
Balancing Execution Trees∗

D. Insa, J. Silva A. Riesco
Universitat Politècnica de València Universidad Complutense de Madrid

Valencia, Spain Madrid, Spain

{dinsa,jsilva}@dsic.upv.es ariesco@fdi.ucm.es

Abstract

Algorithmic debugging is a debugging tech-
nique that uses a data structure represent-
ing all computations of a program. This data
structure is the so-called Execution Tree and it
strongly influences on the performance of the
technique. In this work we present a transfor-
mation that allows us to automatically balance
execution trees by collapsing and projecting
some strategic nodes. We prove that the trans-
formation is sound in the sense that all the
bugs found after the transformation are real
bugs; and if at least one bug is detectable be-
fore the transformation, then at least one bug
will be also detectable after the transforma-
tion. We have implemented the technique and
performed several experiments with real appli-
cations. The experimental results confirm the
usefulness of the technique.

1 Introduction

Algorithmic debugging [11] is a semi-
automatic debugging technique which
produces a dialogue between the debugger
and the programmer to find the bugs. This
technique relies on the programmer having
an intended interpretation of the program.
In other words, some computations of the
program are correct and others are wrong
with respect to the programmer’s intended

∗This work has been partially supported by the
Spanish Ministerio de Ciencia e Innovación un-
der grant TIN2008-06622-C03-02, by the Generalitat
Valenciana under grant ACOMP/2009/017, and by
the Universidad Politécnica de Valencia (Program
PAID-06-08).

semantics. Therefore, algorithmic debuggers
compare the results of subcomputations with
what the programmer intended. By asking
questions to the programmer or using a formal
specification the system can identify precisely
the location of a bug.

Essentially, algorithmic debugging is a two-
phase process: During the first phase, a data
structure that represents the execution of the
program is built. This data structure is called
Execution Tree (ET). The ET contains nodes
that represent subcomputations of the pro-
gram. Therefore, the information of the ET’s
nodes is different in each paradigm (e.g., func-
tions, methods, procedures, etc.), but the con-
struction of the ET is very similar in all of
them. Without loss of generalization, in the
following we will base our examples in the lan-
guage Java. But our ET transformations and
the balancing technique is applicable to any
ET, independently of the language it repre-
sents. In the object-oriented paradigm, the
ET is constructed as follows: Each node of
the ET is associated with a method invoca-
tion, and it contains all the information needed
to decide whether the method invocation pro-
duced a correct result. This information in-
cludes the call to the method with its param-
eters and the result, and the values of all the
attributes that are in the scope of this method,
before and after the invocation. This informa-
tion allows the programmer to know whether
all the effects of the method invocation cor-
respond to her intended semantics. The root
node of the ET is the main method of the pro-
gram. For each node n with associated method
m, and for each method invocation m′ done

by m, a new node associated with m′ is recur-
sively added to the ET as a child of n.

Example 1 Consider the Java program in
Figure 1. This program wrongly simulates—it
has a bug—some movements on a chessboard.
The portion of the ET that is associated with
the call p.castling(tower,king) is depicted
in Figure 2.

public class Chess {
public static void main(String[] args) {

Chess p = new Chess();
Position tower = new Position();
Position king = new Position();

king.locate(5,1);
tower.locate(8,1);
p.castling(tower,king);

}

void castling(Position t,Position k) {
if (t.x!=8) {

for(int i=1; i<=2; i++) {t.left();}
for(int i=1; i<=2; i++) {k.right();}

}
else
{

for(int i=1; i<=3; i++) {t.right();}
for(int i=1; i<=2; i++) {k.left();}

}
}

}

class Position {
int x;
int y;

void locate(int a, int b) {x=a; y=b;}
void up() {y=y+1;}
void down() {y=y-1;}
void right() {x=x+1;}
void left() {x=x-1;}

}

Figure 1: Example program

For the purpose of this work, we can con-
sider ETs as labeled trees. We need to formally
define the notions of context and method in-
vocation before we provide a definition of ET.

Definition 1 (Context) Let P be a pro-
gram, and m a method in P. Then, the con-
text of m is {(a, v) | a is an attribute in the
scope of m and v is the value of a}.

Roughly, the context of a method is com-
posed of all the variables of the program
that can be affected by the execution of this
method. Clearly, these variables can be other
objects that in turn contain other variables. In
a realistic program, each node contains several
data structures that could change during the
invocation. All this information (before and
after the invocation) should be visualized to-
gether with the call to the method so that the
programmer can decide whether it is correct.

Definition 2 (Method Invocation) Let P
be a program and E an execution of P. Then,
each method invocation of E is represented
with a triple I = (b, m, a) where m is a string
representing the call to the method with its pa-
rameters and the returned value, b is the con-
text of the method in m before its execution
and a is the context of the method in m after
its execution.

Definition 3 (Execution Tree) Given a
program P with a set of method definitions
M = {mi | 1 ≤ i ≤ n}, and a call c to
m ∈M , the execution tree (ET) of P w.r.t. c
is a tree t = (V, E) where the label of a node
v ∈ V is denoted with l(v). ∀v ∈ V, l(v) is a
method invocation. And

• The root of the ET is the method invoca-
tion associated with c.

