
Programming with Singular and
Plural Non-deterministic Functions ∗

Adrián Riesco Juan Rodrı́guez-Hortalá
Departamento de Sistemas Informáticos y Computación

Universidad Complutense de Madrid, Spain
{ariesco, juanrh}@fdi.ucm.es

Abstract
Non-strict non-deterministic functions are one of the most dis-
tinctive features of functional-logic languages. Traditionally, two
semantic alternatives have been considered for this kind of func-
tions: call-time choice and run-time choice. While the former is
the standard choice of modern implementations of FLP, the lat-
ter lacks some basic properties—mainly compositionality—that
have prevented its use in practical FLP implementations. Re-
cently, a new compositional plural semantics for FLP has been
proposed. Although this semantics allows an elegant encoding of
some problems—in particular those with an implicit manipulation
of sets of values—, call-time choice still remains the best option
for many common programming patterns.

In this paper we explore the expressive possibilities of the com-
bination of singular and plural non-determinism. After formalizing
the intended semantics by means of a logic calculus, several sig-
nificant examples exploiting the capabilities of the semantics are
presented. These examples have been tested and developed in a
Maude-based prototype whose implementation is outlined.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.2 [Programming
Languages]: Language Classifications—Nondeterministic languages

General Terms Theory, Languages.

Keywords Non-deterministic functions, Semantics, Program trans-
formation, Term rewriting, Maude

1. Introduction
Non-strict non-deterministic functions are one of the most dis-
tinctive features of functional-logic programming (FLP) languages
[9, 10]. This is reflected in the use of possibly non-terminating
and non-confluent constructor-based term rewrite systems (CS’s) as
programs. This combination of non-strictness and non-determinism

∗ This work has been partially supported by the Spanish projects
DESAFIOS (TIN2006-15660-C02-01), PROMESAS-CAM (S-
0505/TIC/0407), FAST-STAMP (TIN2008-06622-C03-01/TIN), and
UCM-BSCH-GR58/08-910502.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PEPM’10, January 18–19, 2010, Madrid, Spain.
Copyright c© 2010 ACM 978-1-60558-727-1/10/01. . . $10.00

gives rise to several semantic alternatives [11, 24], as we can
see considering the program {f(c(X)) → d(X,X), X ? Y →
X,X ? Y → Y } and the expression f(c(0 ? 1)). From an opera-
tional perspective we have to define when it is time to fix the values
for the arguments of functions. Under a call-time choice semantics
a value for each argument will be fixed on parameter passing and
shared between every copy of that argument which arises during the
computation. So when applying the rule for f the two occurrences
of X in d(X,X) will share the same value, hence d(0, 0) and
d(1, 1) are correct values for f(c(0 ? 1)) in this semantics, while
it is not the case for either d(0, 1) or d(1, 0). Modern functional-
logic languages like Toy [14] or Curry [10] adopt call-time choice.
On the other hand, under a run-time choice semantics the values
of the arguments are fixed as they are used, and the copies of each
argument created by parameter passing may evolve independently
afterwards. Under this semantics not only d(0, 0) and d(1, 1) but
also d(0, 1) and d(1, 0) are correct values for f(c(0 ? 1)). Term
rewriting is considered a standard formulation for run-time choice,
and is the basis for the semantics of languages like Maude [4].
But we may also see things from another perspective. From a de-
notational perspective we have to think about the domain used to
instantiate the variables of the program rules. Under a singular
semantics variables will be instantiated with single values (which
may be partial in a non-strict setting). This is equivalent to hav-
ing call-time choice parameter passing. The alternative is having
a plural semantics, in which the variables are instantiated with
sets of values. Traditionally it has been considered that run-time
choice has its denotational counterpart on a plural semantics, but
we will see that this identification is wrong. Consider the expres-
sion f(c(0) ? c(1)) and the program above: under run-time choice,
that is, term rewriting, the evaluation of c(0) ? c(1) is needed in
order to get an instance of the left-hand side of the rule for f .
Hence a choice between c(0) and c(1) is performed and so neither
d(0, 1) nor d(1, 0) are correct values for f(c(0) ? c(1)). Neverthe-
less, under a plural semantics we may consider the set {c(0), c(1)}
which is a subset of the set of values for c(0) ? c(1) in which
every element matches the argument pattern c(X). Therefore, the
set {0, 1} can be used for parameter passing obtaining a kind of
“set expression” d({0, 1}, {0, 1}) that yields the values d(0, 0),
d(1, 1), d(0, 1), and d(1, 0). In conclusion: the traditional identi-
fication of run-time choice with a plural semantics is wrong when
pattern matching is involved. This problem did not appear in [24]
because no pattern matching was present, nor in [11] because only
call-time choice was adopted.

In [23] this fact was pointed out for the first time, and the πCRWL
logic was proposed as a novel formulation of a plural semantics
with pattern matching. This logic shares with CRWL [9] (the stan-
dard logic for call-time choice) some compositionality properties

83

that make it more suitable than run-time choice for a value-based
language like current implementations of FLP. For example, we
have seen that the expression f(c(0 ? 1)) has more values than
the expression f(c(0) ? c(1)) under run-time choice, even when
the only difference between them is the subexpressions c(0 ? 1)
and c(0) ? c(1), which have the same values both under call-time
choice, run-time choice, and plural semantics. This violates a fun-
damental property of FLP languages stating that any expression
can be replaced by any other expression which could be reduced
to exactly the same set of values. Nevertheless run-time choice can
be a good option for other kind of rewriting based languages like
Maude, in which the notion of value is not necessarily present, at
least in the sense it is in FLP languages.

Although the semantics of πCRWL allows an elegant encoding
of some problems [21, 23]—in particular those with an implicit
manipulation of sets of values—, call-time choice still remains
the best option for many common programming patterns. There-
fore it would be nice to have a language in which both options
could be available. That is our proposal in this paper, where we
present a language where the user has the possibility to specify
which arguments of each function symbol will be considered “plu-
ral arguments.” These arguments will be evaluated using our plural
semantics, which intuitively means that they will be treated like sets
of elements of the corresponding type1 instead of single elements,
while the others will be evaluated under the usual singular/call-time
choice semantics traditionally adopted for FLP. We have precisely
formalized the semantics of this new language through a novel vari-
ant of CRWL called CRWLσπ . However, the main goal of this paper
is not formalizing this semantics but exploring its expressive ca-
pabilities. Thereby we have extended our Maude based prototype
[21] to support CRWLσπ , and used it to develop and test several
programs that we think are significant examples of the possibilities
of this combined semantics. This system is available at https://
gpd.sip.ucm.es/trac/gpd/wiki/PluralSemantics/Maude.

The rest of the paper is organized as follows: after preliminaries,
Sect. 3 presents the semantics of our system; Sect. 4 illustrates its
use with several examples; Sect. 5 focus on the development of our
prototype; and finally Sect. 6 relates the conclusions and outlines
the future work.

2. Preliminaries
We consider a first order signature Σ = CS ∪ FS, where CS
and FS are two disjoint sets of constructor and defined function
symbols respectively, all of them with associated arity. We write
CSn (FSn resp.) for the set of constructor (function) symbols of
arity n. We write c, d, . . . for constructors, f, g, . . . for functions,
and X,Y, . . . for variables of a numerable set V . The notation o
stands for tuples of any kind of syntactic objects. Given a set A
we denote by A∗ the set of finite sequences of elements of that
set. For any sequence a1 . . . an ∈ A∗ and function f : A →
{true, false} by a1 . . . an | f we denote the sequence constructed
taking in order every element from a1 . . . an for which f holds.
Besides, for any 1 ≤ i ≤ n, (a1 . . . an)[i] denotes ai.

