, IP, NEW-SOCKET)

< L : RingLast | state : waiting4previous >

=> < L : RingLast | state : active >

Receive(NEW-SOCKET, L) .

endom

Notice that in this architecture the neighbors attribute is not used; the ring nodes are
just connected by defNeighbor, thus obtaining a unidirectional ring.

3.4 Centralized ring architecture

We show here a special ring architecture, where in addition to the ring we have a center
connected to each node, as illustrated in Figure 3.4. We have a mixture of the two previous
architectures, that we have tried to reuse as much as possible. We use the class StarCenter
(from the star architecture presented in Section 3.2) for the ring center, and we reuse the
classes RingNode and RingLast (from the ring architecture shown in Section 3.3) for the
nodes in the ring, although some states must be renamed.

We define a new class CRingRouter in charge of connecting to the center. We will
combine the behavior of this new class with the classes RingNode and RingLast to obtain
the centralized ring. This new class has:

- New attributes centerIP and centerPort, with the IP address and port of the
central server.

- New states connecting2center and waiting4center.

- Rules for connecting to the central node.

3.4. C   51

2

RingLast RingNode

RingNode RingNode

· · ·

1

2

3n − 1

n

Figure 1: Ring architecture.

l(ip5,0) l(ip1,0)

l(ip0,0)

l(ip4,0) l(ip2,0)

l(ip3,0)

Figure 2: Initial configuration.

CRingLast CRingNode

StarCenter

CRingNode CRingNode

CRingNode

Figure 3: Centralized ring

Figure 3.4: Centralized ring architecture

omod CENTRALIZED-RING{A :: ARCH-COMPLEMENT} is

pr COMMON-RING{A} .

class CRingRouter | centerIP : String, centerPort : Nat .

subclass CRingRouter < RingRouter .

ops connecting2center waiting4center : -> RouterState .

When it is in connecting2center state, it tries to connect to the center and reaches the
waiting4center state.

vars SOCKET SOCKET-MANAGER : Oid .

vars L L’ : Loc .

vars DATA IP : String .

var N : Nat .

var LSPF : Map{Loc,Oid} .

rl [connect2center] :

< L : CRingRouter | state : connecting2center, centerIP : S,

centerPort : N >

=> < L : CRingRouter | state : waiting4center >

CreateClientTcpSocket(socketManager, L, S, N) .

Once the connection has been created, the server and the client interchangenew-socket
messages, and the neighbors attribute is updated, reaching the active state.

rl [connected] :

CreatedSocket(O, SOCKET-MANAGER, SOCKET)

< L : CRingRouter | state : waiting4center >

=> < L : CRingRouter | >

Receive(SOCKET, L)

Send(SOCKET, L, msg2string(new-socket(L))) .

rl [connected2center] :

new-socket(L’, SOCKET)

< L : CRingRouter | state : waiting4center, neighbors : LSPF >

52 C 3. A

=> < L : CRingRouter | state : active,

neighbors : insert(L’, SOCKET, LSPF) > .

endom

Note that we update the neighbors attribute, so the messages to the center will use
SOCKET, while all other messages will use defNeighbor from the ring architecture.

Now we look for a class that behaves as a CRingRouter and as a RingNode (or as a
RingLast, if it is the last node). To obtain it, we define a new class CRingNode, which
is a subclass of both CRingRouter and RingNode (and a new class CRingLast, which is a
subclass of CRingRouter and RingLast). These new classes behave as the corresponding
nodes in the ring, and once they are connected behave as clients of the center. However,
we found the problem that all those classes finish in active state, so some of the rules
could not be applied. We solve it by renaming the state active in the nodes of the ring to
connecting2center, so the rules in CRingRouter can be applied after the ring connections
has been established.

omod CENTRALIZED-RING-NODE{A :: ARCH-COMPLEMENT} is

pr CENTRALIZED-RING{A} .

pr RING-NODE{A} * (op active to connecting2center) .

class CRingNode | .

subclass CRingNode < CRingRouter RingNode .

endom

omod CENTRALIZED-RING-LAST{A :: ARCH-COMPLEMENT} is

pr CENTRALIZED-RING{A} .

pr RING-LAST{A} * (op active to connecting2center) .

class CRingLast | .

subclass CRingLast < CRingRouter RingLast .

endom

In the following section, as well as in Chapters 4 and 5, we will illustrate how these
architectures can be used to execute concrete applications on top of them.

3.5 Ray tracing case study

Once we have several locations connected by means of an architecture like those shown
above, we can implement distributed applications. We first illustrate in this section how
a concrete distributed application can be implemented directly in Maude.

In order to implement a distributed application, the messages that objects in differ-
ent locations will interchange should be declared in a separated module, that then will
be combined with the messages of the architecture and used to instantiate the module
COMMON-INFRASTRUCTURE. Then the objects that solve the application have to be imple-
mented, in a way as independent of the concrete architecture as possible. Finally, in order
to execute the application, a concrete architecture has to be chosen and the distribution of
the application objects through the different locations has to be decided. We use the ray
tracing problem as a case study [8].

3.5. R    53

3.5.1 Sequential implementation

Given a scene consisting of 3D objects, and given the position of the camera, a ray tracer
calculates a 2D image of the scene. For every pixel of the output image, the ray tracer
shoots a ray into the scene and tests whether it impacts with any object of the scene. When
an impact is found, the ray is reflected and the color of the intersection point is computed
based on the strength of the ray and on the texture of the object’s material.

We show here the sequential implementation of the problem. We will reuse most of this
code in the distributed versions in Sections 3.5.2 and 4.3. We will show in Section 6.6 how
to check distributed applications by considering the sequential versions as the specification
of the problem and the distributed one as the implementation.

Let us see the modules in detail. The FIGURE module includes the modules 3D, that
defines operations over 3D elements like points and vectors, and COLOR, that defines the
colors for the figures. In the module we define figures by their type, color and coordinates,
and we declare the functions filter, that checks whether the figures on the list are too
far or not; getColor, that extracts the figure color; and distance, that will be used later
to calculate the intersection of the rays with the figures. Although only spheres are
considered in this example, other types of figures can be easily added just defining their
Coordinates and FigureType and the equations dealing with distance.

fmod FIGURE is

pr 3D .

pr COLOR .

var FT : FigureType .

var C : Color .

var CDT : Coordinates .

vars F F’ F’’ F’’’ x x’ x’’ y y’ y’’

z z’ z’’ RAD bSq r r2 alpha a2 : Float .

vars u v v’ : Vector .

var FIG : Figure .

var FL : FigureList .

vars P P1 P2 P3 q : Point .

sort Figure FigureList FigureType Coordinates .

subsort Figure < FigureList .

op figure : FigureType Color Coordinates -> Figure .

op mtFigureList : -> FigureList .

op __ : FigureList FigureList -> FigureList [assoc id: mtFigureList] .

op sphere : -> FigureType .

op coord : Point Float -> Coordinates .

op getColor : Figure -> Color .

eq getColor(figure(FT, C, CDT)) = C .

op filter : FigureList Float -> FigureList .

eq filter(mtFigureList, F) = mtFigureList .

eq filter(FIG FL, F) = if farAway(FIG, F) then mtFigureList

else FIG fi filter(FL, F) .

54 C 3. A

op farAway : Figure Float -> Bool .

eq farAway(figure(sphere, C, coord(< F, F’, F’’ >, RAD)), F’’’) = F’’’ < F’’ .

op distance : Point Point Figure -> Distance .

ceq distance(P1, P2, FIG) = module(P1 - P3)

if P3 := distanceAux(P1, P2, FIG) /\

P3 =/= noIntersection .

eq distance(P1, P2, FIG) = noDistance [owise] .

op distanceAux : Point Point Figure -> Point .

ceq distanceAux(< x, y, z >, < x’, y’, z’ >,

figure(sphere, C, coord(< x’’, y’’, z’’ >, r))) =

if (bSq > r2) then noIntersection

else if (alpha >= sqrt(a2)) then (q - (sqrt(a2) * u))

else if ((alpha + sqrt(a2)) > 0.0) then q + (sqrt(a2) * u)

else noIntersection fi

fi

fi

if u := unitVector(< x, y, z >, < x’, y’, z’ >) /\

v := < x’’, y’’, z’’ > - < x, y, z > /\

alpha := escProd(u, v) /\

q := < x, y, z > + (alpha * u) /\

v’ := q - < x’’, y’’, z’’ > /\

F := module(v’) /\

bSq := F * F /\

r2 := r * r /\

a2 := r2 - bSq .

endfm

The ROWTRACER module is in charge of coloring each row. The traceRow function
traverses the row from left to right, and for every pixel in the current line it calculates all
the collisions with the figures on the list and keeps the nearest one by using getColor
(where d, a constant of sort Color, is the default color).

fmod ROWTRACER is

pr FIGURE .

pr CONVERSION .

vars P P1 P2 : Point .

var FL : FigureList .

var F : Figure .

var C : Color .

var D : Distance .

sort ColorList .

subsort Color < ColorList .

--- Color union

op __ : ColorList ColorList -> ColorList [assoc] .

op traceRow : Point Float Float Float FigureList -> ColorList .

op getColor : Point FigureList -> Color .

eq getColor(P, FL) = getColor(< 0.0, 0.0, 0.0 >, P, FL) .

3.5. R    55

op getColor : Point Point FigureList -> Color .

op getColorAux : Point Point FigureList Color Distance -> Color .

eq getColor(P1, P2, F FL) = getColorAux(P1, P2, F FL, d, noDistance) .

eq getColor(P1, P2, mtFigureList) = d .

eq getColorAux(P1, P2, mtFigureList, C, D) = C .

eq getColorAux(P1, P2, F FL, C, D) =

if less(distance(P1, P2, F), D) then

getColorAux(P1, P2, FL, getColor(FIG), distance(P1, P2, F))

else

getColorAux(P1, P2, FL, C, D)

fi .

op traceRow : Point Float Float Float Float FigureList -> ColorList .

eq traceRow(P, Xr, Xr, Y, Near, FL) = getColor(P, < Xr, Y, Near >, FL) .

ceq traceRow(P, Xl, Xr, Y, Near, FL) =

getColor(P, < Xl, Y, Near >, FL) traceRow(P, Xl + 1.0, Xr, Y, Near, FL)

if Xl < Xr .

endfm

Finally, theRAYTRACINGmodule below traverses all the rows with the functionrayTracing
and colors each one with traceRow.

fmod RAYTRACING is

pr ROWTRACER .

sort Screen .

op [_] : ColorList -> Screen .

--- Screen union

op __ : Screen Screen -> Screen [assoc] .

op rayTracing : Point Float Float Float Float Float FigureList -> Screen .

--- Xleft Xright Ytop Ybottom Near Figures

vars Xlef Xrig Ytop Ybot Near X Y : Float .

var FL : FigureList .

var P : Point .

eq rayTracing(P, Xlef, Xrig, Y, Y, Near, FL) =

[traceRow(P, Xlef, Xrig, Y, Near, FL)] .

ceq rayTracing(P, Xlef, Xrig, Ytop, Ybot, Near, FL) =

[traceRow(P, Xlef, Xrig, Ytop, Near, FL)]

rayTracing(P, Xlef, Xrig, Ytop - 1.0, Ymin, Near, FL)

if Ytop > Ybot .

endfm

3.5.2 Distributed implementation

This application is highly parallelizable: each row (indeed, each pixel) can be colored by
a different processor in an independent way, and then they can be combined to obtain the
whole screen. So we will have a chief that delivers subproblems and combines subresults,
and several painters that solve the subproblems, that is, color rows of the screen.

56 C 3. A

The communication between the chief and the painters is through the following mes-
sages, that must have sort TravelingContents to fit into the to_:_message. We use the
module OID from Section 3.1 for the objects syntax.

fmod RT-TRANSMITTED-SYNTAX is

pr OID .

pr ROWTRACER .

pr TRAVELING-CONTENTS .

- world, that sends the data describing the problem, that is, the list of figures in the
scene, the position of the camera, and the size of the screen.

op world : FigureList Point Float Float Float -> TravelingContents .

- new-row, that communicates a new task by identifying the height of the row to be
colored.

op new-row : Float -> TravelingContents .

- colored-row, that transmits a new result to the chief.

op colored-row : Oid Float ColorList -> TravelingContents .

endfm

The application only needs to import the ARCHITECTURE-MSGSmodule from the archi-
tecture, so it can be executed on different architectures; each utilization of the application
must include the architecture it will use (we will see an example below). The module
ROWTRACER from Section 3.5.1 is also used; it contains the ingredients of this problem, in
particular the function traceRow used by the painters.

view ColorList from TRIV to ROWTRACER is

sort Elt to ColorList .

endv

omod DISTRIBUTED-RAY-TRACING is

pr ARCHITECTURE-MSGS .

pr RT-TRANSMITTED-SYNTAX .

pr ROWTRACER .

pr MAP{Float, ColorList} .

pr LIST{Oid} * (sort List{Oid} to OidList, op nil to mtOidList) .

pr LIST{Float} * (sort List{Float} to FloatList, op nil to mtFloatList) .

We define now a class RTChief in charge of distributing subproblems (rows to be
colored) and combining the results (colored rows). This new class has attributes that

- Describe the problem:

– The list of figures.

– The width of the screen (xL and xR).

– The height of the screen (yT and yB).

– The depth where figures can be traced (zN and zF).

3.5. R    57

- Keep the current row (y).

- Keep the result; the subresults may arrive unordered, so we use a partial function
from rows, identified by floats, to colored rows to represent the (partial) result.

- Store the list with the identifiers of the painters.

class RTChief | figures : FigureList, xL, xR, yT, yB, zN, zF: Float,

y: Float, result : Map{Float, ColorList},

painters : OidList .

First, the chief must deliver the information of the world and the first subproblems
to the painters. Initially they receive three tasks3 so they can work in the following one
while a new one arrives.

var CM : Map{Float, ColorList} .

var OL : OidList .

vars XL XR YT YB ZN ZF R Y : Float .

var CL : ColorList .

var FigL : FigureList .

var FL : FloatList .

var P : Point .

vars O O’ : Oid .

rl [new-painter] :

< O : RTChief | xL : XL, xR : XR, y : Y, yT : YT, yB : YB, zN : ZN,

zF : ZF, figures : FigL, painters : O’ OL >

=> < O : RTChief | y : Y - 3.0, painters : OL >

to O’ : world(filter(FigL, ZF),

< (XR + XL) / 2.0, (YT + YB) / 2.0, 0.0 >, XL, XR, ZN)

to O’ : new-row(Y)

to O’ : new-row(Y - 1.0)

to O’ : new-row(Y - 2.0) .

When one result arrives, it is combined with the current partial result (by using the
insert operation from partial functions) and it is checked if the problem has been fully
distributed (in this case Y < YB); if this is not the case, the next row is sent to the painter.

crl [new-row] :

to O : colored-row(O’, R, CL)

< O : RTChief | result : CM, y : Y, yB : YB >

=> < O : RTChief | result : insert(R, CL, CM), y : Y - 1.0 >

to O’ : new-row(Y)

if Y >= YB .

crl [no-more-rows] :

to O : colored-row(O’, R, CL)

< O : RTChief | result : CM, y : Y, yB : YB >

=> < O : RTChief | result : insert(R, CL, CM) >

if Y < YB .

3We are assuming that the number of works to be dispatched is at least three times the number of painters.
This will be generalized in the following sections.

58 C 3. A

Now we define the class RTPainter, that will define the painters’ behavior. Its at-
tributes will keep the information of the world (the screen – xL, xR, and zN –, position of
the camera, and the list of figures), the row identifiers of the undone tasks (nextRows),
and the identifier of the chief.

class RTPainter | xL, xR, zN : Float, pos : Point, figures : FigureList,

nextRows : FloatList, chief : Oid .

When the world or a new row arrives, the information is stored in the appropriate
attributes:

rl [rec-world] :

to O : world(FigL, P, XL, XR, ZN)

< O : RTPainter | >

=> < O : RTPainter | figures : FigL, pos : P, xL : XL, xR : XR, zN : ZN > .

rl [new-row] :

to O : new-row(R)

< O : RTPainter | nextRows : FL >

=> < O : RTPainter | nextRows : FL R > .

While the list of scheduled tasks is not empty, we can do a new one (trace the row)
and send it to the chief through the message colored-row. Notice that here we use the
function traceRow from the sequential version (see Section 3.5.1):

crl [paint] :

< O : RTPainter | figures : FigL, pos : P, xL : XL, xR : XR, zN : ZN,

chief : O’, nextRows : R FL >

=> < O : RTPainter | nextRows : FL >

to O’ : colored-row(O, R, CL)

if CL := traceRow(P, XL, XR, R, ZN, FigL) .

endom

To execute an example of this application, we must define a view from the theory
ARCH-COMPLEMENT used by the architecture:

mod RT-COMPLEMENT is

pr META-LEVEL .

pr RT-TRANSMITTED-SYNTAX .

pr ARCHITECTURE-MSGS .

endm

view RT-Complement from ARCH-COMPLEMENT to RT-COMPLEMENT is

op MOD to term upModule(’RT-COMPLEMENT, false) .

endv

Notice that the getLoc function has been defined in OID, that is included by the module
RT-TRANSMITTED-SYNTAX.

We can now execute an example of distributed ray tracing. To do it we must first choose
the architecture we are going to use and instantiate it with the view RT-Complement. In
this case the most suitable one is the star topology, placing the chief in the center of the star
and the painters in the nodes. We define modules EXAMPLE-CHIEF and EXAMPLE-PAINTER
where the initial configurations will be executed. EXAMPLE-CHIEF also includes a generator
of random spheres that uses the RANDOMmodule provided by Maude.

3.5. R    59

mod EXAMPLE-CHIEF is

pr DISTRIBUTED-RAY-TRACING .

pr RANDOM .

pr STAR-CENTER{RT-Complement} .

var L : FigureList .

var N : Nat .

op figListN : Nat -> FigureList .

op figListN* : Nat FigureList -> FigureList .

eq figListN(N) = figListN*(N, mtFigureList) .

eq figListN*(0, L) = L .

eq figListN*(s(N), L) = figListN*(N, L figure(sphere, r,

coord(< float(random(4 * N)), float(random(4 * N + 1)),

float(random(4 * N + 2)) >, float(random(4 * N + 3))))) .

endm

The initial configuration for the center of the star includes a StarCenter and a RTChief
with the whole definition of the problem.

erew <> < l(ip0, 0) : StarCenter |

state : idle,

neighbors : empty,

defNeighbor : null,

port : 60039 >

< o(l(ip0, 0), 0) : RTChief |

xL : -30.0,

xR : 30.0,

y : 30.0,

yT : 30.0,

yB : -30.0,

zN : 10.0,

zF : 1000000000.0,

figures : figListN(10),

result : empty,

painters : o(l(ip1, 0), 0) o(l(ip2, 0), 0) > .

where the ipi are IP addresses.
All the other locations have in their initial configuration a StarNode and a RTPainter,

being their unique difference their identifiers. The configuration for one of them is shown
below.

mod EXAMPLE-PAINTER is

pr DISTRIBUTED-RAY-TRACING .

pr STAR-NODE{RT-Complement} .

endm

erew <> < l(ip1, 0) : StarNode |

state : idle,

neighbors : empty,

defNeighbor : null,

center : ip0,

port : 60039 >

< o(l(ip1, 0), 0) : RTPainter |

60 C 3. A

chief : o(l(ip0, 0), 0),

nextRows : mtFloatList,

figures : mtFigureList,

pos : < 0.0, 0.0, 0.0 >,

xL : 0.0,

xR : 0.0,

zN : 0.0 > .

Chapter 4

Parameterized skeletons

We show in this chapter how distributed applications can be implemented in Maude
by means of object-oriented parameterized skeletons, that receive the operations needed
to solve a concrete problem as a parameter. These operations usually are part of the
sequential version of the concrete applications, thus encouraging code reusability. The
use of Maude allows us to have the description of the architecture, the definition of the
skeleton, and the implementation of the application in the same high-level language.
Moreover, since Maude has a well-defined semantics, we obtain a good basis for formal
reasoning. Tools for doing some kinds of this reasoning in an automatic way and the
possibility to define the properties the applications have to fulfill are also provided by
Maude, as we will see in Section 6.6.

The work described in this chapter has been published in the technical report [60],
and it is going to be presented in the 9th IFIP International Conference on Formal Methods for
Open Object-Based Distributed Systems, FMOODS 07, which originated the publication [59].

4.1 Distributable applications

In this section we present some of the applications we have used to test the implemented
skeletons by giving a sequential implementation of them. They are typical well-known
case studies used to present parallel distributed computing. Most of this code will be
reused in the corresponding distributed application and we will use it in Section 6.6 to
formally analyze the distributed one.

4.1.1 Euler numbers

The Euler number of a given value x, denoted by ϕ(x), is the number of natural numbers
smaller than x that are relatively prime to x. We are interested in computing the sum
of the Euler numbers of the first n numbers, that is

∑n
i=1 ϕ(i). The function euler below

computes the Euler number of one number.

fmod EULER is

pr NAT .

op relPrimes : Nat Nat -> Bool .

op euler : Nat -> Nat .

op euler* : Nat Nat Nat -> Nat .

61

62 C 4. P 

vars N N’ Ac : Nat .

eq relPrimes(N, N’) = gcd(N, N’) == 1 .

eq euler(N) = euler*(N, 1, 0) .

ceq euler*(N, N’, Ac) =

if relPrimes(N, N’) then euler*(N, N’ + 1, Ac + 1)

else euler*(N, N’ + 1, Ac) fi

if N’ < N .

eq euler*(N, N’, Ac) = Ac [owise] .

endfm

The function sumEuler below computes the total sum by using successive calls to the
euler function.

fmod SUM-EULER is

pr EULER .

vars N Ac : Nat .

op sumEuler : Nat -> Nat .

op sumEuler* : Nat Nat -> Nat .

eq sumEuler(N) = sumEuler*(N, 0) .

eq sumEuler*(0, Ac) = Ac .

eq sumEuler*(s(N), Ac) = sumEuler*(N, Ac + euler(s(N))) .

endfm

Notice that each ϕ(i) (computed by the function euler) can be calculated separately
of the other Euler numbers. This case is slightly different from the ray tracing example
shown in Section 3.5.1, because in the latter there is some “fixed data” (shared by all the
subproblems) that is needed every time a row is colored (the list of figures, the width
of the screen, and the distance to the viewport) while each Euler number just needs the
number to be calculated.

4.1.2 Force interactions

We want to determine the force undergone by each particle in a set of n atoms. The total
force fi acting on each atom xi is fi =

∑n
j=1 F(xi, x j), where F(xi, x j) denotes the attraction

or repulsion between atoms xi and x j. We are interested in the value F =
∑n

i=1 fi.
We define a function attraction that calculates the valueF by using the binary func-

tion attraction that computes the force interaction between two particle sets that are
initially the whole set. It uses auxiliary functions attraction*, that calculates the sum-
mation of the forces between one particle and all the particles in a set, and attraction**,
that calculates the force between two particles. We use the 3D module again for particle
positions and to calculate distances.

fmod PARTICLE is

pr 3D .

sort Particle .

op particle : Point Float -> Particle .

endfm

4.1. D  63

view Particle from TRIV to PARTICLE is

sort Elt to Particle .

endv

fmod PARTICLES is

pr 3D .

pr LIST{Particle} * (sort List{Particle} to ParticleList,

op nil to mtParticleList) .

op K : -> Float . eq K = 9.0e+9 .

op attraction : ParticleList -> Float .

op attraction : ParticleList ParticleList -> Float .

op attraction* : Particle ParticleList -> Float .

op attraction** : Particle Particle -> Float .

vars P P’ : Particle .

vars PL PL’ : ParticleList .

vars Pt Pt’ : Point .

vars F F’ R : Float .

var V : Vector .

eq attraction(PL) = attraction(PL, PL) .

eq attraction(mtParticleList, PL) = 0.0 .

eq attraction(P PL, PL’) = attraction*(P, PL’) + attraction(PL, PL’) .

eq attraction*(P, mtParticleList) = 0.0 .

eq attraction*(P, P’ PL) = attraction**(P, P’) + attraction*(P, PL) .

eq attraction**(P, P) = 0.0 .

ceq attraction**(particle(Pt, F), particle(Pt’, F’)) = (K * F * F’) / (R * R)

if V := Pt - Pt’ /\ R := module(V) .

endfm

We can parallelize this problem dividing the atoms set into smaller subsets S1, . . . ,Sk,
generating all the pairs (Si,S j) with i ≤ j, independently calculating the force interaction
F(x, y) for every x ∈ Si and y ∈ S j, and adding all the subresults.

4.1.3 Mergesort

The well-known sorting algorithm mergesort for lists of natural numbers can be easily
implemented in Maude as follows, where we have used the predefined module NAT-LIST
for list of natural numbers, renaming the empty list from nil to mtNatList.

fmod SORT is

pr NAT-LIST * (op nil to mtNatList) .

op mergesort : NatList -> NatList .

op merge : NatList NatList -> NatList .

vars N N’ N’’ : Nat .

vars NL NL’ NL’’ : NatList .

var P : Pair .

64 C 4. P 

eq mergesort(mtNatList) = mtNatList .

eq mergesort(N) = N .

ceq mergesort(N NL N’) = merge(mergesort(N NL’), mergesort(NL’’ N’))

if pair(NL’, NL’’) := halfDivide(NL) .

eq merge(mtNatList, NL) = NL .

eq merge(NL, mtNatList) = NL .

ceq merge(N NL, N’ NL’) = N merge(NL, N’ NL’)

if N <= N’ .

ceq merge(N NL, N’ NL’) = N’ merge(N NL, NL’)

if N’ < N .

sort Pair .

op pair : NatList NatList -> Pair .

op halfDivide : NatList -> Pair .

op halfDivide* : NatList Pair -> Pair .

eq halfDivide(NL) = halfDivide*(NL, pair(mtNatList, mtNatList)) .

eq halfDivide*(mtNatList, P) = P .

eq halfDivide*(N, pair(NL, NL’)) = pair(NL N, NL’) .

eq halfDivide*(N NL N’, pair(NL’, NL’’)) =

halfDivide*(NL, pair(NL’ N, N’ NL’’)) .

endfm

The mergesort algorithm uses the well-known divide and conquer approach [39]. In this
technique, problems are divided in smaller problems until they are “simple” enough. We
can parallelize these algorithms by solving each of these simple problems in parallel.

4.1.4 Traveling salesman problem

The traveling salesman problem is a problem in discrete optimization. It is a prominent
illustration of a class of problems in computational complexity theory which are hard to
solve. The problem we want to solve is: given a number of cities and the costs of traveling
from any city to any other one, what is the cheapest route that visits each city exactly once
and then returns to the starting city?

An equivalent formulation in terms of graph theory is: Given a complete weighted
graph (where the vertices would represent the cities, the edges would represent the roads,
and the weights would be the cost or distance of that road), find a Hamiltonian cycle with
the least weight.

We use the branch and bound [39] approach to solve it. Branch and bound is an
algorithmic technique to find the optimal solution by keeping the best solution found so
far. If a partial solution cannot improve the best one, it is abandoned. In these algorithms
we need to orient the traversal of the search tree in order to expand first the most promising
nodes.

To calculate the initial upper bound we apply a greedy algorithm [39] that selects each
time the cheapest edge. The AUXILIARY-FUNCTIONS module defines the sorts City, Path
(a sequence of cities), CityPair (for pairs of cities), and Graph (a partial function from
pairs of cities to natural numbers).

fmod GREEDY-TRAVELER is

4.1. D  65

pr AUXILIARY-FUNCTIONS .

---- Initial city, Cities (from 0 to N), Roads

op greedyTravel : City Nat Graph -> TravelResult .

---- Initial city, Cities (from 0 to N), Roads, Path, Cost

op greedyTravel : City Nat Graph Path Nat -> TravelResult .

vars C C’ C’’ : City .

var G : Graph .

vars N N’ N’’ : Nat .

var NI NI’ NI’’ : NatInf .

vars P P’ : Path .

var PCN : Pair .

--- The initial Path is the initial city, with cost 0

eq greedyTravel(C, N, G) = greedyTravel(C, N, G, C, 0) .

--- The Path contains all the cities (i.e., its size is N), we

--- add the edge from the last city in the path to the initial one.

ceq greedyTravel(C, N, G, P C’, N’) =

result(P C’ C, N’ + (G [pair(C’, C)]))

if size(P) = N .

--- The Path does not contain all the cities, so we expand it.

ceq greedyTravel(C, N, G, P C’, N’) =

greedyTravel(C, N, G, P C’ C’’, N’ + N’’)

if size(P) < N /\

PCN := cheapest(C’, N, P C’, G) /\

C’’ := getCity(PCN) /\

N’’ := getCost(PCN) .

where cheapest looks for the cheapest edge from the last city in the path (C’) to other city
not used yet, returning a pair with the city and the cost, that are extracted with getCity
and getCost. To calculate the cheapest edge we use a special minimum function minInf,
that deals with natural numbers and with infinite, a special value obtained when there
is no road between two cities or when the city has been already used.

sort Pair NatInf .

subsort Nat < NatInf .

op pair : City NatInf -> Pair .

op inf : -> NatInf .

op getCity : Pair -> City .

op getCost : Pair -> NatInf .

eq getCity(pair(C, NI)) = C .

eq getCost(pair(C, NI)) = NI .

op minInf : Pair Pair -> Pair [comm] .

eq minInf(pair(C, inf), pair(C’, NI)) = pair(C’, NI) .

ceq minInf(pair(C, N), pair(C’, N’)) = pair(C, N)

if N <= N’ .

66 C 4. P 

op cheapest : City Nat Path Graph -> Pair .

op cheapest : City Nat Path Graph Nat -> Pair .

eq cheapest(C, N, P, G) = cheapest(C, N, P, G, 0) .

ceq cheapest(C, N, P, G, N’) = minInf(PCN, cheapest(C, N, P, G, s(N’)))

if N’ < N /\

PCN := pair(city(N’), getCost(C, city(N’), P, MC)) .

eq cheapest(C, N, P, G, N) = pair(city(N), getCost(C, city(N), P, G)) .

--- Cost between two cities, inf if there is no road between them

--- or the second city has been used in the path. A natural number

--- with the weight of the pair in the Graph in other case.

op getCost : City City Path Graph -> NatInf .

ceq getCost(C, C’, P, G) = inf

if in(C’, P) .

ceq getCost(C, C’, P, G) = inf

if G [pair(C, C’)] == undefined .

eq getCost(C, C’, P, G) = G [pair(C, C’)] [owise] .

endfm

In the branch and bound algorithm we use as lower bound the current cost of the
path, and a priority queue to keep the nodes, sorted by cost.

fmod PQUEUE is

pr TRAVELER-SORTS .

vars N N’ : Nat .

vars P P’ : Path .

var ND : Node .

var PQ : PNodeQueue .

sorts Node PNodeQueue .

subsort Node < PNodeQueue .

op node : Path Nat -> Node .

op mtPQueue : -> PNodeQueue .

op __ : PNodeQueue PNodeQueue -> PNodeQueue [assoc id: mtPQueue] .

op insert : Node PNodeQueue -> PNodeQueue .

op getPath : Node -> Path .

op getCost : Node -> Nat .

eq insert(ND, mtPQueue) = ND .

ceq insert(node(P, N), node(P’, N’) PQ) = node(P, N) node(P’, N’) PQ

if N <= N’ .

ceq insert(node(P, N), node(P’, N’) PQ) =

node(P’, N’) insert(node(P, N), PQ)

if N > N’ .

eq getPath(node(P, N)) = P .

eq getCost(node(P, N)) = N .

endfm

4.1. D  67

fmod TRAVELER is

inc PQUEUE .

inc GREEDY-TRAVELER .

vars C C’ : City .

var G : Graph .

vars N N’ N’’ UB : Nat .

var P : Path .

var PCN : Pair .

var ND : Node .

vars PQ PQ’ : PNodeQueue .

var R : TravelResult .

op isResult : Node Nat -> Bool .

eq isResult(node(P, N), N’) = size(P) == s(N’) .

---- Initial city, Cities, Roads

op travel : City Nat Graph -> TravelResult .

---- Initial city, Cities, Roads, Best result so far, Queue

op travel : City Nat Graph TravelResult PNodeQueue -> TravelResult .

eq travel(C, N, G) = travel(C, N, G, greedyTravel(C, N, G), node(C, 0)) .

While the priority queue is not empty, the best node is not a result, and it is admissible,
this node is expanded by adding to each new node a city that is not in the path yet.

ceq travel(C, N, MC, R, ND PQ) = travel(C, N, MC, R, PQ’)

if not isResult(ND, N) /\

getCost(ND) < getCost(R) /\

PQ’ := expand(ND, N, MC, PQ) .

---- Node, Number of cities, Roads, Queue

op expand : Node Nat Graph PNodeQueue -> PNodeQueue .

op expand : Node Nat Graph PNodeQueue Nat -> PNodeQueue .

eq expand(node(P, N), N’, G, PQ) = expand(node(P, N), N’, G, PQ, 0) .

ceq expand(node(P C, N), N’, G, PQ, N’’) =

expand(node(P C, N), N’, G, insert(ND, PQ), s(N’’))

if N’’ <= N’ /\

possible(P C, city(N’’)) /\

ND := node(P C city(N’’), N + (G [pair(C, city(N’’))])) .

ceq expand(node(P, N), N’, G, PQ, N’’) = PQ

if N’’ > N .

eq expand(ND, N, G, PQ, N’) = expand(ND, N, G, PQ, s(N’)) [owise] .

op possible : Path City -> Bool .

eq possible(P, C) = not in(C, P) .