• For each node associated with a call c′ to
mj , 1 ≤ j ≤ n, we have a child node as-
sociated with a call c′′ to mk, 1 ≤ k ≤ n,
iff

1. during the execution of c′, c′′ is in-
voked, and

2. the call c′′ is done from the definition
of mj.

Once the ET is built, in the second phase,
the debugger uses a strategy to traverse the
ET asking the programmer to answer about

the correctness of the information stored in
each node. If the method invocation of a node
is wrong according to the intended semantics,
the answer is NO. Otherwise, the answer is
YES. Using the answers, the debugger tries to
find a buggy node (a buggy node is associated
with the buggy source code of the program).

Definition 4 (Buggy node) Given an ET
t = (V, E) being r ∈ V the root of t, a buggy
node of t is a node v ∈ V such that:

1. The method invocation of v is wrong.

2. 6 ∃v′ ∈ V , (v → v′) ∈ E and v′ is wrong.

3. ∀v′ ∈ V , r →∗ v′ →∗ v, v′ is wrong.

Therefore, when all the children of a node
with a wrong computation (if any) are cor-
rect, the node becomes buggy and the debug-
ger locates the bug in the part of the program
associated with this node [10]. If a bug symp-
tom is detected then algorithmic debugging is
complete [11]; hence, if all the questions are
answered, the bug will eventually be found.

Due to the fact that questions are asked in a
logical order, top-down search [1] is the strat-
egy that has been traditionally used (see, e.g.,
[3, 4, 7]) to measure the performance of differ-
ent debugging tools and methods. It basically
consists of a top-down, left-to-right traversal
of the ET. When a node is answered NO, one
of its children is asked. When the node is an-
swered YES, the next node asked is one of its
siblings. Therefore, the node asked is always
a child or a sibling of the previous question
node. Hence, the idea is to follow the path of
wrong computations from the root of the tree
to the buggy node.

However, selecting always the leftmost child
does not take into account the size of the sub-
trees that can be explored. Binks proposed
in [2] a variant of top-down search in order
to consider this information when selecting
a child. This variant is called heaviest first
because it always selects the child with the
biggest subtree. The objective is to avoid se-
lecting small subtrees that have a lower prob-
ability of containing a bug.

Another important strategy is divide and
query (D&Q) [11], which always selects the
node whose subtree’s size is the closest one to
half the size of the whole tree. If the answer
is YES, this node (and its subtree) is pruned.
If the answer is NO the search continues in
the subtree rooted at this node. This strat-
egy asks, in general, less questions than top-
down search because it prunes near half of the
tree with every question. However, its perfor-
mance is strongly dependent on the structure
of the ET. If the ET is balanced, this strategy
is query-optimal.

There are many other strategies: variants of
top-down search [9, 14], variants of D&Q [5],
and others [8, 12]. A comparison of strategies
can be found in [13]. In general, all of them
are strongly influenced by the structure of the
ET.

Example 2 An algorithmic debugging ses-
sion for the ET in Figure 2 is the following
(YES and NO answers are provided by the pro-
grammer):

Starting Debugging Session...

(1) p.castling(tower,king) ? NO
king.x=5 king.x=3
king.y=1 king.y=1
tower.x=8 tower.x=11
tower.y=1 tower.y=1

(2) t.x=8 t.right() t.x=9 ? YES
t.y=1 t.y=1

(3) t.x=9 t.right() t.x=10 ? YES
t.y=1 t.y=1

(4) t.x=10 t.right() t.x=11 ? YES
t.y=1 t.y=1

(5) k.x=5 k.left() k.x=4 ? YES
k.y=1 k.y=1

(6) k.x=4 k.left() k.x=3 ? YES
k.y=1 k.y=1

Bug found in method:
castling(Position t, Position k)
of class Chess

The debugger points out the part of the code

which contains the bug. In this case, t.x!=8
should be t.x==8. Note that, to debug the
program, the programmer only has to answer
questions. It is not even necessary to see the
code.

2 Collapsing and projecting nodes

Even though the strategy heaviest first signif-
icantly improves top-down search, its perfor-
mance strongly depends on the structure of
the ET. The more balanced the ET is, the bet-
ter. Clearly, when the ET is balanced, heaviest
first is much more efficient because it prunes
more nodes after every question. If the ET is
completely balanced, heaviest first is equiva-
lent to divide and query and both are query-
optimal.

2.1 Advantages of collapsing and project-
ing nodes

Our technique is based on a series of trans-
formations that allows us to collapse/project
some nodes of the ET. A collapsed node is
a new node that replaces some nodes (they
are removed from the ET). In contrast, a pro-
jected node is a new node that is placed as the
parent of a set of nodes (they remain in the
ET). This section describes with an example
the main advantages of collapsing/projecting
nodes in the ET:

• Balancing execution trees. If we aug-
ment an ET with projected nodes, we
can strategically place the new projected
nodes in such a way that the ET be-
comes balanced. With a balanced ET,
the debugger can speed up the debugging
session by reducing the number of asked
questions.

Example 3 Consider again the program
in Figure 1. The portion of the ET
associated with the method invocation
p.castling(tower,king) is shown in
Figure 2. We can add projected nodes to
this ET as depicted in Figure 3.