The set Exp of expressions is defined as Exp 3 e ::=
X | h(e1, . . . , en), where X ∈ V , h ∈ CSn ∪ FSn and
e1, . . . , en ∈ Exp. The set CTerm of constructed terms (or
c-terms) is defined like Exp, but with h restricted to CSn (so
CTerm ⊆ Exp). The intended meaning is that Exp stands for
evaluable expressions, i.e., expressions that can contain function
symbols, while CTerm stands for data terms representing values.

1 As types are not considered through this work here we mean the type
naturally intended by the programmer.

We will write e, e′, . . . for expressions and t, s, . . . for c-terms.
The set of variables occurring in an expression e will be denoted
as var(e). We will frequently use one-hole contexts, defined as
Cntxt 3 C ::= [] | h(e1, . . . , C, . . . , en), with h ∈ CSn ∪ FSn.
The application of a context C to an expression e, written by C[e],
is defined inductively as [][e] = e and h(e1, . . . , C, . . . , en)[e] =
h(e1, . . . , C[e], . . . , en).

Substitutions θ ∈ Subst are finite mappings θ : V −→ Exp,
extending naturally to θ : Exp −→ Exp. We write eθ for the
application of θ to e. The domain of θ is defined as dom(θ) =

{X ∈ V | Xθ 6= X}. [X/e] denotes a substitution θ with
dom(θ) = X such that θ(Xi) = ei. If dom(θ0) ∩ dom(θ1) = ∅,
their disjoint union θ0] θ1 is defined by (θ0] θ1)(X) = θi(X),
if X ∈ dom(θi) for some θi; (θ0] θ1)(X) = X otherwise.
C-substitutions θ ∈ CSubst verify that Xθ ∈ CTerm for all
X ∈ dom(θ).

A constructor-based term rewriting system (CS), also called
program throughout this paper, is a set of (constructor-based)
rewrite rules of the form f(t) → r where f ∈ FSn, r ∈ Exp
and t is a linear n-tuple of c-terms, where linearity means that
variables occur only once in t. In the present work we restrict our-
selves to CS’s not containing extra variables, i.e., CS’s for which
var(r) ⊆ var(f(t)) holds for any rewrite rule. We assume that
every CS contains the rules {if true then X → X,X ? Y →
X,X ? Y → Y }, defining the behavior of ? ∈ FS2 and
if then ∈ FS2, both used in mixfix mode (the underscores
indicate where the arguments are placed), and that those are the
only rules for these function symbols. For the sake of conciseness
we will often omit these rules when presenting a program.

Given a TRS P , its associated rewrite relation P ` → is
defined as: P ` C[lσ]→ C[rσ] for any context C, rule l → r ∈ P
and σ ∈ Subst. We will omit P when implied by the context.

We assume a mapping plurality : FS → {sg, pl}∗ called plu-
rality map such that, for every f ∈ FSn, plurality(f) = b1 . . . bn
fixes its plurality behaviour: if bi = sg then the i-th argument of
f will be interpreted with a singular semantics, otherwise it will
be interpreted under a plural semantics. In this line sgArgs(f) =
{i ∈ {1, . . . , ar(f)} | plurality(f)[i] = sg} and plArgs(f) =
{i ∈ {1, . . . , ar(f)} | plurality(f)[i] = pl} are the sets of singu-
lar and plural arguments of some f ∈ FS. In particular we say that
f is a singular function if sgArgs(f) = {1, . . . , ar(f)} and that
it is a plural function when plArgs(f) = {1, . . . , ar(f)}. A re-
lated notion is that of singular and plural variables of a pattern:
sgV ars(f(p)) =

S
i∈sgArgs(f) var(pi) and plV ars(f(p)) =S

i∈plArgs(f) var(pi).

3. The CRWLσπ logic
To deal with non-strictness at the semantic level, we enlarge Σ with
a new constant constructor symbol ⊥. The sets Exp⊥, CTerm⊥,
Subst⊥, CSubst⊥ of partial expressions, etc., are defined natu-
rally. Notice that ⊥ does not appear in programs. Our semantics
is a combination of the CRWL [9] and πCRWL [23] logics. There-
fore the semantics of a program P will be determined by means
of a proof calculus able to derive reduction statements of the form
P ` e _ t, with e ∈ Exp⊥ and t ∈ CTerm⊥, meaning infor-
mally that t is (or approximates to) a possible value of e, obtained
by iterated reduction of e using P , applying singular or plural pa-
rameter passing according to the plurality map. Then the denotation
of an expression e ∈ Exp⊥ under a program P will be defined as
[[e]]P = {t ∈ CTerm⊥ | P ` e _ t}. In the following, we will
usually omit the reference to P .

84

https://gpd.sip.ucm.es/trac/gpd/wiki/PluralSemantics/Maude
https://gpd.sip.ucm.es/trac/gpd/wiki/PluralSemantics/Maude

RR
X _ X

X ∈ V B
e _⊥ DC e1 _ t1 . . . en _ tn

c(e1, . . . , en) _ c(t1, . . . , tn)
c ∈ CSn

OR

e1 _ p1θ11

. . .
e1 _ p1θ1m1

. . .
en _ pnθn1

. . .
en _ pnθnmn rθ _ t

f(e1, . . . , en) _ t
(f(p)→ r) ∈ P , θ =?{θ11, . . . , θ1m1}] . . .] ?{θn1, . . . , θnmn}

∀i, j. θij ∈ CSubst⊥ ∧ dom(θij) = var(pi)
∀i. mi > 0, ∀i ∈ sgArgs(f). mi = 1

Figure 1. Rules of CRWLσπ

All that is left is defining the new calculus CRWLσπ , in which
we will consider sets of partial values for parameter passing instead
of single partial values. These sets will be forced to be singleton
for the singular arguments, thus getting call-time choice for them.
To avoid the need to extend the syntax with new constructions to
represent those “set expressions” that we talked about in Sect. 1,
we will exploit the fact that [[e1 ? e2]] = [[e1]] ∪ [[e2]] for any
sensible semantics. Therefore the substitutions used for parameter
passing will map variables to “disjunctions of values.” We define
the set CSubst?⊥ = {θ ∈ Subst⊥ | ∀X ∈ dom(θ), θ(X) =
t1 ? . . . ? tn such that t1, . . . , tn ∈ CTerm⊥, n > 0}, for
which CSubst⊥ ⊆ CSubst?⊥ ⊆ Subst⊥ obviously holds. The
operator ? : CSubst∗⊥ → CSubst?⊥ constructs the CSubst?⊥
corresponding to a non empty sequence of CSubst⊥, and is de-
fined as ?(θ1 . . . θn)(X) = X if X 6∈

S
i∈{1,...,n} dom(θi);

?(θ1 . . . θn)(X) = ρ1(X) ? . . . ? ρm(X), where ρ1 . . . ρm =
θ1 . . . θn | λθ.(X ∈ dom(θ)), otherwise. Then dom(?(θ1 . . .
θn)) =

S
i dom(θi). This operator is overloaded to handle non

empty sets Θ ⊆ CSubst⊥ as ?Θ =?(θ1 . . . θn) where the se-
quence θ1 . . . θn corresponds to an arbitrary reordering of the ele-
ments of Θ.

