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Abstract

Recently, a new semantics for non-deterministic lazy functional(-logic) programming has been presented, in
which the treatment of parameter passing was different to previous proposals like call-time choice (CRWL)
and run-time choice (term rewriting). There, the semantics was formalized through the πCRWL calculus,
and a program transformation to simulate πCRWL with term rewriting was proposed. In the present work
we use the Maude system to implement that transformation and to get an interpreter for πCRWL, thus
providing a first implementation of this new semantics. Besides, in order to improve the performance of the
prototype, an implementation of the natural rewriting on-demand strategy has been developed, therefore
taking the first steps towards obtaining a framework for on-demand evaluation of Maude system modules.
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1 Introduction

State-of-the-art implementations of functional-logic programming (FLP) languages

(see [12] for a recent survey) use possibly non-terminating and non-confluent

constructor-based term rewrite systems (CS’s) as programs, thus defining possibly

non-strict non-deterministic functions, which are one of the most distinctive fea-

tures of the paradigm [11,2]. Nevertheless, although CS’s can be used as a common

syntactic framework for FLP and term rewriting, the behavior of current implemen-

tations of these formalisms differ fundamentally, because different semantics can be

assigned to a lazy functional language after introducing non-determinism. Conside-

ring the program P = {f(c(X)) → d(X,X), X ? Y → X,X ? Y → Y } and the

expression f(c(0) ? c(1)), let us see what are the values for that expression under

the traditional semantics for non-deterministic functions [19,13]:

1 This work has been partially supported by the Spanish projects MERIT-FORMS -UCM (TIN2005-
09207-C03-03), DESAFIOS (TIN2006-15660-C02-01), PROMESAS-CAM (S-0505/TIC/0407), and FAST-
STAMP (TIN2008-06622-C03-01/TIN).
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• Under call-time choice parameter passing to compute a value for the term f(c(0)

? c(1)) we must first compute a (partial) value for c(0) ? c(1), and then we may

continue the computation with f(c(0)) or f(c(1)) which yield d(0, 0) or d(1, 1).

Note that d(0, 1) and d(1, 0) are not correct values for f(c(0) ? c(1)) in that

setting. Modern functional-logic languages like Toy [15] or Curry [12] adopt call-

time choice.

From the point of view of a denotational semantics, call-time choice parameter

passing is equivalent to having a singular semantics, in which the substitutions

used to instantiate the program rules for function application are such that the

variables of the program rules range over single objects of the set of considered

values.

• On the other hand, under run-time choice parameter passing, which corresponds

to call-by-name, each argument is copied without any evaluation and so the differ-

ent copies of any argument may evolve in different ways afterwards. However in

f(c(0) ? c(1)) the evaluation of the subexpression c(0) ? c(1) is needed in order to

get an expression that matches the left hand side f(c(X)). Hence the derivations

f(c(0) ? c(1)) → f(c(0)) → d(0, 0) and f(c(0) ? c(1)) → f(c(1)) → d(1, 1) are

sound and compute the values d(0, 0) and d(1, 1), but neither d(0, 1) nor d(1, 0)

are correct values for f(c(0) ? c(1)). Term rewriting is considered the standard

semantics for run-time choice, and is the basis for the semantics of languages like

Maude [5]. Traditionally it has been considered that run-time choice has its deno-

tational counterpart on a plural semantics, in which the variables of the programs

rules take their values over sets of objects of the set of considered values. But in

this example we may consider the set {c(0), c(1)} which is a subset of the set of

values for c(0) ? c(1) in which every element matches the argument pattern c(X).

Therefore, the set {0, 1} can be used for parameter passing obtaining a kind of

“set expression” d({0, 1}, {0, 1}) that yields the values d(0, 0), d(1, 1), d(0, 1), and
d(1, 0).

The conclusion is clear: the traditional identification of run-time choice with a plural

semantics is wrong when pattern matching is involved. This fact was pointed out in

[18] for the first time, where the πCRWL logic was proposed as a novel formulation

of a plural semantics with pattern matching. This logic shares with CRWL (the

standard logic for call-time choice) some compositionality properties that make it

more suitable than term rewriting (the standard formulation for run-time choice)

for a value-based language like current implementations of FLP. For example, it

is easy to see that for the previous program the expression f(c(0 ? 1)) has more

values than the expression f(c(0) ? c(1)) under run-time choice, even when the only

difference between them is the subexpressions c(0 ? 1) and c(0) ? c(1), which have

the same values both in call-time choice, run-time choice, and plural semantics.