Note that now the ET became balanced,
and hence, many strategies perform less

questions. For instance, in the worst case,
using the ET of Figure 2 the debugger
would ask all the nodes before the bug
is found. This is due to the broad na-
ture of this ET that prevents strategies
from pruning any node. In contrast, using
the ET of Figure 3 the debugger prunes
almost half of the tree with every ques-
tion. In this example, with the standard
ET, D&Q produces the following debug-
ging session (numbers refer to the codes
of the nodes in the figure):

Starting Debugging Session...

(1) NO, (2) YES, (3) YES, (4) YES,

(5) YES, (6) YES

Bug found in method:

castling(Position t, Position k)

of class Chess

In contrast, with the ET of Figure 3, D&Q
produces the following debugging session:

Starting Debugging Session...

(1) NO, (2) YES, (3) YES

Bug found in method:

castling(Position t, Position k)

of class Chess

• Skipping repetitive questions. Algorith-
mic debuggers tend to repeat the same
(or very similar) question several times
when this question is associated with
a method invocation which is inside a
loop. In our example, this happens,
for instance, in sentence for(int i=1;
i<=3; i++) {t.right();} which is
used to move the tower three positions to
the right. In this case, the three questions

{tower.x=1, tower.y=1} tower.right()
{tower.x=2, tower.y=1}
{tower.x=2, tower.y=1} tower.right()
{tower.x=3, tower.y=1}
{tower.x=3, tower.y=1} tower.right()

Figure 2: ET associated with the call p.castling(tower,king) of the program in Fig. 1

Figure 3: Balanced ET associated with the call p.castling(tower,king) of the program in Fig. 1

{tower.x=4, tower.y=1}

could be projected to the question

{tower.x=1, tower.y=1}
tower.right(); tower.right();
tower.right()
{tower.x=4, tower.y=1}

This kind of projection, where all the pro-
jecting nodes refer to the same method,
has an interesting property: If the pro-
jecting nodes are leaves, then they can
be deleted from the ET. The reason is
that the new projected node and the pro-
jecting nodes refer to the same method.
Therefore, it does not matter what com-
putation produced the bug, because the
bug will necessarily be in the same
method. Hence, if the projected node
is wrong, then the bug is in the method

pointed by this node. When the children
of the projected node are removed, we call
it collapsed node.

Note that, in this case, the idea is not
to add nodes to the ET as in the pre-
vious case, but deleting them. Because
the input and output of all the questions
affect to the same attributes (i.e., x and
y) the user can answer them all together,
since they are, in fact, a sequence of op-
erations whose output is the input of the
next question (i.e., they are enchained).
Therefore, the collapse allows us to treat
a set of questions as a whole. This is
particularly interesting because it approx-
imates the real behavior intended by the
programmer. For instance, in this exam-
ple, the intended meaning of the loop was
to move the tower three positions to the
right. The intermediate positions are not
interesting for the programmer, only the
initial and final positions are meaningful

for the intended meaning.

Example 4 Consider again the ET of
Figure 3. Observe that, if the projected
nodes are wrong, then the bug must be in
the unique method that appears in the pro-
jected node. Therefore, we could collapse
the node instead of projecting it. Hence,
nodes 4, 5, 6, 7 and 8 could be removed;
and thus, with only three questions we
could discover any bug in any node.

• Speeding up algorithmic debugging. One
important problem of algorithmic debug-
ging strategies is that they must use
a given ET without any possibility of
changing it. This often prevents algorith-
mic debuggers from asking questions that
prune a big part of the ET, or from ask-
ing questions that concentrate on the re-
gions with a higher probability of contain-
ing the bug. The use of collapsed nodes
can help to solve these drawbacks.

The initial idea of this section was to use
collapsed nodes to balance the ET. This
idea is very interesting in combination
with D&Q, because it can cause the de-
bugging session to be optimal in the worst
case (the query complexity of a balanced
tree is O(b · log n) being b the branching
factor and n the number of nodes in the
ET). However, this idea could be further
extended in order to force the strategies
to ask questions related to parts of the
computations with a higher probability of
containing the bug. Concretely, we can
replace parts of the ET with a collapsed
node in order to avoid questions related
to this part. If the debugging session de-
termines that the collapsed node is wrong,
we can expand it again to continue the de-
bugging session inside this node. There-
fore, with this idea, the original ET is
transformed into a tree of ETs that can
be explored when it is required. Let us
illustrate this idea with an example.

Example 5 Consider the ET shown at
the top of Figure 4. This ET has a root

that started two subcomputations. The
computation on the left performed eight
method invocations, while the computa-
tion on the right performed only three.
Therefore, in this ET, all the existing al-
gorithmic debugging strategies would ex-
plore first the left subtree.1 If we bal-
ance the left branch by inserting collapsed
nodes we get the new ET shown below the
previous one. This balanced ET requires
(on average) less questions than the previ-
ous one; but the strategies will still explore
first the left branch of the root.