The CRWLσπ-proof calculus is presented in Fig. 1. Its first three
rules have been inherited from CRWL (as they were inherited by
πCRWL, too). Rule B (bottom) allows us to avoid the evaluation of
any expression, in order to get a non-strict semantics. Rules RR (re-
stricted reflexivity) and DC (decomposition) allow us to reduce any
variable to itself, and to decompose the evaluation of a constructor-
rooted expression. But the novelty is in the rule OR (outer reduc-
tion), that has been tuned to take account of the plurality map. As
in its original formulation in CRWL, it expresses that to evaluate a
function call we must first evaluate its arguments to get an instance
of a program rule, perform parameter passing and then continue the
evaluation with the correspondingly instantiated right-hand side.
The difference is that now we may compute more than one partial
value for each plural argument, and then use a substitution from
CSubst?⊥ for parameter passing over that argument, achieving a
plural behaviour. On the other hand, for singular arguments we are
only allowed to compute a single value, thus performing parame-
ter passing over it with a substitution from CSubst⊥ (as obviously
?{θ} = θ), and achieving a singular behaviour (call-time choice).

Example 1. Consider the program {f(X, c(Y)) → d(X,X,
Y, Y)} and a plurality map such that plurality(f) = sg pl. In
Fig. 2 there is a CRWLσπ-proof for the statement f(0?1, c(0)?
c(1)) _ d(0, 0, 0, 1) (some steps have been omitted for the sake
of conciseness). Note that d(0, 1, 0, 1) is not a correct value for
the expression f(0?1, c(0)?c(1)) under CRWLσπ , because the first
argument of f is singular and therefore the two occurrences of X
in the right-hand side of its rule share the same single value, fixed
on parameter passing.

(∗)
c(0)?c(1) _ c(0)

. . .

c(0)?c(1) _ c(1)
. . .

0?1 _ 0

. . .
0 _ 0

. . .
0 _ 0

. . .
0?1 _ 0

. . .
0?1 _ 1

d(0, 0, 0?1, 0?1) _ d(0, 0, 0, 1)
DC

f(0?1, c(0)?c(1)) _ d(0, 0, 0, 1)
OR

where (∗) is the following proof:

0 _ 0
DC

c(0) _ c(0)
DC

c(1) _⊥ B
. . .

c(0) _ c(0)

c(0)?c(1) _ c(0)
OR

Figure 2. A sample CRWLσπ-proof
On the other hand if we take the same program and evalu-

ate f(0?1, c(0)?c(1)) under term rewriting —which ignores the
plurality map—, its behaviour is significantly different (the corre-
sponding redex has been underlined in each rewriting step):

f(0?1, c(0)?c(1))→ f(0?1, c(0))→ d(0?1, 0?1, 0, 0)
→ d(0, 0?1, 0, 0)→ d(0, 1, 0, 0)

A first step resolving the choice between c(0) and c(1) is unavoid-
able in order to get an expression matching the only rule for f ,
thus for any reachable c-term the two last arguments of d will be
the same, contrary to what happens in CRWLσπ under the given
plurality map. Nevertheless its first two arguments can be differ-
ent, contrary to what happens under CRWLσπ . In conclusion, it
is easy to define a program and a plurality map for them such
that term rewriting and CRWLσπ are not comparable wrt the set
of computed—reachable by a rewriting derivation, in case of term
rewriting—c-terms.

A useful intuition about CRWLσπ-programs comes from con-
sidering the singular arguments as fixed individual values, while
thinking about the plural ones as sets. We could have chosen to
specify the plurality or singularity of functions instead of that of its
arguments, but the use of arguments with different plurality arises
naturally in programs, in the same way it is natural to have argu-
ments of different types. We will illustrate this fact with several
examples in the next section.

One of the most important properties of CRWLσπ , inherited
from CRWL and πCRWL, is its compositionality, which expresses
the value-based philosophy underlying CRWLσπ: “all I know about
an expression is its set of values.” Thus expressions with the same
set of values can be interchanged:

Theorem 1 (Compositionality).
For all C ∈ Cntxt, e ∈ Exp⊥,

[[C[e]]] =
[

{t1,...,tn}⊆[[e]]

[[C[t1 ? . . . ? tn]]]

85

for any arrangement of the set {t1, . . . , tn} in t1 ? . . . ? tn.
As a consequence: [[e]] = [[e′]]⇔ ∀C. [[C[e]]] = [[C[e′]]].

Proof. A straightforward modification of the proof for Th. 1 in
[23].

We conclude our discussion about CRWLσπ with the fol-
lowing result stating that it is in fact a conservative extension
of both CRWL (call-time choice, or equivalently, singular non-
determinism) and πCRWL (plural non-determinism), as it was ap-
parent from its rules.

Theorem 2 (Conservative extension). For any program P , e ∈
Exp⊥:

1. If every function is singular then [[e]]PCRWLσπ
= [[e]]PCRWL.

2. If every function is plural then [[e]]PCRWLσπ
= [[e]]PπCRWL.

where [[e]]PCRWLσπ
, [[e]]PCRWL and [[e]]PπCRWL are the denotations for

e under P given by CRWLσπ , CRWL and πCRWL, respectively.

Proof. Whenever every function is singular then CRWLσπ’s OR
is equivalent to its original definition in CRWL, henceforth each
CRWLσπ proof for a given reduction statement will also be a CRWL
proof for that statement, and vice versa. Similarly, if every function
is plural then CRWLσπ’s OR is equivalent to πCRWL’s POR.

4. Programming with singular and plural
functions

In this section we illustrate the use of the language and our proto-
type of CRWLσπ by means of different examples. First, we intro-
duce the concrete syntax and motivate the combination of singular
and plural semantics with a simple example, while the next exam-
ples will illustrate how to combine singular and plural semantics
in depth. The source code for these examples and the interpreter
to test them can be found at https://gpd.sip.ucm.es/trac/
gpd/wiki/PluralSemantics/Maude.

4.1 Clerks
This example shows how to perform a search in the database of
a certain company. The different branches are defined by using
the non-deterministic function ?, that here has to be understood
as the set union operator. In the same line, for each branch the
function employees returns the set of its employees, built with
the constructor e, that keeps their name, gender, and role in the
company:

branches -> madrid ? vigo ? badajoz .

employees(madrid) -> e(john, men, clerk) ?
e(larry, men, boss) .

employees(vigo) -> e(mary, women, clerk) ?
e(james, men, boss) .

employees(badajoz) -> e(laura, women, clerk) ?
e(david, men, clerk) .

As pointed out above, _?_ is a binary predefined function used in
infix notation. The system also provides the if_then_ function and
the boolean values tt (for true) and ff (for false). This functions
are defined by the rules X ? Y -> X, X ? Y -> Y, if tt then
E -> E, and interpreted as plural functions for more flexibility: in
this way they can be called in the right-hand sides of singular and
plural functions while keeping the corresponding plurality of their
arguments.

We define a function twoclerks which searches in the database
for two employees working as clerks (where p is the constructor of
pairs). The main function is search, which has been marked with
the keyword plural to indicate that its argument has plural seman-
tics, that is, it has to be used as a set of records from the database
so, although the same variable N is used in the two components of
the pair, each one can be instantiated with different values:

twoclerks -> search(employees(branches)) .
search is plural .
search(e(N,S,clerk)) -> p(N,N) .