When a result is found, we check if it is better than the current one, updating the
current best result.

ceq travel(C, N, MC, R, node(P C’, N’) PQ) =

travel(C, N, MC, result(P C’ C, UB), PQ)

if isResult(node(P C’, N’), N) /\

N’’ := getCost(R) /\

UB := N’ + (MC [pair(C, C’)]) /\

68 C 4. P 

UB < N’’ .

ceq travel(C, N, MC, R, node(P C’, N’) PQ) = travel(C, N, MC, R, PQ)

if isResult(node(P C’, N’), N) /\

N’’ := getCost(R) /\

UB := N’ + (MC [pair(C, C’)]) /\

UB >= N’’ .

When the cost of the best solution found so far is lower than the bound of the first
node in the queue (i.e. with the lowest bound) or when the queue becomes empty, the
algorithm ends.

ceq travel(C, N, MC, R, ND PQ) = R

if getCost(ND) >= getCost(R) .

eq travel(C, N, MC, R, mtPQueue) = R .

endfm

This kind of applications can be parallelized by expanding the nodes at the same time
in different processes.

4.2 Parameterized skeletons

An important characteristic of skeletons is their generality, that is, the possibility of using
them in different applications. For this, most skeletons are parameterized by functions and
have a polymorphic type. We describe here a similar approach based on parameterized
modules. For each skeleton, we present a theory that requires the sorts and operations that
the skeleton needs, a module defining the messages interchanged by objects in different
hosts, and a parameterized object-oriented module defining the different classes envolved
in the skeleton and their behavior by means of rewrite rules.

We show in the following sections three kinds of skeletons:

Data-parallel skeletons: The source of parallelism is the distribution of data between
processors and the application of the same operation to all portions of the data. We
apply our methodology to the Farm skeleton (Section 4.3).

Systolic skeletons: The systolic skeletons are used in algorithms in which parallel com-
putation and global synchronization steps alternate [44]. As an example of a systolic
skeleton we show the Ring skeleton (Section 4.4).

Task-parallel skeletons: The source of parallelism is the decomposition of a task into
different subtasks which can be done in parallel. These subtasks need not be iden-
tical [44]. The task-parallel skeletons shown here are:

- Divide and conquer skeleton (Section 4.5).

- Branch and bound skeleton (Section 4.6).

- Pipeline skeleton (Section 4.7).

4.3. F  69

4.3 Farm skeleton

We show here how to implement a skeleton with replicated workers and fixed data [44]. In
this kind of skeleton, a master initially sends the fixed data and some subproblems to all
the workers. Each time a task is finished by a worker, the subresult is sent to the master
where it is combined with the partial result already computed, and a new work is given
to that worker, reducing the initial problem. Thus, the tasks are delivered on demand,
obtaining an even distribution of the work to be done.

In order to use the parameterized module that implements this skeleton, each concrete
application must define a module that satisfies the following RW_FD-PROBLEM theory,
where

- the sort Problem refers to the initial problem;

- SubProblem represents the smaller problems solved by the workers;

- SubResult corresponds to the results obtained by the workers;

- Result is the final result to the original problem; and

- FixData contains the data shared by all the workers needed to compute their sub-
problems.

fth RW_FD-PROBLEM is

inc BOOL .

sorts Problem SubProblem SubResult Result FixData .

The operators required by the theory are:

- do-work, that given a subproblem and the fixed data solves the former;

op do-work : SubProblem FixData -> SubResult .

- combine, that merges the current (partial) result with a new subresult, given the
subproblem that was solved. Notice that this operator must be commutative (in the
sense that the final result cannot depend on the order in which the combinations
are performed) because the subresults may arrive unordered;

op combine : Result SubProblem SubResult -> Result .

var R : Result .

vars SP SP’ : SubProblem .

vars SR SR’ : SubResult .

eq combine(combine(R, SP, SR), SP’, SR’) =

combine(combine(R, SP’, SR’), SP, SR) [nonexec] .

- new-work, that extracts a new subproblem from the current problem;

op new-work : Problem -> SubProblem .

- reduce, that updates the current problem making it smaller;

70 C 4. P 

op reduce : Problem -> Problem .

- finished?, that checks if the problem has already been solved;

op finished? : Problem -> Bool .

endfth

We need messages for sending the fixed data and new tasks to the workers, and for
communicating the subresults to the master. We use a parameterized module because we
need the sorts defined in the theory.

fmod RW_FD-TRANSMITTED-SYNTAX{P :: RW_FD-PROBLEM} is

pr TRAVELING-CONTENTS .

pr OID .

op fixData : P$FixData -> TravelingContents .

op new-work : P$SubProblem -> TravelingContents .

op finished : Loc P$SubProblem P$SubResult -> TravelingContents .

endfm

We need lists of subproblems (for the unfinished tasks of each worker). We use
the predefined parameterized module LIST which is first instantiated with the view
Subproblem from the theory TRIV to the theory RW_FD-PROBLEM, and then instantiated
with the parameter P. The lists sorts are renamed. We use LISTwith the view Oid too, with
one difference: the Oid view has no free parameters and it does not need the parameter P.
At start-up, the workers have not fixed data, so we use the MAYBE parameterized module
(see Section 3.1).

view SubProblem from TRIV to RW_FD-PROBLEM is

sort Elt to SubProblem .

endv

view FixData from TRIV to RW_FD-PROBLEM is

sort Elt to FixData .

endv

omod RW_FD-SKELETON{P :: RW_FD-PROBLEM} is

pr LIST{SubProblem}{P} * (sort List{SubProblem}{P} to SubProblemList) .

pr LIST{Oid} * (sort List{Oid} to OidList, op nil to mtOidList) .

pr MAYBE{FixData}{P} * (sort Maybe{FixData}{P} to DefFixData,

op maybe to null) .

pr ARCHITECTURE-MSGS .

pr TRANSMITTED-SYNTAX{P} .

First the classes RW_FD-Worker and RW_FD-Master are defined. The workers have the
list with unfinished subproblems (nextWorks), the fixed data (fixData), that initially is
null, and the master identifier.

class RW_FD-Worker | nextWorks : SubProblemList, fixData : DefFixData,

master : Oid .

The master stores the initial problem (that is reduced each time a new task is sent
to a worker), the partial result, the list of idle workers, and the number of initial tasks
assigned to each worker (numWorks).

4.3. F  71

class RW_FD-Master | problem : P$Problem, result : P$Result,

workers : OidList, numWorks : Nat .

The first action the master must take is to deliver the fixed data and the initial tasks to
the workers.

var N : Nat .

var OL : OidList .

var SR : P$SubResult .

var R : P$Result .

var SPL : SubProblemList .

vars W M : Oid .

var FD : P$FixData .

vars SP SP1 : P$SubProblem .

var P : P$Problem .

rl [new-worker] :

< M : RW_FD-Master | fixData : FD, problem : PR, workers : W OL,

numWorks : N >

=> < M : RW_FD-Master | problem : update(PR, N), workers : OL >

to W : fixData(FD)

sendTasks(W, PR, N) .

where sendTasks and update are functions that generate the initial tasks and reduce the
problem.

op sendTasks : Oid P$Problem Nat -> Configuration .

ceq sendTasks(W, P, s(N)) = (to W : new-work(new-work(P)))

sendTasks(W, reduce(P), N)

if not finished?(P) .

eq sendTasks(W, P, N) = none [owise] .

op update : P$Problem Nat -> P$Problem .

ceq update(P, s(N)) = update(reduce(P), N)

if not finished?(P) .

eq update(P, N) = P [owise] .

We define now the rules for the worker dealing with the fixed data and new work
arrivals, that are kept in the corresponding attributes.

rl [rec-fixData] :

to W : fixData(FD)

< W : RW_FD-Worker | fixData : null >

=> < W : RW_FD-Worker | fixData : FD > .

rl [new-work] :

to W : new-work(SP)

< W : RW_FD-Worker | nextWorks : SPL >

=> < W : RW_FD-Worker | nextWorks : SPL SP > .

While the list of unfinished tasks is not empty, the worker must do the following one
and send the subresult to the master.

72 C 4. P 

rl [do-work] :

< W : RW_FD-Worker | fixData : FD, master : M, nextWorks : SP SPL >

=> < W : RW_FD-Worker | nextWorks : SPL >

to M : finished(W, SP, do-work(SP, FD)) .

Notice that the Maude’s default bottom-up strategy for reducing terms will apply first
the equations defining the operation do-work, and then the message containing the result
will be transmitted.

The other tasks of the master are to compose the subresults from the workers and give
them more work (if possible).

crl [new-work] :

to M : finished(W, SP, SR)

< M : RW_FD-Master | fixData : FD, result : R, problem : PR >

=> < M : RW_FD-Master | result : combine(R, SP, SR), problem : reduce(PR) >

to W : new-work(SP1)

if not finished?(PR) /\

SP1 := new-work(PR) .

crl [no-more-work] :

to M : finished(W, SP, SR)

< M : RW_FD-Master | fixData : FD, result : R, problem : PR >

=> < M : RW_FD-Master | result : combine(R, SP, SR) >

if finished?(PR) .

endom

Once the skeleton has been defined, we can instantiate it with concrete applications.

4.3.1 Ray tracing instantiation

In order to obtain a concrete application by using the parameterized skeleton we must
know the sorts and operators related to those in the theory RW_FD-PROBLEM. We illustrate
now how to do it with the ray tracing example [8]. We define the following module, where
the included module ROWTRACER is shown in Section 3.5.1. The sort Pair is declared to
define the initial problem (the highest and the lowest y), while World defines the rest of
the problem (the width, the camera, and the list of figures). Partial functions (declared
in the predefined module MAP) from Floats (identifying rows) to ColorList are used to
represent the final result.

fmod RAYTRACING-PROBLEM is

pr ROWTRACER .

pr MAP{Float, ColorList} .

sorts Pair World .

op pair : Float Float -> Pair .

op world : FigureList Point Float Float Float -> World .

op traceRow : Float World -> ColorList .

op sub-problem : Pair -> Float .

op reduce : Pair -> Pair .

op finished? : Pair -> Bool .

eq traceRow(Y, world(FL, P, XL, XR, N)) = traceRow(P, XL, XR, Y, N, FL) .

4.3. F  73

eq sub-problem(pair(YT, YB)) = YT .

eq reduce(pair(YT, YB)) = pair(YT - 1.0, YB) .

eq finished?(pair(YT, YB)) = YT < YB .

endfm

To instantiate the module we create a view and define the mapping between sorts and
operators with different name from those in the theory:

view RayTracer from RW_FD-PROBLEM to RAYTRACING-PROBLEM is

sort Problem to Pair .

sort SubProblem to Float .

sort Result to Map{Float, ColorList} .

sort SubResult to ColorList .

sort FixData to World .

op combine(R:Result, SP:SubProblem, SR:SubResult) to

term insert(SP:Float, SR: ColorList, R:Map{Float, ColorList}) .

op do-work to traceRow .

op new-work to sub-problem .

endv

Finally, we instantiate the module RW_FD-SKELETON, where ray tracing can be exe-
cuted. As in the implementation of the ray tracing problem without skeleton shown in
Section 3.5.1, we use the star architecture, placing the master with the center and the
workers with nodes. Thus, we must define a view RT-Complement that encapsulates the
syntax of transmitted messages.

fmod RT-COMPLEMENT is

pr META-LEVEL .

pr ARCHITECTURE-MSGS .

pr RW_FD-TRANSMITTED-SYNTAX{RayTracer} .

endfm

view RT-Complement from ARCH-COMPLEMENT to RT-COMPLEMENT is

op MOD to term upModule(’RT-COMPLEMENT, false) .

endv

The initial term of a master with three workers, the point of view located in (0, 0, 0), a
screen of size 201 × 151, and figures traced from z = 100 is:

mod RAYTRACING-CENTER is

pr RW_FD-SKELETON{RayTracer} .

pr STAR-CENTER{RT-Complement} .

pr RANDOM .

op figs : -> FigureList .

eq figs =

endm

erew <> < l(ip0, 0) : StarCenter |

state : idle,

neighbors : empty,

defNeighbor : null,

port : 60039 >

< o(l(ip0, 0), 0) : RW_FD-Master |

74 C 4. P 

fixData : world(figs, < 0.0, 0.0, 0.0 >, -75.0, 75.0, 100.0),

problem : pair(100.0, -100.0),

result : empty,

workers : o(l(ip1, 1), 0) o(l(ip2, 2), 0),

numWorks : 3,

counter : 0 > .

where figs is a list of ten random spheres filtered if they are farther than 1000 and the
ipi are IP addresses.

The unique difference among the workers is their names (which depend on an IP
address). The initial term for one of the workers is:

mod RAYTRACING-NODE is

pr RW_FD-SKELETON{RayTracer} .

pr STAR-NODE{RT-Complement} .

endm

erew <> < l(ip1, 0) : StarNode |

state : idle,

neighbors : empty,

defNeighbor : null,

center : ip0,

port : 60039 >

< o(l(ip1, 0), 0) : RW_FD-Worker |

master : o(l(ip0, 0), 0),

nextWorks : nil,

counter : 0,

fixData : null > .

Once the module has been instantiated, its behavior is equivalent to the sequential
module described in Section 3.5, as we will prove in Section 6.6.

4.3.2 Mandelbrot instantiation

A similar example of farm skeleton is the computation of the Mandelbrot set [45]. Using
the COLORmodule described in the ray tracing example (Section 3.5.1) the sequential im-
plementation of the functions needed to instantiate the skeleton is almost straightforward.
The function mandelbrot* below traverses a row and calculates for each pixel its color in
function of the iterations used (by using the auxiliary function getColor). The module
also defines the maximum number of iterations and the precision of the set.

fmod MANDELBROT-ROW is

pr FLOAT .

pr INT .

pr COLOR .

op maxIt : -> Nat .

eq maxIt = 1000 .

op precision : -> Float .

eq precision = 0.008 .

sort ColorList .

4.3. F  75

--- Color union

op __ : ColorList ColorList -> ColorList [assoc] .

--- Xleft Xright Y

op mandelbrot* : Float Float Float -> ColorList .

op mandelbrot* : Float Float Float Float Nat -> Color .

var N : Nat .

vars Xl Xr Ymax Ymin X0 Y0 X Y : Float .

ceq mandelbrot*(Xl, Xr, Y) =

mandelbrot*(Xl, Y, Xl, Y, maxIt) mandelbrot*(Xl + precision, Xr, Y)

if Xl < Xr .

ceq mandelbrot*(Xl, Xr, Y) = mandelbrot*(Xl, Y, Xl, Y, maxIt)

if Xl >= Xr .

--- Iterations of the algorithm from maxIt to 0, if we have not

--- reached the precision in all the iterations, we assign

--- the default color (d).

eq mandelbrot*(X, Y, X0, Y0, 0) = d .

--- When we reach the precision required, we decide the color

--- depending on the number of iterations used.

eq mandelbrot*(X, Y, X0, Y0, s(N)) =

if (X * X) + (Y * Y) < 4.0 then

mandelbrot*(((X * X) - (Y * Y)) + X0, 2.0 * X * Y + Y0, X0, Y0, N)

else decideColor(s(N))

fi .

op decideColor : Nat -> Color .

ceq decideColor(N) = d if N < maxIt quo 4 .

ceq decideColor(N) = r if N >= maxIt quo 4 /\ N < maxIt quo 2 .

ceq decideColor(N) = b if N >= maxIt quo 2 /\ N < (3 * maxIt) quo 4 .

ceq decideColor(N) = m if N >= (3 * maxIt) quo 4 /\ N <= maxIt .

endfm

We can now specify the module MANDELBROT-PROBLEM to implement the skeleton. We
define again the sorts Pair (that keeps the current row and the lowest row) and World
(that keeps the width of the screen). We adapt the other functions to use the same arity
that those defined in the theory.

fmod MANDELBROT-PROBLEM is

pr MANDELBROT-ROW .

pr MAP{Float, ColorList} .

sort Pair World .

var Xl Xr Y Ymax Ymin : Float .

op pair : Float Float -> Pair .

op world : Float Float -> World .

op mandelbrot : Float World -> ColorList .

op sub-problem : Pair -> Float .

op reduce : Pair -> Pair .

76 C 4. P 

op finished? : Pair -> Bool .

eq mandelbrot(Y, world(Xl, Xr)) = mandelbrot*(Xl, Xr, Y) .

eq sub-problem(pair(Ymax, Ymin)) = Ymax .

eq reduce(pair(Ymax, Ymin)) = pair(Ymax - 1.0, Ymin) .

eq finished?(pair(Ymax, Ymin)) = Ymax < Ymin .

endfm

Now we can define the view from the theory

view Mandelbrot from RW_FD-PROBLEM to MANDELBROT-PROBLEM is

sort Problem to Pair .

sort SubProblem to Float .

sort Result to Map{Float, ColorList} .

sort SubResult to ColorList .

op combine(R:Result, SP:SubProblem, SR:SubResult) to

term insert(SP:Float, SR: ColorList, R:Map{Float, ColorList}) .

op do-work to mandelbrot .

op new-work to sub-problem .

endv

and instantiate the skeleton with it

mod MANDELBROT-EXAMPLE is

pr RW_FD-SKELETON{Mandelbrot} .

endm

4.3.3 Euler instantiations

In some problems the fixed data is not needed; we have implemented a slightly modified
skeleton to deal with this situation. It is very similar to the replicated workers skeleton
above, but all the rules dealing with the fixed data are either not needed or simplified.

We show here a simple example using this new skeleton: the distributed implemen-
tation of the Euler numbers problem shown in Section 4.1.1. In this problem we consider
as a single work to calculate each ϕ(i).

The only sort involved in this problem is Nat, so every sort in the skeleton is mapped
to it.

view Euler from RW-PROBLEM to EULER is

sort Problem to Nat .

sort SubProblem to Nat .

sort Result to Nat .

sort SubResult to Nat .

The operations are very simple too: combining two results is just adding them; the
work that must be done is the function euler from module EULER in Section 4.1.1 (the
target module in the view); a new work given the problem N is just N; we reduce the
problem by subtracting 1; and we have finished when the number reaches 0.

op combine(R:Result, S:SubProblem, SR:SubResult) to term (R:Nat + SR:Nat) .

op do-work to euler .

op new-work(N:Problem) to term N:Nat .

4.4. S   77

op reduce(N:Problem) to term sd(N:Nat, 1) .

op finished?(N:Problem) to term (N:Nat == 0) .

endv

Calculating ϕ(x) may be quite faster than the communication with the master, so it
is possible that most of the computation time is used in communication. To avoid this
problem we can make the granularity of the works coarser by computing more than one
number in each step. To do this we only need to make small changes in the instantiation
module, while obviously the skeleton remains unmodified. We show here an example
where we calculate 20 numbers in each step.

fmod EULER20 is

pr EULER .

vars N N’ : Nat .

op euler20 : Nat -> Nat .

op euler20* : Nat Nat Nat -> Nat .

eq euler20(N) = euler20*(N, if N > 20 then sd(N, 20) else 1 fi, 0) .

ceq euler20*(N, N’, N’’) = N’’

if N’ >= N .

eq euler20*(s(N), N’, N’’) = euler20*(N, N’, N’’ + euler(s(N))) [owise] .

endfm

Now the view only needs two changes:

view Euler20 from RW-PROBLEM to EULER20 is

...

op do-work to euler20 .

op reduce(N:Problem) to term (if N:Nat > 20 then sd(N:Nat, 20) else 0 fi) .

...

endv

4.4 Systolic ring skeleton

In this skeleton, a master splits the problem among all the workers, that are organized
in a circular list because they must share some data through it. When the workers have
both initial and shared data, they do their work, combine the partial result, and give the
new shared data to the next worker. In order to have the first shared data, it must be
produced by the worker itself. When a worker finishes all its tasks, it sends its subresult
to the master, that will combine them in order.

We define a theory SYSTOLIC-RING-PROBLEMwith the following sorts:

- Problem, that defines the sort of the initial data;

- Result, that describes the sort of the final data;

- ProblemList and ResultList are respectively lists of Problem and Result;1

1We cannot use here the predefined module LIST because we would need a parametric theory, that is not
allowed in Core Maude yet.

78 C 4. P 

- SharedProblem is the sort of the data that is passed by all the workers; and

- Pair builds pairs of Result and SharedProblem.

fth SYSTOLIC-RING-PROBLEM is

inc BOOL .

inc NAT .

sorts Problem Result ProblemList ResultList SharedProblem Pair .

subsort Problem < ProblemList .

subsort Result < ResultList .

The theory defines the following operators:

- mtRL, mtPL, and __ are the list constructors;

op mtPL : -> ProblemList .

op __ : ProblemList ProblemList -> ProblemList [assoc id: mtPL] .

op mtRL : -> ResultList .

op __ : ResultList ResultList -> ResultList [assoc id: mtRL] .

- pair is the Pair constructor;

op pair : Result SharedProblem -> Pair .

- divide splits the initial problem into a list of problems;

op divide : Problem Nat -> ProblemList .

- initialSharedProblem extracts from the initial data the shared one;

op initialSharedProblem : Problem -> SharedProblem .

- do-work computes a pair given the initial and the shared data;

op do-work : Problem SharedProblem -> Pair .

- combine, used by the workers, merges the current partial result with a new one:

op combine : Result Result -> Result .

- combineAll, used by the master, merges all the partial results from the workers:

op combineAll : ResultList -> Result .

- finished? checks if a worker has finished all its tasks:

op finished? : Problem SharedProblem -> Bool .

endfth

4.4. S   79

We need the following messages:

- initial-work, that communicates the initial data;

- shared-data, that delivers the shared problem from one worker to the next one;
and

- finished, that sends a (numbered) result to the master.

fmod SYSTOLIC-RING-TRANSMITTED-SYNTAX{P :: SYSTOLIC-RING-PROBLEM} is

pr TRAVELING-CONTENTS .

op initial-work : P$Problem -> TravelingContents .

op shared-data : Nat P$SharedProblem -> TravelingContents .

op finished : Nat P$Result -> TravelingContents .

endfm

We define views to Problem, Result, and SharedProblem, that will be needed by the
skeleton.

view Problem from TRIV to SYSTOLIC-RING-PROBLEM is

sort Elt to Problem .

endv

view Result from TRIV to SYSTOLIC-RING-PROBLEM is

sort Elt to Result .

endv

view SharedProblem from TRIV to SYSTOLIC-RING-PROBLEM is

sort Elt to SharedProblem .

endv

The module defining the skeleton receives SYSTOLIC-RING-PROBLEM as a parameter.

omod SYSTOLIC-RING-SKELETON{P :: SYSTOLIC-RING-PROBLEM} is

pr MAYBE{Problem}{P} * (sort Maybe{Problem}{P} to DefProblem,

op maybe to nullP) .

pr MAYBE{Result}{P} * (sort Maybe{Result}{P} to DefResult,

op maybe to nullR) .

pr MAYBE{SharedData}{P} * (sort Maybe{SharedData}{P} to DefSharedData,

op maybe to nullSD) .

pr ARCHITECTURE-MSGS .

pr SYSTOLIC-RING-TRANSMITTED-SYNTAX{P} .

pr CONVERSION .

pr LIST{Oid} * (sort List{Oid} to OidList,

op nil to mtOidList) .

The class SWorker has the following attributes:

- problem, that keeps the initial data;

- shared, that contains the shared data;

- result, that stores the partial result;

80 C 4. P 

- numWorker, that identifies the worker;

- nextWorker, that saves the identifier of the next worker;

- master, that keeps the master identifier; and

- counter, that keeps track of the number of shared data messages that have been
received from the previous worker.

class SWorker | problem : DefProblem, shared : DefSharedData,

result : Result, numWorker : Nat, nextWorker : Oid,

master : Oid, counter : Nat .

The class SMaster has the following attributes:

- initialProblem, that stores the initial problem;

- problems, that keeps the list of problems once the initial data has been divided;

- results, that is a list of results where the partial results from the workers are kept
in order;

- counter, that keeps track of the number of partial results that have been accepted
(appended in the list results) from the workers;

- result, that contains the final result;

- workers, that stores the list of workers; and

- numWorkers, that keeps the number of workers.

class SMaster | initialProblem : DefProblem, problems : ProblemList,

results : ResultList, counter : Nat, result : Result,

workers : OidList, numWorkers : Nat .

The first thing that must be done is to divide the initial data into a list of problems,
that can be delivered to all the workers.

vars N N’ : Nat .

vars R R’ : P$Result .

var RL : P$ResultList .

vars W W’ M : Oid .

vars P P’ : P$Problem .

var PL : P$ProblemList .

vars SD SD’ : P$SharedData .

var OL : OidList .

rl [divide] :

< M : SMaster | initialProblem : P, problems : mtPL, numWorkers : N >

=> < M : SMaster | initialProblem : nullP, problems : divide(P, N) > .

Once the data has been split, the master sends it to the workers, that store the data
and extract the shared data.

4.4. S   81

rl [new-worker] :

< M : SMaster | problems : P PL, workers : W OL >

=> < M : SMaster | problems : PL, workers : OL >

to W : initial-work(P) .

rl [initial-data] :

to W : initial-work(P)

< W : SWorker | problem : nullP, shared : nullSP >

=> < W : SWorker | problem : P, shared : initialSharedData(P), counter : 0 > .

When the shared attribute is not nullSD, the worker can do a new work and send the
updated shared data to the next worker.

crl [working] :

< W : SWorker | problem : P, nextWorker : W’, shared : SD,

counter : N, result : R >

=> < W : SWorker | shared : nullSD, result : combine(R, R’) >

to W’ : shared-data(s(N), SD’)

if pair(R’, SD’) := do-work(P, SD) .

Notice that once the work is computed the shared data becomes nullSD, in order to allow
the arrival of the next shared data from the previous worker.

When the next shared data that a worker must keep arrives, it checks whether the
work is not finished, and the shared data must be kept, or the work is finished and the
shared data can be deleted.

crl [new-work] :

to W : shared-data(s(N), SD)

< W : SWorker | counter : N, problem : P, shared : nullSD >

=> < W : SWorker | counter : s(N), shared : SD >

if not finished?(P, SD) .

crl [finished] :

to W : shared-data(s(N), SD)

< W : SWorker | counter : N, problem : P, master : M, result : R,

numWorker : N’ >

=> < W : SWorker | >

to M : finished(N’, R)

if finished?(P, SD) .

The master keeps in results the partial results in an ordered fashion, using the
counter attribute.

rl [partial-result] :

to M : finished(s(N), R)

< M : SMaster | results : RL, counter : N >

=> < M : SMaster | results : RL R, counter : s(N) > .

When all the results have arrived, the master combines them.

rl [completed] :

< M : SMaster | results : RL, numWorkers : N, counter : N >

=> < M : SMaster | results : mtRL, result : combineAll(RL), counter : 0 > .

82 C 4. P 

4.4.1 Force interaction instantiation

Using the module PARTICLES from Section 4.1.2 we can easily implement a distributed
version of the atoms problem. First, we define a wrapper for the particle lists, in order to
define a list of lists. We use a list of floats to keep the results.

fmod WRAPPER is

pr LIST{Particle} * (sort List{Particle} to ParticleList,

op nil to mtParticleList) .

sort WrappedParticles .

op w : ParticleList -> WrappedParticles .

endfm

view WrappedParticles from TRIV to WRAPPER is

sort Elt to WrappedParticles .

endv

fmod PARTICLES-PROBLEM is

pr PARTICLES .

pr LIST{WrappedParticles} .

pr LIST{Float} * (op nil to nilFL) .

We define for ParticleList the functions size (that returns the length), take (that
returns the first N elements), and drop (that deletes the first N elements).

var P : Particle .

var F : Float .

var FL : List{Float} .

vars PL PL’ : ParticleList .

vars N N’ : Nat .

var WPL : WrappedParticles .

op size : ParticleList -> Nat .

op take : ParticleList Nat -> ParticleList .

op drop : ParticleList Nat -> ParticleList .

eq size(mtParticleList) = 0 .

eq size(P PL) = s(size(PL)) .

eq take(P PL, s(N)) = P take(PL, N) .

eq take(PL, N) = mtParticleList [owise] .

eq drop(P PL, s(N)) = drop(PL, N) .

eq drop(PL, N) = PL [owise] .

The function divide splits the particle list in N lists. The last one may be larger than
the others, because the number of particles could be not a multiple of N.

op divide : WrappedParticles Nat -> List{WrappedParticles} .

op take : WrappedParticles Nat Nat -> List{WrappedParticles} .

ceq divide(w(PL), N) = take(w(PL), N, N’)

if N’ := size(PL) quo N .

eq take(WPL, N, 1) = WPL .

eq take(w(PL), N, s(s(N’))) = w(take(PL, N)) take(w(drop(PL, N)), N, s(N’)) .

4.4. S   83

The combineAll function for float lists adds all the elements.

op combineAll : List{Float} -> Float .

eq combineAll(nilFL) = 0.0 .

eq combineAll(F FL) = F + combine(FL) .

We redefine the attraction function for wrapped lists.

op attraction : WrappedParticles WrappedParticles -> Pair .

eq attraction(w(PL), w(PL’)) = < attraction(PL, PL’), w(PL’) > .

Finally, we define the Pair sort.

sort Pair .

op <_,_> : Float WrappedParticles -> Pair .

endfm

Now we can instantiate the skeleton with the module above.

view Particles from SYSTOLIC-RING-PROBLEM to PARTICLES-PROBLEM is

sort Problem to WrappedParticles .

sort Result to Float .

sort SharedProblem to WrappedParticles .

sort ProblemList to List{WrappedParticles} .

sort ResultList to List{Float} .

op mtPL to nil .

op mtRL to nilFL .

op pair to <_,_> .

op initialSharedProblem(P:Problem) to term P:WrappedParticles .

op combine(R:Result, R’:Result) to term R:Float + R’:Float .

op do-work to attraction .

op finished? to _==_ .

endv

We also define the view Particles-Complement.

fmod PARTICLES-COMPLEMENT is

pr OID .

pr META-LEVEL .

pr SYSTOLIC-RING-TRANSMITTED-SYNTAX{Particles} .

pr ARCHITECTURE-MSGS .

endfm

view Particles-Complement from ARCH-COMPLEMENT to PARTICLES-COMPLEMENT is

op MOD to term upModule(’PARTICLES-COMPLEMENT, false) .

endv

The most suitable architecture for this skeleton is the centralized ring (see Section 3.4).
The master is located in the center while the workers are placed in the nodes of the ring
(one with a CRingLast object and the rest with the CRingNode objects).

The initial configuration for the location with the master is:

84 C 4. P 

mod PARTICLES-CENTER is

pr SYSTOLIC-RING-SKELETON{Particles} .

pr STAR-CENTER{Particles-Complement} .

pr PARTICLES-GENERATOR .

endm

erew <> < l(ip0, 0) : StarCenter |

state : idle,

neighbors : empty,

defNeighbor : null,

port : 60038 >

< o(l(ip0, 0), 0) : SMaster |

workers : o(l(ip1, 0), 0) o(l(ip2, 0), 0)

o(l(ip3, 0), 0),

numWorkers : 3,

result : nullR,

counter : 1,

initialProblem : w(atomGenerator(20)),

problems : nil,

results : nilFL > .

The initial configurations for the locations with workers are very similar. For example,
we show below a configuration with a worker located in a ring node that is not the last
one.

mod PARTICLES-CRNODE is

pr SYSTOLIC-RING-SKELETON{Particles} .

pr CENTRALIZED-RING-NODE{Particles-Complement} .

endm

erew <> < l(ip1, 0) : CRingNode |

state : idle,

neighbors : empty,

defNeighbor : null,

port : 60039,

nextIP : ip2,

nextPort : 60040,

centerIP : ip0,

centerPort : 60038 >

< o(l(ip1, 0), 0) : SWorker |

problem : nullP,

master : o(l(ip0, 0), 0),

shared : nullSD,

result : 0.0,

numWorker : 1,

nextWorker : o(l(ip2, 0), 0),

counter : 0 > .

4.5 Divide and conquer skeleton

Divide and conquer algorithms clearly offer good potential for parallel evaluation. It
is not difficult to see that recursively defined subproblems may be evaluated in parallel
if sufficient processors are available. The whole execution of a divide and conquer

4.5. D    85

algorithm amounts to the evaluation of a dynamically evolving tree of processes, one for
each subproblem generated.

However, we show here an implementation based on the replicated workers scheme
(see Section 4.3), that allows a balanced distribution of the leaves of the problem tree. This
implementation is suitable when the decomposition of the problems and the composition
of the results are irrelevant compared to the resolution of the subproblems. The master
divides the initial problem into subproblems, that are delivered to the workers. The
structure of the subproblems is kept in a tree in order to be able to combine their subresults
in the appropriate order and get the final result.

First we define the ID module, that defines the identifiers of the nodes in the tree as
lists of natural numbers.

fmod ID is

pr NAT-LIST * (op nil to mtNatList) .

sort Id .

op id : NatList -> Id .

endfm

The TREEmodule is defined as follows:

fmod TREE{X :: TRIV} is

pr EXT-BOOL .

pr ID .

pr MAYBE{X} * (op maybe to null) .

var T : Tree .

var F : Forest .

var D : Maybe{X} .

We define generic trees, so we need a sort Forest to allow any number of siblings in
each node. As seen above, a node identifier is a list of natural numbers. These numbers
specify the number of sibling we must go through in each level of the tree to reach the
identified node. Notice that the data in the node may be null.

sorts Tree Forest .

subsort Tree < Forest .

op mtForest : -> Forest .

op __ : Forest Forest -> Forest [assoc id: mtForest] .

op empty : -> Tree .

op tree : Maybe{X} Forest -> Tree .