Now, let us assume that the debug-
ger identified the right branch as more
likely to be buggy (e.g., because it con-
tains recursive calls, because it is non-
deterministic, because it contains calls
with more arguments involved or with
complex data structures...). We can
change the structure of the ET in order
to make algorithmic debugging strategies
to explore the desired branch. In this ex-
ample we can skip from the ET the nodes
that were projected. The new ET is shown
on the right of Figure 4. With this ET the
debugger will explore first the right branch
of the root. Observe that it is not neces-
sary that the nodes that were projected re-
fer to the same method. They can be com-
pletely different and independent compu-
tations. However, if the debugger deter-
mines that they are probably correct, they
can be omitted to direct the search to other
parts of the ET. Of course, they can be ex-
panded again if required by the strategies.

• Reducing the size of the ET. One impor-
tant problem of modern algorithmic de-
buggers is scalability. With realistic pro-
grams, the size of the ET can be huge
(indeed gigabytes) and, thus, it does not
fit in main memory. The same scalabil-
ity problem affects graphical user inter-
faces (GUI). Loading the whole ET in
the GUI is often too slow as to be use-

1Current strategies assume that all nodes have
the same probability of being buggy, therefore, heavy
branches are explored first.

Figure 4: Transformation of ETs

ful, and it is often impossible because,
again, all graphical objects do not fit in
the graphical memory. Modern algorith-
mic debuggers such as DDJ [6] incorpo-
rate a clustering mechanism to avoid the
load of the whole ET in main memory.
Our experiments with DDJ and the bal-
ancing technique of this paper show that
the collapsing of nodes allows us to in-
crease the amount of ET levels shown to
the user. For instance, some programs
only allow the debugger to load 4 levels of
the ET in the GUI (because the next level
would produce a memory overflow). With
the collapsing technique, we could load 5
levels due to the reduction of nodes. In
particular, some loops contain hundreds
of nodes that are collapsed into a single
node. This saved memory is used to show
nodes of another level in the balanced ET.

2.2 Collapsing and projecting algorithms

In this section we define a technique that al-
lows us to balance an ET while keeping the
completeness property of algorithmic debug-
ging. The technique is based on two ba-
sic transformations for ETs (namely “collapse
chain” and “project chain”) and on a new data
structure called execution forest (EF) that is
a generalization of the ET.

Definition 5 (Execution Forest) An exe-
cution forest is a tree t = (V, E) whose in-

ternal vertices V are method invocations and
whose leafs are either method invocations or
execution forests.

Roughly speaking, an EF is an ET where
some subtrees have been replaced (i.e., col-
lapsed) by a single node. Observe that this
recursive definition of EF is more general than
the definition of ET because an ET is an in-
stance of an EF where no collapsed nodes ex-
ist. We can now introduce the two basic trans-
formations of our technique. Both transfor-
mations are based on the notion of chain. In-
formally, a chain is formed by an ordered set
of method invocations in which the final con-
text produced by a method of the chain is the
initial context of the next method. Chains of-
ten represent a set of method invocations per-
formed one after the other during an execu-
tion. Formally,

Definition 6 (Chain) Given an execution
forest t = (V, E) and a set of nodes C ∈ V with
associated method invocations i1, i2, . . . , in we
say that C is a chain iff

• ∃v ∈ V | ∀c ∈ C . (v → c) ∈ E, and

• ∀j, 1 ≤ j ≤ n−1, if ij = (a1, m1, a2) then
ij+1 = (a2, m2, a3)

It is common to find chains when one or
more method invocations are performed inside
a loop. When the chain is formed by a single
method without children that is repeated, all

the nodes that form the chain can be collapsed
into a single node and the chain is deleted from
the EF. This new collapsed node only needs
to show to the user the initial and the final
context of the chain.

Algorithm 1 Collapse Chain
Input: An EF t = (V, E) and a set of nodes
C ⊂ V
Output: An EF t′ = (V ′, E′)
Preconditions: C is a chain with nodes
(a1, m1, a2), (a2, m2, a3), . . ., (an, mn, an+1)
and 6 ∃ v ∈ V . (c→ v) ∈ E, with c ∈ C

begin
parent = u ∈ V | (u→ c) ∈ E ∧ c ∈ C
colnode = (a1, m, an+1)

with m = m1; m2; . . . ; mn

V ′ = (V \ C) ∪ {colnode}
E′ = ((E \ {(v1 → v2) ∈ E | v2 ∈ C})

∪ {(parent→ colnode)}
end

return t′ = (V ′, E′)

The other transformation for chains is based
on the projection of a chain producing a new
(parent) node whose question represents the
whole chain. In this case, the chain remains in
the EF. This transformation is very convenient
to balance the EF.

We showed in the previous section that col-
lapsing nodes can be very useful. However,
collapsing nodes is not always a good idea, be-
cause it can introduce difficult questions that
delay the debugging session. Our method for
balancing EFs is implemented by Algorithm 4.
This algorithm first uses Algorithm 3 to shrink
the EF by collapsing all chains formed with
leaves; and then it balances the EF by pro-
jecting some nodes. Algorithm 4 is able to
balance the EF while it is being computed.
Concretely, the algorithm should be executed
for each node of the EF that is completed (i.e.,
the result of the method invocation is already
calculated, thus all the children of this node
are also completed).