Once the module has been loaded in our system, we can use the
eval command to evaluate expressions and more to find the next
solutions:

Maude> (eval twoclerks .)
Result: p(john,john)

Maude> (more .)
Result: p(john,mary)

This program works as we expected, even if all the functions
are marked as plural (i.e., if πCRWL is used). However it could be
improved in several directions. First of all, we are interested in get-
ting two different clerks. To do that we define a function newIns
that appends an element at the beginning of a list ensuring that the
remaining elements of the list are different to the inserted element.
This is checked by diffL, which returns the list in its second ar-
gument if it does not contain its first argument, and otherwise fails.
Thus a disequality test is needed, but in our minimal framework
we do not dispose of disequality constraints, common in FLP lan-
guages. Nevertheless we can implement a ground version of dise-
quality through regular program rules, as it is done by neq.
By default, all function arguments have singular semantics, but it
can be explicitly stated with the word singular:

newIns is singular .
newIns(X, Xs) -> cons(X, diffL(X, Xs)) .

diffL(X, nil) -> nil .
diffL(X, cons(Y, Xs)) ->

if neq(X, Y) then cons(Y, diffL(X, Xs)) .

neq(john, larry) -> tt .
neq(john, mary) -> tt .
...

Note that we need newIns, diffL and neq to be singular
because they essentially perform tests, and when performing a test
we naturally want the returning value to be the same which have
been tested. For example, the following program:

isWoman(mary) -> tt .
isWoman(laura) -> tt .
...
filterWomen(P) -> if isWoman(P) then P .

would have a funny behaviour if filterWomen had been declared
a plural function, because then for filterWomen(mary ? john)
we could compute john as a correct value.

On the other hand we have to explicitly mark any function that
we want to be interpreted as plural, as shown in the functions
search above and vals here, which generates lists of different
values of its argument. Note the combination of plurality, to obtain
more than one value from the argument of vals, and singularity,
which is needed for the tests performed by newIns:

86

https://gpd.sip.ucm.es/trac/gpd/wiki/PluralSemantics/Maude
https://gpd.sip.ucm.es/trac/gpd/wiki/PluralSemantics/Maude

vals is plural .
vals(X) -> newIns(X, vals(X)) .

Finally, the same function could need some arguments to have
singular semantics while others need plural semantics. In this case,
the semantics of all the arguments must be given initially by using
a sequence of s and p, where s stands for singular and p for plural
semantics. To illustrate it we generalize our search function to look
for any number of clerks, not just two. To do that we will use the
function nVals below, that returns a list of different values corre-
sponding to different evaluations of its second argument. Therefore
that second argument has to be declared as plural, while its first ar-
gument is singular as it fixes the number of values claimed (that is,
the length of the returning list):

nVals is sp .
nVals(N, E) -> take(N, vals(E)) .

This nVals function is an example of how the use of plural ar-
guments allows us to simulate some features that in a pure call-time
choice context have to be defined at the meta level, in this case the
collect [14] or findall [10] primitives of standard FLP systems.

Finally the function nClerks starts the search for the number of
different clerks specified by the user. It uses the auxiliary function
findClerk, that returns the name of a given clerk:

nClerks is singular .
nClerks(N) ->

nVals(N, findClerk(employees(branches))) .

findClerk is singular .
findClerk(e(N,S,clerk)) -> N .

Now we can search for three different clerks, obtaining john,
mary, and laura as the first possible result:

Maude> (eval nClerks(s(s(s(z)))) .)
Result: cons(john,cons(mary,cons(laura,nil)))

In the following examples we will see more clearly how to de-
cide the plurality of functions. The key idea that singular arguments
are used to fix their the values while plural arguments are needed
when we want to use sets of values.

4.2 Dungeon
Ulysses has been captured and he wants to cheat his guardians us-
ing the bottomless bag of gold he carries from Troy. Thus, he needs
to know if there is an escape (what we define as obtaining the key
of its jail) and, if possible, which is the path to freedom (we define
each step of this path as a pair composed of a guardian and the item
Ulysses obtains from him).

He uses the function ask to interchange items and information
with his guardians. Since each guardian provides different infor-
mation we have to assure that they are not mixed, and thus its first
argument will be singular; on the other hand he may offer differ-
ent items to the same guardian, thus the second argument will be
plural: this function needs plurality sp:

ask is sp .

These guardians have a complex behavior, circe exchanges
Ulysses’ trojan-gold by either an item(treasure-map) or
the sirens-secret; calypso offers the item(chest-code)
when she receives the sirens-secret; aeolus can combine two

items2; and polyphemus gives Ulysses the key once he can give
him the combination of the treasure-map and the chest-code:

ask(circe, trojan-gold) -> item(treasure-map) ?
sirens-secret .

ask(calypso, sirens-secret) -> item(chest-code) .
ask(aeolus, item(M)) -> combine(M,M) .
ask(polyphemus, combine(treasure-map, chest-code))

-> key .

In the same line, askWho has as arguments a (fixed) guardian
and a message (probably with many items) for him, so it also has
plurality sp. This function returns the next step in the Ulysses’ path
to freedom, that is, a pair with the guardian and the items obtained
from him with the function ask:

askWho is sp .
askWho(Guardian, Message) ->

p(Guardian, ask(Guardian, Message)) .

The following functions, which are in charge of computing the
actions that must be performed to escape, are marked as plural
functions because they treat their corresponding argument as a set
of pairs where the second component is an item or some piece of
information, and the first one is the actor which provided it. The
function discoverHow returns the set of pairs of that shape that can
be obtained starting from those contained in its argument, and then
chatting to the guardians. Hence it returns either its argument or the
result of exchanging the current information with some guardian
and then iterating the process. That exchange is performed with
discStepHow, that non-deterministically offers some of the items
or information available, to one of the guardians:

discoverHow is plural .
discoverHow(T) -> T ?

discoverHow(discStepHow(T) ? T) .

discStepHow is plural .
discStepHow(p(W, M)) -> askWho(guardians, M) .

guardians -> circe ? calypso
? aeolus ? polyphemus .

Note that the additional disjunction ? T in the recursive call
to discStepHow is needed in order to be able to combine the old
information with the new one resulting after one exchanging step.
This point can be illustrated better with the following program:

genPairs is plural .
genPairs(P) -> P ? genPairs(genPairsStep(P) ? P) .

genPairsStep is plural .
genPairsStep(P) -> p(P, P) .

genPairsBad is plural .
genPairsBad(P) -> P ?

genPairsBad(genPairsStep(P)) .

There the functions genPairs and genPairsBad follow the
same pattern as discoverHow, but this time are designed to gener-
ate values made up with pairs and the supplied argument. Besides
this functions share the same “step function” genPairsStep. Nev-
ertheless their behaviour is very different, as we can see evaluating
the expressions genPairs(z) and genPairsBad(z): the point is
that the value p(p(z,z),z) can be computed for the former but

2 Note that we say two items when the function only shows one. This rule
uses the expressive power of plural semantics to allow the combination of
different items.

87

not for the latter, because z and p(z,z) are values generated in
different recursive calls to genPairsBad. But this poses no prob-
lem for genPairs, because the extra ? P in its definition makes it
possible to combine those values.

Finally, the search is started with the function escapeHow, that
initializes the search with the trojan gold provided by Ulysses:

escapeHow -> discoverHow(p(ulysses, trojan-gold)) .