We define the following operations over trees and forests: size returns the number
of trees in a forest; getData returns the value in the root of the tree; and allWithValues
checks if all the trees in a forest have data in their roots.

op size : Forest -> Nat .

eq size(mtForest) = 0 .

eq size(T F) = s(size(F)) .

86 C 4. P 

op getData : Tree -> Maybe{X} .

eq getData(empty) = null .

eq getData(tree(D, F)) = D .

op allWithValues? : Forest -> Bool .

eq allWithValues?(mtForest) = true .

eq allWithValues?(T F) = getData(T) =/= null and-then allWithValues?(F) .

endfm

We define now a theory with operators that allow the skeleton to generate and solve
the problem tree. The sorts Problem and Result define the initial and final data, while
ProblemList and ResultList are, respectively, lists of Problem and Result with the
corresponding operators for empty lists and composition. The function divide splits a
problem into a list of (sub)problems, finishing when the problem isTrivial. Each trivial
task is computed with solve. The function combine merges a list of (sub)results into a
new (sub)result.

fth DC-PROBLEM is

inc BOOL .

sorts Problem Result ProblemList ResultList .

subsort Problem < ProblemList .

subsort Result < ResultList .

op mtProblemList : -> ProblemList .

op mtResultList : -> ResultList .

op __ : ProblemList ProblemList -> ProblemList [assoc id: mtProblemList] .

op __ : ResultList ResultList -> ResultList [assoc id: mtResultList] .

op divide : Problem -> ProblemList .

op isTrivial : Problem -> Bool .

op combine : ResultList -> Result .

op solve : Problem -> Result .

endfth

In the skeleton we will need a tree instantiated with results, so we define now the
appropriate view.

view Result from TRIV to DC-PROBLEM is

sort Elt to Result .

endv

Only two messages are used: new-work transmits new tasks to the workers, while
finished is used to communicate new results to the master.

fmod DC-TRANSMITTED-SYNTAX{P :: DC-PROBLEM} is

pr ID .

pr TRAVELING-CONTENTS .

pr OID .

op new-work : Id P$Problem -> TravelingContents .

op finished : Oid Id P$Result -> TravelingContents .

endfm

4.5. D    87

omod DC-SKELETON{P :: DC-PROBLEM} is

pr ARCHITECTURE-MSGS .

pr TRANSMITTED-SYNTAX{P} .

pr TREE{Result}{P} .

pr LIST{Oid} * (sort List{Oid} to OidList, op nil to mtOidList) .

We keep together each problem and its identifier with the operator <_,_>, that have
sort Task. We define lists of Tasks by using the juxtaposition operator.

sorts Task TaskList .

subsort Task < TaskList .

op <_,_> : Id P$Problem -> Task .

op mtTaskList : -> TaskList .

op __ : TaskList TaskList -> TaskList [assoc id: mtTaskList] .

var N : Nat .

var OL : OidList .

vars R R’ : P$Result .

var RL : P$ResultList .

var PL : P$ProblemList .

vars W O : Oid .

var P : P$Problem .

var NL : NatList .

vars F F’ : Forest .

vars T T’ : Tree .

vars ID I I’ : Id .

vars TL TL’ : TaskList .

var Tk : Task .

We define the classes for the master and the workers. A worker keeps information
about the master identifier and the list of unfinished tasks:

class DCWorker | master : Oid, tasks : TaskList .

The master can be in two states. At the start, it is in initial state, and once the
problem has been divided and it can deliver the subproblems to the workers, it reaches
the working state.

sort DCMasterState .

ops initial working : -> DCMasterState .

The master keeps information about the initial problem (initialData); the workers
identifiers; the task list (problems); the resultTree; its state (masterState); and the
number of tasks initially dispatched to each worker (numWorks).

class MasterRO | initialData : P$Problem, workers : OidList,

problems : TaskList, resultTree : Tree,

masterState : MasterState, numWorks : Nat .

First, the master transforms the initial problem in a list of subproblems, and creates
the initial result tree.

88 C 4. P 

crl [start] :

< O : DCMaster | problems : mtTaskList, initialData : P,

resultTree : empty, masterState : initial >

=> < O : DCMaster | problems : TL, resultTree : T, masterState : working >

if p(TL, T) := getInitialData(P) .

where getInitialData uses the operations divide and isTrivial from the theory to
obtain a pair with the list of tasks and the result tree (that initially has all its nodes
without data).

sort Pair .

op p : TaskList Forest -> Pair .

op getInitialData : P$Problem -> Pair .

op getInitialData : P$Problem Id -> Pair .

op getInitialData* : P$ProblemList Id Nat -> Pair .

eq getInitialData(P) = getInitialData(P, id(mtNatList)) .

ceq getInitialData(P, ID) = p(< ID, P >, tree(noData, mtForest))

if isTrivial(P) .

ceq getInitialData(P, ID) = p(TL, tree(noData, F))

if not isTrivial(P) /\

PL := divide(P) /\

p(TL, F) := getInitialData*(PL, ID, 0) .

eq getInitialData*(mtProblemList, ID, N) = p(mtTaskList, mtForest) .

ceq getInitialData*(P PL, id(NL), N) = p(TL’ TL, T F)

if p(TL’, T) := getInitialData(P, id(NL N)) /\

p(TL, F) := getInitialData*(PL, id(NL), s(N)) .

Once the list of problems has been calculated, the master must transmit the initial
tasks to the workers, which is calculated with sendWorks. The workers will keep them in
the task list.

rl [new-worker] :

< O : DCMaster | problems : TL, workers : O’ OL, masterState : working,

numWorks : N >

=> < O : DCMaster | problems : update(TL, N), workers : OL >

sendWorks(O’, TL, N) .

rl [new-work] :

to W : new-work(I, P)

< W : DCWorker | tasks : TL >

=> < W : DCWorker | tasks : TL < I, P > > .

where sendWorks and update just extract tasks from the list.

op sendWorks : Oid TaskList Nat -> Configuration .

eq sendWorks(O, < I, P > TL, s(N)) = to O : new-work(I, P)

sendWorks(O, TL, N) .

eq sendWorks(O, TL, N) = none [owise] .

4.5. D    89

op update : TaskList Nat -> TaskList .

eq update(Tk TL, s(N)) = update(TL, N) .

eq update(TL, N) = TL [owise] .

Eventually, a task is finished and sent to the server, that inserts it in the result tree.
While the whole problem is not solved, new subproblems are delivered.

rl [do-work] :

< W : DCWorker | master : O, tasks : < I, P > TL >

=> < W : DCWorker | tasks : TL >

to O : finished(W, I, solve(P)) .

rl [new-work] :

to O : finished(W, I, R)

< O : DCMaster | resultTree : T, problems : < I’, P > TL,

masterState : working >

=> < O : DCMaster | resultTree : insert*(I, R, T), problems : TL >

to W : new-work(I’, P) .

rl [no-more-work] :

to O : finished(W, I, R)

< O : DCMaster | resultTree : T, problems : mtTaskList,

masterState : working >

=> < O : DCMaster | resultTree : insert*(I, R, T) > .

Notice the use of insert*, an operator that inserts a new element in the tree and then
tries to recursively combine the leaves, checking if all the siblings of a node have already
a value.

---- Merging insert

op insert* : Id P$Result Tree -> Tree .

eq insert*(id(mtNatList), R, tree(null, F)) = tree(R, F) .

ceq insert*(id(N NL), R, tree(null, F)) =

if allWithValues?(F’) then

tree(combine(getResults(F’)), mtForest)

else tree(null, F’)

fi

if F’ := insertF*(id(N NL), R, F) .

op insertF* : Id P$Result Forest -> Forest .

eq insertF*(ID, R, mtForest) = mtForest .

eq insertF*(id(s(N) NL), R, T F) = T insertF*(id(N NL), R, F) .

eq insertF*(id(0 NL), R, T F) = insert*(id(NL), R, T) F .

endom

4.5.1 Mergesort instantiation

We show how to instantiate the skeleton with the mergesort algorithm. We define the sort
List, that encapsulates the lists of natural numbers with the operator l, and we define
lists of lists of natural numbers in the sort ListList. We use the module SORT shown in
Section 4.1.3.

fmod MERGESORT-PROBLEM is

pr SORT .

90 C 4. P 

sort List ListList .

subsort List < ListList .

op l : NatList -> List .

op mtListList : -> ListList .

op __ : ListList ListList -> ListList [assoc id: mtListList] .

In the instantiation, List will represent Problem and Result, while ListList the corre-
sponding lists.

We define now the operations needed by the theory. The operator divide splits a list
into two sublists, while we consider as trivial a list with at most 50 elements. These trivial
cases are solved by using the sequential version of mergesort shown in Section 4.1.3.
Finally, we use merge to combine the elements from the subresults.

op divide : List -> ListList .

ceq divide(l(NL)) = l(NL’) l(NL’’)

if pair(NL’, NL’’) := halfDivide(NL) .

op trivial : List -> Bool .

op trivial* : NatList Nat -> Bool .

eq trivial(l(NL)) = trivial*(NL, 0) .

eq trivial*(mtNatList, N) = N <= 50 .

eq trivial*(NL, 51) = false .

eq trivial*(N NL, N’) = trivial*(NL, s(N’)) [owise] .

op merge : ListList -> List .

eq merge(l(NL) l(NL’)) = l(merge(NL, NL’)) .

op mergesort : List -> List .

eq mergesort(l(NL)) = l(mergesort(NL)) .

We can now declare a view from the skeleton to the module with the operators above:

view Mergesort from DC-PROBLEM to MERGESORT-PROBLEM is

sort Problem to List .

sort Result to List .

sort ProblemList to ListList .

sort ResultList to ListList .

op mtProblemList to mtListList .

op mtResultList to mtListList .

op isTrivial to trivial .

op solve to mergesort .

op combine to merge .

endv

Note that although we map solve to mergesort, we could use any other sort method.
We define a view Mergesort-Complement to instantiate the architecture.

fmod MERGESORT-COMPLEMENT is

pr DC-TRANSMITTED-SYNTAX{Mergesort} .

pr ARCHITECTURE-MSGS .

4.5. D    91

pr META-LEVEL .

endfm

view Mergesort-Complement from ARCH-COMPLEMENT to MERGESORT-COMPLEMENT is

op MOD to term upModule(’MERGESORT-COMPLEMENT, false) .

endv

We can now instantiate the skeleton with this view and execute some examples. We
use the star architecture, with the master placed in the center and the workers in the
nodes. The initial configuration for the master with four workers and a list of 1000
elements (generated with the gen function below) is:

mod MERGESORT-CENTER is

pr RANDOM .

pr DC-SKELETON{Mergesort} .

pr STAR-CENTER{Mergesort-Complement} .

op gen : Nat -> List .

op gen* : Nat -> NatList .

var N : Nat .

eq gen(N) = l(gen*(N)) .

eq gen*(0) = random(0) .

eq gen*(s(N)) = random(s(N)) gen*(N) .

endm

erew <> < l(ip0, 0) : StarCenter |

state : idle,

neighbors : empty,

defNeighbor : null,

port : 60039 >

< o(l(ip0, 0), 0) : DCMaster |

masterState : initial,

initialData : l(gen(1000)),

workers : o(l(ip1, 0), 0) o(l(ip2, 0), 0)

o(l(ip3, 0), 0) o(l(ip4, 0), 0),

numWorks : 3,

resultTree : empty,

problem : mtTaskList > .

where the ipi are IP addresses. The initial configuration for one of the workers is:

mod MERGESORT-NODE is

pr DC-SKELETON{Mergesort} .

pr STAR-NODE{Mergesort-Complement} .

endm

erew <> < l(ip1, 0) : StarNode |

state : idle,

neighbors : empty,

defNeighbor : null,

center : ip0,

port : 60039 >

< o(l(ip1, 0), 0) : DCWorker |

master : o(l(ip0, 0), 0),

tasks : mtTaskList > .

92 C 4. P 

4.6 Branch and bound skeleton

Branch and bound algorithms [39] traverse a search tree looking for the best solution, as
shown in Section 4.1.4. We define the theory BB-PROBLEMwith the sorts and the operations
involved in the skeleton:

- We consider each node of the tree as a partial solution of sort PartialResult.

- The lists of partial results are represented with the sort PRList, and is constructed
with mtPRList and __.

- The sort FixData is used to represent the data shared by all nodes.

- The sortValue is the renaming ofElt from the predefined theorySTRICT-TOTAL-ORDER,
so these values must have defined a _<_ relation.

- The function expand expands a node of the tree and returns a list of partial solutions.
Since this operation is defined by the user, it can establish the number of levels that
the node is expanded.

- The function isResult? checks if a partial result is a final result.

- The function getBound extracts the upper bound of a node, that must be a Value.

fth BB-PROBLEM is

inc STRICT-TOTAL-ORDER * (sort Elt to Value) .

sort PartialResult PRList FixData .

subsort PartialResult < PRList .

op mtPRList : -> PRList .

op __ : PRList PRList -> PRList [assoc id: mtPRList] .

op expand : FixData PartialResult Value -> PRList .

op isResult? : PartialResult FixData -> Bool .

op getBound : PartialResult FixData -> Value .

endfth

The skeleton needs messages for:

- communicating the fixed data and the new tasks;

omod BB-TRANSMITTED-SYNTAX{P :: BB-PROBLEM} is

pr OID .

pr TRAVELING-CONTENTS .

op fixData : P$FixData -> TravelingContents .

op new-task : P$PartialResult P$Value -> TravelingContents .

- reporting the identifier of the worker and the work it has just finished; and

op finished : Oid P$PRList -> TravelingContents .

4.6. B    93

- asking for new work.

op work-needed : Oid -> TravelingContents .

endom

The skeleton uses a priority queue to keep the nodes and their precedence. We define
a sort Pair that puts together those values, and an operation insert that inserts a problem
list into the queue.

fmod PQUEUE{P :: BB-PROBLEM} is

vars PQ : PQueue .

vars V V’ : Value .

var PL : P$ProblemList .

vars PR PR’ PR’’ : P$Problem .

var FD : P$FixData .

var P : Pair .

sort PQueue Pair .

subsort Pair < PQueue .

op pair : P$Problem Value -> Pair .

op mtPQueue : -> PQueue .

op _._ : PQueue PQueue -> PQueue [assoc id: mtPQueue] .

op insert : P$ProblemList PQueue P$FixData -> PQueue .

op insert* : Pair PQueue -> PQueue .

eq insert(mtProblemList, PQ, FD) = PQ .

We use the getBound function to obtain the value used to sort the queue.

eq insert(PR PL, PQ, FD) =

insert*(pair(PR, getBound(PR, FD)), insert(PL, PQ, FD)) .

eq insert*(P, mtPQueue) = P .

eq insert*(pair(PR’, V), pair(PR’’, V’) . PQ) =

if (V < V’) then pair(PR’, V) . pair(PR’’, V’) . PQ

else pair(PR’’, V’) . insert*(pair(PR’, V), PQ)

fi .

endfm

omod BB-SKELETON{P :: BB-PROBLEM} is

pr ARCHITECTURE-MSGS .

pr TRANSMITTED-SYNTAX{P} .

pr PQUEUE{P} .

pr MAYBE{FixData}{P} * (sort Maybe{FixData}{P} to DefFixData) .

pr LIST{Oid} * (sort List{Oid} to OidList, op nil to mtOidList) .

First, we define the class BBMaster. It saves information about:

- the initial problem;

- the current result, that is, the best solution found so far;

94 C 4. P 

- the current upper bound (bestResult);

- the workers that have not been assigned tasks yet; and

- the state, that can be initial or working.

sort MasterState .

ops initial working : -> MasterState .

- The priority queuewhere tasks are kept.

class BBMaster | initial : P$Problem, result : P$Result, bestResult : P$Value,

workers : OidList, st : MasterState, queue : PQueue .

The BBWorker has the following attributes:

- the identifier of the master;

- the list of unfinished tasks (nextWorks);

- the current upperBound; and

- the fixed data (fixData).

class BBWorker | master : Oid, nextWorks : P$ProblemList,

upperBound : P$Value, fixData : P$FixData .

Given the initial problem, the master expands it and keeps the nodes in the priority
queue, changing its state from initial to working. Note that the master uses the function
expand, that has been defined to be used by the workers. We decide to use it here in order
to obtain enough nodes to deliver them to the workers quickly (the other option would
consist in delivering the initial data to one worker, that expands it, and wait for the
results).

vars PQ PQ’ : PQueue .

vars N N’ : Nat .

vars V V’ : P$Value .

var OL : OidList .

vars PL PL’ : P$PRList .

vars W M : Oid .

vars PR PR’ PR’’ : P$PartialResult .

var FD : P$FixData .

var P : Pair .

crl [start] :

< M : BBMaster | initial : PR, fixData : FD, st : initial,

bestResult : V, queue : mtPQueue, result : PR’ >

=> < M : BBMaster | st : working, bestResult : V’, queue : PQ,

result : PR’’ >

if PL := expand(FD, PR, V) /\

tern(PR’’, PQ, V’) := traverse(PL, FD, tern(PR’, mtPQueue, V)) .

where traverse is a function that traverses a list of partial results, checking for each one
if its upper bound is lower than the best current result, and then examines whether it is
a final result, updating the current best result, or a promising node, inserting it in the
queue.

4.6. B    95

sort Tern .

op tern : P$PartialResult PQueue P$Value -> Tern .

op traverse : P$PRList P$FixData Tern -> Tern .

eq traverse(mtPRList, FD, T) = T .

ceq traverse(PR PL, FD, tern(PR’, PQ, V)) =

if V’ < V then

if isResult?(PR, FD) then traverse(PL, FD, tern(PR, prune(PQ, V’), V’))

else traverse(PL, FD, tern(PR’, insert(PR, PQ, FD), V))

fi

else traverse(PL, FD, tern(PR’, PQ, V))

fi

if V’ := getBound(PR, FD) .

op prune : PQueue P$Value -> PQueue .

eq prune(mtPQueue, V) = mtPQueue .

eq prune(PQ . pair(PR, V), V’) = if not (V’ < V) then PQ . pair(PR, V)

else prune(PQ, V’) fi .

While the queue is not empty, the master delivers the initial tasks and the fixed data
to the workers, that keep them in the corresponding attributes.

crl [new-worker] :

< M : BBMaster | workers : W OL, bestResult : V, st : working,

queue : PQ, fixData : FD, numWorks : N >

=> < M : BBMaster | workers : OL, bestResult : V, st : working,

queue : update(PQ, N), fixData : FD, numWorks : N >

sendInitialTasks(W, PQ, N, V)

to W : fixData(FD)

if PQ =/= mtPQueue .

rl [fixData] :

to W : fixData(FD)

< W : BBWorker | fixData : null >

=> < W : BBWorker | fixData : FD > .

rl [new-task] :

to W : new-task(PR, V)

< W : BBWorker | nextWorks : PL, upperBound : V’ >

=> < W : BBWorker | nextWorks : PL PR, upperBound : minimum(V, V’) > .

op minimum : P$Value P$Value -> P$Value .

eq minimum(V,V’) = if V < V’ then V else V’ fi .

where sendInitialTasks and update extract tasks from the queue.

op sendInitialTasks : Oid PQueue Nat P$Value -> Configuration .

eq sendInitialTasks(W, pair(PR, V’) . PQ, s(N), V) = to W : new-task(PR, V)

sendInitialTasks(W, PQ, N, V) .

eq sendInitialTasks(W, PQ, N, V) = none [owise] .

op update : PQueue Nat -> PQueue .

eq update(pair(PR, V’) . PQ, s(N)) = update(PQ, N) .

eq update(PQ, N) = PQ [owise] .

96 C 4. P 

When the priority queue is not empty and a worker needs a new task, the master
delivers it.

rl [work-needed] :

to M : work-needed(W)

< M : BBMaster | queue : pair(PR, V’) . PQ, st : working, bestResult : V >

=> < M : BBMaster | queue : PQ >

to W : new-task(PR, V) .

While the list of unfinished tasks is not empty, the worker expands the first node and
sends the result to the master, or asks for more tasks if the result from expand is mtPRList.
If the node upper bound was higher than the best current one, the worker asks for more
work without expanding.

crl [do-work] :

< W : BBWorker | nextWorks : PR PL, upperBound : V, fixData : FD,

master : M >

=> < W : BBWorker | nextWorks : PL >

if (PL’ == mtPRList) then to M : work-needed(W)

else to M : finished(W, PL’) fi

if getBound(PR, FD) < V /\

PL’ := expand(FD, PR, V) .

crl [do-work] :

< W : BBWorker | nextWorks : PR PL, upperBound : V, fixData : FD,

master : M >

=> < W : BBWorker | nextWorks : PL >

to M : work-needed(W)

if not (getBound(PR, FD) < V) .

When new nodes arrive, the master traverses the list and puts a work-neededmessage
in the configuration in order to assign a new task to the worker.

crl [partial-results] :

to M : finished(W, PL)

< M : BBMaster | result : PR, bestResult : V, st : working, queue : PQ,

fixData : FD >

=> < M : BBMaster | result : PR’, bestResult : V’, queue : PQ’>

to M : work-needed(W)

if tern(PR’, PQ’, V’) := traverse(PL, FD, tern(PR, PQ, V)) .

endom

4.6.1 Traveling salesman instantiation

Since the skeleton hides the features related with the queue, we cannot use directly the
functions from Section 4.1.4. First, we define the sorts associated with the fixed data and
the nodes required by the theory. The fixed data keeps the cost map, the cities, and the
cheapest edge, that will be used to estimate the lower bound of the nodes.

fmod TRAVELER-PROBLEM is

pr GREEDY-TRAVELER .

sort FixData .

4.6. B    97

---- Cost, Cities (from 0, so the number of cities is N + 1), Cheapest edge

op fixData : Map{CityPair, Nat} Nat Nat -> FixData .

sorts Node NodeList .

subsort Node < NodeList .

---- Path, Current cost

op node : Path Nat -> Node .

op mtNodeList : -> NodeList .

op __ : NodeList NodeList -> NodeList [assoc id: mtNodeList] .

We define now the operator getBound. We estimate a lower bound supposing that the
edges to all the cities not visited yet have minimum cost.

op getBound : Node FixData -> Nat .

eq getBound(node(P, N), fixData(G, N’, N’’)) = N +

sd(s(s(N’)), size(P)) * N’’ .

To expand a node, we must check if it is admissible. We consider admissible a node if
the cities are not repeated in the path (unless all cities are visited, when we return to the
initial one) and the bound of the node is lower than the current upper bound.

---- FixData, Node, UpperBound

op expand : FixData Node Nat -> NodeList .

---- FixData, Node, UpperBound, CurrentCity

op expand : FixData Node Nat Nat -> NodeList .

eq expand(FD, ND, N) = expand(FD, ND, N, 0) .

ceq expand(fixData(G, N, N’), ND, UB, N’’) = mtNodeList

if N’’ > N .

ceq expand(fixData(G, N, N’), node(P CT, C), UB, N’’) =

ND’ expand(fixData(G, N, N’), node(P CT, C), UB, s(N’’))

if N’’ <= N /\

admissible(P CT, city(N’’), N) /\

ND’ := node(P CT city(N’’), C + (G [pair(CT, city(N’’))])) /\

getBound(ND’, fixData(G, N, N’)) < UB .

eq expand(FD, ND, UB, N) = expand(FD, ND, UB, s(N)) [owise] .

---- We can add the new city (i.e., is admissible) if the city is not

---- in the path or the path is complete and we are coming back home.

op admissible : Path City Nat -> Bool .

eq admissible(P, CT, N) = not in(CT, P) or

(size(P) == s(N) and CT == city(0)) .

Finally, we define the operator result?, that checks if a node is a final result.

op result? : Node FixData -> Bool .

eq result?(node(P, N), fixData(G, N’, N’’)) = result?(P, N’) .

op result? : Path Nat -> Bool .

eq result?(P, N) = size(P) == s(s(N)) .

endfm

98 C 4. P 

We can now define the Traveler view.

view Traveler from BB-PROBLEM to TRAVELER-PROBLEM is

sort Value to Nat .

sort PartialResult to Node .

sort PRList to NodeList .

op isResult? to result? .

op mtPRList to mtNodeList .

endv

We also show the view from ARCH-COMPLEMENT.

fmod TRAVELER-COMPLEMENT is

pr META-LEVEL .

pr BB-TRANSMITTED-SYNTAX{Traveler} .

pr ARCHITECTURE-MSGS .

endfm

view Traveler-Complement from ARCH-COMPLEMENT to TRAVELER-COMPLEMENT is

op MOD to term upModule(’TRAVELER-COMPLEMENT, false) .

endv

We use the star architecture. The master is located in the center, while the workers
are located in the nodes. We use the greedy algorithm from Section 4.1.4 in the initial
configuration to calculate the first upper bound. The initial term for the master in an
example with three workers and seven cities (from 0 to 6) is:

mod TRAVELER-CENTER is

pr BB-SKELETON{Traveler} .

pr STAR-CENTER{Traveler-Complement} .

endm

erew <> < l(ip0, 0) : StarCenter |

state : idle,

neighbors : empty,

defNeighbor : null,

port : 60039 >

< o(l(ip0, 0), 0) : BBMaster |

result : node(getCity(R), getCost(R)),

bestResult : getCost(R),

fixData : fixData(G, 6, cheapestEdge(G)),

initial : node(city(0), 0),

workers : o(l(ip1, 0), 0) o(l(ip2, 0), 0) o(l(ip3, 0), 0),

st : initial,

queue : mtPQueue,

numWorks : 3 > .

where R stands for greedyTravel(city(0), 6, generateCostMatrix(6)) and G stands
for generateCostMatrix(6), a random cost matrix for seven cities. The initial term for
one of the workers is:

mod TRAVELER-NODE is

pr BB-SKELETON{Traveler} .

4.6. B    99

pr STAR-NODE{Traveler-Complement} .

endm

erew <> < l(ip1, 0) : StarNode |

state : idle,

neighbors : empty,

defNeighbor : null,

center : ip0,

port : 60039 >

< o(l(ip1, 0), 0) : BBWorker |

master : o(l(ip0, 0), 0),

nextWorks : mtNodeList,

upperBound : 100000,

fixData : null > .

4.6.2 Graph bipartitioning instantiation

Given a graph G = (N,E), where N is the set of nodes (or vertices) and E is the set of edges,
the graph partitioning problem consists in choosing a partition N = N1 ∪ N2 ∪ . . . ∪ Np
such that the number of edges connecting all different pairs N j and Nk is minimized and
the size of each Ni is similar (differs at most in one). We show here the special case where
p = 2, so we must decide just two partitions.

First we implement a module with the problem (approximately) solved by a greedy
algorithm. This module includes VERTEX, that defines the sorts Vertex, VertexPair (for
pairs of vertices), and VertexSet (for sets of vertices, with functions size and delete).
We define a graph as a (partial) function from pairs of vertices to natural numbers. A
solution consists in the two set of vertices and the number of edges between them.

fmod GRAPH-PARTITIONING is

pr VERTEX .

pr MAP{VertexPair, Nat} * (sort Map{VertexPair, Nat} to Graph) .

sort Solution .

op sol : VertexSet VertexSet Nat -> Solution .

In the algorithm, we first choose randomly one vertex for each set.

vars N N’ MinEdges MaxEdges : Nat .

vars V V’ : Vertex .

vars VS VS’ VS’’ VS’’’ Candidates NVS : VertexSet .

var G : Graph .

var S : Solution .

---- Remaining Vertices, Cost

op greedy-gpp : VertexSet Graph -> Solution .

op greedy-gpp : VertexSet Graph Solution -> Solution .

eq greedy-gpp((V, V’, VS), G) =

greedy-gpp(VS, G, sol(V, V’, if (G [pair(V, V’)]) > 0 then 1 else 0 fi)) .

Then, we take the vertices not selected yet with minimum number of edges with
vertices in the second set. Then, we take the vertex with more edges with vertices in the
first set, and we add that vertex to the set. Finally, we interchange the sets. The algorithm
finishes when the set of remaining sets is empty.

100 C 4. P 

eq greedy-gpp(mtVertexSet, G, S) = S .

ceq greedy-gpp(VS, G, sol(VS’, VS’’, N)) =

greedy-gpp(NVS, G, sol(VS’’, (V, VS’), N + MinEdges))

if size(VS) > 0 /\

MinEdges := getMinIntersection(VS, VS’’, G) /\

Candidates := getVerticesWith(VS, VS’’, G, MinEdges) /\

MaxEdges := getMaxIntersection(Candidates, VS’, G) /\

(V, VS’’’) := getVerticesWith(Candidates, VS’, G, MaxEdges) /\

NVS := delete(V, VS) .

The function getMinIntersection just traverses all the vertices not used yet, gets the
number of vertices connected with them and keeps the minimum (thegetMaxIntersection
function is symmetrical).

op getMinIntersection : VertexSet VertexSet Graph -> Nat .

op getMinIntersection : VertexSet VertexSet Graph Nat -> Nat .

ceq getMinIntersection((V, VS), VS’, G) =

getMinIntersection(VS, VS’, G, N)

if VS’’ := getConnectedVertices(V, VS’, G) /\

N := size(VS’’) .

eq getMinIntersection(mtVertexSet, VS, G, N) = N .

ceq getMinIntersection((V, VS), VS’, G, N) =

if (N <= N’) then

getMinIntersection(VS, VS’, G, N)

else

getMinIntersection(VS, VS’, G, N’)

fi

if VS’’ := getConnectedVertices(V, VS’, G) /\

N’ := size(VS’’) .

op getConnectedVertices : Vertex VertexSet Graph -> VertexSet .

eq getConnectedVertices(V, (V’, VS), G) = if ((G [pair(V, V’)]) > 0) then V’

else mtVertexSet

fi, getConnectedVertices(V, VS, G) .

eq getConnectedVertices(V, mtVertexSet, G) = mtVertexSet .

Finally, the function getVerticesWith obtains the set of vertices with the indicated
number of edges in the other set.

op getVerticesWith : VertexSet VertexSet Graph Nat -> VertexSet .

eq getVerticesWith(mtVertexSet, VS, G, N) = mtVertexSet .

ceq getVerticesWith((V, VS), VS’, G, N) =

if N == N’ then V

else mtVertexSet fi, getVerticesWith(VS, VS’, G, N)

if VS’’ := getConnectedVertices(V, VS’, G) /\

N’ := size(VS’’) .

endfm

We can now instantiate the skeleton. First, we write a module defining the sorts and
operations that then will be related with those in the theory.

fmod GPP-PROBLEM is

pr GRAPH-PARTITIONING .

4.6. B    101

vars VS VS’ VS’’ : VertexSet .

vars N N’ N’’ N’’’ : Nat .

var G : Graph .

vars V V’ V’’ : Vertex .

sorts Node NodeList .

subsort Node < NodeList .

op mtNodeList : -> NodeList .

op __ : NodeList NodeList -> NodeList [assoc id: mtNodeList] .

The nodes contain the set of remaining vertices, the two sets we are creating, and
the number of edges between them. We obtain the bound for both unfinished tasks and
results by getting the current cost.

---- Remaining nodes, Set 1, Set 2, Cost

op node : VertexSet VertexSet VertexSet Nat -> Node .

---- Result

op getBound : Node -> Nat .

eq getBound(node(VS, VS’, VS’’, N)) = N .

---- Unfinished task

op getBound : Node Graph -> Nat .

eq getBound(node(VS, VS’, VS’’, N), G) = N .

The expand function generates two new nodes, one where the current vertex has been
added to the first set and another with the vertex added to the second.

op expand : Graph Node Nat -> NodeList .

ceq expand(G, node((V, VS), VS’, VS’’, N), N’) =

node(VS, (V, VS’), VS’’, N + N’’’) node(VS, VS’, (V, VS’’), N + N’’)

if N’’ := size(getConnectedVertices(V, VS’, G)) /\

N’’’ := size(getConnectedVertices(V, VS’’, G)) .

eq expand(G, node(mtVertexSet, VS, VS’, N), N’) = mtNodeList [owise] .

Finally, the result? function checks if a node is a valid solution.

op result? : Node -> Bool .

ceq result?(node(mtVertexSet, VS, VS’, N)) = true

if similarSize(size(VS), size(VS’)) .

eq result?(ND) = false [owise] .

op similarSize : Nat Nat -> Bool .

eq similarSize(N, N) = true .

eq similarSize(N, s(N)) = true .

eq similarSize(s(N), N) = true .

eq similarSize(N, N’) = false [owise] .

endfm

We can now define the view from BB-PROBLEM, with a mapping similar to the one
shown in the traveler instantiation.