After several experiments, we found a sit-
uation where collapsing nodes often produces

Algorithm 2 Project Chain
Input: An EF t = (V, E) and a set of nodes
C ⊂ V
Output: An EF t′ = (V ′, E′)
Preconditions: C is a chain with nodes
(a1, m1, a2), (a2, m2, a3), . . ., (an, mn, an+1)

begin
parent = u ∈ V | (u→ c) ∈ E ∧ c ∈ C
projnode = (a1, m, an+1)

with m = m1; m2; . . . ; mn

V ′ = V ∪ {projnode}
E′ = ((E \ {(v1 → v2) ∈ E | v2 ∈ C})

∪ {(parent→ projnode)}
∪ {(projnode→ c) | c ∈ C}

end

return t′ = (V ′, E′)

good results; this situation happens when the
collapsed nodes form a chain. Therefore, the
algorithm only projects and collapses nodes
that belong to a chain. When the chain is com-
posed by a single function and all the nodes of
the chain are leafs, the whole chain can be re-
placed by a single collapsed node. All the col-
lapsed nodes are computed first, and then the
projected nodes are calculated. If the chain is
very long, it can be cut in several subchains
to be projected and thus balance the EF. In
order to cut chains we use function cutChain:

function cutChain(chain {c1, ..., cn}, int i, j)
if card({c1, . . . , ci−1})<=1
then sini = ∅
else sini = {c0, . . . , ci−1} end if
if card({cj+1, . . . , cn})<=1
then sfin = ∅
else sfin = {cj+1, . . . , cn} end if

return (sini, sfin)

Another conclusion of our experiments is
that all these transformations must be only
done when the produced collapsed node is not
very hard to answer. A good measure to
achieve this is counting the number of changes
in the state produced by the chain. In our
implementation, we took as a design decision
that no collapsed nor projected node contains

more than five different changes in the state.
In particular, we only collapse chains where
the number of different attributes changed is
not higher than five. Note that, in object-
oriented languages, attributes can be objects.
Therefore, in our implementation, any change
in the state of the object-valued attribute is
taken into account as a change in the chain.
However, if the same attribute is changed
later, it is not considered as a new change in
the state.

Algorithm 3 Shrink EF
Input: An EF t = (V, E)
Output: An EF t′ = (V ′, E′)
Preconditions: Given a node v, v.method
is the name of the method in l(v)
Initialization: t′ = t,
set S contains all the chains of t such that
for all chain C = {c1, . . . , cn} of S, ∀x, 1 ≤
x ≤ n−1, cx.method == cx+1.method, and
6 ∃ v ∈ V . (c→ v) ∈ E, with c ∈ C

begin
while (S 6= ∅)
take a chain C = {c1, . . . , cn} of S
S = S\{C}
t′ = collapseChain(t′, C)

end while
end

return t′

3 Correctness

Our technique for balancing EF is based on
the transformations presented in the previous
section. We now prove that these transforma-
tions do not prevent the debugger from finding
the bug.

Theorem 1 (Chain Projection Correctness)
Let t = (V, E) and t′ = (V ′, E′) be two
EF, and let C be a chain of V such that
projectChain(t, C) = t′.

1. If t contains a buggy node, then t′ also
contains a buggy node.

Algorithm 4 Shrink & Balance EF
Input: An EF t = (V, E) whose root is
root ∈ V
Output: An EF t′ = (V ′, E′)
Preconditions: Given a node v, v.weight
is the size of the subtree rooted at v

begin
t′ = shrink(t)
childs = {v ∈ V ′ | (root→ v) ∈ E′}
S = {c | c is a chain in childs}
rootweight = root.weight
weight = rootweight/2
while (S 6= ∅)

child = c ∈ childs | 6 ∃c′ ∈ childs, c 6= c′

∧c′.weight > c.weight
distance = |weight− child.weight|
if (child.weight >= weight
or 6 ∃s, i, j such that s = {c1, . . . , cn} ∈ S
and (|W − weight| < distance)
with W =

Pj
x=i cx.weight)

then childs = childs\{child}
rootweight = rootweight−child.weight
weight = rootweight/2
if (∃s ∈ S | s = {c1, . . . , cn}

and child = ci, 1 ≤ i ≤ n)
then (sini, sfin) = cutChain(s, i, i)

S = (S\{s}) ∪ sini ∪ sfin

end if
else
find an s, i, j such that s = {c1, . . . , cn} ∈

S and
Pj

x=i cx.weight has a weight as close
as possible to weight

s′ = {ci, . . . , cj}
(sini, sfin) = cutChain(s, i, j)
S = (S\{s}) ∪ sini ∪ sfin

t′ = projectChain(t′, s′)
for each c ∈ s′

rootweight = rootweight− c.weight
end for each
childs = (childs\s′)
weight = rootweight/2

end if
end

return t′ = (V ′, E′)

2. If t′ contains a buggy node n associated
with method m, then m contains a bug.

Proof. Let v ∈ V be the parent node of
the chain C, and let w ∈ V ′ be the projected
node of C. Let us start with the proof of the
first item: If t contains a buggy node, then t′

also contains a buggy node. We consider three
cases:

• v ∈ V is buggy. This means, by Defini-
tion 4, that v ∈ V ′ is wrong and ∀c ∈ C,
c is correct. In addition, we know that if
∀c ∈ C, c is correct, then w is correct be-
cause w is the composition of the results
produced in C. Therefore, we have that
w ∈ V ′ is also correct and, hence, v ∈ V ′

is a buggy node.