Once the module is introduced, we can start the search with the
command:

Maude> (eval escapeHow .)
Result: p(ulysses,trojan-gold)

When this first result has been computed, we can ask the tool
for more with the command more, that progressively will show the
path followed by Ulysses to escape:

Maude> (more .)
Result: p(circe,item(treasure-map))
Maude> (more .)
Result: p(circe,sirens-secret)
Maude> (more .)
Result: p(calypso,item(chest-code))
...
Maude> (more .)
Result: p(polyphemus,key)

In this example the function discoverHow is an instance of
an interesting pattern of plural function: a function that performs
deduction by repeatedly combining the information we have fed it
with the information it infers in one step of deduction. Therefore
in its definition the function ? has to be understood again as the set
union operator, as it is used to add elements to the set of deduced
information. On the other hand the use of a singular argument in
askWho is unavoidable to be able to keep track of the guardian who
answers the question, while its second argument has to be plural
because it represents the knowledge accumulated so far.
Several variants of this problem can be conceived, in particular
currently it is simplified because the items are not lost after each
exchange —this is why Ulysses’ bag is bottomless—. Anyway we
think that this version of the problem is relevant because in fact it
corresponds to a small model of an intruder analysis for a security
protocol, where Ulysses is the intruder, the guardians are the honest
principals, the key is the secret and complex behaviours of the
principals can be described through the patterns in left hand sides
of program rules. In this case we assume that the intruder is able to
store any amount of information, and that this information can be
used many times. Nevertheless we also think that different variants
of the problem should be tackled in the future, and that the addition
of equality and disequality constraints to our framework could be
decisive to deal with those problems.

4.3 Exams
In this example we show how to use both plural and singular
semantics to check if a group of students can pass an exam (that
is, to obtain a mark bigger or equal than s(s(s(s(s(z))))))
by sharing their knowledge about the subjects that each one has
studied. First, we define the students and their initial knowledge;
james has studied the subjects t1.1 and t1.3, lyla has studied
t1.2 and t3, and harry has studied t2.1 and t4. This knowledge
is represented in the function subjects1 where the alternative
function ? is understood once more as the set union, in such a
way that a set of database records is represented. Note that the
possibility of nesting ? inside the constructor knows allows us to

get a more compact representation of this database than we could
have if the alternatives where allowed at the top level only:

team1 -> james ? lyla ? harry ? alice .
subjects1 -> knows(james, t1.1 ? t1.3) ?

knows(lyla, t1.2 ? t3) ?
knows(harry, t2.1 ? t4) .

We define the function knowsAll to check if all the subjects
required in the list given as first argument are contained in the set
of subjects represented in its second argument, where each subject
can have been studied by a different student, and hence is marked
as plural. This function is just an special case of listInSet,
which checks if every element of a given list is contained in a
given set, represented by a plural argument. As pointed out in
the Clerks example, we do not dispose of equality constraints in
our minimal framework, hence eq corresponds here to its ground
version implemented by using regular program rules:

knowsAll is sp .
knowsAll(Questions, Knowledge) ->

listInSet(Questions, Knowledge) .

listInSet is sp .
listInSet(nil, K) -> tt .
listInSet(cons(K1, Ks), K) ->

if eq(K, K1) then listInSet(Ks, K) .

Using this function and the same semantics we define mark, that
indicates the subjects needed to solve each question and its marks;
for example, the question q1 requires the subjects t1.1 and t1.2
and two marks are obtained when answered correctly, while the
question q2 requires t1.3 and t3 and one mark is obtained when
answered:

mark is sp .
mark(q1, K) ->

if knowsAll(cons(t1.1, cons(t1.2, nil)), K)
then s(s(z)) .

mark(q2, K) ->
if knowsAll(cons(t1.3, cons(t3, nil)), K)
then s(z) .

...

The function answer checks the knowledge of each particular
student. Given a student and a database in the format of subjects1
it returns a non-deterministic value representing the set of subjects
that the students knows, as represented in the database. For example
if we evaluate answer(lyla, subjects1) we will first get the
results t1.2, then t3 if we ask for more, and finally No more
results if we ask for a third result. As usual, as it performs tests,
its arguments are marked as singular:

answer is singular .
answer(Student, knows(S, Subject)) ->

if eq(Student, S) then Subject .

The function markAll generates a list with the marks obtained
in each question. Its first argument is an exam represented as a list
of questions, hence it is annotated as singular in order to use the
same exam during the whole marking process. On the other hand
we annotate its second argument as plural because it represents the
set of subjects the students have studied:

markAll is sp .
markAll(nil, K) -> nil .
markAll(cons(Q, Qs), K) ->

cons(mark(Q, K), markAll(Qs, K)) .

88

In the same way, examine is declared as spp, fixing the exam
and allowing different combinations of the team and the studies.
We do so because we assume that the students will be cheating
and passing on results between them, hence that combinations
represent the “collective knowledge” owned by the students. The
sum function just folds a list of naturals into its total sum:

examine is spp .
examine(Exam,Team,Studies) ->
p(Exam,sum(markAll(Exam,answer(Team,Studies)))) .

The main function of the program is passes, that checks if
the team can obtain the minimum mark to pass the exam. There
the function someElems, that non-deterministically drops some
elements of its input list, is used to express that the students may
pass the exam without answering all the questions:

passes is spp .
passes(Exam,Team,Studies) ->

minMark(examine(someElems(Exam),
Team,Studies)) .

minMark(p(Exam, s(s(s(s(s(N))))))) ->
p(Exam, s(s(s(s(s(N)))))) .

someElems(Xs) -> nil .
someElems(cons(X, Xs)) -> cons(X, someElems(Xs)) .
someElems(cons(X, Xs)) -> someElems(Xs) .

Finally, we define the different exams:

exams ->
cons(q1,cons(q2.1,cons(q3.2,cons(q4.1,

cons(q5,nil)))))
? cons(q1,cons(q2.1,cons(q3.2,cons(q4.2,

cons(q6,nil)))))
? cons(q1,cons(q2.2,cons(q3,cons(q4.1,

cons(q5,nil))))) .

Now we can check which are the possible answers that the
students can give in order to pass one of the exams:

Maude> (eval passes(exams, team1, subjects1) .)
The term cannot be reduced to a cterm.

As we can see, they should work harder because they cannot
pass any of the exams. We can try to make some of them study
another subject, for example t5, with the command:

Maude> (eval passes(exams, team1, subjects1 ?
knows(lyla, t5)) .)

Result: p(cons(q1,cons(q2.1,
cons(q4.1,cons(q5,nil)))),

s(s(s(s(s(zero))))))

Now, they can pass the first exam by answering the questions
q1, q2.1, q4.1, and q5. Note that we have made lyla study an
extra subject by just combining the new record knows(lyla, t5)
with subjects1 through the function ?. However in a run-time
choice semantics we would have needed to nest t5 inside the orig-
inal knows record for lyla in subjects1, in order to get the same
result.

We can also check if it is possible to pass this exam answering
other questions or if it is possible to pass another exam. We do it
with the command:

Maude> (more .)
Result: p(cons(q1,cons(q3,cons(q4.1,cons(q5,nil)))),

s(s(s(s(s(zero))))))

That is, it is also possible to pass the third exam. If we ask for
more results, we realize that no other solutions are reachable:

Maude> (more .)
No more results.

4.4 Discussion: to be singular or to be plural?
After these examples, now we (hopefully) have some intuitions
about how to decide the plurality of function arguments. Our first
resort is considering that plural arguments are used to represent sets
of values and that plural arguments denote single values. But this
does not work for any situation, for example consider the function
findClerk whose plurality is singular, although its argument intu-
itively denotes a set of records from the database. We can also con-
sider that its argument denotes a single record, and that findClerk
defines how to extract the name from a single employee, which mo-
tives the final plurality choice. In this case the program behaves the
same both declaring findClerk as singular or plural, because the
variables in its arguments are used only once. As a rule of thumb
we should try to have as little plural arguments as possible, because
these arguments increase the search space more that the singular
ones [23]. Hence here it is better to declare findClerk as singular.