102 C 4. P 

view Gpp from BB-PROBLEM to GPP-PROBLEM is

sort Value to Nat .

sort PartialResult to Node .

sort PRList to NodeList .

sort Result to Node .

sort FixData to Graph .

op mtProblemList to mtNodeList .

op mtPRList to mtNodeList .

op isResult?(PR:PartialResult, FD:FixData) to term result?(PR:Node) .

endv

The initial term for the master in an example with two workers and a graph with six
vertices (from 0 to 5) is:

mod GPP-CENTER is

pr BB-SKELETON{Gpp} .

pr STAR-CENTER{Gpp-Complement} .

endm

erew <> < l(ip0, 0) : StarCenter |

state : idle,

neighbors : empty,

defNeighbor : null,

port : 60039 >

< o(l(ip0, 0), 0) : BBMaster |

result : initialResult(5),

bestResult : initialCost(5),

fixData : generateCostMatrix(5),

initial : initialNode(5),

workers : o(l(ip1, 0), 0) o(l(ip2, 0), 0),

counter : 0,

st : initial,

queue : mtPQueue,

numWorks : 3 > .

where initialResult and initialCost are extracted from the greedy algorithm, the
cost graph is generated with generateCostMatrix, initialNode constructs the initial
node with the whole vertex set followed by two empty sets and 0 as initial cost, and
Gpp-Complement is defined as usual.

fmod GPP-COMPLEMENT is

pr META-LEVEL .

pr BB-TRANSMITTED-SYNTAX{Gpp} .

pr ARCHITECTURE-MSGS .

endfm

view Gpp-Complement from ARCH-COMPLEMENT to GPP-COMPLEMENT is

op MOD to term upModule(’GPP-COMPLEMENT, false) .

endv

4.7 Pipeline skeleton

A pipeline consists of a list of stages, where each stage applies a different function to the
results obtained in the previous stage. The aim is to apply a function f = fn◦ fn−1◦. . .◦ f2◦ f1,

4.7. P  103

where fi is the function applied in the ith stage of the pipeline, to a list of problems. Thus,
we will have a master in charge of deliver the list of problems to the first stage and collect
the results from the final stage, and n workers that will apply the corresponding function
fi to the values received from the previous worker.

The theory for this skeleton defines the sort Problem, that is the sort of the values
received in each step (so it must be the returning sort too),2 and ProblemList, defined
with the usual notation, used to transmit the initial list of tasks from the master to the
worker in the first stage of the pipeline. The operation step receives a number i that
identifies the stage and a value of sort Problem and applies the function fi to it. This
number i must be equal or greater than 1 and equal or less than numSteps in order
to obtain a correct result. These requirements are expressed by a membership and by
declaring numSteps as a NzNat (a non-zero natural number).

fth PPL-PROBLEM is

inc NAT .

sorts Problem ProblemList .

subsort Problem < ProblemList .

op mtProblemList : -> ProblemList .

op __ : ProblemList ProblemList -> ProblemList [assoc id: mtProblemList] .

op numSteps : -> NzNat .

op step : Nat Problem ˜> Problem .

var N : NzNat .

var P : Problem .

cmb step(N, P) : Problem if N <= numSteps .

endfth

We only need two messages:

- tasks delivers the list of tasks from the master to the first worker of the pipeline.

- result delivers a numbered result to the next stage of the pipeline. Notice that in
the pipeline skeleton the order matters, so the results must be attended in a ordered
way.

fmod PPL-TRANSMITTED-SYNTAX{P :: PPL-PROBLEM} is

pr TRAVELING-CONTENTS .

op tasks : P$ProblemList -> TravelingContents .

op result : Nat P$Problem -> TravelingContents .

endfm

The modulePPL-SKELETON implementing the skeleton is parameterized by thePPL-PROBLEM
theory.

2 If the different stages return different types, we can use an union type. For example, if f1 : A → B and
f2 : B→ C, then we would define
sorts A B C Problem .

op a : A -> Problem .

op b : B -> Problem .

op c : C -> Problem .

104 C 4. P 

omod PPL-SKELETON{P :: PPL-PROBLEM} is

pr TRANSMITTED-SYNTAX{P} .

pr ARCHITECTURE-MSGS .

pr OID .

The class PPLMaster has the following attributes:

- first contains the identifier of the worker in the first stage of the pipeline, that
must receive the initial list of problems.

- result keeps the results from the last stage of the pipeline in a list.

- masterState specifies the state of the master. It is in initial state at the beginning.
When it delivers the initial tasks it reaches the waiting state, and waits until it
receives all the tasks from the final stage, when it reaches the finished state.

sort PPLMasterState .

ops initial waiting finished : -> PPLMasterState .

- numTasks keeps the number of tasks to be developed, in order to know when all the
results have been received.

- tasks contains the initial list of problems, that will be transmitted to the worker in
the first stage of the pipeline.

- counter keeps the number of results already received.

class PPLMaster | first : Oid, result : P$ProblemList,

masterState : PPLMasterState, numTasks : Nat,

tasks : P$ProblemList, counter : Nat .

vars N N’ : Nat .

vars P P’ : P$Problem .

var PL : P$ProblemList .

vars W O O’ : Oid .

The first thing the master must do is to send the list of tasks to the worker on the
first stage of the pipeline, make the size of this list the number of tasks to be solved, and
change its state to waiting:

rl [start] :

< O : PPLMaster | tasks : PL, first : O’, masterState : initial >

=> < O : PPLMaster | tasks : mtProblemList, masterState : waiting,

numTasks : size(PL) >

to O’ : tasks(PL) .

Then, the master only waits for results from the last stage of the pipeline. The results
must be attended in order; the attribute counter is used to know the next result to be
taken.

rl [result] :

to O : result(s(N), P)

< O : PPLMaster | counter : N, result : PL >

=> < O : PPLMaster | counter : s(N), result : PL P > .

4.7. P  105

When all the results have arrived, the master reaches the finished state.

rl [no-more-work] :

< O : PPLMaster | counter : N, numTasks : N, masterState : waiting >

=> < O : PPLMaster | masterState : finished > .

We distinguish between the first worker (of class PPLFirstWorker), that receives the
whole list of problems, and all the other workers (of class PPLWorker), that receive the
problems step by step (that is, one value of sort Problem in each step).

The class PPLWorker has the following attributes:

- numStage, that keeps the stage number of the worker.

- counter, that stores the number of tasks that the worker has finished, in order to
deliver to the next stage the result numbered.

- next, that keeps the identifier of the worker that must do the next stage, or the
identifier of the master in the case of the last stage of the pipeline.

class PPLWorker | numStage : Nat, counter : Nat, next : Oid .

When the next problem arrives to the worker, it does the work and sends the result to
the next stage.

rl [do-work] :

to W : result(s(N), P)

< W : PPLWorker | next : O, counter : N, numStage : N’ >

=> < W : PPLWorker | counter : s(N) >

to O : result(s(N), step(N’, P)) .

The class PPLFirstWorker has also attributes numStage, counter, and next and it has
a new attribute tasks where the list of unfinished problems is kept. The class is defined
as follows:

class PPLFirstWorker | numStage : Nat, counter : Nat, next : Oid,

tasks : P$ProblemList .

The worker in the first stage receives the tasksmessage, and keeps the list of problems
in the tasks attribute.

rl [tasks] :

to W : tasks(PL)

< W : PPLFirstWorker | tasks : mtProblemList >

=> < W : PPLFirstWorker | tasks : PL > .

While the list of tasks is not empty, the first worker computes another one and sends
the result to the next worker, identifying each work with the counter attribute.

rl [do-work] :

< W : PPLFirstWorker | next : O, counter : N, numStage : N’, tasks : P PL >

=> < W : PPLFirstWorker | counter : s(N), tasks : PL >

to O : result(s(N), step(N’, P)) .

106 C 4. P 

4.7.1 Airport instantiation

We show here an example of a high security airport, where the travelers pass through
several controls in order to be filtered of pernicious belongings.

We first define the THING module with the description of all the objects that can be
carried by someone.

fmod THING is

pr NAT .

pr STRING .

sorts Thing Drug Weapon Liquid .

subsort Drug Weapon Liquid < Thing .

--- Name and capacity

op liquid : String Nat -> Liquid .

ops cocaine lsd : -> Drug .

ops gun knife : -> Weapon .

ops book computer apple : -> Thing .

endfm

Now we define a view from TRIV to THING in order to instantiate the predefined
module LIST for representing the belongings as a list.

view Thing from TRIV to THING is

sort Elt to Thing .

endv

fmod PERSON is

pr LIST{Thing} * (op nil to mtTL).

sort Person .

op person : String List{Thing} -> Person .

endfm

view Person from TRIV to PERSON is

sort Elt to Person .

endv

We can now describe the behavior of our airport security system in a module already
prepared to instantiate the skeleton. The function check receives as a parameter the
number of the filter that must be applied to the traveler.

fmod AIRPORT is

pr LIST{Person} .

var NAME : String .

var TL : List{Thing} .

var T : Thing .

var W : Weapon .

var D : Drug .

var N : Nat .

4.7. P  107

op check : Nat Person -> Person .

--- Weapon detector

eq check(0, person(NAME, TL)) = person(NAME, weaponFilter(TL)) .

--- Police dogs

eq check(1, person(NAME, TL)) = person(NAME, drugFilter(TL)) .

--- New laws

eq check(2, person(NAME, TL)) = person(NAME, liquidFilter(TL)) .

ops weaponFilter drugFilter liquidFilter : List{Thing} -> List{Thing} .

Each filter checks if the traveler owns any of the items not allowed by the airport, and
removes them.

eq weaponFilter(mtTL) = mtTL .

eq weaponFilter(W TL) = weaponFilter(TL) .

eq weaponFilter(T TL) = T weaponFilter(TL) [owise] .

eq drugFilter(mtTL) = mtTL .

eq drugFilter(D TL) = drugFilter(TL) .

eq drugFilter(T TL) = T drugFilter(TL) [owise] .

eq liquidFilter(mtTL) = mtTL .

eq liquidFilter(liquid(NAME, N) TL) = if (N > 100) then mtTL

else liquid(NAME, N) fi

liquidFilter(TL) .

eq liquidFilter(T TL) = T liquidFilter(TL) [owise] .

endfm

Finally the skeleton can be instantiated. Since the master sends information to the
first stage, and collects the results from the last one, the most suitable architecture is the
ring shown in Section 3.3. We place the master with the RingLast object and the workers
with the RingNode ones. This configuration is the best one because the first connection is
made by the RingLast object, which allows the transmission of data from the master to
the first worker while the architecture is not completely established.

view Airport from PPL-PROBLEM to AIRPORT is

sort Problem to Person .

sort ProblemList to List{Person} .

op mtProblemList to nil .

op numSteps to term 3 .

op step to check .

endv

fmod AIRPORT-COMPLEMENT is

pr OID .

pr META-LEVEL .

pr PPL-TRANSMITTED-SYNTAX{Airport} .

pr ARCHITECTURE-MSGS .

endfm

view Airport-Complement from ARCH-COMPLEMENT to AIRPORT-COMPLEMENT is

op MOD to term upModule(’AIRPORT-COMPLEMENT, false) .

endv

108 C 4. P 

The initial configuration for the location with the master is:

mod AIRPORT-RLAST is

pr PIPELINE-SKELETON{Airport} .

pr RING-LAST{Airport-Complement} .

op persons : -> List{Person} .

eq persons = person("A", lsd knife computer)

person("B", liquid("cologne", 110) liquid("toothpaste", 50))

person("C", liquid("deodorant", 30) book cocaine)

person("D", apple computer book) .

endm

erew <> < l(ip0, 0) : RingLast |

state : idle,

neighbors : empty,

defNeighbor : null,

port : 60039,

nextIP : ip1,

nextPort : 60044 >

< o(l(ip0, 0), 0) : PPLMaster |

result : nil,

masterState : initial,

tasks : persons,

numTasks : 0,

counter : 0,

first : o(l(ip1, 0), 0) > .

The initial configuration for the location with the first worker is:

mod AIRPORT-RNODE is

pr PIPELINE-SKELETON{Airport} .

pr RING-NODE{Airport-Complement} .

endm

erew <> < l(ip1, 0) : RingNode |

state : idle,

neighbors : empty,

defNeighbor : null,

port : 60044,

nextIP : ip2,

nextPort : 60041 >

< o(l(ip1, 0), 0) : PPLFirstWorker |

counter : 0,

numStage : 1,

next : o(l(ip2, 0), 0),

tasks : nil > .

The initial configurations for the rest of the locations is very similar, and looks as
follows:

mod AIRPORT-RNODE is

pr PIPELINE-SKELETON{Airport} .

pr RING-NODE{Airport-Complement} .

endm

4.7. P  109

erew <> < l(ip2, 0) : RingNode |

state : idle,

neighbors : empty,

defNeighbor : null,

port : 60041,

nextIP : ip3,

nextPort : 60042 >

< o(l(ip2, 0), 0) : PPLWorker |

counter : 0,

numStage : 2,

next : o(l(ip3, 0), 0) > .

Chapter 5

Mobile Maude

Mobile Maude is a mobile agent language extending Maude and supporting mobile com-
putation. Mobile Maude uses reflection to obtain a simple and general declarative mobile
language design and makes possible strong assurances about mobile agent behavior. The
formal semantics of Mobile Maude is given by an executable rewrite theory in Maude, in
which mobile agent systems can be simulated.

A short version of the work described in this chapter has been published in the Pro-
ceedings of the Sixth International Workshop on Rewriting Logic and its Applications, WRLA 06
as the paper [29], and a longer version as the Chapter 16 of the Maude book [18].

5.1 Mobile Maude main features

Mobile Maude’s key characteristics include:

- reflection as a way of endowing mobile objects with “higher-order” capabilities;

- object-orientation and asynchronous message passing; and

- a simple semantics without any loss in the expressive power of application code.

Mobile Maude was first introduced in [28], where the authors presented a ‘simulator’
of Mobile Maude, an executable Maude specification on top of Maude 1.0.5, in which
the system code was written entirely in Maude, and thus locations and processes were
encoded as Maude terms. In the same paper it was also sketched a development plan
including two further development efforts: a first step in which a single-host executable
system would be implemented, and a second implementation effort focussing on true
distributed execution.

The release of Maude 2.0 allowed them to take the first step. This implementation effort
was completed in a very short time, using the built-in object system for object/message
fairness, just by simplifying and extending the previous specification. This new ver-
sion was developed by Francisco Durán and Alberto Verdejo, and was used in several
examples, one of which was reported in [30].

The built-in string handling and internet socket module available in Maude 2.2 has
allowed us to build a truly distributed implementation, thus advancing the second de-
velopment effort. The Maude 2.2 SOCKETmodule support non-blocking client and server
TCP sockets (see Section 2.7). In this implementation effort, a Mobile Maude server runs
on top of a Maude interpreter and performs the following tasks:

111

112 C 5. MM

1. keeps track of the current locations of mobile objects created on a host;

2. handles change of location messages;

3. reroutes messages to mobile objects; and

4. runs the code of mobile objects by invoking the metalevel.

We explain below the design of processes and mobile objects and their rewriting
semantics, based on a formal specification of Mobile Maude written in Maude. How to
formally analyze Mobile Maude applications will be shown in Section 6.7.

5.2 Processes and mobile objects

The two key notions of Mobile Maude are processes and mobile objects. A distributed
configuration is made up of located configurations, each of them executed in a Maude
process (connected by an architecture as those shown in Chapter 3). Such processes can
therefore be seen as located computational environments inside which mobile objects can
reside, execute, and send and receive messages to and from other mobile objects located
in different processes. We assume that each located configuration has exactly one home,
of class Home, which keeps information about the mobile objects in such a configuration
and the whereabouts of the mobile objects created in it, which may have moved to other
processes. The names of homes range over the sort Hid, and have the form h(L)with L the
identifier of the location where the object resides. We assume uniqueness of home names
in a distributed configuration. The syntax for home identifiers and the corresponding
getLoc function (see Section 3.1) are defined in the HIDmodule.

fmod HID is

pr LOC .

sorts Hid .

subsort Hid < Oid .

op h : Loc -> Hid . *** Home Oid

op getLoc : Hid -> Loc .

eq getLoc(h(L:Loc)) = L:Loc .

endfm

Mobile objects are modeled as distributed objects in the class MobileObject. The
names of mobile objects range over the sort Mid and have the form o(L, N), with L the
name of the location in which it was created and N a number used to distinguish objects
created in the same location.

fmod MID is

pr LOC .

sorts Mid .

subsort Mid < Oid .

op o : Loc Nat -> Mid . *** Mobile-Object Oid

endfm

Once we have defined the syntax of mobile objects and homes, we can define the class
Home as follows:

5.2. P    113

view Mid from TRIV to MID is

sort Elt to Mid .

endv

fmod PAIR{X :: TRIV, Y :: TRIV} is

sort Pair{X,Y} .

op (_,_) : X$Elt Y$Elt -> Pair{X,Y} .

op p1_ : Pair{X,Y} -> X$Elt .

op p2_ : Pair{X,Y} -> Y$Elt .

eq p1 (V1:X$Elt, V2:Y$Elt) = V1:X$Elt .

eq p2 (V1:X$Elt, V2:Y$Elt) = V2:Y$Elt .

endfm

view Pair{Loc,Nat} from TRIV to PAIR{Loc, Nat} is

sort Elt to Pair{Loc, Nat} .

endv

omod HOME is

pr SET{Mid} .

pr MAP{Nat, Pair{Loc,Nat}} .

pr HID .

class Home | cnt : Nat, *** counter to generate names

guests : Set{Mid}, *** objects in the location

forward : Map{Nat, Pair{Loc,Nat}} . *** forwarding information

endom

The home’s cnt attribute stores a counter to generate unique names for new mobile
objects. The home of each process keeps information about the mobile objects currently
in it in the guests attribute.

Since mobile objects may move from one process to another, reaching them by mes-
sages is nontrivial. The solution adopted in Mobile Maude is that, when a message’s
addressee is not in the current process, the message is forwarded to the addressee’s
home. Each home stores forwarding information about the whereabouts of its children
in its forward attribute, a partial function in Map{Nat, Pair{Loc,Nat}} that maps each
child (identified by its number) to a pair consisting of the name of the location in which
the object currently resides, and the number of “hops” to different processes that the
mobile object has taken so far. The number of hops is important in disambiguating
situations when old messages (containing old location information) arrive after newer
ones containing the current location. The most recent location is that associated with the
largest number of hops. Whenever a mobile object moves to a new process, the object’s
parent process is always notified. Note that this mechanism does not guarantee message
delivery in the case that objects move more rapidly than messages.

Mobile objects carry their own internal state and code (an object-oriented module)
with them, can move from one process to another, and can communicate with each
other by asynchronous message passing. Figure 5.1 shows several mobile objects in two
processes,1 with (mobile) object o(l(IP, 0), 1) moving from the process with home
h(l(IP, 0)) to the process of home h(l(IP’, 0)), and with object o(l(IP, 0), 0)
sending a message to o(l(IP’, 0), 0).

1Although the router objects has been omitted in the figure, remember that Mobile Maude is executed on
top of one of the architectures shown in Chapter 3.

114 C 5. MM

o(l(IP, 0), 1)

o(l(IP, 0), 0)

h(l(IP, 0))

h(l(IP', 0))

o(l(IP, 0), 1)

o(l(IP', 0), 0)

Figure 5.1: Object and message mobility

Mobile objects are specified as objects of the class MobileObject:

omod MOBILE-OBJECT is

pr META-LEVEL .

pr MID .

class MobileObject |

mod : Module, *** rewrite rules of the mobile object

s : Term, *** current state

gas : Nat, *** bound on resources

hops : Nat . *** number of hops

endom

The sorts Module and Term, associated with the attributes mod and s, respectively, are
sorts in the module META-LEVEL (see Section 2.5). The value of a mobile object’s mod
attribute is the metarepresentation of an object-oriented module. The mobile object’s state
s must be the metarepresentation of a pair of configurations meaningful for the module
in mod and having the form C & C’, where C is a configuration of objects and messages
representing unprocessed incoming messages and inter-inner-objects messages, and C’
is a multiset of messages representing the outgoing messages tray. One of the objects in C
is supposed to have the same identifier as the mobile object it is in. We sometimes refer
to this object as the main one, which in most cases will be the only one. Therefore, we
can think of a mobile object as a wrapper that encapsulates the state and code of its inner
object and mediates its communication with other objects. For this reason, Figure 5.1
depicts mobile objects by two concentric circles, with the inner object and its incoming
and outgoing messages contained in the inner circle.

A MobileObject includes the attribute hops, which stores the number of “hops” a
mobile object has performed while moving from one process to another. As we have
seen, this information is used to disambiguate the arrival of messages with obsolete
information. To guarantee that all mobile objects eventually have some activity, and to

5.3. MM  115

impose a bound on the resources they can consume, they have a gas attribute, that will
be reduced as the mobile object evolves.

5.3 Mobile Maude interface

Mobile Maude system code is specified by a relatively small number of rules for homes, mo-
bile objects, mobility, and message passing. Such rules work in an application-independent
way. Application code, on the other hand, can be written as Maude object-oriented mod-
ules with great freedom, except for being aware that, as explained in Section 5.2, the top
level of the internal state of a mobile object has to be a pair of configurations, with the
first, called the inner configuration, containing the inner object(s) and incoming messages,
and the second component, called outgoing tray, containing outgoing messages. Such a
pair is built with the constructor _&_

fmod MOBILE-OBJECT-INTERFACE is

pr META-LEVEL .

inc MID .

sort MobObjState .

op _&_ : Configuration Configuration -> MobObjState [ctor] .

The messages sent by a mobile object may in fact be understood as commands that
the main object—or one of the other objects—in the internal state of a mobile object gives
to its wrapper object. Thus, an object may

1. request to move from its current location to a given location L with the go(L)
message;

2. request going to the location in which the mobile object O resides, which is possibly
L, with the message go-find(O, L);

3. request creating a new mobile object with module Mod, initial state Conf, and tem-
poral identifier of the main object in such a configuration O, with the message
newo(Mod, Conf, O);

4. send a message with contents C to the object Owith the message to O : C; and

5. request the destruction of the mobile object it resides into with the message kill.

sort Contents .

msg go : Loc -> Msg .

msg go-find : Mid Loc -> Msg .

msg newo : Module Configuration Oid -> Msg .

msg to_:_ : Mid Contents -> Msg .

msg kill : -> Msg .

Note that messages being sent to other mobile objects must be of the form to_:_, with
the addressee of the message as first argument and a term of sort Contents as second
argument.2 The definition of the Contents sort is left to each particular application, which

2Notice that this message has the same syntax that the operator to interchange messages between routers
in the architecture, but different arguments (Contents in Mobile Maude and TravelingContetns in the
architectures).

116 C 5. MM

in fact gives the user the freedom to define any kind of message, an example is shown in
page 125.

The newomessage takes a module (a term of sort Modulemetarepresenting a module),
a term of sort Configuration (which will be the initial configuration in the belly of
the mobile object to be created, so it should make sense in the module given as first
argument), and the provisional identifier of the main object in the configuration given
as second argument. As we shall see in Section 5.5.4, the first action accomplished by a
mobile object when it detects the newo command is creating a new mobile object with the
metarepresentation of the configuration given as second argument to the newo message,
and then sending a start-up message to the main object with its new name, so that it
coincides with the name of the mobile object it is in. Let us recall that the name of a
mobile object depends on the home object in its process, and on the number of mobile
objects already created in it. Therefore, such a name cannot be known when the creation
is requested. Thus, the main object in the configuration will be created with a provisional
identifier—usually tmp-id—that will be changed by its mobile object once it is created.

op tmp-id : -> Mid [ctor] .

op start-up : Mid -> Contents [ctor] .

endfm

The MOBILE-OBJECT-INTERFACE module is assumed to be imported by the user in all
Mobile Maude applications.

5.4 Mobile Maude’s syntax

Once the messages shown above are “pulled out” of the outgoing message tray, they
must be placed in the located configuration at the level of mobile objects. Some of these
messages will travel through the different locations, while others will be used in the
same location where they are pulled out. The messages that will travel are defined of sort
TravelingContents, and will be encapsulated in the to_:_message from the architecture
(see Section 3.1). We define the syntax of these messages in the following module:

fmod MOBILE-MAUDE-TRANSMITED-SYNTAX is

pr MID .

pr MOBILE-OBJECT .

pr PAIR{Loc, Nat} .

pr SET{Mid} .

pr TRAVELING-CONTENTS .

pr MAYBE{Nat} * (op maybe to null) .

When a go or go-findmessage is pulled out, the object is encapsulated in the message
while the location will be used to send the object to the proper home object.

op go : Object -> TravelingContents [frozen] .

op go-find : Mid Maybe{Nat} Object -> TravelingContents [frozen] .

Notice that the operators are declared frozen, so the mobile object inside cannot evolve
while they are in transit.

When an object arrives to a new location, it sends a message to its home in order to
keep the forwarding information updated. The object_@_ message notifies the number
of the object as first parameter and the location and number of hops as second one.

5.5. MM’   117

op object_@_ : Nat Pair{Loc, Nat} -> TravelingContents .

Messages between objects may travel too. They contain the addressee identifier,
the number of hops of the forwarding information that they have received, and the
information the object wants to communicate (where the Term is a metarepresented value
of sort Contents).

op to_hops_{_} : Mid Maybe{Nat} Term -> TravelingContents .

Finally, when an object is destroyed, the information is sent to its home.

op dead{_} : Nat -> TravelingContents .

endfm

All the Mobile Maude applications can use the same view, from a module that contains
home objects (needed because they will be the addressees of the messages), the syntax of
Mobile Maude, and the messages from the architecture.

fmod MM-COMPLEMENT is

pr HID .

pr ARCHITECTURE-MSGS .

pr MOBILE-MAUDE-TRANSMITED-SYNTAX

endfm

view MM-Complement from ARCH-COMPLEMENT to MM-COMPLEMENT is

op MOD to term upModule(’MM-COMPLEMENT, false) .

endv

In addition to the syntax of messages that will travel between locations, we define the
syntax of messages that will not be transmitted. The set of all these messages defines the
syntax of Mobile Maude.

fmod MOBILE-MAUDE-SYNTAX is

pr MOBILE-MAUDE-TRANSMITED-SYNTAX .

*** Inter-object message inside a process configuration.

msg to_{_} : Mid Term -> Msg .

*** Mobile object creation.

msg newo : Module Term Term -> Msg .

endfm

5.5 Mobile Maude’s rewriting semantics

The semantics of Mobile Maude is specified by an object-oriented rewrite theory contain-
ing the definitions of the classes Home and MobileObject and rewrite rules that describe
the behavior of the different primitives: object mobility, message passing, and object cre-
ation and destruction. This specification is the system code of Mobile Maude, which works
in an application-independent way as a prototype on which to execute Mobile Maude
applications. The rules discussed in the next subsections specify the way in which the
different Mobile Maude commands are handled.

118 C 5. MM

omod MOBILE-MAUDE-SEMANTICS is

pr MOBILE-MAUDE-SYNTAX .

pr HOME .

pr ARCHITECTURE-MSGS .

5.5.1 Letting mobile objects do something

To allow the mobile objects to evolve, and therefore to allow the application code, which
“lives” inside the mobile objects, to invoke such commands, the state of the mobile objects
must be rewritten. In the do-something rule below, the internal state of a mobile object is
rewritten using the rules of the module in its mod attribute.

As a fairness condition, or, more concretely, to make sure that no mobile object con-
sumes all the resources—to avoid, for example, that when rewriting the state of a mobile
object we get into an infinite computation—and to try to balance such consumption, we
establish a bound on the number of rewrites for each of the mobile objects. Such a bound
is given in their gas attribute. Each time the do-something rule is applied, the mobile
object’s gas value is decremented. Note that the gas attribute gives the number of rewrites
a mobile object can perform. If no rewriting step can be taken, the do-something rule
cannot be applied.

vars O O’ : Mid .

vars T T’ T’’ T’’’ T’’’’ : Term .

var MOD : Module .

vars N N’ N’’ : Nat .

var TS : TermSet .

var RST? : ResultTriple? .

sort TermSet .

subsort Term < TermSet .

op emptyTS : -> TermSet .

op _._ : TermSet TermSet -> TermSet [assoc comm id: emptyTS] .

eq T . T = T .

crl [do-something] :

< O : MobileObject | mod : MOD, s : T, gas : s(N) >

=> < O : MobileObject | s : T’, gas : N >

if T’ . TS := possibleSteps(MOD, T) /\

T’ =/= T .

Instead of using the deterministic functions metaRewrite or metaFrewrite, we use
the metaSearch function in the equations for the operation possibleSteps to obtain the
set of terms that can be reached in one rewriting step. From all these possible rewrites one
is chosen (modulo commutativity) in the condition of the do-something rule; this allows
us to explore all possible executions as we shall discuss in Section 6.7.

op possibleSteps : Module Term Nat -> TermSet .

var Ty : Type .

var Sb : Substitution .

ceq possibleSteps(MOD, T, N) = T’ . possibleSteps(MOD, T, N + 1)

if {T’, Ty, Sb} := metaSearch(MOD, T, ’M:MobObjState, nil, ’+, 1, N) .

eq possibleSteps(MOD, T, N) = emptyTS [owise]

5.5. MM’   119

5.5.2 Object communication

There are three kinds of communication between objects. Objects inside the same mobile
object can communicate with each other by means of messages with any format, and such
communication may be synchronous or asynchronous. Objects in different mobile objects
may communicate when such mobile objects are in the same process and when they are
in different processes; in these cases, the actual kind of communication is transparent
to the mobile objects, but such communication must be asynchronous and by means of
messages the form to O : C. That is, the minimum information needed to dispatch a
message is the receiver’s identity; if the sender wants to communicate its identifier, it has
to include it in the message contents. If the addressee is an object in a different mobile
object, then the message must be put by the sender object in the second component of its
state (the outgoing messages tray). The system code will then send the message to the
addressee object.

An important issue when managing messages is that the rewriting rules and state
of mobile objects are metarepresented, that is, the system code of Mobile Maude is at
the metalevel of the application code. Therefore, before dealing with such messages,
they must be moved up, or, as we say, they must be pulled out. The internal state of a
mobile object will have the form ’_&_[T, T’], with T and T’ the terms metarepresenting,
respectively, the inner configuration and the outgoing messages. In the case of messages
of the form to_:_ we will have a term of the form ’to_:_[T1, T2], which may be alone
or with more messages in the outgoing tray. Since we must leave the tray in a valid state
we need to include the following three rules.3

op downMid : Term -> Mid .

eq downMid(T) = downTerm(T, o(l("null", 0), 0)) .

rl [message-out-to] :

< O : MobileObject | s : ’_&_[T, ’to_:_[T’, T’’]] >

=> < O : MobileObject | s : ’_&_[T, ’none.Configuration] >

to downMid(T’) { T’’ } .

rl [message-out-to] :

< O : MobileObject | s : ’_&_[T, ’__[’to_:_[T’, T’’], T’’’]] >

=> < O : MobileObject | s : ’_&_[T, T’’’] >

to downMid(T’) { T’’ } .

var TL : TermList .

crl [message-out-to] :

< O : MobileObject | s : ’_&_[T, ’__[’to_:_[T’, T’’], T’’’, TL]] >

=> < O : MobileObject | s : ’_&_[T, ’__[T’’’, TL]] >

to downMid(T’) { T’’ }

if TL =/= empty .

Notice that, although the contents of messages are left at the metalevel, i.e., as found,
the identifier of the addressee object is moved down to the object level, so that the message
can be correctly delivered. The rules pull out a messagetoO:C, which is metarepresented

3Although in general two cases are enough to deal with associative lists (one element and more than one
element), at the metalevel, since the engine is giving the list in flattened form and expects it in flattened form,
we must make sure that when we have more than one element the top operator is .

120 C 5. MM

as ’to_:_[O, C], into a message to O { C }. We will find similar pull-out rules for each
of the commands.

Once the message is out of the mobile object, it will be appropriately delivered.

var OS : Set{Mid} .

vars L L’ L’’ L’’’ : Loc .

var F : Map{Nat, Pair{Loc, Nat}} .

crl [msg-send] :

to o(L, N) { T }

< h(L) : Home | guests : OS, forward : F >

=> < h(L) : Home | >

to h(p1(F[N])) : to o(L, N) hops p2(F[N]) { T }

if not o(L, N) in OS /\

F[N] =/= undefined /\

p1(F[N]) =/= L .

crl [msg-send] :

to o(L, N) { T }

< h(L’) : Home | guests : OS >

=> < h(L’) : Home | >

to h(L) : to o(L, N) hops null { T }

if L =/= L’ /\

not o(L, N) in OS .

Note that the conditions of the rules make sure not only that the object is not in the
current process (not o(L, N) in OS), but also that the forwarding info does not point to
the location itself (p1(F[N]) =/= L), which would mean that the mobile object has not
arrived to its destination yet. If the location in which the message is generated is the parent
location of the mobile object the message is addressed to (first rule), then the message
is forwarded to the location indicated by the forwarding info with the corresponding
number of hops; otherwise, the message is forwarded to the parent location with the
number of hops set to null (second rule). We will see below how the hops information
is used in the msg-arrive-to-loc rules to avoid unnecessary forwarding of messages
when the destination object is in transit.

The arrival of an inter-object message to a location is handled by the following four
rules. We explain the case handled by each of the rules separately.

If the addressee object is at the location, then the message is just left at the location so
the object can get it.

var H : Maybe{Nat} .

rl [msg-arrive-to-loc] :

to h(L’) : to o(L, N) hops H { T }

< h(L’) : Home | guests : (o(L, N), OS) >

=> < h(L’) : Home | >

to o(L, N) { T } .

If the object is not at the location and the number of hops is null, then the message is
being sent to the mobile object’s parent location. If the forwarding information is pointing
to its home location, then the object is in transit, and the forwarding information has not
been updated with its new location, and therefore the message is not handled; otherwise,

5.5. MM’   121

the message is sent to the location indicated by the forwarding information with the
corresponding number of hops.

crl [msg-arrive-to-loc] :

to h(L) : to o(L, N) hops null { T }

< h(L) : Home | guests : OS, forward : F >

=> < h(L) : Home | >

to h(p1(F[N])) : to o(L, N) hops p2(F[N]) { T }

if not o(L, N) in OS /\ p1(F[N]) =/= L .