This is pretty incompatible with a value-based semantic view, although it can be

the right choice for other kind of rewriting based languages like Maude, not limited

to CS’s but able to handle general term rewrite systems (TRS’s), and in which the

goal is describing the evolution of a system instead of computing values.
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Maude [5] is a high-level language and high-performance system supporting both

equational and rewriting logic computation for a wide range of applications. Maude

modules correspond to specifications in rewriting logic [16], a simple and expres-

sive logic which allows the representation of many models of concurrent and dis-

tributed systems. This logic is an extension of equational logic; in particular, Maude

functional modules correspond to specifications in membership equational logic [3],

which, in addition to equations, allows the statement of membership axioms charac-

terizing the elements of a sort. In this way, Maude makes possible the faithful speci-

fication of data types (like sorted lists or search trees) whose data are defined not

only by means of constructors, but also by the satisfaction of additional properties.

Rewriting logic extends membership equational logic by adding rewrite rules, that

represent transitions in a concurrent system. Maude system modules are used to

define specifications in this logic. Rewriting logic is also a good semantic framework

for formally specifying programming languages as rewrite theories [5, Chap. 20][17].

Moreover, since those specifications usually can be executed in Maude, they in fact

become interpreters for these languages.

Exploiting the fact that rewriting logic is reflective [6], a key distinguishing fea-

ture of Maude is its systematic and efficient use of reflection through its predefined

META-LEVEL module [5, Chap. 14], a feature that makes Maude remarkably exten-

sible and that allows many advanced metaprogramming and metalanguage applica-

tions. This powerful feature allows access to metalevel entities such as specifications

or computations as usual data. In addition, the Maude system provides another

module, LOOP-MODE [5, Chap. 17], which can be used to specify input/output in-

teractions with the user. Thus, our program transformation, its execution, and its

user interactions are implemented in Maude itself.

Although Maude provides commands to execute expressions in (metarepresented)

modules, including a metaSearch function that performs a breadth-first search of

the state space, 2 the highly non-deterministic nature of the programs obtained

with the transformation avoids its use in practice. To solve this problem we have

implemented the natural rewriting strategy [9], that evolves only the terms needed

in the execution of an expression, avoiding to rewrite unnecessary terms. This is the

first implementation of an on-demand strategy for Maude system modules, 3 and

it can be considered a first stage towards on-demand execution of general rewrite

theories.

This on-demand strategy has been combined with depth-first and breadth-first

search, which allows to traverse the search tree in a flexible way, allowing to evaluate

programs with potentially infinite branches. Furthermore, the tool also provides

the option of searching with a bound in the number of rewrites, thus enhancing the

performance of programs with large (possibly infinite) error branches.

The rest of the article is organized as follows: A session describing how to use the

tool through examples is given in Section 2. Section 3 describes the main features

2 The usual Maude strategy, consisting in rewrite terms with the first possible rule is not available here
because it leads to results that are not necessarily cterms, i.e., terms made only of data constructors.
3 On-demand strategies for Maude functional modules are described in [7].
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Prog ::= plural Name is [Rl] endp Program

Rl ::= Lh → Exp . Rule

Lh ::= f(p1, . . . , pn) f ∈ FSn, pi ∈ CTerm Lefthand side

Exp ::= X X ∈ Var Expression

| h(e1, . . . , en) h ∈ FSn ∪ CSn, ei ∈ Exp

Fig. 1. Syntax

of the implementation. Finally, Section 4 outlines the main characteristics of the

tool and gives some future work. We refer the reader to https://gpd.sip.ucm.

es/trac/gpd/wiki/PluralSemantics/Maude for the source code, examples, and

further information.

2 Examples

We illustrate in this section how to use the tool by means of examples. The session

is started by executing the file plural.bin available in the web page above. Once

the tool is running we can introduce modules, that must follow the syntax shown

in Figure 1 and fulfill that the rules are left-linear and their righthand sides do not

use variables not present in the corresponding lefthand sides.