Thus having a more formal criterion about the equivalence of
plurality maps would be useful to minimize the search space of
our programs and understand them better. A static adaptation of
the determinism analysis of [3] could be useful, as it would help
us to detect deterministic functions of our programs, for which the
plurality map would not matter, as we expect to easily extend the
equivalence results of singular/call-time choice and run-time choice
for deterministic programs of [15] to our plural semantics. We also
should try to develop equational laws about non-determinism in
the line of the “bubbling” rule as formulated in [16], stating that
[[C[e1 ? e2]]] = [[C[e1]]] ∪ [[C[e2]]]. Although this rule does not
hold in CRWLσπ —just consider the expression pair(0 ? 1) for
the plural function pair defined as pair(X) → (X,X)—, we
conjecture that it would be the case for its restriction to singular
contexts (where the hole has no plural argument position above
itself). All these are interesting subjects of future work.

5. Implementation
We describe in this section the modification of the core language of
[17], upon which we have built our implementation. Source pro-
grams are transformed into core programs by a combination of
the sharing transformation of [17] and the plural transformation
of [23] that now takes the plurality map into account. These core
programs are then evaluated using a heap-based operational seman-
tics, to which the natural rewriting on-demand strategy [6] has been
adapted. All these new features have been added to our Maude
based prototype [21], thus getting an implementation of CRWLσπ .

5.1 Program transformations
In [17] a run-time choice rewriting framework enhanced with a
let primitive to express sharing was proposed for the combina-
tion of singular/call-time choice and run-time choice semantics.
There the syntax is extended to handle let-expressions, defined as
LExp 3 e ::= X | h(e1, . . . , en) | let X = e1 in e2. We will
often use the notation let X = a in e to abbreviate let X1 =
a1 in . . . in let Xn = an in e. These LExp are governed by
the run-time let rewriting relation →rt that defines its operational
behaviour. Intuitively, LExp’s are evaluated by →rt like in reg-
ular term rewriting with the exception that in any reduction of a
let-expressions let X = e1 in e2, all the occurrences of X in e2

share the same value, produced by e1.
We will use a simplified version of that framework as the core

language for our implementation. The point is that the transforma-

89

pST (f(p1, . . . , pn)→ r)

=

8<:
f(p1, . . . , pn)→ r if ρ1 . . . ρm is empty

f(τ(p1), . . . , τ(pn))→ if match(Y1, . . . , Ym)

then r[Xij/projectij(Yi)]
otherwise

where ρ1 . . . ρm = p1 . . . pn | λpl.(pl 6∈ V ∧ var(pl) 6= ∅ ∧ l ∈ plArgs(f)).
- (Y1, . . . , Ym) is a linear tuple of fresh variables, one for each ρi. A mapping Φ is then defined so Φ(ρi) returns
the fresh variable corresponding to ρi.
- ∀ρi, {Xi1, . . . , Xiki} = var(ρi) ∩ var(r).
- τ : CTerm→ CTerm is defined by τ(pl) = pl if pl 6∈ ρ1 . . . ρm ; otherwise τ(pl) = Φ(pl).
- match ∈ FSm fresh is defined by the rule match(ρ1, . . . , ρm)→ true.
- Each projectij ∈ FS1 is a fresh symbol defined by the single rule projectij(ρi)→ Xij .

sST (f(p1, . . . , pn)→ r) = f(p1, . . . , pn)→ let Y = X in e[X/Y]

where X = var(e) ∩ sgV ars(f(p1, . . . , pn)) and Y is a linear tuple of fresh variables.

Figure 3. Plural and Singular Semantics Transformations

tion that we will present below only introduces let bindings of the
shape let Y = X in the right hand side of program rules. There-
fore our core programs will be sets of program rules of the form
f(t) → let Y = X in r with f ∈ FSn, r ∈ Exp, t a linear n-
tuple of c-terms andX,Y ⊂ V . As we said in the preliminaries, we
will restrict ourselves to programs not containing extra variables.

Our transformation is presented in Fig. 3, and translates source
programs —regular constructor systems— into core programs that
can be evaluated using the run-time let rewriting relation →rt [17].
This transformation treats each program rule separately, applying
two different transformation stages to them. Assume a program
rule (f(p1, . . . , pn) → r), first of all, if the rule has some plural
arguments the modification of the pST transformation [23] shown
in Fig. 3 is applied to them, postponing their pattern matching to
prevent an early resolution of non-determinism. For example, given
the Dungeon example in Sect. 4.2, the following rule for the plural
function discStepHow

discStepHow(p(W, M)) -> askWho(guardians, M) .

is transformed into the following set of rules:

discStepHow(V) ->
if match9(V)
then askWho(guardians, project9-0-0(V)).

match9(p(W, M)) -> tt .
project9-0-0(p(W, M)) -> M .

that is, the expression is substituted for a fresh variable V to post-
pone the pattern matching, the function match9 is used as a guard
to check that the expression really matches the expected pattern,
and project9-0-0 extracts the appropriate component.

Then we proceed with the singular transformation sST from
Fig. 3, a modification of the sharing transformation of [17, Def. 1].
This transformation introduces a let binding for each singular vari-
able also present in the right hand side. Thereby we assure that the
let construct is in the outermost position of the right-hand side of
the transformed rule, as we anticipated before. For example, in the
Clerks program the singular rule for newIns:

newIns(X, Xs) -> cons(X, diffL(X, Xs)) .

is transformed into the rule:

newIns(X,Xs) -> let V1 = X, V0 = Xs
in cons(V1,diffL(V1,V0)).

We will not give a formal proof of the soundness of the simula-
tion of CRWLσπ through the transformations of Fig. 3 and the use
of →rt , although the formal results regarding the original transfor-
mations and the conservativeness of →rt wrt.→ found in [17, 23],
already give a clue about its adequacy. Anyway, as mentioned in
Sect. 1, our main goal is to experiment with CRWLσπ so those tech-
nical results are beyond the scope of this paper.

5.2 An Operational Semantics for the core language
In order to simplify the management of the scopes generated by
let bindings, instead of using →rt core programs will be evaluated
using a heap-based operational semantics. A heap is just a mapping
from variables to expressions that represents a graph structure, as
the image of each variable is interpreted as a subgraph definition.
This can be used to represent LExp because any let-expression
in fact corresponds to a directed acyclic graph with variables or
symbols of the signature in its nodes. Similar heap structures were
used in Launchbury’s natural semantics for functional program-
ming [12], the operational semantics for FLP of [1, 2] or the for-
malization of term graph rewriting of [20]. But contrary to what it
is done there, and in line with [17], we do not require a previous
“normalization” step ensuring that every argument of an applica-
tion of a symbol from Σ is a variable.
The advantage of this approach is that this way all the bindings are
kept in the same scope, easing their manipulation. We will use the
metavariables Γ,∆ to denote heaps and, in order to clarify the nota-
tion, will name every variable bound in the heap with the subscript
p, where p connotes “pointer.” Thus Γ[Xp] denotes the expression

associated in Γ to the variable Xp, and Γ[Xp1 7→ e1, . . . , Xpn 7→
en] denotes a heap ∆ with ∆[Xpi] = ei and ∆[Y] = Γ[Y] for
every Y 6∈ {Xp1 , . . . , Xpn}. Substitutions are applied to the heap
as [X 7→ e]θ = [X 7→ eθ].