• c ∈ C ⊂ V is buggy. This means that
both v ∈ V and v ∈ V ′ are wrong. We
have two possibilities: (i) w is wrong. In
such a case, c ∈ C ⊂ V ′ is also buggy and
the claim follows. (ii) w is not wrong. In
such a case, v ∈ V ′ is buggy according to
Definition 4.

• u ∈ V, v 6= u 6= c ∈ C is buggy. The
claim follows trivially because the pro-
jection only affects v and C. Therefore,
u ∈ V ′ is equal to u ∈ V and they have
the same parent and children.

Now, we prove that if t′ contains a buggy node
n associated with method m, then m contains
a bug. We consider four cases:

• v ∈ V ′ is buggy. This means that v ∈ t is
wrong and w ∈ V ′ is correct. If ∀c ∈ C,
c is correct, then v ∈ V is a buggy node,
and the claim follows because both v ∈ V
and v ∈ V ′ are associated with the same
method.

Otherwise, ∃c ∈ C, c is wrong. Never-
theless, the result and the final context of
C are correct because w is correct. This
means that chain C is not the cause of the
wrong equation associated with v.

In addition, by Definition 4, we know that
all the children of v ∈ V ′ are correct, but
v is wrong. Thus, the method associated

with v must contain a bug and the claim
follows.

This particular case of the proof is inter-
esting because it reveals that (at least)
two bugs belong to t; one is associated
with v and the other is associated with c.

• w ∈ V ′ is buggy. This case is not possible
because it implies that either the result or
the final context of w are wrong. Hence,
because both the result and the final con-
text are produced by the nodes in C, we
know that at least one node is also wrong.
But this is a contradiction because in such
a case w cannot be buggy according to
Definition 4.

• c ∈ C ⊂ V ′ is buggy. This means that
w ∈ V ′ and v ∈ V ′ are wrong because
both of them are ancestors of c. There-
fore, v ∈ V is also wrong. And, of course,
c ∈ C ⊂ V is also wrong. Moreover, be-
cause the children of c are the same in
V and V ′, we know that c ∈ C ⊂ V is
a buggy node, and the claim follows be-
cause both c ∈ V and c ∈ V ′ are associ-
ated with the same method.

• u ∈ V ′, u 6= v, u 6= w and u 6= c ∈ C is
buggy. In this case the projection does
not influence the buggy node u and thus
the claim follows trivially because the
method associated to u is wrong and all
the method invocations associated with
the children of u are correct.

ut

Theorem 2 (Chain Collapse Correctness)
Let t = (V, E) and t′ = (V ′, E′) be two EF,
and let C be a chain of V such that all
the nodes in the chain are leafs and have
the same associated method. Given t′ =
collapseChain(t, C),

1. If t contains a buggy node, then t′ also
contains a buggy node.

2. If t′ contains a buggy node n associated
with method m, then m contains a bug.

Proof. This proof is completely analogous to
the proof of Theorem 1 except for the fact that
the chain is removed from the EF.

Let v ∈ V be the parent node of the chain
C, and let w ∈ V ′ be the collapsed node of C.
Let us start with the proof of the first item: If
t contains a buggy node, then t′ also contains
a buggy node. We consider three cases:

• v ∈ V is buggy. By Definition 4, we know
that v ∈ V ′ is wrong and all the children
of v including the nodes of in C are cor-
rect. In addition, we know that if ∀c ∈ C,
c is correct, then w is correct because w
is the composition of the results produced
in C. Therefore, we have that w ∈ V ′ is
also correct and, hence, v ∈ V ′ is a buggy
node because all its children are correct.

• c ∈ C ⊂ V is buggy. This means that
both v ∈ V and v ∈ V ′ are wrong because
they are ancestors of c. We have two pos-
sibilities: (i) w is wrong. In such a case,
w is buggy because it has no children and
because its parent v ∈ V ′ is wrong. (ii)
w is not wrong. In such a case, v ∈ V ′ is
buggy according to Definition 4.

• u ∈ V, v 6= u 6= c ∈ C is buggy. The claim
follows trivially because the collapse only
affects v and C. Therefore, u ∈ V ′ is
equal to u ∈ V and they have the same
parent and children.

Now, we prove that if t′ contains a buggy node
n associated with method m, then m contains
a bug. We consider three cases:

• v ∈ V ′ is buggy. This means that v ∈ t is
wrong and w ∈ V ′ is correct. If ∀c ∈ C,
c is correct, then v ∈ V is a buggy node,
and the claim follows because both v ∈ V
and v ∈ V ′ are associated with the same
method.

Otherwise, ∃c ∈ C, c is wrong. Never-
theless, the result and the final context of
C are correct because w is correct. This
means that chain C is not the cause of the
wrong equation associated with v.

In addition, by Definition 4, we know that
all the children of v ∈ V ′ are correct, but

v is wrong. Thus, the method associated
with v must contain a bug and the claim
follows.
Here again, this particular case of the
proof reveals that at least two bugs be-
long to t; one is associated with v and the
other is associated with c.