First, we specify the clerks example shown in [18], where we have shops with

some employees, and we want to find a pair of clerks:

Maude> (plural CLERKS is

branches -> madrid .

branches -> sevilla .

employees(madrid) -> e(john, men, clerk) .

employees(madrid) -> e(larry, men, boss) .

employees(vigo) -> e(mary, women, clerk) .

employees(vigo) -> e(james, men, boss) .

twoclerks -> find(employees(branches)) .

find(e(N,S,clerk)) -> p(N,N) .

endp)

Module introduced.

Under plural semantics, the expression twoclerks leads to any combination

p(name1, name2), where namei can be any clerk name (john and mary in the ex-

ample), while run-time choice and call-time choice only lead to pairs where name1
and name2 coincide.

The tool reads the module and applies it the pST transformation, that simulates

plural semantics with ordinary rewriting (see Section 3.1 for details). This trans-

formed module can be seen with the command (showTr .). We can now change

the default depth-first strategy to breadth-first by using the command
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Maude> (breadth-first .)

Breadth-first strategy selected.

We try now to compute the result of evaluating twoclerks by typing

Maude> (eval twoclerks .)

Result: p(john,john)

Since we try to find results with different names in the pair, we can ask for more

answers with

Maude> (more .)

Result: p(john,mary)

Using the more command repeatedly we obtain all the different pairs reachable

by the program until the following answer is prompted:

Maude> (more .)

No more results.

Now that we are familiar with the tool we show how to execute a more complex

problem. The fearless Ulysses has been captured in his travel from Troy to Ithaca,

but he knows he can persuade one of his four guardians to interchange the key for

some items, that Ulysses has to obtain from the other guardians with his initial

possessions:

(plural LAIR is

guardians -> circe ? calypso ? aeolus ? polyphemus .

ask(circe, trojan-gold) -> item(treasure-map) ? sirens-secret .

ask(calypso, sirens-secret) -> item(chest-code) .

ask(aeolus, item(M)) -> combine(M,M) .

ask(polyphemus, combine(treasure-map, chest-code)) -> key .

Notice that the information given to the fourth guardian can be only obtained

with our semantics, because a pair of the same variable becomes a pair of different

constants. To acquire these items he uses the function discover, that uses the

current information or tries to ask the guardians for more.

discover(M) -> M ? discover(discStep(M) ? M) .

discStep(M) -> ask(guardians, M) .

Finally, Ulysses escapes if he obtains the key from his initial belongings: an

immeasurable amount of trojan-gold.

escape -> open(discover(trojan-gold)) .

open(key) -> true .

endp)

We use the depth-first strategy to check if the evasion is possible:
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Maude> (depth-first .)

Depth-first strategy selected.

We evaluate now the term escape with 80 as upper bound in the number of

rewrites with the command:

Maude> (eval [depth= 80] escape .)

Result: true

That is, there is a way to interchange the information in order to escape.

3 Implementation

We describe in this section the main topics of the implementation. First, we describe

how the program transformation described in [18] has been accomplished. Then, we

describe how to improve its execution by using the natural rewriting strategy [9].

3.1 Program transformation

The first component of our implementation is a source-to-source transformation of

CS, whose adecuacy has been proved in [18]. The main idea in this transforma-

tion is postponing the pattern matching to avoid it to force an early resolution of

non-determinism. To illustrate this concept, let us see the result of applying the

transformation over the program P of Section 1:

P̂ = { f(Y ) → if match(Y ) then d(project(Y ), project(Y )),

match(c(X)) → true, project(c(X)) → X,

if true then X → X,X ? Y → X,X ? Y → Y }
Now, to evaluate the expression f(c(0) ? c(1)), we are not forced anymore to

solve the non-deterministic choice between c(0) and c(1), because any expression

matches the variable pattern Y , therefore the step

f(c(0) ? c(1)) → if match(c(0) ? c(1)) then d(project(c(0) ? c(1)), project(c(0) ? c(1)))

is sound. Note that the guard if match(c(0) ? c(1)) is needed to ensure that at

least one of the values of the argument matches the original pattern, otherwise the

soundness of the step could not be granted. Later on, after resolving the guard,

different evaluation of the occurrences of project(c(0) ? c(1)) will lead us to the

final values d(0, 0), d(1, 1), d(0, 1), and d(1, 0), which are the expected values for

the expression in the original program under the plural semantics.