If the object is not at the location and the location is not its home location, then the
message is forwarded back to the parent location with the same hops number. Note that,
since it is not its home location, the number of hops is not null, that is, it is a natural
number. Note also that, since the forwarding information is updated once the object
has arrived to a location, it cannot be the case that the message has arrived before the
object. If the object to which the message is addressed is not at the location registered in
the forwarding information, it is because the object has already left the location and the
message must be returned to its home location.

crl [msg-arrive-to-loc] :

to h(L’) : to o(L, N) hops N’ { T }

< h(L’) : Home | guests : OS >

=> < h(L’) : Home | >

to h(L) : to o(L, N) hops N’ { T }

if not o(L, N) in OS /\ L =/= L’ .

Finally, if the message is being returned from a location to which the message was
forwarded from its home location because the object already left it, then the message
will be forwarded again by its home location only if its forwarding information has been
updated since the message was forwarded the first time, that is, if the number of hops in
the message is smaller than the number of hops in the forwarding information in its home
location. Note that we do not check whether the forwarding information points to the
parent location itself anymore, since in this case the hops would have been appropriately
incremented.

crl [msg-arrive-to-loc] :

to h(L) : to o(L, N) hops N’ { T }

< h(L) : Home | guests : OS, forward : F >

=> < h(L) : Home | >

to h(p1(F[N])) : to o(L, N) hops p2(F[N]) { T }

if not o(L, N) in OS /\ N’ < p2(F[N]) .

Once the message reaches its addressee object, the message must be inserted in—
pushed into—the internal state of such a mobile object. To make sure that the mobile object
will remain in a valid state, we check that the metarepresentation of the corresponding
message is a valid message in the module of the object. We can assume that, since the
previous state was a valid one, adding a valid message will result in a new valid state.

rl [msg-in] :

to O { T }

< O : MobileObject | mod : MOD, s : ’_&_[T’, T’’] >

=> if sortLeq(MOD, leastSort(MOD, ’to_:_[upTerm(O), T]), ’Msg)

then < O : MobileObject | s : ’_&_[’__[’to_:_[upTerm(O), T], T’], T’’] >

else < O : MobileObject | s : ’_&_[T’, T’’] >

fi .

122 C 5. MM

5.5.3 Object mobility

We explain in this section the rules that govern object mobility. Such mobility is initiated
by the mobile object’s inner object, which puts the go or go-findmessages in the second
component (i.e., as an outgoing message) of the state. The rules for both cases are quite
similar; the main difference is that a go-find message tries to reach a particular object
that can be itself on movement; that is, we may reach the tentative location and not find
the object there, in which case we must go on looking for it in a different location.

The gomessage

When a mobile object wants to move to another process it puts in its outgoing messages
tray a go(L) message, where L is the target location. When a mobile object has an
outgoing gomessage, a new inter-mobile-objects gomessage is sent, with the mobile object
as its argument, after removing the outgoing message. Since the go message is declared
to be frozen, the mobile object is inactive while on the move.

If there is a go message in the outgoing message tray, we observe that the state of
the corresponding mobile object has the form ’_&_[T, ’go[T’]], where the term T’
metarepresents the name of the location where the object wants to go. Notice that in this
case it must be the only message in the tray, it is assumed that any other message has
already been handled. The rule message-out-go indicates how such a name is decoded
by the downLoc function, and shows in its righthand side the mobile object ready to
go—which is indicated by being enclosed inside a go operator.

op downLoc : Term -> Loc .

eq downLoc(T) = downTerm(T, l("null", 0)) .

rl [message-out-go] :

< h(L) : Home | guests : (O, OS) >

< O : MobileObject | s : ’_&_[T, ’go[T’]] >

=> < h(L) : Home | guests : OS >

to h(downLoc(T’)) : go(< O : MobileObject |

s : ’_&_[T, ’none.Configuration] >) .

If the message and the addressee are in different locations, then this message will be
sent through the appropriate socket by the router of the location. When the message
reaches the destination location, the home is informed, so it can update its forwarding
information; if the object has reached its home location, such information is directly
updated.

When a go message reaches the location it is addressed to, the mobile object that it
carries as an argument is put into the configuration. Depending on whether the location
is the home location of such a mobile object or not, the forwarding information is updated
or a message object_@_ is sent to its home location so that the home in it can update its
forwarding information.

rl [arrive-loc] :

to h(L) : go(< o(L’, N) : MobileObject | hops : N’ >)

< h(L) : Home | guests : OS, forward : F >

=> < o(L’, N) : MobileObject | hops : N’ + 1 >

if L == L’

then < h(L) : Home | guests : (o(L’, N), OS),

5.5. MM’   123

forward : insert(N, (L, N’ + 1), F) >

else < h(L) : Home | guests : (o(L’, N), OS) >

to h(L’) : object N @ (L, N’ + 1)

fi .

The following rule specifies the update of a mobile object’s forwarding information
in the home upon the reception of an object_@_ message. Note that, since the message
to update the forwarding information is sent when the object arrives to its destination
location, the forwarding information is not valid during the transit of the mobile objects.
However, thanks to the guests lists we still have enough information to guide messages
appropriately. Notice also that the forwarding information about a mobile object may
be undefined upon the reception of an object_@_ message if the corresponding mobile
object was destroyed and the message communicating its destruction arrives before a
message communicating a previous move.

rl [forwarding-update] :

to h(L) : object N @ (L’, N’)

< h(L) : Home | forward : F >

=> if F[N] == undefined

then < h(L) : Home | >

else if p2(F[N]) < N’

then < h(L) : Home | forward : insert(N, (L’, N’), F) >

else < h(L) : Home | >

fi

fi .

The go-findmessage

In the go message, the mobile object indicates the location it wants to go to. However,
sometimes, a mobile object wants to reach another object, but it only knows the identifier
of the object it wants to catch up with, not the location it is at. In this case, the go-find
message can be used, which takes as arguments the identifier of the mobile object to be
reached, and the identifier of a tentative location, where it may be.

The rules for the go-findmessages are very similar to those for the gomessages just
described. However, in this case we do not only want to reach a location, but also to
find a mobile object, which may move from one place to another. Although the message
includes a tentative location for the object, such information may be incorrect, or obsolete.

When a mobile object has a go-find message in its state it is pulled out with the
following rule.

rl [message-out-go-find] :

< h(L) : Home | guests : (O, OS) >

< O : MobileObject | s : ’_&_[T, ’go-find[T’, T’’]] >

=> < h(L) : Home | guests : OS >

to h(downLoc(T’’)) : go-find(downMid(T’), null,

< O : MobileObject | s : ’_&_[T, ’none.Configuration] >) .

When a go-findmessage reaches the tentative location it was addressed to, depending
on whether the object the message is trying to find is at such a location or not, the mobile
object will be put into the configuration or forwarded. As in the arrive-loc rule shown
above, the forwarding information is then updated. In addition, if the message requires

124 C 5. MM

to be forwarded, this will be done towards the location the mobile object is at according
to the forwarding information in its home location, or to such a home location depending
on whether it is at its home location or not.

rl [arrive-find-loc] :

*** the object has been reached in the traveling object’s home location

to h(L’) : go-find(o(L, N), H, < o(L’, N’) : MobileObject | hops : N’’ >)

< h(L’) : Home | guests : (o(L, N), OS), forward : F >

=> < h(L’) : Home | guests : (o(L, N), o(L’, N’), OS),

forward : insert(N’, (L’, N’’ + 1), F) >

< o(L’, N’) : MobileObject | hops : N’’ + 1 > .

crl [arrive-find-loc] :

*** the object has been reached in the tentative location,

*** and this is not its home location

to h(L’) : go-find(o(L, N), H, < o(L’’, N’) : MobileObject | hops : N’’ >)

< h(L’) : Home | guests : (o(L, N), OS) >

=> < h(L’) : Home | guests : (o(L, N), o(L’’, N’), OS) >

< o(L’’, N’) : MobileObject | hops : N’’ + 1 >

to h(L’’) : object N @ (L’, N’’ + 1)

if L’ =/= L’’ .

crl [arrive-find-loc] :

*** The message is redirected for the first time by using

*** the forward attribute

to h(L) : go-find(o(L, N), null, < o(L’’, N’) : MobileObject | >)

< h(L) : Home | guests : OS, forward : F >

=> < h(L) : Home | >

to h(p1(F[N])) : go-find(o(L, N), p2(F[N]),

< o(L’’, N’) : MobileObject | >)

if not o(L, N) in OS /\ F[N] =/= undefined .

crl [arrive-find-loc] :

*** The message is redirected by using the new information of

*** the forward attribute

to h(L) : go-find(o(L, N), N’’, < o(L’’, N’) : MobileObject | >)

< h(L) : Home | guests : OS, forward : F >

=> < h(L) : Home | >

to h(p1(F[N])) : go-find(o(L, N), p2(F[N]),

< o(L’’, N’) : MobileObject | >)

if not o(L, N) in OS /\ p2(F[N]) > N’’ .

crl [arrive-find-loc] :

*** Redirection to the home location

to h(L’) : go-find(o(L, N), H, < o(L’’, N’) : MobileObject | >)

< h(L’) : Home | guests : OS >

=> < h(L’) : Home | >

to h(L) : go-find(o(L, N), null, < o(L’’, N’) : MobileObject | >)

if not o(L, N) in OS /\ L =/= L’ .

5.5.4 The creation of mobile objects

When an object (in the inner configuration of a mobile object), as part of the application
code, wants to create a new mobile object, it sends a newo message to the system (by

5.5. MM’   125

putting it in the second component of its state, the outgoing tray). The first action
accomplished by the system when it detects the newo(C, M, O) message is to create a
new mobile object with the configuration C as its state and the module M as its code, and
then to send a start-upmessage to the object Owith its new name. The application code
will be in charge of attending the start-upmessage as shown in page 133.

First, as for the other Mobile Maude commands, we need to provide rules for pulling
out newo commands. As for the to_:_ message in Section 5.5.2, we need three rules to
cover the different cases.

op errorModule : -> [Module] [ctor] .

op downModule : Term -> Module .

eq downModule(T) = downTerm(T, errorModule) .

rl [message-out-newo] :

< O : MobileObject | s : ’_&_[T, ’newo[T’, T’’, T’’’]] >

=> < O : MobileObject | s : ’_&_[T, ’none.Configuration] >

newo(downModule(T’), T’’, T’’’) .

rl [message-out-newo] :

< O : MobileObject | s : ’_&_[T, ’__[’newo[T’, T’’, T’’’], T’’’’]] >

=> < O : MobileObject | s : ’_&_[T, T’’’’] >

newo(downModule(T’), T’’, T’’’) .

crl [message-out-newo] :

< O : MobileObject | s : ’_&_[T, ’__[’newo[T’, T’’, T’’’], T’’’’, TL]] >

=> < O : MobileObject | s : ’_&_[T, ’__[T’’’’, TL]] >

newo(downModule(T’), T’’, T’’’)

if TL =/= empty .

Before creating the mobile object, we check that the initial state given to the newo com-
mand as second argument together with the start-upmessage is a valid configuration.

When a mobile object is created, its number of hops is set to zero, and the forwarding
information in the home at its parent location is initialized as expected—with its home
location as the location it is at and zero as its number of hops. Note that the value initially
given to the gas attribute of the new mobile object is 100, and that its identifier is included
in the set of guests of its home.

rl [create-object] :

newo(MOD, T, T’)

< h(L) : Home | cnt : N, guests : OS, forward : F >

=> if sortLeq(MOD,

leastSort(MOD, ’__[T, ’to_:_[T’, ’start-up[upTerm(o(L, N))]]]),

’Configuration)

then < h(L) : Home | cnt : N + 1,

guests : (o(L, N), OS),

forward : insert(N, (L, 0), F) >

< o(L, N) : MobileObject | mod : MOD,

s : ’_&_[’__[T, ’to_:_[T’, ’start-up[upTerm(o(L, N))]]],

’none.Configuration],

gas : 100,

hops : 0 >

else < h(L) : Home | >

fi .

126 C 5. MM

5.5.5 Mobile object destruction

After it has completed its task, a mobile object’s inner object may request the death of its
container mobile object. The rule message-out-kill directly destroys the mobile object
with the kill message in its outgoing messages tray (it must be the only one, so that all
other messages have been previously handled). However, its home location must be
informed, so that the forwarding information is appropriately updated.

rl [message-out-kill] :

< o(L, N) : MobileObject | s : ’_&_[T, ’kill.Msg] >

< h(L’) : Home | guests : (o(L, N), OS) >

=> < h(L’) : Home | guests : OS >

to h(L) : dead { N } .

The mobile-object-dead rule updates the forward attribute of the destroyed object’s
home location.

rl [mobile-object-dead] :

to h(L) : dead { N }

< h(L) : Home | forward : ((N |-> (L’, N’)), F) >

=> < h(L) : Home | forward : F > .

endom

5.6 A buying printers example

In this section we present a simple application to illustrate how mobile application code
can be written in Maude and can be wrapped in mobile objects. In this example we have
printers, buyers, and sellers; a buyer agent visits several printer sellers, who provide him
information on their printers. The buyer looks for the cheapest printer, and once he has
visited all the sellers, he goes back to the location of the seller offering the best price.

From the previous description, we can identify different actors, which may move freely
from one process to another, and therefore could be represented as mobile objects. In the
Mobile Maude approach the specification of the system consists of objects embedded
inside mobile objects, which communicate with each other via messages. In addition to
the term representing its state, each mobile object carries the code managing the behavior
of the configuration of objects and messages representing such a state. The main difference
with the usual specification of systems in Maude is that these objects must be aware of the
fact that they are inside mobile objects, and that in order to communicate with (objects in)
other mobile objects or to use some of the system messages available, they must follow
the appropriate protocol.

In our sample application we have two different classes of mobile objects: sellers and
buyers. Although in the simple example modeled here sellers do not move, they must
be mobile objects, because they communicate with other mobile objects, and therefore
have to be recognized as mobile objects by the Mobile Maude system. A buyer visits
several sellers, and he asks each seller he visits for the description of the seller’s printer,
represented here only by its price. The seller sends back this information, which the buyer
keeps if it corresponds to a better (cheaper) printer, otherwise he discards it. Once the
buyer has visited all the sellers he knows, he goes back to the location of the best offer.

5.6. A    127

We represent sellers and buyers as objects of respective classes Seller and Buyer.
Such objects in the application code will then be embedded as inner objects of their corre-
sponding mobile objects.

Sellers receive messages of the form get-printer-price(B), with B the identifier
of the buyer mobile object sending the message. A seller can send messages of the
form printer-price(N), with N a natural number representing the printer’s price. Both
are defined of sort Contents, declared in the module MOBILE-OBJECT-INTERFACE (see
Section 5.3).

fmod MESSAGES is

ex MOBILE-OBJECT-INTERFACE .

op get-printer-price : Mid -> Contents .

op printer-price : Nat -> Contents .

endfm

The class Seller has an attribute descriptionwith the printer price.

omod SELLER is

pr MESSAGES .

class Seller | description : Nat .

A seller’s behavior is represented by the following single rewrite rule: when a seller
receives a description (price) request, he sends the description back to the seller.

vars S B : Mid .

var N : Nat .

var Conf : Configuration .

rl [get-des] :

Conf (to S : get-printer-price(B))

< S : Seller | description : N > & none

=> Conf < S : Seller | > & to B : printer-price(N) .

endom

Note the use of the _&_ constructor. Since the printer description is sent to an object
outside the mobile object in which the Seller object is located, the message is placed in the
righthand outgoing tray. The rule get-des is applied only if the outgoing messages tray
is empty, making sure in this way that any previous outgoing message has been handled.
The _&_ operator is the top operator of the term representing the state of the mobile
object. Therefore, since there may be other objects and messages in the configuration in
its lefthand side component, we include a variable Conf of sort Configuration to match
the rest. Note also how an object may communicate with objects in other mobile objects,
which may be in different processes, in a completely transparent way.

A buyer has an attribute sellerswith a list of the identifiers of the known seller mobile
objects. It also has an attribute status with its current state: onArrival, asking, done,
or buying. Finally, the buyer keeps information about the printer with the best price in
the attributes price and bestSeller of sorts, respectively, Maybe{Nat} and Maybe{Oid}.
Initially, these two last attributes are null.

128 C 5. MM

omod BUYER is

pr LIST{Mid} * (op __ to _._, op nil to no-id) .

pr MAYBE{Nat} * (op maybe to null) .

pr MAYBE{Mid} * (op maybe to null) .

pr MESSAGES .

sort Status .

ops onArrival asking done buying : -> Status .

class Buyer | sellers : List{Mid},

status : Status,

price : Maybe{Nat},

bestSeller : Maybe{Oid} .

The first rewrite rule, move, handles the travels of the buyer to request information on
printers: if it is not in the middle of a request (its status is done) and there is at least one
seller name in the sellers attribute, it asks the system to take it to the host where the
next seller is located.

var S S’ B : Mid .

var OS : List{Mid} .

vars N N’ : Nat .

var L : Loc .

rl [move] :

< B : Buyer | sellers : o(L, N) . OS, status : done > Conf & none

=> < B : Buyer | status : onArrival > Conf & go-find(o(L, N), L) .

Since Mobile Maude guarantees that mobile objects moving from one process to
another are frozen (see Section 5.5.3), we know that, once the go-find command is given
in the move rule, the buyer object will not be able to do anything until the mobile object
in which it is embedded has reached the seller’s process. Therefore, since there is no rule
taking a Buyer object in onArrival state and a non-empty outgoing messages tray, this
object will not do anything until it reaches its destination.

On arrival, the buyer asks the seller for the printer description.

rl [onArrival] :

< B : Buyer | sellers : S . OS, status : onArrival > Conf & none

=> < B : Buyer | status : asking > Conf & (to S : get-printer-price(B)) .

When the printer price arrives, if it corresponds to the first time the buyer is asking
for a price (the attributes price and bestSeller are null) the buyer keeps it as the
best known price; otherwise, it compares it with the best known printer and updates its
information if needed. Notice that the first identifier in the list of known sellers gives us
the identifier of the seller it is currently interacting with.

rl [new-des] :

(to B : printer-price(N))

< B : Buyer | sellers : S . OS, price : null, status : asking,

bestSeller : null >

=> < B : Buyer | sellers : OS, price : N, status : done, bestSeller : S > .

5.6. A    129

rl [new-des] :

(to B : printer-price(N))

< B : Buyer | sellers : S . OS, price : N’, bestSeller : S’,

status : asking >

=> if (N < N’) then

< B : Buyer | sellers : OS, price : N, bestSeller : S,

status : done >

else < B : Buyer | sellers : OS, status : done >

fi .

Notice that since these last rules do not imply the sending of any message out of the
mobile object, we do not need to use the _&_ operator and the variable Conf to encompass
the whole state.

Finally, when the list of remaining sellers is empty, the buyer travels to find the best
buyer and reaches the buying status.

rl [buy-it] :

< B : Buyer | sellers : no-id, bestSeller : o(L, N), status : done >

Conf & none

=> < B : Buyer | status : buying > Conf & go-find(o(L, N), L) .

endom

Let us see an example of a distributed configuration, and how we can rewrite it
by using the erewrite command. Our sample buyers/sellers configuration, shown in
Figure 5.2, is constituted by three located configurations, each one to be executed in
a Maude process (as we have already seen in previous chapters). The architecture is
transparent to the application and thus it is not shown in the figure, although we have to
take care of it in the initial configurations. The first located configuration (shown in the
middle of the figure) contains a Home with identifier h(l(ip0, 0)), a mobile object with
identifier o(l(ip0, 0), 0) with a Seller in its belly, and the StarCenter (so it must be
executed before the other two ones). The Maude command to introduce the initial state
of this configuration is as follows:

mod PRINTERS-CENTER is

pr SELLER .

pr MOBILE-MAUDE-SEMANTICS .

pr STAR-CENTER{MM-Complement} .

endm

erew <> < l(ip0, 0) : StarCenter |

neighbors : empty,

state : idle,

defNeighbor : null,

port : 60039 >

< h(l(ip0, 0)) : Home |

cnt : 1,

guests : o(l(ip0, 0), 0),

forward : 0 |-> (l(ip0, 0), 0) >

< o(l(ip0, 0), 0) : MobileObject |

mod : upModule(’SELLER, false),

s : upTerm(< o(l(ip0, 0), 0) : Seller | description : 30 >

& none),

gas : 200,

hops : 0 > .

130 C 5. MM

h(l(IP,2)):Home

o(l(IP,2),0):Seller

15

h(l(IP,0)):Home

o(l(IP,0),0):Seller

o(l(IP,1),0):Buyer

30

 7. get-price

8. printer-price(30)

o(l(IP,1),0):Buyer

 4. get-price

5. printer-price(15)

h(l(IP,1)):Home

o(l(IP,1),1):Seller

o(l(IP,1),0):Buyer

1. get-price

2. printer-price(20)

20

3

6

9

Figure 5.2: Buyers and sellers configuration

Note how the function upModule is used to obtain the metarepresentation of the
module SELLER, and how the function upTerm is used to metarepresent the initial state of
the inner object.

The second located configuration (on the left) contains a StarNode, a Home, a Buyer
and a Seller with cheaper printers. The Maude command, introduced in a different
Maude process, is the following one:

erew <> < l(ip1, 0) : StarNode |

neighbors : empty,

state : idle,

defNeighbor : null,

port : 60039,

center : ip0 >

< h(l(ip1, 0)) : Home |

cnt : 1,

guests : (o(l(ip1, 0), 0), o(l(ip1, 0), 1)),

forward : ((0 |-> (l(ip1, 0), 0)), (1 |-> (l(ip1, 0), 0))) >

< o(l(ip1, 0), 0) : MobileObject |

mod : upModule(’BUYER, false),

s : upTerm(< o(l(ip1, 0), 0) : Buyer |

price : null,

status : done,

bestSeller : null,

sellers : (o(l(ip1, 0), 1) .

o(l(ip2, 0), 0) .

o(l(ip0, 0), 0)) >

& none),

gas : 200,

5.6. A    131

hops : 0 >

< o(l(ip1, 0), 1) : MobileObject |

mod : upModule(’SELLER, false),

s : upTerm(< o(l(ip1, 0), 1) : Seller | description : 20 >

& none),

gas : 200,

hops : 0 > .

Finally, the third located configuration (on the right in the figure) contains another
StarNode, a Home, and a Sellerwith the cheapest printers.

erew <> < l(ip2, 0) : StarNode |

neighbors : empty,

state : idle,

defNeighbor : null,

port : 60039,

center : ip0 >

< h(l(ip2, 0)) : Home |

cnt : 1,

guests : o(l(ip2, 0), 0),

forward : 0 |-> (l(ip2, 0), 0) >

< o(l(ip2, 0), 0) : MobileObject |

mod : upModule(’SELLER, false),

s : upTerm(< o(l(ip2, 0), 0) : Seller | description : 15 >

& none),

gas : 200,

hops : 0 > .

Figure 5.2 shows the order in which the different actions occur. First, the buyer asks
the seller at his same location (price 20). Then, the buyer travels to the location on the
right and asks the seller who sells printers costing 15. After that, the buyer travels to the
middle location and asks the seller there (price 30). Finally, the buyer travels to the right
location to find the seller with the best offer.

An execution of a Mobile Maude application is not intended to terminate, since the
located configurations are always waiting for messages or mobile objects to come in from
other configurations. As we showed in Section 2.7, we can stop the execution when it
seems to be finished by typing ˆC.

In the first Maude process we obtain the following configuration:

result Configuration:

<> receive(socket(5), b(socket(5)))

receive(socket(6), b(socket(6)))

receive(socket(7), b(socket(7)))

Receive(b(socket(6)), l(ip0, 0))

Receive(b(socket(7)), l(ip0, 0))

< h(l(ip0, 0)) : Home |

cnt : 1,

guests : o(l(ip0, 0), 0),

forward : 0 |-> l(ip0, 0), 0 >

< b(socket(5)) : BufferedSocket |

read : "",

complete : notFound >

< b(socket(6)) : BufferedSocket |

read : "",

132 C 5. MM

complete : notFound >

< b(socket(7)) : BufferedSocket |

read : "",

complete : notFound >

< l(ip0, 0) : StarCenter |

state : active,

neighbors : (l(ip1, 0) |-> b(socket(6)),

l(ip2, 0) |-> b(socket(7))),

defNeighbor : null,

port : 60039 >

< o(l(ip0, 0), 0) : MobileObject |

mod : mod_is_sorts_._____endm(...),

s : (’_&_[’<_:_|_>[’o[’l[’ip0.String,’0.Zero],’0.Zero],

’Seller.Seller,’description‘:_[’s_ˆ30[’0.Zero]]],’none.Configuration]),

gas : 199,

hops : 0 >

In the second Maude process we obtain:

result Configuration:

<> receive(socket(5), b(socket(5)))

Receive(b(socket(5)), l(ip1, 0))

< h(l(ip1, 0)) : Home |

cnt : 1,

guests : o(l(ip1, 0), 1),

forward : (0 |-> l(ip2, 0),4, 1 |-> l(ip1, 0),0) >

< b(socket(5)) : BufferedSocket |

read : "",

complete : notFound >

< l(ip1, 0) : StarNode |

state : active,

neighbors : empty,

defNeighbor : b(socket(5)),

port : 60039,

center : ip0 >

< o(l(ip1, 0), 1) : MobileObject |

mod : mod_is_sorts_._____endm(...),

s : (’_&_[’<_:_|_>[’o[’l[’ip1.String,’0.Zero],’s_[

’0.Zero]],’Seller.Seller,’description‘:_[’s_ˆ20[’0.Zero]]],

’none.Configuration]),

gas : 199,

hops : 0 >

And in the third Maude process we obtain:

result Configuration:

<> receive(socket(5), b(socket(5)))

Receive(b(socket(5)), l(ip2, 0))

< h(l(ip2, 0)) : Home |

cnt : 1,

guests : (o(l(ip1, 0), 0), o(l(ip2, 0), 0)),

forward : 0 |-> l(ip2, 0),0 >

< b(socket(5)) : BufferedSocket |

read : "",

complete : notFound >

5.7. A   133

< l(ip2, 0) : StarNode |

state : active,

neighbors : empty,

defNeighbor : b(socket(5)),

port : 60039,

center : ip0 >

< o(l(ip1, 0), 0) : MobileObject |

mod : mod_is_sorts_._____endm(...),

s : (’_&_[’<_:_|_>[’o[’l[’ip1.String,’0.Zero],’0.Zero],

’Buyer.Buyer,’_‘,_[’bestSeller‘:_[’o[’l[’ip2.String,

’0.Zero],’0.Zero]],’price‘:_[’s_ˆ15[’0.Zero]],’sellers‘:_[

’no-id.List‘{Mid‘}],’status‘:_[’buying.Status]]],’none.Configuration]),

gas : 190,

hops : 4 >

< o(l(ip2, 0), 0) : MobileObject |

mod : mod_is_sorts_._____endm(...),

s : (’_&_[’<_:_|_>[’o[’l[’ip2.String,’0.Zero],’0.Zero],

’Seller.Seller,’description‘:_[’s_ˆ15[’0.Zero]]],’none.Configuration]),

gas : 199,

hops : 0 >

Note that the buyer has finished his travel at the same location as that of the best seller.

5.7 An auction example

We show here an example where several auction centers send invitations offering their
items to some buyers. If these buyers want any item, they send an agent with some
money to buy them. The agent tries to buy the items and returns with the bought one,
returning the remaining money so the buyer can send another agent to other auction.

We first identify all the actors in this example, that will interact with each other. We
have buyers, agents, and auction centers. Although some of them do not travel, they
interchange messages, so they must be mobile objects.

To increase the non-determinism we define a MONEY module, that uses the RANDOM
predefined module to return a (pseudo) random amount of money, always less or equal
than the natural number given as argument of the money operator.

mod MONEY is

pr RANDOM .

inc NAT .

op money : Nat -> [Nat] .

var N : Nat .

rl [money1] :

money(N)

=> s(random(N) rem N) .

rl [money2] :

money(N)

=> s(random(N + 1) rem N) .

rl [money3] :

134 C 5. MM

money(N)

=> s(random(N + 2) rem N) .

endm

We define the sort for the items to be sold. We define a view Item to be able to use it
with the predefined parametric modules. We also specify the sort Answer, that represents
the possible answers of a buyer to an invitation.

fmod ITEM is

sort Item .

ops item1 item2 item3 : -> Item .

endfm

view Item from TRIV to ITEM is

sort Elt to Item .

endv

fmod ANSWER is

sort Answer .

ops ok refuse : -> Answer .

endfm

Now we define the messages that are going to be exchanged by the mobile objects.

fmod MESSAGES is

pr ANSWER .

inc MOBILE-OBJECT-ADDITIONAL-DEFS .

pr SET{Item} * (sort Set{Item} to ItemSet, op empty to noItem) .

- The auction center notifies a seller about a new auction.

op auction in_with_ : Mid ItemSet -> Contents .

- The buyer answers to the center if it will send an agent to the auction.

op _answers_ : Mid Answer -> Contents .

- An agent informs the identifier of its client to the auction the center.

op _represents to_ : Mid Mid -> Contents .

- A center offers an item to be auctioned.

op item_ : Item -> Contents .

- For each item offered in the auction, the agent can make a bid.

op no offer : -> Contents .

op _offers_ : Oid Nat -> Contents .

- The auction center informs whenever an agent obtains an item (with the price it
must pay), and when the auction is over.

5.7. A   135

op winner : Item Nat -> Contents .

op auction end : -> Contents .

- Finally, the agent returns with its client, giving him the bought items, communicat-
ing the items that it could not buy, and returning the remaining money.

op I bought_remaining_and_ : ItemSet ItemSet Nat -> Contents .

endfm

Agents must travel to the auction center location, try to obtain the items the buyer is
looking for, and return with these items and the remaining money. The Agent class has
the following attributes:

- the money that can be used to pay the items;

- the identifier of its client;

- the items wanted by its client and not obtained yet;

- the items that has been already bought;

- the identifier of the auction-centerwhere the agent must work; and

- the current state of the agent, of sort AgentState.

omod AGENT is

pr MESSAGES .

sort AgentState .

ops initial working finishing travelling end : -> AgentState .

class Agent | money : Nat, client : Oid, wanted : ItemSet, bought : ItemSet,

auction-center : Oid, state : AgentState .

Since agents are created by the buyers, the first thing they must do is to receive the
start-upmessage, that Mobile Maude sends them when they are created. When an agent
receives this message, it updates its name and sets its state to initial.

var I : Item .

vars IS IS’ : ItemSet .

vars N N’ N’’ : Nat .

var L : Loc .

vars O O’ O’’ : Mid .

var Conf : Configuration .

rl [start-up] :

(to tmp-id : start-up(O))

< tmp-id : Agent | state : ST >

=> < O : Agent | state : initial > .

The second action that the agent takes is to travel to the auction center location.

rl [travel] :

< O : Agent | state : initial, auction-center : o(L, N) > Conf & none

=> < O : Agent | state : travelling > Conf & go-find(o(L, N), L) .

136 C 5. MM

When the agent arrives to this location, it notifies the name of its client to the auction
center, reaching the working state.

rl [agent-arrival] :

< O : Agent | state : travelling, client : O’, auction-center : O’’ >

Conf & none

=> < O : Agent | state : working > Conf &

(to O’’ : O represents to O’) .

When a new item is offered, the agent checks whether its client wants the item or not.
When the client wants the item, the agent makes an offer non-deterministically by using
the money operator from module MONEY, so we can obtain different results depending on
the selected rule.

crl [new-item] :

(to O : item I)

< O : Agent | wanted : IS, auction-center : O’ > Conf & none

=> < O : Agent | > Conf & (to O’ : no offer)

if not I in IS .

crl [new-item] :

(to O : item I)

< O : Agent | money : N, wanted : (I, IS), auction-center : O’ > Conf & none

=> < O : Agent | > Conf & (to O’ : O offers N’)

if N > 0 /\

money(N) => N’ .

If the agent makes the best offer, it receives a message with the item and the price.

rl [winner] :

(to O : winner(I, N’))

< O : Agent | money : N, wanted : (I, IS), bought : IS’ >

=> < O : Agent | money : sd(N, N’), wanted : IS, bought : (I, IS’) > .

When the auction finishes, the agent goes to the client location.

rl [auction-end] :

(to O : auction end)

< O : Agent | client : o(L, N), state : working > Conf & none

=> < O : Agent | state : finishing >

Conf & go-find(o(L, N), L) .

When the agent arrives to the client location, it gives to the buyer the bought items,
the list of items that it could not buy, and the remaining money, and reaches the end state,
to be finally deleted.

rl [end] :

< O : Agent | money : N, client : O’, wanted : IS, bought : IS’,

state : finishing > Conf & none

=> < O : Agent | state : end > Conf &

(to O’ : bought IS’ remaining IS and N) .

rl [end] :

< O : Agent | state : end > Conf & none

=> < O : Agent | > Conf & kill .

endom

5.7. A   137

A buyer just waits while the agents it has created travel through the auction centers
and get the items it wants. The Buyer class has the following attributes:

- the money it can give to the agents to buy its desired items;

- the items wanted, that the agents must try to obtain;

- the items bought by the agents so far; and

- the current state of the buyer.

omod BUYER is

pr AGENT .

sort BuyerState .

ops buying finished : -> BuyerState .

class Agent | money : Nat, wanted : ItemSet, bought : ItemSet,

state : BuyerState .