• w ∈ V ′ is buggy. Then, either the re-
sult or the final context of w are wrong.
Hence, because both the result and the fi-
nal context are produced by the nodes in
C, we know that at least one node is also
wrong. Because the ancestors of w are
wrong (by Definition 4), then at least one
node in C is buggy. Moreover, because all
the nodes in the chain have the same as-
sociated method, the bug must be in this
method that is the only that appears in
w.

• u ∈ V ′, v 6= u 6= w is buggy. In this case
the collapse does not influence the buggy
node u and thus the claim follows triv-
ially because the method associated to u
is wrong and all the method invocations
associated with the children of u are cor-
rect.

ut

We provide in this section an interesting
result related to the projection and collapse
of chains. This result is related to the in-
completeness of the technique when it is used
intra-session. In particular, one could expect
the following result:

An EF contains a buggy node asso-
ciated with method m if and only if
its balanced version also contains a
buggy node associated with method
m.

but it is not true.
In general, our technique ensures that all

the bugs that caused the wrong behavior of
the root node (i.e., the wrong final state of
the whole program) can be found in the bal-
anced EF. This means that all the buggy nodes
that are responsible of the wrong behavior are
present in the balanced EF.

However, algorithmic debugging can find
bugs by fluke. Those nodes that are buggy
nodes in the EF, but did not cause the wrong
behavior of the root node can be undetectable
with some strategies in the balanced version
of the EF. And also, the opposite is true: It is
possible to find bugs in the balanced EF that
were undetectable in the original EF. Let us
explain it with an example.

Example 6 Consider the following EFs:
The EF on the right is the same as the one

on the left but a new projected node has been
added. If we assume the following intended
semantics:

x = 1 f() x = 2 x = 1 g() x = 4
x = 3 h() x = 3 x = 4 g() x = 4

then grey nodes are wrong and white nodes are
right.
Observe that in the EF on the left, only

nodes 2 and 3 are buggy. Therefore, all the
strategies will report these nodes as buggy, but
never node 1. However, node 1 contains a
bug but it is undetectable by the debugger until
nodes 2 and 3 have been corrected. Neverthe-
less, observe that nodes 2 and 3 did not pro-
duce the wrong behavior of node 1. They sim-
ply produced two errors that, in combination,
produced by fluke a global correct behavior.
Now, observe in the EF on the right that

node 1 is buggy and thus detectable by the
strategies. In contrast, nodes 2 and 3 are now
undetectable by some strategies such as top-
down search (they could be detected by D&Q).
Thanks to the balancing process, it has been
made explicit that three different bugs are in
the EF.

The above properties of the collapsing and
projecting techniques are the reason why we
introduced in Definition 4 the third item. The
standard definition of buggy node only in-
cludes the first two items and hence, a buggy
node is any node associated with a wrong
method. Contrarily, we force the buggy node
to be the last node of a path from the root
made of wrong equations. This restriction is
enough to formulate our correctness results.

4 Implementation

We have implemented the technique presented
in this paper and integrated it into the Declar-
ative Debugger for Java DDJ 2.4. The imple-
mentation allows the programmer to activate
the transformations of the technique and to
parameterize them in order to adjust the num-
ber and size of the projected/collapsed nodes.
It has been tested with a collection of real ap-
plications (e.g., an interpreter, a compiler, an
XSLT processor, etc) producing good results.

Table 1 summarizes the results of the per-
formed experiments. The first column con-
tains the names of the benchmarks. The
source code and other information about all
the benchmarks can be found at

http://www.dsic.upv.es/~jsilva/DDJ/examples

Each benchmark has been evaluated assum-
ing that the bug could be in any node. This
means that each row of the table is the aver-
age of a number of experiments. For instance,
kxml2 was tested 1445 times (i.e., the exper-
iment was repeated choosing a different node
as buggy, and all nodes were tried). For each
benchmark, column ET nodes shows the size of
the ET evaluated for this benchmark; column
Col./Proj. nodes shows the number of nodes
that were projected and collapsed by the de-
bugger. Observe that the opportunities of col-
lapsing are very few compared to the number
of projections done; column Questions shows
the average number of questions done by the
debugger before finding the bug in the orig-
inal ET; column Questions Bal. shows the
average number of questions done by the de-
bugger before finding the bug in the balanced
ET; Finally, column (%) shows the improve-
ment achieved with the collapsing technique.
Clearly, the collapsing technique has an impor-
tant impact in the reduction of questions with
a mean reduction of 30-40% using top-down.

The implementation takes advantage of one
property of projected nodes: If they are wrong,
then at least one of their children is wrong.
This allows us to avoid unnecessary questions.
For instance, with top-down search, we can
skip the question to the last child of a wrong
projected node.

Figure 5: Counterexample

Benchmark ET nodes Col./Proj. nodes Questions Questions Bal. %

argparser 192 nodes 0/63 nodes 22.78 15.7 68.92 %
cglib 1463 nodes 0/247 nodes 82.41 49.73 60.34 %
kxml2 1445 nodes 2/277 nodes 81.61 50.90 62.37 %
javassist 1499 nodes 5/148 nodes 83.84 61 72.76 %

Table 1: Benchmark results

Essentially, our implementation [6] produces
the EF and transforms it by collapsing and
projecting nodes with an implementation of
Algorithm 4. Finally, it is explored with stan-
dard strategies starting the debugging session
at any node selected by the user.