Our operational semantics manipulates configurations Γ : Rp,
where Rp stands for a pointer to the root of the graph represented
in Γ. Therefore to evaluate an expression e we will start from
[Rp 7→ e] : Rp and reduce it until reaching a configuration Γ : Rp
where the subgraph represented in Γ[Rp] corresponds to a c-term.
Fig. 4 shows the reduction rules for this configurations. The key
rule is FAPP. Our transformation assures that X = sgV ars(f(t))

90

FAPP Γ[Xp 7→ C[f(t)σ]] : Rp →g Γ[Xp 7→ C[r([Y/Yp]] σ)], Yp/σ(X)] : Rp
if (f(t)→ let {Y = X} in r) ∈ P , σ ∈ Subst, dom(σ) = var(f(t)), for Yp fresh

BINDC Γ[Xp 7→ c(e)] : Rp →g (Γ[Xp/c(Yp)])[Yp 7→ e] : Rp if Xp 6= Rp and c ∈ CS, for Yp fresh
BINDV Γ[Xp 7→ Z] : Rp →g Γ[Xp/Z] if Xp 6= Rp and Z ∈ V .
TRASH Γ[Xp 7→ e] : Rp →g Γ : Rp if Xp 6∈ (

S
(Yp 7→e′)∈Γ

var(e′)) ∪ {Rp}

Figure 4. Operational semantics for the core language

and dom(σ) \ X = plV ars(f(t)), therefore the substitution
[Y/Yp]] σ will perform parameter passing for the plural variables
while refreshing the singular variables, for each of them a new entry
in the heap has been made pointing to the result of applying σ to its
corresponding variable in t. Rules BINDC and BINDV propagate
through the heap the outer computed part of expressions. Finally
rule TRASH throws away needless bindings.
Again, we will not prove any formal result relating the relations
→g and →rt because, as mentioned before, it is beyond the scope
of the paper. Nevertheless their equivalence is apparent, although
the treatment of the BIND rules is a little different, and →rt can
handle a more general kind of let bindings (not only those of the
shape let X = Y in e).

A small additional effort is needed to turn→g into an effective op-
erational mechanism for CRWLσπ: an optimal evaluation strategy
should be attached to it to ensure that the evaluation is performed
on-demand. We have opted for the natural rewriting strategy [6],
which was also the choice in our previous prototype. The matching
definitional trees used to implement it remain the same, because
left-hand sides do so, but the function used to apply the strategy
to terms had to be adapted to deal with heaps instead of terms.
Then the evaluation proceeds as follows, first we repeatedly apply
BINDC, BINDV and TRASH until they cannot be applied anymore,
and then we apply FAPP over the subexpression pointed by the nat-
ural rewriting strategy, and iterate this process until Γ[Rp] contains
the representation of a c-term. This is sensible because the BIND or
TRASH steps do not change the graph represented in the heap but
just reconfigure its representation to enable the application of more
FAPP steps. Besides the following result states that this reconfigu-
ration process always terminates.

Proposition 1. The relation→g\FAPP
defined by the rules of Fig. 4

except FAPP is terminating.

Proof. We define sM(Γ, Xp) = sM(Γ,Γ[Xp]), sM(Γ, X) =
{X} if X is not defined in Γ, and sM(Γ, h(e)) = {h} ⊕L

ei∈e sM(Γ, ei) (where ⊕ is the union of multisets), and finally
sM([Xp1 7→ e1, . . . , Xpn 7→ en]) =

L
i sM(Γ, Xpi). Thus

sM(Γ) is a multiset of symbols in the heap Γ, with one occurrence
of each symbol per each reference to them. Hence each →g\FAPP

step necessarily decreases the cardinality of sM(Γ).

5.3 Maude implementation
The current implementation of this language is an extension of
the work presented in [21], where only the plural semantics trans-
formation was available. This extension has been achieved in a
very short time thanks to the modularity of the implementation—
that keeps program transformations, execution, and user interac-
tion separated—and the use of Maude as specification language
because, on the one hand, provides powerful features to transform
programs [5] and, on the other hand, allows an almost immediate
translation of the semantic rules to code [25].

Maude [4] is a high-level language and high-performance sys-
tem supporting both equational and rewriting logic computation for
a wide range of applications. Maude modules correspond to spec-
ifications in rewriting logic [19]. Rewriting logic is a good seman-
tic framework for formally specifying programming languages as
rewrite theories [4, Chap. 20]. Moreover, since those specifications
usually can be executed in Maude, they in fact become interpreters
for these languages.

Exploiting the fact that rewriting logic is reflective [5], a key
distinguishing feature of Maude is its systematic and efficient
use of reflection through its predefined META-LEVEL module [4,
Chap. 14], a feature that makes Maude remarkably extensible and
that allows many advanced metaprogramming and metalanguage
applications. This powerful feature allows access to metalevel en-
tities such as specifications or computations as usual data. Further-
more, the Maude system provides another module, LOOP-MODE [4,
Chap. 17], which can be used to specify input/output interactions
with the user. Thus, our program transformation, its execution, and
its user interactions are implemented in Maude itself.

All these capabilities are used in our tool. First, Maude allows
to represent the operational semantics described in Sect. 5.2 in
a natural way [25]. Moreover, we have adapted the on-demand
natural rewriting strategy shown in [21] to deal with this semantics
by defining functions that select the expression in the heap that
must be evaluated, and reducing then the subexpression indicated
by the natural rewriting strategy, that has been adapted to take into
account the dereferencing caused by the heap. On the other hand,
program transformations applied in our system (see Sect. 5.1) can
be easily handled by using the reflective capabilities of Maude, that
allow to manipulate rules as usual data. Thus, the rules introduced
by the user can be traversed and modified in a direct way, new rules
(such as the match and project rules of the plural transformation)
can be added, and the obtained module can be directly executed.

6. Conclusions and future work
In this paper we have explored the expressive capabilities of the
combination of singular and plural arguments in non-deterministic
functions. Several examples have been presented, showing that this
combination allows us to define programs in a very natural way,
and a Maude based prototype has been made available to test them.

Previously to ours, not much work has been done in the com-
bination of singular and plural non-determinism in functional
or functional-logic programming, since mainstream approaches
[10, 14, 26] only support the usual singular/call-time choice se-
mantics. More close are the combinations of call-time and run-time
choice of [13, 17], which anyway follow a different approach as the
plural side of CRWLσπ is essentially different to run-time choice.
The monad transformer of [7], devised to improve the laziness
of non deterministic monads while retaining a call-time choice se-
mantics, is based on a share combinator which plays a role similar
to the lets of our core language. The authors seem to be interested
in staying in a pure call-time choice framework, but maybe a com-
bination of call-time and run-time choice could be achieved there

91

too, getting something similar to [17] but again essentially different
to CRWLσπ for the same reason. Besides that work is focused in
implementation issues of FLP in concrete deterministic functional
languages, while in ours we start from the more abstract world of
CS’s and are fundamentally concerned in exploring the language
design space.