When a new auction is announced to the buyer it checks if it is interested in any of
the offered items. Then it creates an agent that sends to the auction center. The items
that the buyer wants from this auction are removed from the wanted attribute. If finally
the agent does not get them, the buyer can to try obtain them in another auction. The
money received by the agent is decided non-deterministically by means of the rules from
module MONEY.

vars IS IS’ IS’’ IS’’’ newWanted : ItemSet .

vars N N’ : Nat .

vars O O’ O’’ : Mid .

var Conf : Configuration .

crl [new-auction] :

(to O : auction in O’ with IS’)

< O : Buyer | money : N, wanted : IS, state : buying > Conf & none

=> < O : Buyer | money : sd(N, N’), wanted : IS \ IS’, state : start > Conf &

if intersection(IS, IS’) =/= noItem then

newo(upModule(’AGENT, false),

< tmp-id : Agent |

money : N’, wanted : intersection(IS, IS’), client : O,

bought : noItem, auction-center : O’,

state : initial >,

tmp-id)

to O’ : O answers ok

else

to O’ : O answers refuse

fi

if N > 0 /\

money(N) => N’ .

When the agent arrives with the bought items, the buyer checks if it wants more things
or not, and changes its state accordingly.

138 C 5. MM

rl [new-items] :

(to O : bought IS’’ remaining IS’’’ and N’)

< O : Buyer | money : N, wanted : IS, bought : IS’, state : buying >

=> < O : Buyer | money : (N + N’), wanted : (IS, IS’’’),

bought : (IS’, IS’’) > .

rl [new-items] :

< O : Buyer | wanted : noItem, state : buying >

=> < O : Buyer | state : finished > .

endom

An auction center is in charge of inviting all the possible buyers to the auction, waiting
for the agents of the buyers that confirmed the assistance, and selling the articles. To
achieve it, the class Center has the following attributes:

- the items to be sold;

- the buyers possibly interested in the auction;

- the buyers that have accepted the invitation to the auction;

- the agents that have come to the auction;

- the current auctioned item;

- the agent (bestAgent) that has made the highest offer (bestOffer);

- a counter to keep track of the number of buyer’s answers and agent’s offers; and

- its current state.

omod AUCTION-CENTER is

pr MESSAGES .

pr SET{Mid} .

pr MAYBE{Mid} .

pr MAYBE{Nat} .

pr MAYBE{Item} .

sort CenterState .

ops inviting waitingResponse waitingAgents waitingOffers

working finished : -> CenterState .

class Center | items : ItemSet, buyers : Set{Mid}, accepted : Set{Mid},

agents : Set{Mid}, current : Maybe{Item},

bestAgent : Maybe{Mid}, bestOffer: Maybe{Nat}, counter : Nat,

state : CenterState .

We have two kinds of auctions:

- Sealed-bid first-price auction, where all bidders simultaneously submit bids so that
no bidder knows the bid of any other participant. The highest bidder pays the price
they submitted.

- Sealed-bid second-price auction, where the bidders make the offers in the same way
than the auction above, but the highest bidder pays the second highest price.

5.7. A   139

We distinguish between the two types of auction by creating two subclasses of Center.
The centers that use the first type will be instances of the class SBFP, that has no new
attributes, while the centers that use the second type are instances of SBSP, that has a new
attribute second, where they keep the second highest price.

class SBFP | .

subclass SBFP < Center .

class SBSP | second : Maybe{Nat} .

subclass SBSP < Center .

Initially, the auction center sends an invitation to all the buyers it knows.

vars O O’ O’’ : Mid .

vars OS OS’ : Set{Mid} .

vars N N’ N’’ : Nat .

var Conf : Configuration .

var I : Item .

var IS : ItemSet .

var A : Answer .

var C : Contents .

rl [invite] :

< O : Center | buyers : OS, state : inviting,

items : IS > Conf & none

=> < O : Center | state : waitingResponse > Conf &

broadcast(OS, auction in O with IS) .

op broadcast : Set{Mid} Contents -> Configuration .

eq broadcast(empty, C) = none .

eq broadcast((O , OS), C) = broadcast(OS, C) (to O : C) .

When the auction center receives an answer from a buyer, it updates its accepted and
counter attributes.

rl [buyer-answer] :

(to O : O’ says A)

< O : Center | accepted : OS, counter : N, state : waitingResponse >

=> < O : Center | accepted : if (A == ok) then (O’ , OS) else OS fi,

counter : s(N) > .

Once all the buyers have sent the response, the center waits for their agents.

crl [all-answers] :

< O : Center | buyers : OS, counter : N, state : waitingResponse >

=> < O : Center | counter : 0, state : waitingAgents >

if | OS | == N .

As before, the auction center waits for all the agents, and once they have arrived, the
auction starts.

rl [new-agent] :

(to O : O’ represents to O’’)

< O : Center | accepted : (O’’ , OS), agents : OS’,

state : waitingAgents >

140 C 5. MM

=> < O : Center | agents : (O’ , OS’) > .

crl [all-agents] :

< O : Center | accepted : OS, agents : OS’, state : waitingAgents >

=> < O : Center | state : working >

if | OS | == | OS’ | .

While there are available items for the auction and there is no currently auctioned
item (that is, current is maybe), a new one is announced.

rl [new-item] :

< O : Center | agents : OS, items : (I, IS), current : maybe,

state : working > Conf & none

=> < O : Center | items : IS, current : I, state : waitingOffers >

Conf & broadcast(OS, item I) .

When an answer arrives and it is not an offer, the center only updates the counter.

rl [new-response] :

(to O : no offer)

< O : Center | counter : N >

=> < O : Center | counter : s(N) > .

When a bid arrives, we distinguish between the classes of auctions. In the case of the
SBFP objects, they only update the attributes bestAgent and bestOffer.

rl [new-response] :

(to O : O’ offers N)

< O : SBFP | bestAgent : maybe, bestOffer : maybe, counter : N’ >

=> < O : SBFP | bestAgent : O’, bestOffer : N, counter : s(N’) > .

rl [new-response] :

(to O : O’ offers N)

< O : SBFP | bestAgent : O’’, bestOffer : N’, counter : N’’ >

=> if N > N’ then

< O : SBFP | bestAgent : O’, bestOffer : N, counter : s(N’’) >

else

< O : SBFP | bestAgent : O’’, bestOffer : N’, counter : s(N’’) >

fi .

In the case of the SBSP objects, they also update the second attribute. The first time a
bid is received bestOffer and second have the same value, but when other bids arrive
these values differ.

rl [new-response] :

(to O : O’ offers N)

< O : SBSP | bestAgent : maybe, bestOffer : maybe, second : maybe,

counter : N’ >

=> < O : SBSP | bestAgent : O’, bestOffer : N, second : N, counter : s(N’) > .

rl [new-response] :

(to O : O’ offers N)

< O : SBSP | bestAgent : O’’, bestOffer : N’, second : N’’, counter : N’’’ >

=> if N > N’ then

5.7. A   141

< O : SBSP | bestAgent : O’, bestOffer : N, second : N’,

counter : s(N’’’) >

else

< O : SBSP | counter : s(N’’’) >

fi .

When all the agents have sent their answers, the center checks if there is an offer (that
is, the bestOffer is not maybe) and sends the item to the winner. The difference between
the two classes is the price communicated in the winnermessage.

crl [all-offers] :

< O : SBFP | bestAgent : O’, bestOffer : N, counter : N’, current : I,

agents : OS, state : waitingOffers > Conf & none

=> < O : SBFP | bestAgent : maybe, bestOffer : maybe, counter : 0,

current : maybe, state : working >

Conf & (to O’ : winner(I, N))

if | OS | == N’ .

crl [all-offers] :

< O : SBSP | bestAgent : O’, bestOffer : N, second : N’, counter : N’’,

current : I, agents : OS, state : waitingOffers, AtS >

Conf & none

=> < O : SBSP | bestAgent : maybe, bestOffer : maybe, second : maybe,

counter : 0, current : maybe, state : working >

Conf & (to O’ : winner(I, N’))

if | OS | == N’’ .

If there were no offers, the item is discarded.

crl [all-offers] :

< O : Center | bestAgent : maybe, bestOffer : maybe, counter : N’,

current : I, agents : OS, state : waitingOffers >

=> < O : Center | counter : 0, current : maybe, state : working >

if | OS | == N’ .

Finally, when the set of items to sell becomes empty, the auction finishes.

rl [no-more-items] :

< O : Center | items : noItem, agents : OS, state : working >

Conf & none

=> < O : Center | state : finished > Conf & broadcast(OS, auction end) .

endom

We can use the star architecture to execute an example. An initial configuration for
the star center with an auction center of class SBFP is:

erew <> < l(ip0, 0) : StarCenter |

neighbors : empty,

state : idle,

defNeighbor : null,

port : 60039 >

< h(l(ip0, 0)) : Home |

cnt : 1,

guests : o(l(ip0, 0), 0),

142 C 5. MM

forward : 0 |-> (l(ip0, 0), 0) >

< o(l(ip0, 0), 0) : MobileObject |

mod : upModule(’AUCTION-CENTER, false),

s : upTerm(< o(l(ip0, 0), 0) : SBFP | buyers : (o(l(ip1, 0), 0),

o(l(ip2, 0), 0)),

accepted : empty,

agents : empty,

items : item1,

state : inviting,

current : maybe,

bestOffer : maybe,

bestAgent : maybe,

counter : 0 >

& none),

gas : 200,

hops : 0 > .

A star node with a buyer looks as follows:

erew <> < l(ip1, 0) : StarNode |

neighbors : empty,

state : idle,

defNeighbor : null,

port : 60039,

center : ip0 >

< h(l(ip1, 0)) : Home |

cnt : 1,

guests : o(l(ip1, 0), 0),

forward : 0 |-> (l(ip1, 0), 0) >

< o(l(ip1, 0), 0) : MobileObject |

mod : upModule(’BUYER, false),

s : upTerm(< o(l(ip1, 0), 0) : Buyer | money : 10,

bought : noItem,

wanted : item1,

state : buying >

& none),

gas : 200,

hops : 0 > .

An auction center of class SBFP located in other star node is defined as follows:

erew <> < l(ip3, 0) : StarNode |

neighbors : empty,

state : idle,

defNeighbor : null,

port : 60039,

center : ip0 >

< h(l(ip3, 0)) : Home |

cnt : 1,

guests : o(l(ip3, 3), 0),

forward : 0 |-> (l(ip3, 0), 0) >

< o(l(ip3, 0), 0) : MobileObject |

mod : upModule(’AUCTION-CENTER, false),

s : upTerm(< o(l(ip3, 3), 0) : SBSP | buyers : (o(l(ip1, 0), 0),

o(l(ip2, 0), 0)),

5.8. MM  143

accepted : empty,

agents : empty,

items : (item1, item4),

state : inviting,

current : maybe,

bestOffer : maybe,

second : maybe,

bestAgent : maybe,

counter : 0 >

& none),

gas : 200,

hops : 0 > .

5.8 Mobile Maude skeletons

Another way in which the applications shown in Chapter 4 can be executed in a parallel
way is by using mobile objects on top of Mobile Maude. The workers are mobile objects
that are created by the master and travel to a free location to compute the solution to the
subproblems they have been assigned. A better approach is to use skeletons, in this case
by using “generic” mobile objects, that receive as data the module solving each concrete
problem as initial information.

5.8.1 Euler numbers case study

We show an implementation of the Euler numbers problem (shown in Section 4.1.1)
built with a master that distributes the work amongst several workers and combines
their subresults. The concrete problems that must be solved in this application are Euler
numbers.

We define first the messages that are going to be transmitted, that must have sort
Contents, defined inMOBILE-OBJECT-INTERFACE. We just need two messages, one sending
new problems to the workers and another communicating the (sub)result.

fmod MESSAGES is

inc MOBILE-OBJECT-INTERFACE .

op new-work : Nat -> Contents .

op finished : Mid Nat -> Contents .

endfm

The Worker class has attributes that store the master identifier, the assigned location
where it has to work, and the list of unfinished tasks (next).

omod WORKER is

pr MESSAGES .

pr EULER .

class Worker | master : Mid, loc : Loc, next : NatList .

This module must import the messages shown above and theEULERmodule4 described
in Section 4.1.1. At start up, the worker travels to its assigned location.

4Note we use the EULER module, that contains only the functions solving single Euler numbers, not
SUM-EULER, that contains the function computing the whole sum.

144 C 5. MM

var M M’ W O : Mid .

vars N N’ : Nat .

var L : Loc .

var NL : NatList .

var Conf : Configuration .

rl [start-up] :

(to tmp-id : start-up(O))

< tmp-id : Worker | loc : L > Conf & none

=> < O : Worker | > Conf & go(L) .

When a new number arrives, the worker appends it to the list of unfinished tasks.

rl [new-work] :

to W : new-work(N)

< W : Worker | next : NL >

=> < W : Worker | next : NL N > .

Finally, while the list of unfinished tasks is not empty, the worker calculates another
Euler number and sends it to the master.

crl [working] :

< W : Worker | next : N NL, master : M > Conf & none

=> < W : Worker | next : NL > Conf & to M : finished(W, N’)

if N’ := euler(N) .

endom

The Master class keeps information about the number of workers it must create
(numWorkers); the partial result; the current Euler number we must compute (which
is decreased when new works are delivered); and the list of available locations where
workers can be sent (locs).

omod MASTER is

pr WORKER .

pr LIST{Oid} * (sort List{Oid} to LocList,

op nil to mtLocList) .

class Master | numWorkers : Nat, result : Nat, current : Nat,

locs : LocList .

The first action the master takes is to create the objects that will work in the clients (so
it imports the WORKER module), and assign three initial works5 to each of them, in order
to have the workers as occupied as possible, that is, computing another value while new
tasks arrive.

vars M O : Mid .

vars N N’ X Y N’’ R C : Nat .

var Conf : Configuration .

var L : Loc .

var LL : LocList .

rl [new-worker] :

5In the following section this initial assignment will be generalized.

5.8. MM  145

< O : Master | numWorkers : s(N), locs : L LL, current : N’ > Conf & none

=> < O : Master | numWorkers : N, locs : LL L, current : sd(N’, 3) > Conf &

newo(upModule(’WORKER, false),

< tmp-id : Worker | master : O,

loc : L,

next : (N’ sd(N’, 1) sd(N’, 2)) >,

tmp-id) .

Note that the location L is moved from the beginning to the end of the loc list, so it could
be used again if the initial number of workers is bigger that the length of this list.

When a new subresult arrives to the server, it is combined with the current result by
adding them, and a new task is sent (if it is possible).

rl [new-work] :

to O : finished(M, N’’) Conf & none

< O : Master | current : s(N), result : N’ >

=> < O : Master | current : N, result : N’ + N’’ > Conf &

to M : new-work(s(N)) .

rl [no-more-work] :

to O : finished(M, N’)

< O : Master | current : 0, result : N >

=> < O : Master | result : N + N’ > .

endom

Like the Euler instantiation in Section 4.3.3, we use the star architecture in this example.
The initial term for the master, that is located in the center of the star, in an example with
two workers and 100 as initial number to compute is:

erew <> < l(ip0, 0) : StarCenter |

neighbors : empty,

state : idle,

defNeighbor : null,

port : 60039 >

< h(l(ip0, 0)) : Home |

cnt : 1,

guests : o(l(ip0, 0), 0),

forward : (0 |-> (l(ip0, 0), 0)) >

< o(l(ip0, 0), 0) : MobileObject |

mod : upModule(’MASTER, false),

s : upTerm(< o(l(ip0, 0), 0) : Master |

counter : 0,

numWorkers : 2,

result : 0,

locs : l(ip1, 0) l(ip2, 0),

current : 100 >

& none),

gas : 400,

hops : 0 > .

The unique difference between the two worker’s locations is their name. The initial
term for the first one is:

erew <> < l(ip1, 0) : StarNode |

146 C 5. MM

state : idle,

neighbors : empty,

defNeighbor : null,

port : 60039,

center : ip0 >

< h(l(ip1, 0)) : Home |

cnt : 0,

guests : empty,

forward : empty > .

5.8.2 The farm skeleton in Mobile Maude

In Chapter 4 we described how to specify algorithmic skeletons by simulating higher
order functions by means of parameterization. We show here a different approach based
in the META-LEVELmodule, that allows to use (metarepresented) Maude modules as data.
Our Mobile Maude farm skeleton will have a Master class with the number of workers
(numWorkers); the partial result, that is now a Term, because it represents the result
of all possible applications; the current subproblem (a Term too); the list of available
locations (locs); the number of initial works assigned to each worker numWorks; and (the
metarepresentation of) a module, that will store the concrete application code.

class Master | numWorkers : Nat, result : Term, current : Term,

locs : LocList, numWorks : Nat, module : Module .

The metarepresented module must contain some fixed operators:

- do-work, that solves the subproblems;

- reduce, that updates the current problem by making it smaller;

- next-work, that gets the next subproblem from the current problem;

- combine, that merges the current (partial) result with a subresult; and

- finished?, that checks if there are more subproblems.

In the Worker class we still need the master identifier, the assigned location, and the
list of unfinished tasks (next, that is now a term list), and we need a new attribute with
(the metarepresentation of) the application module.

class Worker | master : Mid, loc : Loc, next : TermList, module : Module .

The messages must change in order to dispatch generic data. They transmit now data
of type Term, that will represent the concrete data for each application.

mod MESSAGES is

inc MOBILE-OBJECT-ADDITIONAL-DEFS .

op new-work : Term -> Contents .

op finished : Mid Term -> Contents .

endm

5.8. MM  147

In the worker, the start-up and new-work rules remains almost unchanged, while the
working rule uses the metaReduce operation (notice how the operator do-work defined in
the application module is used).

crl [working] :

< W : Worker | next : (T, TL), module : Mod, master : M > Conf & none

=> < W : Worker | next : TL > Conf & to M : finished(W, T’)

if T’ := getTerm(metaReduce(Mod, ’do-work[T])) .

The main changes have been made in the master module. When a new worker is
created, we assign it the tasks specified by numWorks.

crl [new-worker] :

< O : Master | numWorkers : s(N), locs : L LL, module : Mod,

current : T, numWorks : N’ > Conf & none

=> < O : Master | numWorkers : N, locs : LL L, current : T’ > Conf &

newo(upModule(’WORKER, false),

< tmp-id : Worker | module : Mod,

master : O,

next : getTasks(Mod, T, N’),

loc : L,

counter : 0,

st : tr >,

tmp-id)

if T’ := update(Mod, T, N’) .

where getTasks and update are operators that make use of next-work, reduce, and
finished? at the metalevel to obtain the next tasks and update the current problem.

op getTasks : Module Term Nat -> TermList .

ceq getTasks(Mod, T, s(N)) = T’, getTasks(Mod, T1, N)

if getTerm(metaReduce(Mod, ’finished?[T])) == ’false.Bool /\

T’ := getTerm(metaReduce(Mod, ’next-work[T])) /\

T1 := getTerm(metaReduce(Mod, ’reduce[T])) .

eq getTasks(Mod, T, N) = empty [owise] .

op update : Module Term Nat -> Term .

ceq update(Mod, T, s(N)) = update(Mod, T’, N)

if getTerm(metaReduce(Mod, ’finished?[T])) == ’false.Bool /\

T’ := getTerm(metaReduce(Mod, ’reduce[T])) .

eq update(Mod, T, N) = T [owise] .

When a new subresult arrives, we combine the results (by using combine at the
metalevel) and distinguish again whether we have more tasks to send or not (by using
finished?).

crl [new-work] :

to O : finished(M, T’’) Conf & none

< O : Master | current : T, result : T’, module : Mod >

=> < O : Master | current : T1, result : T2 > Conf &

to M : new-work(T3)

if getTerm(metaReduce(Mod, ’finished?[T])) == ’false.Bool /\

T1 := getTerm(metaReduce(Mod, ’reduce[T])) /\

T2 := getTerm(metaReduce(Mod, ’combine[T’, T’’])) /\

148 C 5. MM

T3 := getTerm(metaReduce(Mod, ’next-work[T])) .

crl [no-more-work] :

to O : finished(M, T’’)

< O : Master | current : T, result : T’, module : Mod >

=> < O : Master | result : T1 >

if getTerm(metaReduce(Mod, ’finished?[T])) == ’true.Bool /\

T1 := getTerm(metaReduce(Mod, ’combine[T’, T’’])) .

Euler numbers instantiation

For our Euler numbers example we define the following module:

fmod EULER-MM-PROBLEM is

pr EULER .

vars N N’ : Nat .

op do-work : Nat -> Nat .

op reduce : Nat ˜> Nat .

op next-work : Nat -> Nat .

op combine : Nat Nat -> Nat .

op finished? : Nat -> Bool .

eq do-work(N) = euler(N) .

eq reduce(s(N)) = N .

eq next-work(N) = N .

eq combine(N, N’) = N + N’ .

eq finished?(N) = N == 0 .

endfm

The initial configuration of the master, in an example with two workers and initial
problem 100 is:

erew <> < l(ip0, 0) : StarCenter |

neighbors : empty,

state : idle,

defNeighbor : null,

port : 60039 >

< h(l(ip0, 0)) : Home |

cnt : 1,

guests : o(l(ip0, 0), 0),

forward : 0 |-> (l(ip0, 0),0) >

< o(l(ip0, 0), 0) : MobileObject |

mod : upModule(’MASTER, false),

s : upTerm(< o(l(ip0, 0), 0) : Master |

numWorkers : 2,

current : upTerm(100),

result : upTerm(0),

module : upModule(’EULER-MM-PROBLEM, false),

locs : l(ip1, 0) l(ip2, 0),

counter : 0,

numWorks : 3 >

& none),

gas : 2000,

hops : 0 > .

5.8. MM  149

where the ipi are strings denoting IP addresses.
The initial configuration for one of the locations that will receive workers is:

erew <> < l(ip1, 0) : StarNode |

neighbors : empty,

state : idle,

defNeighbor : null,

port : 60039,

center : ip0 >

< h(l(ip1, 0)) : Home |

cnt : 0,

guests : empty,

forward : empty > .

Notice that the skeleton code (the master and the workers) will be metarepresented
in the belly of the mobile objects, so the application code will have two reflection levels.
Despite we have obtained an application that can be executed among several hosts, the
two levels of reflection suppose a lot of “extra work”, because the terms must move
between them, thus performing additional work in order to be executed and obtaining
almost the same time that the sequential applications obtain.

Chapter 6

Formal analysis of distributed
applications

Formal verification is the process of checking whether a design satisfies some require-
ments (properties). In order to formally verify a distributed system, it must first be
converted into a simpler “verifiable” format. To do that in Maude by using its provided
tools, we must be able of represent the whole system in one single term in order to prove
the properties over it.

Model checking is a method for formally verifying finite-state concurrent systems [16].
It has several important advantages over mechanical theorem provers or proof checkers;
the most important is that the procedure is completely automatic. The main disadvantage
is the state space explosion, that can occur if the system being verified has many components
that can make transitions in parallel.

Maude’s model checker [31] allows us to prove properties on Maude specifications
when the set of states reachable from an initial state in such a Maude system module is
finite. This is supported in Maude by its predefined MODEL-CHECKER module and other
related modules, which can be found in the model-checker.maude file distributed with
Maude.

The properties to be checked are described by using a specific property specification
logic, namely Linear Temporal Logic (LTL) [46, 16], which allows specification of properties
such as safety properties (ensuring that something bad never happens) and liveness
properties (ensuring that something good eventually happens). Then, the model checker
can be used to check whether a given initial state, represented by a Maude term, fulfills a
given property.

Sometimes all the power of model checking is not needed. Another Maude’s analysis
tool is the search command (see Section 2.4), that allows to explore (following a breadth
first search strategy) the reachable states in different ways. By using the search command
we can check invariants. An invariant I is a predicate over a transition system defining a
subset of states meeting two properties:

- it contains the initial state s0.

- it contains any state reachable from s0 through a finite number of transitions.

If an invariant holds, then we know that something “bad” can never happen, namely,
the negation ¬I of the invariant is impossible. Thus, if the command

151

152 C 6. F    

search init =>* C:Configuration such that not I(C:Configuration) .

has no solution, then I holds.
Finally, we can also use the search command to check properties over final configu-

rations.
We illustrate the use of all these techniques with a small example in the following

section.

6.1 A taste of Maude analysis tools

We show here how to use the search command and the Maude model checker by means
of some small examples. First, we explain the usage of search to check invariants with
an example extracted from [18]. Consider a simple clock that marks the hours of the day.
The implementation in Maude of such a clock is:

mod SIMPLE-CLOCK is

pr INT .

sort Clock .

op clock : Int -> Clock [ctor] .

var T : Int .

rl clock(T) => clock((T + 1) rem 24) .

endm

An invariant property of this clock is that the hour marked will be greater or equal
than 0 and less or equal than 24. To check that this property is an invariant, we look for a
configuration of the clock where it does not hold, that is

search clock(0) =>* clock(T) such that T < 0 or T >= 24 .

No solution.

Since Maude answers with No solution., we can assert that the property is really an
invariant.

As we have said, the search command can also be used to check properties about
final states. Suppose we define a vending machine that dispenses apples for one dollar
and cakes for three quarter dollars. The Maude specification of this machine (different
from the one shown in Section 2.2) is defined as follows:

mod VENDING-MACHINE is

sorts Coin Item Marking .

subsorts Coin Item < Marking .

op __ : Marking Marking -> Marking [assoc comm id: null] .

op null : -> Marking .

ops $ q : -> Coin .

ops a c : -> Item .

6.1. A  M   153

rl [buy-c] : $ => c .

rl [buy-c] : q q q q => c .

rl [buy-a] : $ => a q .

rl [buy-a] : q q q => a .

We add a function withApple that checks if a marking contains an apple.

var M : Marking .

op withApple : Marking -> Bool .

eq withApple(a M) = true .

eq withApple(M) = false [owise] .

endm

We can check that, if we start with the marking $ $ $ q q q, it is impossible to reach
a final state (denoted with the notation =>!) that fulfills the condition that it contains no
apples (denoted with the notation such that):

search $ $ $ q q q =>! M:Marking such that not withApple(M:Marking) .

No solution.

Now, we illustrate how to use the Maude model checker with a simple mutual ex-
clusion example, also extracted from [18]. We define the module MUTEX, in which two
processes, one named a and another named b, can be either waiting or in their critical
section.

mod MUTEX is

sorts Name Mode Proc Token Conf .

subsorts Token Proc < Conf .

op none : -> Conf [ctor] .

op __ : Conf Conf -> Conf [ctor assoc comm id: none] .

ops a b : -> Name [ctor] .

ops wait critical : -> Mode [ctor] .

op [_,_] : Name Mode -> Proc [ctor] .

The processes take turns accessing their critical section by passing each other a different
token (either $ or *).

ops * $: -> Token [ctor] .

rl [a-enter] : $ [a, wait] => [a, critical] .

rl [b-enter] : * [b, wait] => [b, critical] .

rl [a-exit] : [a, critical] => [a, wait] * .

rl [b-exit] : [b, critical] => [b, wait] $.

endm

Now we define the module defining the properties that will be checked about the
system above. To use the model checker we just need to make explicit two things: the
intended sort of states and the relevant state predicates, that is, the relevant LTL atomic
propositions. The module SATISFACTION defines sorts for both the states (State) and the
predicates (Prop), and an operator _|=_, that indicates when an state satisfies a predicate.

154 C 6. F    

op _|=_ : State Prop -> Bool [frozen] .

Our obvious sort for states is the sort Conf of configurations.

mod MUTEX-PREDS is

protecting MUTEX .

including SATISFACTION .

subsort Conf < State .

In order to state the desired safety and liveness properties we need state predicates
telling us whether a process is waiting or is in its critical section. We can make these
predicates parametric on the name of the process and define their semantics.

op crit : Name -> Prop .

op wait : Name -> Prop .

We give now the equations, defining when each of the two parametric state predicates
holds in a given state.

var N : Name .

var C : Conf .

var P : Prop .

eq [N, critical] C |= crit(N) = true .

eq [N, wait] C |= wait(N) = true .

eq C |= P = false [owise] .

endm

Note the use of the _|=_ to define the properties.
To check properties about the system above we must define an initial state. The module

LTL-SIMPLIFIER tries to reduce the formulas in order to obtain a smaller automata, while
the module MODEL-CHECKER defines the operator modelCheck, used to check if a state
fulfills a formula. The result of reducing this function has sort ModelCheckResult, that
can be either a Boolean or a counterexample.

op modelCheck : State Formula ˜> ModelCheckResult [special(...)] .

We use the following module:

mod MUTEX-CHECK is

protecting MUTEX-PREDS .

including LTL-SIMPLIFIER .

including MODEL-CHECKER .

ops initial1 initial2 : -> Conf .

eq initial1 = $ [a, wait] [b, wait] .

eq initial2 = * [a, wait] [b, wait] .

endm

The first obvious property to check is mutual exclusion:

6.2. R   SOCKET  155

red modelCheck(initial1, [] ˜(crit(a) /\ crit(b))) .

result Bool: true

red modelCheck(initial2, [] ˜(crit(a) /\ crit(b))) .

result Bool: true

If a property does not hold, a counterexample is shown. Suppose that we want to
check if, beginning in the state initial1, process bwill always be waiting.

red modelCheck(initial1, [] wait(b)) .

Maude returns a sequence of pairs of states and rule names, where the process b
obtains the critical state.

counterexample({$ [a, wait] [b, wait], a-enter}

{[a, critical] [b, wait], a-exit}

{* [a, wait] [b, wait], b-enter},

{[a, wait] [b, critical], b-exit}

{$ [a, wait] [b, wait], a-enter}

{[a, critical] [b, wait], a-exit}

{* [a, wait] [b, wait], b-enter})

6.2 Redefinition of the SOCKETmodule

In order to be able to represent a whole distributed configuration as a single term, we have
provided an algebraic specification of sockets. We have redefined the SOCKET module,
simulating the behavior of sockets on local configurations. This specification expresses
processes as terms of a class Process, that has an attribute conf. Processes are identified
with the name of the location, that corresponds with the name of the unique router in the
configuration conf, in order to simplify the definition of the properties to be checked (see
Section 6.5).

omod SOCKET is

inc STRING .

class Process | conf : Configuration .

Processes work as hosts in the distributed version, keeping their configuration sepa-
rated from the others in their attribute. Message passing is then defined between processes
instead of between hosts, where the messages are defined as follows:1

msg createClientTcpSocket : Oid Oid String Nat -> Msg .

msg createServerTcpSocket : Oid Oid Nat Nat -> Msg .

msg createdSocket : Oid Oid Oid -> Msg .

msg acceptClient : Oid Oid -> Msg .

msg acceptedClient : Oid Oid String Oid -> Msg .

msg send : Oid Oid String -> Msg .

msg sent : Oid Oid -> Msg .

msg receive : Oid Oid -> Msg .

msg received : Oid Oid String -> Msg .

msg closeSocket : Oid Oid -> Msg .

msg closedSocket : Oid Oid String -> Msg .

1Since this centralized version does not have connection errors, messages dealing with these situations
are not modeled.

156 C 6. F    

Thus, we have specified the socket manager and client and server sockets to deal with
processes:

- The socket manager is now an instance of a class Manager, with a count attribute to
name new sockets.

class Manager | count : Nat .

op socketManager : -> Oid [ctor] .

- The client sockets are instances of a class Socketwith attributes source (the source
Process), target (the target Process), and socketState (the socket state). Notice
that although we talk about source and target, sockets are bidirectional. Socket
identifiers have the form socket(N)with N a natural number.

class Socket | source : Oid, target : Oid, socketState : SocketState .

sort SocketState .

ops active closed : -> SocketState .

op socket : Nat -> Oid [ctor] . ---- socket objects identifiers

- The server sockets are instances of the class ServerSocket with the attributes
address (the server address), port (the server port), and backlog (the number of
queue requests for connection that the server will allow). Server socket identifiers
are constructed with the operator server and a natural number.

class ServerSocket | address : String, port : Nat, backlog : Nat .

op server : Nat -> Oid [ctor] . ---- server socket objects identifiers

If there is a createServerTcpSocket message in a configuration, we use the counter
from the socket manager to create a ServerSocket with the values specified in the mes-
sage, and a createdSocketmessage is put into the configuration.

vars SOCKET PID PID’ O O’ : Oid .

vars DATA ADDRESS S S’ : String .

vars N M PORT BACKLOG : Nat .

vars CONF CONF’ : Configuration .

rl [ServerTcpSocketCreation] :

< PID : Process |

conf : (createServerTcpSocket(socketManager, O, PORT, BACKLOG) CONF) >

< socketManager : Manager | count : N >

=> < PID : Process |

conf : (createdSocket(O, socketManager, server(N)) CONF) >

< socketManager : Manager | count : s(N) >

< server(N) : ServerSocket | address : "127.0.0.1", port : PORT,

backlog : BACKLOG > .

If there is an acceptClientmessage in one configuration and a server offers its services
through the requested server socket, a new socket is created between the two processes,
and the corresponding acceptedClient and createdSocket messages are put into the
configurations.

6.2. R   SOCKET  157

rl [SocketCreation] :

< PID : Process | conf : (acceptClient(server(N), O) CONF) >

< PID’ : Process |

conf : (createClientTcpSocket(socketManager, O’, ADDRESS, PORT) CONF’) >

< socketManager : Manager | count : M >

< server(N) : ServerSocket | address : ADDRESS, port : PORT >

=> < PID : Process |

conf : (acceptedClient(O, server(N), ADDRESS, socket(M)) CONF) >

< PID’ : Process |

conf : (createdSocket(O’, socketManager, socket(M)) CONF’) >

< socketManager : Manager | count : s(M) >

< server(N) : ServerSocket | >

< socket(M) : Socket | source : PID, target : PID’, socketState : active > .