Program transformations like this can be easily handled in Maude thanks to its

efficient use of reflection [5], that allows to manipulate (metarepresented) Maude

modules (and more concretely Maude rules) as data. In [18] the transformation

above is defined through the function pST shown in Figure 2, which for any program

rule returns a rule to replace it, and a small set of auxiliary match and project rules
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Given a CRWL-program P, for every rule (f(p1, . . . , pn) → r) ∈ P its transfor-

mation is defined as:

pST (f(p1, . . . , pn) → r)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f(p1, . . . , pn) → r if ρ1 . . . ρm is empty

f(τ(p1), . . . , τ(pn)) → if match(Y1, . . . , Ym)

then r[Xij/projectij(Yi)]

otherwise

where ρ1 . . . ρm = p1 . . . pn | λp.(p �∈ V ∧ var(p) �= ∅).
- ∀ρi, {Xi1, . . . , Xiki} = var(ρi) ∩ var(r) and Yi ∈ V is fresh.

- τ : CTerm → CTerm is defined by τ(p) = p if p ∈ V∨var(p) = ∅ and τ(p) = Yi

otherwise, for p ≡ ρi.

- match ∈ FSm fresh is defined by the rule match(ρ1, . . . , ρm) → true.

- Each project ij ∈ FS 1 is a fresh symbol defined by the single rule

projectij(ρi) → Xij .

Fig. 2. pST transformation

for the replacement. Using the reflection features of Maude, we can implement

it with an operator pST, that receives the rule that must be transformed and an

index to create fresh function names related to this rule and returns a set of rules

composed by the new rule and the associated match and project rules. If the list of

ρi is empty, the rule is not transformated.

op pST : Rule Nat -> RuleSet .

ceq pST(rl T => T’ [AtS] ., N) = rl T => T’ [AtS] .

if computeRhos(T) == empty .

If the list of ρi is not empty, then we must transform the rule. The match expres-

sion used in the if condition is computed with the function createMatchExp, that

receives as argument the length of the list of ρi to create the same number of fresh

variables. The rule that will be applied when this condition holds is defined with

the operator createMatchRule. The operator computeSubstitutions calculates

the project function that substitutes each ρi on the righthand side, and keeps the

result in the table ProjectTable. This table is then used to make the substitution

and obtain the result of the if statement. The rules associated with each projection

are obtained by means of createProjectRules. Finally, the application of the τ

function to the arguments on the lefthand side of the rule is made with applyTau.

ceq pST(rl T => T’ [AtS] ., N) =

rl applyTau(T) => ’if_then_[MatchExp, NewRHS] [AtS] .

MatchRule ProjectRules

if Rhos := computeRhos(T) /\ Rhos =/= empty /\
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VarsRHS := getVars(T’) /\

MatchExp := createMatchExp(size(Rhos), N) /\

MatchRule := createMatchRule(Rhos, N) /\

ProjectTable := computeSubstitutions(Rhos, VarsRHS, N) /\

NewRHS := substitute(T’, ProjectTable) /\

ProjectRules := createProjectRules(Rhos, VarsRHS, N) .

3.2 Natural rewriting

The second component of our system is an implementation of the natural rewriting

on-demand strategy [10], which became necessary to deal with the highly non-

deterministic programs obtained after the transformation. This transformation is

implemented by the operator natNext that computes the set of reachable terms by

evolving the needed positions with all the possible rules.

As it is usual in other on-demand strategies, a data structure called definitional

tree is used to encode the demand information associated to the program rules.

What makes natural rewriting different and more appropriate than other on-demand

strategies is that it uses a special kind of definitional tree calledmatching definitional

tree [1], that allows us to keep the pattern matching process separated from the

evaluation through demanded positions. In previous strategies the encoding of

these two processes were interleaved in the definitional trees, and as a consequence

they lost opportunities to prune the search space. A matching definitional tree

is built for each function present in the program, after a static analysis performed

during the compilation. We implement this by the operator MDTMap, which takes the

Maude representation of the transformed program and returns a map from function

symbols to its corresponding definitional trees.