Our examples have also shown the direction that should be
followed to improve the prototype. First, it has arisen the neces-
sity of equality and disequality constraints (whose ground version
have been simulated by using regular functions), that will ease and
shorten the definition of programs. Adding higher order capabilities
by an extension of CRWLσπ in the line of [8], and implementing
them by means of the classic transformation of [28], would also
be interesting and it is standard in the field of FLP. Then, for ex-
ample, we could define a more generic version of discoverHow
with an additional argument for the function used to perform a de-
duction step (discStepHow in our dungeon problem). This higher
order version of CRWLσπ could also be used to face the challenges
regarding the implementation of type classes in FLP through the
classical transformational technique of [27] pointed out by Lux in
[18]. Although some solutions based on the frameworks of [13, 17]
were already proposed in [22] we think that an alternative based
on CRWLσπ would be better thanks to its clean and compositional
semantics. More novel would be using the matching-modulo ca-
pacities of Maude to enhance the expressiveness of the semantics,
after a corresponding revision of the theory of CRWLσπ . Besides,
some additional research must be done to improve the performance
of the interpreter by means of some kind of sharing across non-
determinism in the line of [2] and in some sense [7], as both are
based on similar data structures where non-determinism is nested
under constructors.

Finally, as suggested in Sect. 4.4, finding criterion for the equiv-
alence of plurality maps and defining equational laws for non-
determinism would improve the understanding of programs.

Acknowledgements: We would like to thank the anonymous
referees for their very useful comments and suggestions.

References
[1] E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational

semantics for declarative multi-paradigm languages. Journal of Sym-
bolic Computation, 40(1):795–829, 2005.

[2] B. Braßel and F. Huch. On a tighter integration of functional and
logic programming. In Proc. 5th Asian Symposium on Programming
Languages and Systems (APLAS’07), Springer LNCS 4807, pages
122–138, 2007.

[3] R. Caballero and F. J. López-Fraguas. Improving deterministic com-
putations in lazy functional logic languages. Journal of Functional
and Logic Programming, 2003, 2003.

[4] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer,
and C. Talcott. All About Maude: A High-Performance Logical Frame-
work, Springer LNCS 4350, 2007.

[5] M. Clavel, J. Meseguer, and M. Palomino. Reflection in member-
ship equational logic, many-sorted equational logic, Horn logic with
equality, and rewriting logic. Theoretical Computer Science, 373(1-2):
70–91, 2007.

[6] S. Escobar. Implementing natural rewriting and narrowing efficiently.
In Proc. 7th International Symposium on Functional and Logic Pro-
gramming (FLOPS’04), Springer LNCS 2998, pages 147–162, 2004.

[7] S. Fischer, O. Kiselyov, and C.-c. Shan. Purely functional lazy non-
deterministic programming. In Proc. 14th ACM SIGPLAN interna-
tional conference on Functional programming (ICFP ’09), pages 11–
22. ACM, 2009.

[8] J. González-Moreno, M. Hortalá-González, and M. Rodrı́guez-
Artalejo. A higher order rewriting logic for functional logic pro-
gramming. In Proc. International Conference on Logic Programming
(ICLP’97), pages 153–167. MIT Press, 1997.

[9] J. C. González-Moreno, T. Hortalá-González, F. López-Fraguas, and
M. Rodrı́guez-Artalejo. An approach to declarative programming
based on a rewriting logic. Journal of Logic Programming, 40(1):
47–87, 1999.

[10] M. Hanus. Functional logic programming: From theory to Curry.
Technical report, Christian-Albrechts-Universität Kiel, 2005.

[11] H. Hussmann. Non-Determinism in Algebraic Specifications and
Algebraic Programs. Birkhäuser Verlag, 1993.

[12] J. Launchbury. A natural semantics for lazy evaluation. In Proc. ACM
Symposium on Principles of Programming Languages (POPL’93),
pages 144–154. ACM, 1993.

[13] F. J. López-Fraguas, J. Rodrı́guez-Hortalá, and J. Sánchez-Hernández.
A lightweight combination of semantics for non-deterministic func-
tions. In Proc. 18th Workshop on Logic-based methods in Program-
ming Environments (WLPE’08), CoRR, abs/0903.2205, 2009.

[14] F. López-Fraguas and J. Sánchez-Hernández. T OY: A multiparadigm
declarative system. In Proc. Rewriting Techniques and Applications
(RTA’99), pages 244–247. Springer LNCS 1631, 1999.

[15] F. López-Fraguas, J. Rodrı́guez-Hortalá, and J. Sánchez-Hernández.
A simple rewrite notion for call-time choice semantics. In Proc. Prin-
ciples and Practice of Declarative Programming (PPDP’07), pages
197–208. ACM, 2007.

[16] F. López-Fraguas, J. Rodrı́guez-Hortalá, and J. Sánchez-Hernández.
Rewriting and call-time choice: the HO case. In Proc. 9th
International Symposium on Functional and Logic Programming
(FLOPS’08), Springer LNCS 4989, pages 147–162, 2008.

[17] F. López-Fraguas, J. Rodrı́guez-Hortalá, and J. Sánchez-Hernández. A
flexible framework for programming with non-deterministic functions.
In Proc. 2009 ACM SIGPLAN workshop on Partial evaluation and
program manipulation (PEPM’09), pages 91–100. ACM, 2009.

[18] W. Lux. Curry mailing list: Type-classes and call-time choice vs. run-
time choice. http://www.informatik.uni-kiel.de/~curry/
listarchive/0790.html, August 2009.

[19] J. Meseguer. Conditional rewriting logic as a unified model of concur-
rency. Theoretical Computer Science, 96(1):73–155, 1992.

[20] R. J. Plasmeijer and M. C. J. D. van Eekelen. Functional Programming
and Parallel Graph Rewriting. Addison-Wesley, 1993.

[21] A. Riesco and J. Rodrı́guez-Hortalá. A natural implementation of
plural semantics in Maude. In Proc. 9th Workshop on Language
Descriptions Tools and Applications (LDTA’09), 2009.

[22] J. Rodrı́guez-Hortalá. Curry mailing list: Re: Type-classes and
call-time choice vs. run-time choice. http://www.informatik.
uni-kiel.de/~curry/listarchive/0801.html, August 2009.

[23] J. Rodrı́guez-Hortalá. A hierarchy of semantics for non-deterministic
term rewriting systems. In Proc. Foundations of Software Technology
and Theoretical Computer Science (FSTTCS’08), 2008.

[24] H. Søndergaard and P. Sestoft. Non-determinism in functional lan-
guages. The Computer Journal, 35(5):514–523, 1992.

[25] A. Verdejo and N. Martı́-Oliet. Two case studies of semantics execu-
tion in Maude: CCS and LOTOS. Formal Methods in System Design,
27:113–172, 2005.

[26] P. Wadler. How to replace failure by a list of successes. In Proc.
Functional Programming and Computer Architecture. Springer LNCS
201, 1985.

[27] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad
hoc. In Pro.16th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 60–76. ACM, 1989.

[28] D. H. Warren. Higher-order extensions to Prolog: are they needed? In
J. Hayes, D. Michie, and Y.-H. Pao, editors, Machine Intelligence 10,
pages 441–454. Ellis Horwood Ltd., 1982.

92

http://www.informatik.uni-kiel.de/~curry/listarchive/0790.html
http://www.informatik.uni-kiel.de/~curry/listarchive/0790.html
http://www.informatik.uni-kiel.de/~curry/listarchive/0801.html
http://www.informatik.uni-kiel.de/~curry/listarchive/0801.html

	Introduction
	Preliminaries
	The CRWL logic
	Programming with singular and plural functions
	Clerks
	Dungeon
	Exams
	Discussion: to be singular or to be plural?

	Implementation
	Program transformations
	An Operational Semantics for the core language
	Maude implementation

	Conclusions and future work