If there is a send message in one configuration, the corresponding receive message
in another one, and their processes are connected through a socket, then the message is
delivered. We need two rules, depending on the values of source and target.

rl [send] :

< PID : Process | conf : (send(SOCKET, O, DATA) CONF) >

< PID’ : Process | conf : (receive(SOCKET, O’) CONF’) >

< SOCKET : Socket | source : PID, target : PID’, socketState : active >

=> < PID : Process | conf : (sent(O, SOCKET) CONF) >

< PID’ : Process | conf : (received(O’, SOCKET, DATA) CONF’) >

< SOCKET : Socket | > .

rl [send] :

< PID : Process | conf : (send(SOCKET, O, DATA) CONF) >

< PID’ : Process | conf : (receive(SOCKET, O’) CONF’) >

< SOCKET : Socket | source : PID’, target : PID, socketState : active >

=> < PID : Process | conf : (sent(O, SOCKET) CONF) >

< PID’ : Process | conf : (received(O’, SOCKET, DATA) CONF’) >

< SOCKET : Socket | > .

If an object requests to close a socket, its state changes to closed and a closedSocket
message is put into the configuration.

rl [closeSocket] :

< PID : Process | conf : (closeSocket(SOCKET, O) CONF) >

< SOCKET : Socket | socketState : active >

=> < PID : Process | conf : (closedSocket(O, socketManager, "") CONF) >

< SOCKET : Socket | socketState : closed > .

If an object tries to send a message through a closed socket, it receives a closedSocket
message.

rl [closedSocket] :

< PID : Process | conf : (send(SOCKET, O, MSG) CONF) >

< SOCKET : Socket | socketState : closed >

=> < PID : Process | conf : (closedSocket(O, socketManager, "") CONF) >

< SOCKET : Socket | > .

endom

This module allows to represent in a single term a whole distributed configuration and
formally analyze it without changing its specification. Thus, in order to prove a property

158 C 6. F    

l(ip5,0) l(ip1,0)

l(ip0,0)

l(ip4,0) l(ip2,0)

l(ip3,0)

l(ip5,0) l(ip1,0)

l(ip0,0)

l(ip4,0) l(ip2,0)

l(ip3,0)

1

Figure 6.1: A concrete star architecture

about a distributed configuration we have to prove it on the corresponding “centralized”
configuration. We show how one of these configurations looks by means of an example.
The initial configuration for the star architecture (see Section 3.2) shown in Figure 6.1 is:

< socketManager : Manager | count : 0 >

< pid(0) : Process |

conf : < l(ip0, 0) : StarCenter | state : idle,

neighbors : empty,

defNeighbor : null,

port : 60039 > >

< pid(1) : Process |

conf : < l(ip1, 0) : StarNode | state : idle,

neighbors : empty,

defNeighbor : null,

center : ip0,

port : 60039 > >

< pid(2) : Process |

conf : < l(ip2, 0) : StarNode | state : idle,

neighbors : empty,

defNeighbor : null,

center : ip0,

port : 60039 > >

< pid(3) : Process |

conf : < l(ip3, 0) : StarNode | state : idle,

neighbors : empty,

defNeighbor : null,

center : ip0,

port : 60039 > >

< pid(4) : Process |

conf : < l(ip4, 0) : StarNode | state : idle,

neighbors : empty,

defNeighbor : null,

center : ip0,

port : 60039 > >

6.3. U    159
3

ARCHITECTURE

!

to :

Message/String conversionCOMMON-INFRASTRUCTURE

!

Capitalized messages

Message boundariesBUFFERED-SOCKET

!

Socket messages

SOCKET

Figure 4: Initial design

ARCHITECTURE

!

to :

Message/String conversion

COMMON-INFRASTRUCTURE

!

Capitalized messages

ABS-BUFFERED-SOCKET

Figure 5: Design after the first abstraction

ARCHITECTURE

!

to :

ABS-COMMON-INFRASTRUCTURE

Figure 6: Design after the second abstraction

Figure 6.2: Initial design

< pid(5) : Process |

conf : < l(ip5, 0) : StarNode | state : idle,

neighbors : empty,

defNeighbor : null,

center : ip0,

port : 60039 > >

6.3 Using different abstraction levels

In the previous section we have simulated Maude sockets in order to obtain the whole
configuration of the system in one single term. This already allows us to use the Maude
tools to analyze our specifications. However, we could trust some of the components of the
applications in order to speed up their formal analysis. We show in the following sections
how to incrementally abstract different parts of the design, until we finally abstract the
whole architecture.

First we remind how the architecture works. Figure 6.2 shows the design we have
described in the previous chapters. The algebraic socket module provides the messages
and rules of the built-in SOCKET module; the buffered sockets assure the preservation
of message boundaries and handle the capitalized messages shown in Section 2.8; the
common infrastructure redirects the messages of the form to_:_, converting them first
into string and back again to messages once they have arrived to their destination. We
show in the following sections how we can remove each of these layers without changing
the layers above.

6.3.1 First abstraction

In this first abstraction, we merge the functionality of the two lower layers (the sockets and
the buffered sockets) in a transparent way for the common infrastructure. Since we know
that in this centralized version the message boundaries are preserved, this architecture
sends and receives complete messages, and the steps looking for the special character
that separates different messages (see Section 2.8) are skipped. The client socket objects
are not used, although we still use their identifiers to simulate them. The situation after
applying this abstraction is shown in Figure 6.3: the abstracted buffered sockets offer the

160 C 6. F    

3

ARCHITECTURE

!

to :

Message/String conversionCOMMON-INFRASTRUCTURE

!

Capitalized messages

Message boundariesBUFFERED-SOCKET

!

Socket messages

SOCKET

Figure 4: Initial design

ARCHITECTURE

!

to :

Message/String conversionCOMMON-INFRASTRUCTURE

!

Capitalized messages

(ABS.) BUFFERED-SOCKET

Figure 5: Design after the first abstraction

ARCHITECTURE

!

to :

(ABS.) COMMON-INFRASTRUCTURE

Figure 6: Design after the second abstraction

Figure 6.3: Design after the first abstraction

support for the capitalized messages, while the upper layers remain unchanged.

omod BUFFERED-SOCKET is

inc STRING .

*** Operators and classes from the algebraic sockets

class Process | conf : Configuration .

class Manager | count : Nat .

class ServerSocket | address : String, port : Nat, backlog : Nat .

op pid : Nat -> Oid [ctor] .

op socketManager : -> Oid [ctor] .

op server : Nat -> Oid [ctor] .

op socket : Nat -> Oid [ctor] .

*** Messages declarations from BUFFERED-SOCKET

msg CreateClientTcpSocket : Oid Oid String Nat -> Msg .

msg CreateServerTcpSocket : Oid Oid Nat Nat -> Msg .

msg CreatedSocket : Oid Oid Oid -> Msg .

msg AcceptClient : Oid Oid -> Msg .

msg AcceptedClient : Oid Oid String Oid -> Msg .

msg Send : Oid Oid String -> Msg .

msg Sent : Oid Oid -> Msg .

msg Receive : Oid Oid -> Msg .

msg Received : Oid Oid String -> Msg .

msg CloseSocket : Oid Oid -> Msg .

msg ClosedSocket : Oid Oid String -> Msg .

The rules in the module describe the “merged” behavior of the sockets and the buffered
sockets:

- The first one simulates the creation of a socket server, through which clients will be
accepted.

vars SOCKET PID PID’ O O’ : Oid .

vars DATA ADDRESS S S’ : String .

vars N M PORT BACKLOG : Nat .

vars CONF CONF’ : Configuration .

rl [ServerTcpSocketCreation] :

< PID : Process |

6.3. U    161

conf : (CreateServerTcpSocket(socketManager, O, PORT, BACKLOG)

CONF) >

< socketManager : Manager | count : N >

=> < PID : Process |

conf : (CreatedSocket(O, socketManager, server(N)) CONF) >

< socketManager : Manager | count : s(N) >

< server(N) : ServerSocket | address : "127.0.0.1", port : PORT,

backlog : BACKLOG > .

- The second one reproduces the connection of a client with a server. Both client
and server receive the new socket identifier, through which messages can be inter-
changed.

rl [SocketCreation] :

< PID : Process | conf : (AcceptClient(server(N), O) CONF) >

< PID’ : Process |

conf : (CreateClientTcpSocket(socketManager, O’, ADDRESS, PORT)

CONF’) >

< socketManager : Manager | count : M >

< server(N) : ServerSocket | address : ADDRESS, port : PORT >

=> < PID : Process |

conf : (AcceptedClient(O, server(N), "127.0.0.1", socket(M))

CONF) >

< PID’ : Process |

conf : (CreatedSocket(O’, socketManager, socket(M)) CONF’) >

< server(N) : ServerSocket | >

< socketManager : Manager | count : s(M) > .

- The third one illustrates how the messages are sent. When we found Send and
Receivemessages using the same socket, we transmit the Datamessage by putting
the corresponding Sent and Received.

rl [Send] :

< PID : Process | conf : (Send(SOCKET, O, DATA) CONF) >

< PID’ : Process | conf : (Receive(SOCKET, O’) CONF’) >

=> < PID : Process | conf : (Sent(O, SOCKET) CONF) >

< PID’ : Process | conf : (Received(O’, SOCKET, DATA) CONF’) > .

- The last one describes how sockets are closed. The Send and Receivemessages are
removed from the configuration.

rl [CloseSocket] :

< PID : Process | conf : (CloseSocket(SOCKET, O) CONF) >

< PID’ : Process | conf : (Receive(SOCKET, O’) CONF’) >

=> < PID : Process | conf : (ClosedSocket(O, socketManager, "") CONF) >

< PID’ : Process | conf : (ClosedSocket(O’, socketManager, "") CONF’) > .

endom

6.3.2 Second abstraction

As we have seen, the messages the architecture transmits are always complete. Now we
can suppose that we can transmit data of sort Msg through the sockets, so it is not necessary

162 C 6. F    

3

ARCHITECTURE

!

to :

Message/String conversionCOMMON-INFRASTRUCTURE

!

Capitalized messages

Message boundariesBUFFERED-SOCKET

!

Socket messages

SOCKET

Figure 4: Initial design

ARCHITECTURE

!

to :

Message/String conversionCOMMON-INFRASTRUCTURE

!

Capitalized messages

(ABS.) BUFFERED-SOCKET

Figure 5: Design after the first abstraction

ARCHITECTURE

!

to :

(ABS.) COMMON-INFRASTRUCTURE

Figure 6: Design after the second abstraction
Figure 6.4: Design after the second abstraction

to translate them to and from string. This change merges the common infrastructure layer
with the abstracted buffered sockets above. The situation after this abstraction is shown
in Figure 6.4: the abstracted common infrastructure offers to each concrete architecture
the transmission of to_:_messages, while the transformations from and to string are no
longer needed.

omod COMMON-INFRASTRUCTURE{A :: ARCH-COMPLEMENT} is

pr ARCHITECTURE-MSGS .

inc STRING .

pr MAP{Loc, Oid} .

pr MAYBE{Oid} * (op maybe to null) .

pr META-LEVEL .

The changes in the operators and classes defined in the abstracted buffered sockets
layer are:

- Since the transmission of messages is straightforward, we do not use the Received
message.

- Since the common infrastructure just removes the Sentmessages, the transmission
rule will not put them into the configuration and there is no need of modeling them.

- The concrete architectures use the Sendmessage only once: when the new-socket is
sent (remember that to use it the function msg2stringmust also be used). Since this
abstraction must be transparent to the upper layer, we must deal with this situation.
It has been solved by just deleting the Send messages from the configuration, and
putting the new-socket messages directly in the configuration when a client is
accepted, as we will see below.

- The Receive messages are not only used to represent that an object is waiting for
messages, we also use them to simulate sockets between processes: two processes
are connected if the socket identifiers kept in the neighbors and defNeighbor
attributes in one process and the first argument of Receive messages (the socket
through which it waits messages) in other processes are the same.

- We consider that, once they are created, the sockets cannot be destroyed, so we do
not provide the CloseSocket and ClosedSocketmessages.

*** Classes Process, Manager

class Manager | count : Nat .

class Process | conf : Configuration .

op socketManager : -> Oid [ctor] .

6.3. U    163

op pid : Nat -> Oid [ctor] .

op socket : Nat -> Oid [ctor] .

op server : Nat -> Oid [ctor] .

*** Messages from BUFFERED-SOCKET

msg CreateClientTcpSocket : Oid Oid String Nat -> Msg .

msg CreateServerTcpSocket : Oid Oid Nat Nat -> Msg .

msg CreatedSocket : Oid Oid Oid -> Msg .

msg AcceptClient : Oid Oid -> Msg .

msg AcceptedClient : Oid Oid String Oid -> Msg .

msg Receive : Oid Oid -> Msg .

msg Send : Oid Oid String -> Msg .

class Router | state : RouterState, neighbors : Map{Loc,Oid},

defNeighbor : Maybe{Oid}, port : Nat .

msg new-socket : Loc Oid -> Msg [ctor msg] .

op msg2string : Msg -> String .

vars L : Loc .

var TC : TravelingContents .

var LSPF : Map{Loc, Oid} .

vars SOCKET PID PID’ O O’ O’’ : Oid .

vars DATA ADDRESS S : String .

vars N M PORT : Nat .

vars CONF CONF’ : Configuration .

eq Send(O, O’, S) = none .

The behavior of the abstracted common infrastructure is defined by the following four
rules:

- The first one deals with the creation of server sockets. Although the server socket
does not really exist, a new server socket name is given to the object that requested
the server creation to allow the object to continue its evolution.

rl [ServerTcpSocketCreation] :

< PID : Process |

conf : (CreateServerTcpSocket(socketManager, O, PORT, BACKLOG) CONF) >

< socketManager : Manager | count : N >

=> < PID : Process |

conf : (CreatedSocket(O, socketManager, server(N)) CONF) >

< socketManager : Manager | count : s(N) > .

- The second one simulates the connection between a server and a client. A new socket
name is generated and communicated to both client and server, although no socket
is put into the configuration. The messages new-socket are directly interchanged,
and each concrete topology will deal with them.

rl [SocketCreation] :

< PID : Process | conf : (AcceptClient(SOCKET, O)

< l(ADDRESS, N) : Router | port : PORT > CONF) >

< PID’ : Process |

164 C 6. F    

conf : (CreateClientTcpSocket(socketManager, L, ADDRESS, PORT)

< L : Router | > CONF’) >

< socketManager : Manager | count : M >

=> < PID : Process | conf : (new-socket(L, socket(M))

AcceptClient(SOCKET, O)

AcceptedClient(l(ADDRESS, N), SOCKET, "127.0.0.1", socket(M))

< l(ADDRESS, N) : Router | port : PORT > CONF) >

< PID’ : Process | conf : (new-socket(l(ADDRESS, N), socket(M))

CreatedSocket(L, socketManager, socket(M))

< L : Router | > CONF’) >

< socketManager : Manager | count : s(M) > .

- The other two rules redirect the messages through the corresponding socket, using
the neighbor and defNeighbor attributes: we look for the process that is receiving
through the appropriate socket.

crl [redirectDef] :

< PID : Process |

conf : (CONF to O : TC

< L : Router | neighbors : LSPF, defNeighbor : SOCKET >) >

< PID’ : Process | conf : (Receive(SOCKET, O’) CONF’) >

=> < PID : Process |

conf : (CONF < L : Router | neighbors : LSPF,

defNeighbor : SOCKET >) >

< PID’ : Process | conf : ((to O : TC) Receive(SOCKET, O’) CONF’) >

if getLoc(O) =/= L /\ LSPF[getLoc(O)] == undefined .

crl [redirect] :

< PID : Process |

conf : (to O : TC < L : Router | neighbors : LSPF > CONF) >

< PID’ : Process | conf : (Receive(SOCKET, O’) CONF’) >

=> < PID : Process |

conf : (< L : Router | neighbors : LSPF > CONF) >

< PID’ : Process | conf : ((to O : TC) Receive(SOCKET, O’) CONF’) >

if getLoc(O) =/= L /\ SOCKET := LSPF[getLoc(O)] .

endom

6.3.3 Third abstraction

So far, we trust in message delivery. Then, why not trust the whole architecture, instead
of considering all the steps through different processes to deliver each message? We can
suppose that when a message must get to some object, and this object resides in other
process, it can be delivered immediately. Thus, we can finally define all the architectures
with one single rule.

omod ARCHITECTURE is

pr ARCHITECTURE-MSGS .

pr STRING .

class Process | conf : Configuration .

var TC : TravelingContents .

vars PID PID’ O : Oid .

var C : Cid .

6.4. S   165

vars CONF CONF’ : Configuration .

rl [send] :

< PID : Process | conf : (to O : TC CONF) >

< PID’ : Process | conf : (< O : C | > CONF’) >

=> < PID : Process | conf : CONF >

< PID’ : Process | conf : ((to O : TC) < O : C | > CONF’) > .

endom

Notice that this abstraction requires some changes in the initial configurations: the
objects related with architectures must be removed, as well as the socket manager from
the algebraic sockets, and it is not parameterized.

6.4 State space reduction

Although model checking is one of the most successful automated verification techniques,
there are real limitations to its applicability in practice. These limitations are mostly related
to the state space explosion problem. This can make it unfeasible to model check a system
except for very small state spaces, sometimes not even for those. For this reason, a host
of techniques to tame the state space explosion problem, which could be collectively
described as state space reduction techniques, have been investigated. These techniques
are also useful to reduce the state space when using the search command.

We use a reduction technique based on the idea of invisible transitions [32], that gen-
eralize a similar notion in Partial Order Reduction (POR) techniques. Given the rewrite
theoryR = (Σ,E,R), a rewrite rule r in R is called P-invisible if in any rewrite step [t]→ [t′]
using r the states [t] and [t′] satisfy the same state predicates in P. We can identify the set
R′ of rules that satisfy this property and obtain a new rewrite theoryR′ = (Σ,E∪R′,R\R′).
However, to obtain a correct reduction more properties must hold: the new equation set
E ∪ R′ must be terminating and confluent [1] (perhaps modulo some axioms A), and the
rewrite theory must be strongly coherent [66].

To check the termination property, we look for a function that strictly decreases with
the application of each rule in R′. Confluence is a property of term rewriting systems,
describing that terms in this system can be rewritten in more than one way, to yield the
same result. To check this property, we must examine that for each pair of rules (a critical
pair) in R′ that can be applied to a term, the same result is produced (it is joinable).

Intuitively, the coherence requirement means that we can identify a state [t] with
the canonical form canE(t) of t by the equations E, and that rewriting with equations E
and with rules R commutes in an appropriate sense, so that we can safely restrict our
computations with R to only rewrite E-canonical forms. To check this property, we study
the critical pairs between rules in R \ R′ and equations in E ∪ R′.

Thus, to apply partial order reduction techniques it is important to know what prop-
erties about the specified systems we want to prove. We show in the following sections
the set of rules of each application that can be converted into equations, and a little sketch
of the justification of its correctness is given.

Although the first implementation of the algebraic sockets was done using rules
(see Section 6.2), we always use a reduced version of them when using a centralized
application, where all the rules have been transformed into equations. That is because the
properties we check should not depend on the sockets, because they are a built-in Maude
feature which we cannot handle, so reduce them is always correct. The architectures

166 C 6. F    

reduced in the following sections are the ones shown in Chapter 3, not their abstracted
versions from Section 6.3, although of course both ideas can be combined to reduce the
state space.

6.4.1 Partial order reduction in the architectures

The properties we want to prove about the architectures in Section 6.5 have the form “a
message M reaches the location L”. We consider the set R′ of rules that are not converted
into equations composed by all the rules in the concrete architecture, while the rules from
the common architecture remain unchanged. We select these rules not only because of
the P-invisibility property, but also due to termination: the redirection rules can cause
non-termination. We will also use this reduction when a concrete application is used on
top of one architecture.

6.4.2 Partial order reduction in the skeletons

The properties we want to check in the skeletons in Section 6.6 refer to the final result
obtained in the master, thus the rules modifying it cannot be converted into equations.
Therefore, the set R′ of rules that can be converted into equations is composed by all the
rules of the skeleton (together with the rules of the architecture, as shown above) except
for those that change the master’s attribute where the result is kept:

- new-work and no-more-work in the farm skeleton;

- completed and working in the systolic ring skeleton;

- new-work and no-more-work in the divide and conquer skeleton; and

- partial-results in the branch and bound skeleton.

To prove termination we can see that the reduced rules only guide the messages
between the master and the workers. These messages are delivered by the architecture
(that, as we have seen, is terminating), and once all the tasks have been computed by
the workers, the master cannot generate new ones with the rules in R′. To check the
confluence property, we can see that the rules in R′ are applied in a sequential fashion:
the master sends works that the workers compute and send back. These results can
arrive unordered (thus the problems can also be delivered unordered) because in the
farm skeleton the theory requires it, in the systolic ring skeleton the results are numbered,
in the divide and conquer skeleton they are inserted in the corresponding leaves, and in
the branch and bound skeleton they are inserted as nodes in the priority queue.

Finally, the rules in R′ cannot violate the coherence property, because the rules not in
R′ only combine the results and send new problems, that, as we have outlined before, can
be done in any order.

6.4.3 Partial order reduction in Mobile Maude

In Section 6.7 we want to check properties about the left component of the state of the
inner objects (remember that it has the form C & C’, see Section 5.3) of mobile objects that
are not traveling. Therefore, the problematic rules are:

- The rule do-something, that makes the inner objects evolve.

6.5. V  167

- The rules create-object and message-out-kill, that create and destroy objects.

- The rules arrive-loc and arrive-find-loc, that handle the movement of objects.
Notice that these rules are in charge of redirecting the go and go-find messages.
Keeping them as rules is important because they could generate confluence and
coherence problems. Suppose that an object O is looking for another one O’ in
location L, that want to travel to a new location L’. If O finds O’ in L, and then O’
goes to L’, we obtain a different configuration that if O’ travels before O finds it.

- The rules message-out-go and message-out-go-find, that start the movement of
objects.

- The rule msg-in, that pushes into the configuration a new inter-object message.

Notice that the rules arrive-loc and arrive-find-loc are in charge of redirecting
the go and go-find messages. This is important because these rules could generate
confluence and coherence problems. Suppose that an object O is looking for another one
O’ in location L, that want to travel to a new location L’. If O finds O’ in L, and then O’
goes to L’, we obtain a different configuration that if O’ travels before O finds it.

All the rules not shown above, that is, the rules for redirection of inter-object messages
and forwarding information and the rules to update the forwarding information, form
the set R′.

It is easy to see that the equations are terminating, because the rules that define
the movement of objects are not in R′, so the inter-object messages always reach their
destination, as well as the forwarding messages, that must find a home object, that cannot
travel.

The rules in R′ are in charge of the delivery of inter-objects and forwarding messages.
Since the order in which messages arrive is immaterial, because the inter-object messages
are pushed into by using rules not in R′ and the forwarding messages have a sequence
number (the number of hops), the system is confluent.

The rules not in R′ are in charge of pushing (in and out) messages from the inner
state, while the rules in R′ redirect some of these messages and update the forwarding
information. The transformation of the rules in R′ into equations only “speeds up” this
actions, but it does not affect the reachable states, so the new system is coherent.

6.5 Verifying architectures

Architectures have been designed independently from the concrete applications, and this
allows to check properties over them in an isolated way. We show here some simple
properties of the centralized ring architecture. Other properties on different architectures
can be proved using the same methodology.

6.5.1 Using the model checker

We want to check in the centralized ring what happens if a node in the ring sends a
message to another one also in the ring. To study it we use an initial configuration with
one of the locations in the ring with an object and another one with a message for it. Some
of the nodes will be traversed by the message and others will be never traversed (at least
the center).

168 C 6. F    

First, we must define the view to instantiate the architecture, with a constant CONT of
sort TravelingContents to use in the initial configuration.

fmod CR-ARCHITECTURE-MESSAGES is

pr ARCHITECTURE-MSGS .

pr META-LEVEL .

op CONT : -> TravelingContents .

endfm

view CR-Complement from ARCH-COMPLEMENT to CR-ARCHITECTURE-MESSAGES is

op MOD to term upModule(’CR-ARCHITECTURE-MESSAGES, false) .

endv

We define the property have-message, that checks if a given location contains a mes-
sage, and we declare Configuration as the sort of states. Note that there is no difference
with the distributed version, we must only load the “centralized” SOCKETmodule instead
of the predefined SOCKETmodule.

omod MODEL-CHECK is

pr STAR-CENTER{CR-Complement} .

pr CENTRALIZED-RING-NODE{CR-Complement} .

pr CENTRALIZED-RING-LAST{CR-Complement} .

pr EXT-BOOL .

inc SATISFACTION .

inc MODEL-CHECKER .

inc LTL-SIMPLIFIER .

subsort Configuration < State .

op have-message : Loc -> Prop .

We use as process identifier the name of the router contained there in order to find the
desired process faster.

vars C C’ : Configuration .

var O : Oid .

var L : Loc .

eq C < L : Process | conf : (C’ to O : CONT) > |= have-message(L) = true .

eq C |= have-message(L) = false [owise] .

Now we must define the LTL formulas specifying the properties. The formula F
expresses that the location L receives a message exactly once, and then redirects it.

ops F F’ F’’ : Loc -> Formula .

eq F(L) = ˜ have-message(L) U

(have-message(L) /\ (have-message(L) U [] ˜ have-message(L))) .

The formula F’ states that L never contains a message. Therefore F ∨ F’ states that L
receives a message at most once, and then redirects it.

eq F’(L) = [] ˜ have-message(L) .

6.5. V  169

l(ip5,0) l(ip1,0)

l(ip0,0)

l(ip4,0) l(ip2,0)

l(ip3,0)

Figure 2: Initial configuration.

- At the process level, we look for inner configurations.

- At the inner configuration level, we check that the configuration with the required
location does not contain messages.

vars C C’ : Configuration .
var O : Oid .
vars L : Loc .
var CNT : Contents .

eq C < L : Process | conf : C’ (to O : CNT) > |= have-no-message(L) = false .
eq C |= have-no-message(L) = true [owise] .

Now we must define the LTL formulas specifying the properties. The formula F ex-
presses that the location L receives a message exactly once, and then redirects it. We
could use it to check if a location receives a message at most once. However, we prefer to
check the more concrete formula for each location.

ops F F’ F’’ : Loc -> Formula .
eq F(L) = have-no-message(L) U (~ have-no-message(L) U [] have-no-message(L)) .

The formula F’ states that L never contains a message. Therefore F ∨ F’ states that
L receives a message at most once, and then redirects it.

eq F’(L) = [] have-no-message(L) .

Finally, F’’ states that a message reaches L and stays there forever:

eq F’’(L) = have-no-message(L) U ([] ~ have-no-message(L)) .
endom

We check this property in the configuration shown in Figure 2 with five nodes in the
ring (l(ipi, 0), i ∈ 1 . . . 5), and a message from l(ip4, 0) to an object in the location
l(ip2, 0), so it must traverse l(ip5, 0) and l(ip1, 0). The center (l(ip0, 0)) and
l(ip3, 0) must receive no messages. Therefore we use the following command:

red modelCheck(initial, F(l(ip4, 0)) /\ F(l(ip5, 0)) /\ F(l(ip1, 0)) /\
F’(l(ip0, 0)) /\ F’(l(ip3, 0)) /\ F’’(l(ip2, 0)) .

74

Figure 6.5: Centralized ring configuration

Finally, F’’ states that a message reaches L and stays there forever.

eq F’’(L) = ˜ have-message(L) U ([] have-message(L)) .

endom

We check this property in the configuration shown in Figure 6.5 with five nodes in the
ring (l(ipi, 0), i ∈ 1 . . . 5), and a message from l(ip4, 0) to an object in the location
l(ip2, 0), so it must traverse l(ip5, 0) and l(ip1, 0). The center (l(ip0, 0)) and
l(ip3, 0)must receive no messages. Therefore we use the following command:

red modelCheck(initial, F(l(ip4, 0)) /\ F(l(ip5, 0)) /\ F(l(ip1, 0)) /\

F’(l(ip0, 0)) /\ F’(l(ip3, 0)) /\ F’’(l(ip2, 0)) .

We obtain that the property holds for all the locations.

rewrites: 6273 in 250ms cpu (268ms real) (25092 rewrites/second)

result Bool: true

6.5.2 Using the search command

We can check now that the connection between each node in the ring and the center is
direct. To do it, we declare an initial configuration where the invariant will be checked.
We place an object in the center and a message for it in one of the nodes of the ring.
We consider as an invariant the property messages-invariant, that states that all the
nodes in the ring (except the one sending the message) never contain a message in their
configuration.

omod SEARCH is

pr STAR-CENTER{CR-Complement} .

pr CENTRALIZED-RING-NODE{CR-Complement} .

pr CENTRALIZED-RING-LAST{CR-Complement} .

pr EXT-BOOL .

op messages-invariant : Loc Configuration -> Bool .

170 C 6. F    

where Loc indicates the location that sends the message. We define the invariant in a
similar way to the properties for model checking.

vars C C’ : Configuration .

var PID : Oid .

vars L L’ : Loc .

var O : Oid .

ceq messages-invariant(L, C < L’ : Process | conf : (C’

< L’ : CRingRouter | > to O : CONT) >) = false

if L =/= L’ .

eq messages-invariant(L, C) = true [owise] .

endom

The command to check the invariant is:

search initial =>* C:Configuration

such that not messages-invariant(l(ip4, 0), C:Configuration) .

No solution.

where initial is a configuration with five nodes in the ring, and having the node l(ip4,
0) a message for an object in the center. We obtain that no solution is found, so the
invariant is always true and the property holds.

So far we have proved that the message does not traverse the other nodes of the ring,
but we must also check that the message disappears from the initial ring node and arrives
to the center. We prove it by using the predicate final-conf, that checks if the message
has disappeared of the ring node and appeared in the center.

op final-conf : Loc Configuration -> Bool .

eq final-conf(L, C < PID : Process | conf : C’ >) = final-conf(L, C)

and-then final-conf(L, C’) .

eq final-conf(L, C < L’ : StarCenter | >) = have-message(C) .

eq final-conf(L, C < L : CRingRouter | >) = not have-message(C) .

eq final-conf(L, C) = true [owise] .

op have-message : Configuration -> Bool .

eq have-message(C (to O : CONT)) = true .

eq have-message(C) = false [owise] .

The search command does not need to check all the states now, but only the final
ones, so we use =>!.

search initial =>! C:Configuration

such that not final-conf(l(ip4, 0), C:Configuration) .

No solution.

No solution is found, so we can conclude that the connection between a node in the
ring and the center is direct.

6.6. V  171

6.6 Verifying skeletons

In the skeleton instantiations, we can consider the sequential versions the specification of
the problem and the distributed versions the implementation. We show how to use the
search command to verify that all the final solutions found in the distributed applications
are the same that the solutions from the specifications.

We will define for each skeleton a getResult operation that, given a configuration,
returns the result kept in the master. We use it to compare the results from the sequential
and the distributed implementation. Notice that the comparison can be non trivial, as we
will see in the examples.

6.6.1 Euler numbers

We must verify that each execution of the skeleton instantiated with the Euler numbers
problem returns as result the same number that the sequential version. In that example,
getResult returns a natural number, and we have to compare it exactly with the result
from the specification.

op getResult : Configuration -> P$Result .

eq getResult(C < O : Process | conf : (

C’ < M : RW-Master | result : R >) >) = R .

The search command that must be used is:

search initial(7) =>! C:Configuration

such that getResult(C:Configuration) =/= sumEuler(7) .

where initial is a configuration that receives as parameter the Euler number we are
looking for.

As expected, no different results are found:

No solution.

states: 766 rewrites: 465030 in 12780ms cpu (13257ms real)

6.6.2 Ray tracing

In this example the comparison is harder than the last one. In the distributed version we
keep the screen rows in a map (that will be returned by getResult), because the rows
could arrive unordered, while in the sequential version the rows are returned with the
juxtaposition operator. The results cannot be compared directly, so we define an operator
map2screen that transforms the map in a screen, and then the results can be checked.

fmod MAP2SCREEN is

vars CL CL’ : ColorList .

var S : Screen .

var M : Map{Float, ColorList} .

vars F F’ : Float .

op map2screen : Map{Float, ColorList} -> Screen .

op map2screen : Map{Float, ColorList} Screen -> Screen .

op max : Map{Float, ColorList} -> Float .

172 C 6. F    

op delete : Float Map{Float, ColorList} -> Map{Float, ColorList} .

eq max(F |-> CL) = F .

ceq max((F |-> CL, M)) = max(F, max(M))

if M =/= empty .

eq delete(F, (F |-> CL, M)) = M .

eq delete(F, M) = M [owise] .

eq map2screen(F |-> CL) = [CL] .

eq map2screen(M) = map2screen(delete(max(M), M), [M [max(M)]]) [owise] .

eq map2screen(F |-> CL, S) = S [CL] .

eq map2screen(M, S) =

map2screen(delete(max(M), M), S [M [max(M)]]) [owise] .

op initial : Nat Nat Nat Nat Nat Nat FigureList -> Configuration .

eq initial = ...

endfm

The command to check the skeleton is:

search initial(-10, 10, 3, -3, 10, 1000000000, figListN(10)) =>! C:Configuration

such that map2screen(getResult(C:Configuration)) =/=

rayTracing(-10, 10, 3, -3, 10, 1000000000, figListN(10)) .

As expected, no results are found and the search ends successfully:

No solution.

states: 127 rewrites: 80774 in 880ms cpu (913ms real)

6.6.3 Force interactions

In this example we have a new problem when comparing the results from the sequential
and the distributed version. Although both of they are floats, there are a lot of operations
involved with numbers really small (about 10−24), so the results may vary because of
floats precision. We must check that the difference between the results are not greater
than ε, a given error constant. The getResult function for this skeleton is defined as
follows:

op getResult : Configuration -> P$Result .

eq getResult(C < O : Process | conf : (

C’ < M : SMaster | result : R >) >) = R .