Once the matching definitional trees have been computed, we can use the func-

tion mt [9] to compute the needed positions and the rules that must be applied.

Moreover, we combine this evaluation strategy with (bounded) depth-first and

breadth-first search, keeping all the possible terms obtained from mt and its depth

in a list that works as a stack for the depth-first strategy and as a queue for the

breadth-first strategy.

Our implementation of natural rewriting is a contribution by itself, because it

can be used to perform on-demand evaluation of any CS specified in Maude, not

only of those used to simulate πCRWL. Nevertheless it has several limitations. First

of all, although there are extensions of this strategy to deal with general TRS’s [10],

we have only implemented the version presented in [9], which is only able to deal

with left-linear CS’s. Besides, the strategy is formulated for pure CS’s, and does not

consider the possibility of combining the rewriting rules with eager and confluent

equations, which is one of the most distinctive and useful features of Maude. Anyway

the current implementation is powerful enough to help us to improve the efficiency

of our simulation of πCRWL, as well as dealing with “pure” CS’s specified in Maude,

and we contemplate the aforementioned extensions as interesting subjects of future

work.
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4 Conclusions

In this work we have described a prototype implementation of the πCRWL logic in

Maude, based on a source-to-source transformation of CS. This transformation, as

well as the execution of the resulting program with the natural rewriting on-demand

strategy, is implemented in Maude, taking advantage of its efficient implementation

of reflection, that allows to use specifications as data.

Our implementation is natural in two different ways. First of all, the natural

rewriting strategy has been used to deal with the wild non-determinism explosion

arising in Maude system modules. While this non-determinism is necessary to

completely model check a system, because then we want to test if a given property

holds in every state reachable during the evolution of the system, it is not the case

when we are just computing the set of values for a given expression. In πCRWL we

only care about the final reachable values, hence we may use an on-demand strategy

like natural rewriting to prune the search space without losing interesting values.

On the other hand, both the transformation and the strategy upon which our

implementation is based have been formulated at the abstraction level of source

programs, that is, using the syntax and theory of TRS’s, which are the foundations

of Maude too. Therefore Maude was the natural choice for an object language,

and as a consequence there is a small distance between the specification of the

transformation and the strategy, and the code which implements them. Moreover,

since the adecuacy of the transformation and the completeness and optimality of

the strategy have been proved, we can affirm that the resulting implementation is

correct by construction. We think that this is one of the strengths of our prototype.

Another important contribution is our implementation of the natural rewriting

strategy, which has been implemented in Maude for the first time. The correspond-

ing natNext operator can be used for performing on-demand evaluation of any CS

specified in a Maude system module, and it is especially relevant because is the first

on-demand strategy for this kind of modules, complementing the default rewrite

and breadth-first search Maude commands.

As a subject of future work we contemplate the extension of natural rewriting

to TRS’s which are not necessarily CS’s, following the theory developed in [10].

Another orthogonal extension of the strategy could go in the direction of combining

non-deterministic rewriting rules evaluated on demand (from Maude system mod-

ules) with deterministic and terminating equations evaluated eagerly (from Maude

functional modules). This is particularly interesting when there are fragments of a

TRS which constitute a confluent and terminating TRS (like the match and project

functions introduced by our transformation), that could be executed dramatically

more efficiently by treating them as Maude equations.

Other extensions go in the line of adding features to the πCRWL interpreter.

Adding higher order capabilities by means of the classic transformation of [20] would

be interesting and it is standard in the field of FLP. More novel would be using the

matching-modulo capacities of Maude to enhance the expressivity of plural seman-

tics, after a corresponding revision of the theory of πCRWL. Another interesting
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extension could come from the combination of the plural and singular semantics,

using the framework for combining run-time choice with call-time choice developed

in [14]. Besides, some aditional research must be done to improve the performance

of the interpreter by means of some kind of sharing in the line of [4].

Last but not least, some additional effort must be invested in producing a larger

collection of program examples and programming patterns that exploit the capa-

bilities of this new semantics. In fact the development of this prototype is a step in

that direction, as it allows us to do empirical experimentation with πCRWL.
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