Our algorithm is very conservative because
it only collapses or projects nodes that belong
to a chain. Hence, the transformation is only
applied trying to ensure that the question pro-
duced is not complicated. This has produced
good results, but sometimes the question of
a collapsed node is hard to answer. Even in
this case, our implementation ensures that if
the programmer is able to find the bug with
the standard ET, she will also be able with
the balanced EF. That is, the introduction of
projected nodes cannot produce the debugging
session to stop. This is due to the possibility
of answering “I don’t know.” Our debugger al-
lows the programmer to answer “I don’t know,”
skipping the current question and continuing
the debugging process with the other questions
(e.g., with the children). Therefore, even if the
programmer cannot answer a projected ques-
tion, she can continue the debugging session,
thus projected nodes can delay debugging, but
not stop it.

All the information related to the experi-

ments, the source code of the benchmarks, the
bugs, the source code of the tool and other
material can be found at

http://www.dsic.upv.es/~jsilva/DDJ

5 Conclusions

This work presentes a new technique that
allows us to automatically balance standard
ETs. This technique has been implemented
and experiments with real applications con-
firm that the balancing process has a positive
impact on the performance of algorithmic de-
bugging.

From a theoretical point of view, two im-
portant results have been proved. The projec-
tion and the collapse of nodes do not prevent
from finding bugs, and the bugs found after
the transformations are always real bugs. An-
other interesting and surprising result is the
fact that balancing ETs can change the order
in which bugs are found by the debugger.

In our current experiments, we are now tak-
ing advantage of the Execution Forests. This
data structure allows us to apply more dras-
tic balancing transformations. For instance, it
allows us to collapse a whole subtree of the
EF. This permits to avoid questions related
to some parts of the EF and direct the search

in other direction. In this respect, we do not
plan to apply this transformation to chains,
but to subtrees; based on approximations of
the probability of a subtree to be buggy.

Execution forests provide a new dimension
in the search that allows the debugger to go
into a collapsed region and explore it ignoring
the rest of the EF; and also to collapse regions
in order to be ignored by the search strategies.

References

[1] E. Av-Ron. Top-Down Diagnosis of Prolog
Programs. PhD thesis, Weizmanm Insti-
tute, 1984.

[2] D. Binks. Declarative Debugging in Gödel.
PhD thesis, University of Bristol, 1995.

[3] R. Caballero. A Declarative Debug-
ger of Incorrect Answers for Constraint
Functional-Logic Programs. In Proc.
of the 2005 ACM SIGPLAN Workshop
on Curry and Functional Logic Program-
ming (WCFLP’05), pages 8–13, New York,
USA, 2005. ACM Press.

[4] R. Caballero. Algorithmic Debugging of
Java Programs. In Proc. of the 2006
Workshop on Functional Logic Program-
ming (WFLP’06). Electronic Notes in The-
oretical Computer Science, 63–76, 2006.

[5] V. Hirunkitti, and C. J. Hogger. A
Generalised Query Minimisation for Pro-
gram Debugging. In Proc. of International
Workshop of Automated and Algorith-
mic Debugging (AADEBUG’93). Springer
LNCS 749, 153–170, 1993.

[6] D. Insa and J. Silva. Debugging with In-
complete and Dynamically Generated Ex-
exution Trees. In Proc. of the International

Symposium on Logic-based Program Syn-
thesis and Transformation (LOPSTR’10).
Hagenberg, Austria. July 23-25, 2010.

[7] G. Kokai, J. Nilson, and C. Niss. GIDTS:
A Graphical Programming Environment
for Prolog. In Workshop on Program Anal-
ysis For Software Tools and Engineering
(PASTE’99), pages 95–104. ACM Press,
1999.

[8] I. MacLarty. Practical Declarative Debug-
ging of Mercury Programs. Ph.D. thesis,
Department of Computer Science and Soft-
ware Engineering, The University of Mel-
bourne. 2005.

[9] M. Maeji and T. Kanamori. Top-Down
Zooming Diagnosis of Logic Programs.
Tech. Rep. TR-290, ICOT, Japan. 1987.

[10] H. Nilsson and P. Fritzson. Algorith-
mic Debugging for Lazy Functional Lan-
guages. Journal of Functional Program-
ming, 4(3):337–370, 1994.

[11] E.Y. Shapiro. Algorithmic Program De-
bugging. MIT Press, 1982.

[12] J. Silva. Three New Algorithmic Debug-
ging Strategies. In Proc. of VI Jornadas de
Programación y Lenguajes (PROLE’06).
243–252, 2006.

[13] J. Silva. A Comparative Study of Al-
gorithmic Debugging Strategies. In Proc.
of the International Symposium on Logic-
based Program Synthesis and Transforma-
tion (LOPSTR’06). Springer LNCS 4407,
143–159, 2007.

[14] T. Davie, and O. Chitil. Hat-delta: One
Right Does Make a Wrong. In Seventh
Symposium on Trends in Functional Pro-
gramming, TFP 06. 2006.