We use the command

search initial(atomGenerator(12)) =>! C:Configuration

such that abs(getResult(C:Configuration) - attraction(atomGenerator(12)))

> 1.0e-20 .

The implementation is correct and the search does not find solutions:

No solution.

states: 23 rewrites: 26487 in 60ms cpu (223ms real)

6.6. V  173

6.6.4 Mergesort

We use the same method to prove properties over task parallel programs. In the mergesort
instantiation, we keep a List as result, that is a container for lists of natural numbers.
The function getResult extracts the result from the tree:

op getResult : Configuration -> P$Result .

eq getResult(C < O : Process | conf : (

C’ < M : DCMaster | resultTree : tree(R, F) >) >) = R .

We only need to transform the NatList from the sequential version in a List using
the operator l:

search initial(gen(1000)) =>! C:Configuration

such that getResult(C:Configuration) =/= l(mergesort(gen(1000))) .

where initial is the initial configuration that receives as parameter the list generated by
gen. The result confirms that the distributed version was properly implemented:

No solution.

states: 64 rewrites: 2239374 in 11200ms cpu (15315ms real)

In this case, the postcondition of the problem is simple enough to avoid the use of
the sequential implementation. We can define an ordered function that checks if a list is
sorted and it has the same components that other list.

op ordered : List NatList -> Bool .

eq ordered(l(N), N) = true .

ceq ordered(l(N N’ NL), NL’ N NL’’) = ordered(l(N’ NL), NL’ NL’’)

if N <= N’ .

eq ordered(L, NL) = false [owise] .

We can use it now in the search command:

search initial(gen(1000)) =>! C:Configuration

such that not ordered(getResult(C:Configuration), gen(1000)) .

obtaining the same result with less rewrites:

No solution.

states: 64 rewrites: 733875 in 1140ms cpu (1308ms real)

6.6.5 Traveling salesman problem

In the sequential version of this problem, we keep a tuple with the path and its cost, the
same that in the distributed version. We define an equal function that compares the two
tuples

op equal : Node TravelResult -> Bool .

eq equal(node(P, N), result(P’, N’)) = P == P’ and N == N’ .

and use it in the condition of the search:

174 C 6. F    

search initial(city(0), 6, generateCostMatrix(6)) =>! C:Configuration

such that not equal(getResult(C:Configuration),

travel(city(0), 6, generateCostMatrix(6))) .

where initial is the initial configuration, that receives the initial city, the number of
cities, and the cost matrix as parameter. We obtain a positive answer:

No solution.

states: 4 rewrites: 1539479 in 11180ms cpu (11643ms real)

6.6.6 Model checking skeletons

The properties P we have proved so far are defined over final configurations, so we can
express them in Linear Temporal Logic as 3 2 P and check them with Maude model
checker. However, the model checker needs more work to verify the property (and define
the property is harder too), so it is better to check that kind of properties with search.
Just as illustration, we show how to verify the Euler numbers example with the model
checker.

Euler numbers

First, we create a module defining the sort of states as Configuration and the property
we want to check.

mod EULER-CHECK is

pr EULER-EXAMPLE .

inc SATISFACTION .

inc LTL-SIMPLIFIER .

inc MODEL-CHECKER .

subsort Configuration < State .

op result : Nat -> Prop .

Then we define when the property holds by means of equations.

vars C C’ : Configuration .

vars PID O : Oid .

var N : Nat .

eq (C < PID : Process | conf : C’ >) |= result(N) =

if (C =/= none) then

((C |= result(N)) or (C’ |= result(N)))

else

(C’ |= result(N))

fi .

eq (C < O : RW-Master | result : N >) |= result(N) = true .

eq C |= result(N) = false [owise] .

op initial : Nat -> Configuration .

eq initial(N) = ...

endm

6.7. VMM 175

where initial is a configuration that receives as parameter the Euler number we are
looking for.

Once we have that module, we can use the model checker to verify the property:

red modelCheck(initial(7), <> [] result(sumEuler(7))) .

The model checker finishes with more rewrites than the search command, as expected:

rewrites: 483993 in 12760ms cpu (13710ms real) (37930 rewrites/second)

result Bool: true

6.7 Verifying Mobile Maude

Mobile Maude applications present a new problem: we would like to check properties
on the application code, which is metarepresented in the belly of the mobile objects. That
problem has been solved by considering two-level properties, stating different properties
on each of the reflection levels:

- In the mobile objects level, we look for objects that could fulfill the properties.

- In the application level, we check the properties.

We show in the following sections two examples of formal analysis of properties about
Mobile Maude applications. The first one uses the search command, while the second
one uses the model checker.

6.7.1 Two-level atomic propositions for the buying printers example

Let us see an example about the buying printers case study shown in Section 5.6. Suppose
we want to prove that the buyer always finds the best price, and that, when he has
visited all sellers, he finishes in the process of the seller who has such a best price. If
bestPrice&Seller represents the predicate asserting that the buyer is in the process of the
seller with the best offer, then we can use the search command to check that there is no
final state that fulfills the negation of this predicate.

The module specifying the properties at the mobile objects level imports the modules
MOBILE-MAUDE-SYNTAX and SOCKET, that provides the syntax for mobile objects and pro-
cesses. First, we define when a top configuration of processes fulfills such a property. For
it, we use an auxiliary predicate bestPrice&Seller with another argument, (the metarepre-
sentation of) the best price, obtained by means of the auxiliary function minPrice.

mod PRINTERS-PREDS is

pr MOBILE-MAUDE-SYNTAX .

pr SOCKET .

op bestPrice&Seller : Configuration Term -> Bool .

op bestPrice&Seller : Configuration -> Bool .

op minPrice : Configuration -> Term .

op minimum : Term Term -> Term .

176 C 6. F    

vars PID O : Oid .

var MODULE : Module .

vars N TERM TERM’ A T T’ : Term .

vars C C’ : Configuration .

eq bestPrice&Seller(C) = bestPrice&Seller(C, minPrice(C)) .

minPrice is defined as follows, where price is applied by using the reduce function, that
uses the metalevel function metaReduce to reduce it in the module PRINTERS-INNER-PREDS
described below.

eq minPrice(C < PID : Process | conf : C’ >) =

if (C =/= none) then

minimum(minPrice(C), minPrice(C’))

else

minPrice(C’)

fi .

op reduce : Term -> Term .

eq reduce(T) = getTerm(metaReduce(upModule(’PRINTERS-INNER-PREDS, false), T)) .

eq minPrice(< O : MobileObject | s : (’_&_[TERM, TERM’]) > C) =

if (C =/= none) then

minimum(minPrice(C), reduce(’price[TERM]))

else

reduce(’price[TERM])

fi .

eq minPrice(C) = upTerm(999999) [owise] .

The definition of bestPrice&Seller(C, N) recursively traverses all the processes in
C going inside each configuration looking for a seller with the given price and a buyer
who has it as the best price.

op existsSeller : Configuration Term -> Bool .

op existsBuyer : Configuration Term -> Bool .

eq bestPrice&Seller(C < PID : Process | conf : C’ >, N) =

bestPrice&Seller(C, N) or

(existsSeller(C’, N) and existsBuyer(C’, N)) .

eq bestPrice&Seller(C, N) = false [owise] .

eq existsSeller(< O : MobileObject | s : (’_&_[TERM, TERM’]) > C, N) =

(reduce(’exSeller[TERM, N]) == ’true.Bool) or

existsSeller(C, N) .

eq existsSeller(C, N) = false [owise] .

eq existsBuyer(< O : MobileObject | s : (’_&_[TERM, TERM’]), AtS > C, N) =

(reduce(’exBuyer[TERM, N]) == ’true.Bool) or

existsBuyer(C, N) .

eq existsBuyer(C, N) = false [owise] .

endm

The definition of existsSeller(C, N)uses the function exSellerdefined at the inner
objects level. The predicate existsBuyer(C, N) is defined in the same way. The module

6.7. VMM 177

PRINTERS-INNER-PREDS includes the definition of the predicates exSeller and exBuyer.
Note that the buyer’s state is relevant because the property must hold when the buyer
has visited all the sellers, that is, it is in buying state.

mod PRINTERS-INNER-PREDS is

pr BUYER .

pr SELLER .

op exSeller : Configuration Nat -> Bool .

op exBuyer : Configuration Nat -> Bool .

op price : Configuration -> Nat .

vars B S : Oid .

var C : Configuration .

var N : Nat .

eq exBuyer(< B : Buyer | price : N, status : buying > C, N) = true .

eq exBuyer(C, N) = false [owise] .

eq exSeller(< S : Seller | description : N > C, N) = true .

eq exSeller(C, N) = false [owise] .

Notice that these atomic propositions are defined at the level of the application code.
It also defines the function price, used to calculate the minimum price kept in the objects
of the configuration.

eq price(< S : Seller | description : N > C) = N .

eq price(C) = 999999 [owise] .

endm

After having defined these predicates, the Maude search command is as follows:

mod PRINTERS-CHECK is

inc PRINTERS-PREDS .

pr BUYER .

pr SELLER .

pr STAR-CENTER{MM-Complement} .

pr STAR-NODE{MM-Complement} .

pr MOBILE-MAUDE-SEMANTICS .

op initial : -> Configuration .

eq initial = ...

endm

search initial =>! C:Configuration s.t. not bestPrice&Seller(C:Configuration) .

No solution.

where initial is the initial configuration shown in Section 5.6.

6.7.2 Model checking the auctions

In the auctions example, there is a lot of non-determinism, and properties like “the client C
eventually buys something” may be false because LTL implicitly involves all the paths. To

178 C 6. F    

prove properties like that, we must use the model checker and look for a counterexample
of the negation of the property. The intended sort of states that we will use when model
checking Mobile Maude applications is Configuration.

For example, suppose we have a system with two clients, C1 and C2, each with money
10 and 12, and one auction center with one item I1. The client C1 can get I1 if his agent
offers more money than C2’s agent. But if C2’s agent offers more money, he will obtain the
item. Consider P(x) the property “x buys something”, the property 3P(x) is false for both
C1 and C2, because some paths do not fulfill it. Let us see the problem with the model
checker, first we define the property at the application level:

mod AUCTION-INNER-PREDS is

pr AUCTION .

inc SATISFACTION .

subsort Configuration < State .

op getsSomething : -> Prop .

eq < B : Buyer | bought : IS > C |= getsSomething = IS =/= noItem .

endm

Now we traverse the configuration at the processes and mobile objects level. The
difference with the printers example is that now the name of the object is known, so we
do not need to check all the objects. First we look inside the processes.

mod AUCTION-PREDS is

pr MOBILE-MAUDE-SEMANTICS .

inc LTL-SIMPLIFIER .

pr AUCTION-INNER-PREDS .

pr MODEL-CHECKER .

vars PID O O’ : Oid .

var MODULE : Module .

vars TERM TERM’ T : Term .

vars C C’ : Configuration .

op getsSomething : Oid -> Prop .

eq (C < PID : Process | conf : C’ >) |= getsSomething(O) =

if (C =/= none) then

(C |= getsSomething(O)) or (C’ |= getsSomething(O))

else (C’ |= getsSomething(O))

fi .

In the multiset of objects in the configuration of the processes, we select the concrete
object we are looking for, if possible.

op reduce : Term -> Term .

eq reduce(T) = getTerm(metaReduce(upModule(’AUCTION-INNER-PREDS, false), T)) .

eq (< O : MobileObject | s : (’_&_[TERM, TERM’]) > C) |=

getsSomething(O) = reduce(’_|=_[TERM, ’getsSomething.Prop]) == ’true.Bool .

eq C |= getsSomething(O) = false [owise] .

endm

6.7. VMM 179

If now we try to prove 3 getsSomething(C1), it returns a counterexample where C1
does not obtain the item, which informs us that in some paths C1 obtains nothing, but
we do not know if there is a path where it buys something. We can try now to prove
¬ 3 getsSomething(C1) (or 2 ¬ getsSomething(C1)), and we get a counterexample with
a final configuration where C1 has bought the item.

Some other similar properties can be defined in this example, like “x buys all the items
he wants”, that must be defined in the same way.

Chapter 7

Conclusions

We consider this work part of an ongoing project where several distributed applications
will be implemented in Maude and then formally analyzed, trying to work in each step
in a more complex task, as well as improving the previous stages. The next objective in
this project is to analyze an IP routing protocol, the Enhanced Interior Gateway Routing
Protocol (EIGRP) [15].

In Chapter 3, we have shown how to implement diverse architectures (that is, a star, a
ring, and a centralized ring network) by using the object oriented features of Maude, that
allow us to share most of the components by means of inheritance, and the sockets that
Maude supports as external objects, in such a way that they are transparent to the concrete
applications executed on top of them. This is possible because they are parameterized,
and receive as parameter the information needed to deliver the messages. This is the first
really distributed application implemented in Maude, and supports the distribution of
the rest of applications.

However, the shown architectures are static, in the sense that exactly all the nodes
specified in the initial configurations must form the architecture, except for the star one,
where star nodes can join at any time. We are going to develop dynamic, reconfigurable
topologies, where nodes can join and leave, by using the EIGRP. Since this kind of
protocols requires timeouts, we are going to use sockets in a new way: to connect Maude
with an external Java “clock”.

We have presented in Chapter 4 the implementation of several skeletons (namely data-
parallel such as the farm skeleton; systolic such as the ring skeleton; and task-parallel
such as the divide and conquer, the branch and bound, and the pipeline skeletons) as
parameterized modules that receive as parameter the operations solving each concrete
problem. This allows us to instantiate the same skeleton for a concrete problem in different
ways, for example varying its granularity.

Thus we have described a methodology to specify, prototype, and check skeletons
that can be later implemented in other languages such as Java in order to obtain a better
speed-up and more “commercial” implementations. In the same way, we can translate
Java skeletons to check properties over them (we plan to study in the future which is the
best way to achieve both translations).

We have tested the skeletons with several examples, using three 2 GHz PowerPC G5
and two 1.25 GHz PowerPC G4, obtaining an average speed-up of 2.5. Although this
speed-up is not remarkable, we observed in the executions that all the processors were
always busy, so most of the time was used in manipulating the transmitted data. We have
to study how to improve the efficiency; the profiling feature in Maude allows a detailed

181

182 C 7. C

analysis of which rules are most expensive to execute in a given application. We are now
also studying how our skeletons can be nested and combined by using the object-oriented
inheritance features provided by Maude.

We have presented in Chapter 5 a distributed implementation of Mobile Maude where
mobile objects, carrying its own code and internal state, can travel from one machine to
another one. We have used the language to implement several case studies. One of them
is the implementation of algorithmic skeletons by using generic mobile objects; although
the same generality that in the parameterized case was obtained, the main drawback
was lack of efficiency due to the reflection levels introduced. The conference reviewing
system, the example described by Cardelli as a challenge for any wide area language
to demonstrate its usability and whose Mobile Maude implementation was presented
in [30], has also been migrated to this new version of the language. This distributed
implementation of Mobile Maude has advanced one more step in the path started in [28],
where a simulator of Mobile Maude in Maude 1.0.5 was presented. We plan to continue
this work with an extension of Mobile Maude with security features.

Finally, we have shown in Chapter 6 how to formally analyze the applications shown
throughout the work. We show how the Maude sockets can be simulated in order
to represent a “centralized” configuration. Once the sockets have been simulated, we
explain how the architectures can be abstracted by incrementally removing the “layers”
that compose them. We also describe how partial order reduction can be applied to the
specifications shown in the previous chapters, in order to reduce the state space explosion
problem usually found when model checking systems. The Maude tools that we use once
we have applied the techniques above are the search command, that explore (following
a breadth-first strategy) the reachable state space, allowing us to check invariants, and
the model checker, that examine if some properties, expressed in Linear Temporal Logic,
are fulfilled by the systems.

Although we have proved relevant properties over these specifications, such as invari-
ants and correspondence between specification and implementation, an inconvenience of
these tools is that they prove properties starting in an initial state, that is, we prove prop-
erties about concrete configurations. We are going to study how to apply rule induction
on Maude specifications in order to prove general properties about them.

Some problems were found while developing these applications. Since TCP sockets
are the first (and the unique, so far) external objects supported by Maude, their behavior
is so general that they are not so indicated for applications where the efficiency is critical,
because all the data must be converted to string before being transmitted, and translated
again when received. A new type of socket able to transmit messages (of sort Msg) instead
of strings could increase the speed-up obtained by the skeletons substantially. Moreover,
some problems were also detected when extremely large strings were transmitted through
sockets, resulting in the break of the connection. We hope that the results obtained in this
work will help also to improve the Maude system.

Bibliography

[1] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

[2] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi. P3L: A structured
high-level parallel language, and its structured support. Concurrency: Practice and
Experience, 7(3):225–255, 1995.

[3] G. H. Botorog and H. Kuchen. Efficient parallel programming with algorithmic
skeletons. In Bouge et al. [4], pages 718–731.

[4] L. Bouge, P. Fraigniaud, A. Mignotte, and Y. Robert, editors. Euro-Par ’96 Parallel
Processing: Second International Euro-Par Conference, Lyon, France, August 26-29, 1996,
Proceedings, volume 1123 of Lecture Notes in Computer Science. Springer, 1996.

[5] A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in member-
ship equational logic. Theoretical Computer Science, 236:35–132, 2000.

[6] S. Breitinger, R. Loogen, Y. Ortega-Mallén, and R. Peña-Marı́. Eden – The paradise
of functional concurrent programming. In Bouge et al. [4], pages 710–713.

[7] R. Bruni and J. Meseguer. Generalized rewrite theories. In J. C. M. Baeten, J. K.
Lenstra, J. Parrow, and G. J. Woeginger, editors, Automata, Languages and Program-
ming. 30th International Colloquium, ICALP 2003, Eindhoven, The Netherlands, June 30
- July 4, 2003, Proceedings, volume 2719 of Lecture Notes in Computer Science, pages
252–266. Springer, 2003.

[8] S. R. Buss. 3-D Computer Graphics. Cambridge University Press, 2003.

[9] L. Caires and L. Cardelli. Spatial logic for concurrency (Part I). In N. Kobayashi
and B. C. Pierce, editors, Theoretical Aspects of Computer Software, 4th International
Symposium, TACS 2001, Sendai, Japan, October 2001, Proceedings, volume 2215 of
Lecture Notes in Computer Science, pages 1–37. Springer, 2001.

[10] L. Caires and L. Cardelli. Spatial logic for concurrency (Part II). In P. J. L. Brim,
M. Ketı́nský, and A. Kuera, editors, CONCUR 2002 – Concurrency Theory 13th Inter-
national Conference, Brno, Czech Republic, August 20-23, 2002. Proceedings, volume 2421
of Lecture Notes in Computer Science, pages 209–225. Springer, 2002.

[11] L. Cardelli. Obliq - A language with distributed scope. Technical report, Systems
Research Center, 1994.

[12] L. Cardelli. Abstractions for mobile computations. In J. Vitek and C. Jensen, editors,
Secure Internet Programming: Security Issues for Mobile and Distributed Objects, volume
1603 of Lecture Notes in Computer Science, pages 51–94. Springer, 1999.

183

184 BIBLIOGRAPHY

[13] L. Cardelli and A. D. Gordon. Mobile ambients. In M. Nivat, editor, Foundations of
Software Science and Computation Structures, First International Conference, FoSSaCS’98
Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS’98
Lisbon, Portugal, March 28–April 4, 1998 Proceedings, volume 1378 of Lecture Notes in
Computer Science, pages 140–155. Springer, 1998.

[14] G. Castagna, J. Vitek, and F. Zappa Nardelli. The Seal calculus. Information and
Computation, 201:1–54, 2005.

[15] Cisco. White papers - Enhanced Interior Gateway Routing Protocol. http://www.cisco.
com/warp/public/103/eigrp-toc.html.

[16] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.

[17] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and J. Quesada.
Maude: specification and programming in rewriting logic. Theoretical Computer
Science, 285(2):187–243, 2002.

[18] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and C. Talcott.
All About Maude: A High-Performance Logical Framework, volume 4350 of Lecture Notes
in Computer Science. Springer, 2007.

[19] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and C. Tal-
cott. Maude Manual (Version 2.3), January 2007. http://maude.cs.uiuc.edu/

maude2-manual.

[20] M. Cole. Algorithmic Skeletons: Structure Management of Parallel Computations. MIT
Press, 1989.

[21] M. Danelutto. QoS in parallel programming through application managers. In
PDP’05: Proceedings of the 13th Euromicro Conference on Parallel, Distributed and
Network-Based Processing (PDP’05), pages 282–289. IEEE Computer Society, 2005.

[22] M. Danelutto. “Second generation” skeleton systems. In Joubert et al. [40], pages
803–811.

[23] M. Danelutto, R. D. Meglio, S. Orlando, S. Pelagatti, and M. Vanneschi. A method-
ology for the development and the support of massively parallel programs. In
D. Skillicorn and D. Talia, editors, Programming Languages for Parallel Processing. IEEE
Computer Society Press, 1994.

[24] M. Danelutto and M. Stigliani. SKElib: Parallel programming with skeletons in C. In
L. Bouge, P. Fraigniaud, A. Mignotte, and Y. Robert, editors, Euro-Par 2000 - Parallel
Processing: 6th International Euro-Par Conference, Munich, Germany, August/September
2000. Proceedings, volume 1900 of Lecture Notes for Computer Science, pages 1175–1184.
Springer, 2000.

[25] J. Darlington, A. J. Field, P. G. Harrison, P. H. J. Kelly, D. W. N. Sharp, Q. Wu, and
R. L. While. Parallel programming using skeleton functions. In A. Bode, M. Reeve,
and G. Wolf, editors, Proceedings of PARLE’93 – Parallel Architectures and Languages
Europe, volume 694 of Lecture Notes for Computer Science, pages 146–160. Springer,
1993.

http://www.cisco.com/warp/public/103/eigrp-toc.html
http://www.cisco.com/warp/public/103/eigrp-toc.html
http://maude.cs.uiuc.edu/maude2-manual
http://maude.cs.uiuc.edu/maude2-manual

BIBLIOGRAPHY 185

[26] J. Darlington, Y. Guo, H. W. To, Q. Wu, J. Yang, and M. Kohler. Fortran-S: A Uniform
Functional Interface to Parallel Imperative Languages. In Proceedings of the Third
Parallel Computing Workshop, 1994.

[27] G. Denker, J. Meseguer, and C. Talcott. Formal specification and analysis of active
networks and communication protocols: The Maude experience. In Proc. DARPA
Information Survivability Conference and Exposition DICEX 2000, Vol. 1, Hilton Head,
South Carolina, January 2000, pages 251–265. IEEE, 2000.

[28] F. Durán, S. Eker, P. Lincoln, and J. Meseguer. Principles of Mobile Maude. In
D. Kotz and F. Mattern, editors, Agent Systems, Mobile Agents, and Applications, Second
International Symposium on Agent Systems and Applications and Fourth International
Symposium on Mobile Agents, ASA/MA 2000, Zurich, Switzerland, September 13–15,
2000, Proceedings, volume 1882 of Lecture Notes in Computer Science, pages 73–85.
Springer, 2000.

[29] F. Durán, A. Riesco, and A. Verdejo. A distributed implementation of Mobile Maude.
In G. Denker and C. Talcott, editors, Proceedings Sixth International Workshop on Rewrit-
ing Logic and its Applications, WRLA 2006, Electronic Notes in Theoretical Computer
Science, pages 35–55. Elsevier, 2006.

[30] F. Durán and A. Verdejo. A conference reviewing system in Mobile Maude. In
Gadducci and Montanari [35], pages 79–95.

[31] S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL model checker. In
Gadducci and Montanari [35], pages 115–141.

[32] A. Farzan and J. Meseguer. State space reduction of rewrite theories using invisible
transitions. In M. Johnson and V. Vene, editors, Algebraic Methodology and Software
Technology, 11th International Conference, AMAST 2006, Kuressaare, Estonia, July 5-8,
2006, Proceedings, volume 4019 of Lecture Notes for Computer Science, pages 142–157.
Springer, 2006.

[33] J. F. Ferreira, J. L. Sobral, and A. J. Proença. JaSkel: A Java skeleton-based framework
for structured cluster and grid computing. In CCGRID’06: Proceedings of the Sixth
IEEE International Symposium on Cluster Computing and the Grid, pages 301–304. IEEE
Computer Society, 2006.

[34] C. Fournet and G. Gonthier. The join calculus: A language for distributed mobile
programming. In G. Barthe, P. Dybjer, L. Pinto, and J. Saraiva, editors, Applied
Semantics: Advanced Lectures, volume 2395 of Lecture Notes in Computer Science, pages
268–332. Springer, 2002.

[35] F. Gadducci and U. Montanari, editors. Proceedings Fourth International Workshop on
Rewriting Logic and its Applications, WRLA 2002, Pisa, Italy, September 19–21, 2002,
volume 71 of Electronic Notes in Theoretical Computer Science. Elsevier, 2002.

[36] R. Gray. Agent Tcl: A flexible and secure mobile-agent system. PhD thesis, Department
of Computer Science, Dartmouth College, June 1997.

[37] K. Hammond and A. J. Rebón Portillo. HaskSkel: Algorithmic skeletons in haskell.
In P. Koopman and C. Clack, editors, Implementation of Functional Languages, 11th
International Workshop, IFL’99, Lochem, The Netherlands, September 7-10, 1999. Selected

186 BIBLIOGRAPHY

Papers, volume 1868 of Lecture Notes in Computer Science, pages 181–198. Springer,
1999.

[38] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[39] E. Horowitz, S. Sahni, and S. Rajasekaran. Computer Algorithms. Computer Science
Press. W. H. Freeman and Company, 1997.

[40] G. Joubert, W. Nagel, F. Peters, O. Plata, P. Tirado, and E. Zapata, editors. Parallel
Computing: Current & Future Issues of High-End Computing, Proceedings of the Interna-
tional Conference ParCo 2005, volume 33 of NIC Series. John von Neumann Institute
for Computing, 2005.

[41] D. Kotz and R. Gray. Mobile agents and the future of the internet. ACM Operating
Systems Review, 33(3):7–13, 1999.

[42] D. Lange and M. Oshima. Seven good reasons for mobile agents. Communications of
the ACM, 42:88–89, 1999.

[43] R. Loogen, Y. Ortega-Mallén, and R. Peña. Parallel functional programming in Eden.
Journal of Functional Programming, 15(1):431–475, 2005.

[44] R. Loogen, Y. Ortega-Mallén, R. Peña, S. Priebe, and F. Rubio. Parallelism abstractions
in Eden. In Rabhi and Gorlatch [58], chapter 4, pages 95–129.

[45] B. B. Mandelbrot. Fractals and Chaos: The Mandelbrot Set and Beyond. Springer, 2004.

[46] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Specifications. Springer, 1992.

[47] N. Martı́-Oliet, I. Pita, J. L. Fiadeiro, J. Meseguer, and T. Maibaum. A verification
logic for rewriting logic. Journal of Logic and Computation, 15(3):317–352, 2005.

[48] J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical
Computer Science, 96(1):73–155, 1992.

[49] J. Meseguer. A logical theory of concurrent objects and its realization in the Maude
language. In G. Agha, P. Wegner, and A. Yonezawa, editors, Research Directions in
Concurrent Object-Oriented Programming, pages 314–390. The MIT Press, 1993.

[50] J. Meseguer. Membership algebra as a logical framework for equational specifica-
tion. In F. Parisi-Presicce, editor, Recent Trends in Algebraic Development Techniques,
12th International Workshop, WADT’97, Tarquinia, Italy, June 3–7, 1997, Selected Papers,
volume 1376 of Lecture Notes in Computer Science, pages 18–61. Springer, 1998.

[51] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[52] R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge University
Press, June 1999.

[53] J. Misra. A logic for concurrent programming. Technical report, University of Texas
at Austin, 1994.

[54] P. Ölveczky, J. Meseguer, and C. Talcott. Specification and analysis of the AER/NCA
active network protocol suite in Real-Time Maude. Formal Methods in System Design,
29:253–293, 2006.

BIBLIOGRAPHY 187

[55] R. Peña and C. Segura. Reasoning about skeletons in Eden. In Joubert et al. [40],
pages 851–858.

[56] S. Peyton Jones. Haskell 98 language and libraries: the Revised Report. Cambridge
University Press, 2003.

[57] I. Pita. Técnicas de especificación formal de sistemas orientados a objetos basadas en lógica
de reescritura. PhD thesis, Facultad de Matemáticas, Universidad Complutense de
Madrid, 2003.

[58] F. A. Rabhi and S. Gorlatch. Patterns and Skeletons for Parallel and Distributed Comput-
ing. Springer, 2002.

[59] A. Riesco and A. Verdejo. Distributed applications implemented in Maude with
parameterized skeletons. In M. Bonsangue and E. Johnsen, editors, Formal Methods
for Open Object-Based Distributed Systems: 9th IFIP WG 6.1 International Conference,
FMOODS 2007, Paphos, Cyprus, June 5-8, 2007, Proceedings, volume 4468 of Lecture
Notes for Computer Science, pages 91–106. Springer, 2007.

[60] A. Riesco and A. Verdejo. Parameterized skeletons in Maude. Technical Report
TR 1/07, Dpto. Sistemas Informáticos y Computación, Universidad Complutense de
Madrid, 2007.

[61] G.-C. Roman and P. J. McCann. An introduction to mobile UNITY. In J. Rolim, editor,
Parallel and Distributed Processing, 10 IPPS/SPDP’98 Workshops Held in Conjunction with
the 12th International Parallel Processing Symposium and 9th Symposium on Parallel and
Distributed Processing Orlando, Florida, USA, March 30 – April 3, 1998 Proceedings,
volume 1388 of Lecture Notes in Computer Science, pages 871–880. Springer, 1998.

[62] G.-C. Roman and J. Payton. Mobile unity schemas for agent coordination. In
E. Börger, A. Gargantini, and E. Riccobene, editors, Abstract State Machines 2003.
Advances in Theory and Practice: 10th International Workshop, ASM 2003, Taormina,
Italy, March 3-7, 2003. Proceedings, volume 2589 of Lecture Notes in Computer Science,
pages 126–150. Springer, 2003.

[63] J. Tardo and L. Valenta. Mobile agent security and Telescript. In Proceedings of the 41st
IEEE International Computer Conference, pages 58–63. IEEE Computer Society, 1996.

[64] A. R. Tripathi, N. M. Karnik, M. K. Vora, T. Ahmed, and R. D. Singh. Mobile
agents programming in Ajanta. In Proceedings of the 19th International Conference on
Distributed Computing Systems (ICDCS ’99), pages 190–197. IEEE Computer Society,
1999.

[65] M. Vanneschi. The programming model of ASSIST, an environment for parallel and
distributed portable applications. Parallel Computing, 28(12):1709–1732, 2002.

[66] P. Viry. Equational rules for rewriting logic. Theoretical Computer Science, 285(2):487–
517, 2002.

[67] J. Vitek and G. Castagna. Seal: A framework for secure mobile computations. In
H. Bal, B. Belkhouche, and L. Cardelli, editors, Internet Programming Languages:
ICCL’98 Workshop, Chicago, IL, USA, May 1998. Proceedings, volume 1686 of Lecture
Notes for Computer Science, pages 47–77. Springer, 1999.

	Introduction
	Related work
	Eden Skeletons
	JaSkel
	The ambient calculus
	The Seal calculus
	Mobile UNITY
	Mobile agents in Ajanta

	Maude
	Functional modules
	System modules
	Object-oriented modules
	Maude main commands
	Reflection and metalevel computations
	Parameterized modules
	Predefined parameterized modules

	Sockets provided by Maude
	Client sockets
	Server sockets
	Factorial server example

	Buffered sockets
	The factorial example revisited

	From Full Maude to Core Maude

	Architectures
	Common infrastructure
	Star architecture
	Ring architecture
	Centralized ring architecture
	Ray tracing case study
	Sequential implementation
	Distributed implementation

	Parameterized skeletons
	Distributable applications
	Euler numbers
	Force interactions
	Mergesort
	Traveling salesman problem

	Parameterized skeletons
	Farm skeleton
	Ray tracing instantiation
	Mandelbrot instantiation
	Euler instantiations

	Systolic ring skeleton
	Force interaction instantiation

	Divide and conquer skeleton
	Mergesort instantiation

	Branch and bound skeleton
	Traveling salesman instantiation
	Graph bipartitioning instantiation

	Pipeline skeleton
	Airport instantiation

	Mobile Maude
	Mobile Maude main features
	Processes and mobile objects
	Mobile Maude interface
	Mobile Maude's syntax
	Mobile Maude's rewriting semantics
	Letting mobile objects do something
	Object communication
	Object mobility
	The creation of mobile objects
	Mobile object destruction

	A buying printers example
	An auction example
	Mobile Maude skeletons
	Euler numbers case study
	The farm skeleton in Mobile Maude

	Formal analysis of distributed applications
	A taste of Maude analysis tools
	Redefinition of the SOCKET module
	Using different abstraction levels
	First abstraction
	Second abstraction
	Third abstraction

	State space reduction
	Partial order reduction in the architectures
	Partial order reduction in the skeletons
	Partial order reduction in Mobile Maude

	Verifying architectures
	Using the model checker
	Using the search command

	Verifying skeletons
	Euler numbers
	Ray tracing
	Force interactions
	Mergesort
	Traveling salesman problem
	Model checking skeletons

	Verifying Mobile Maude
	Two-level atomic propositions for the buying printers example
	Model checking the auctions

	Conclusions

