
S. Escobar (Ed.): XIV Jornadas sobre Programación
y Lenguajes, PROLE 2014, Revised Selected Papers
EPTCS 173, 2015, pp. 87–99, doi:10.4204/EPTCS.173.7

c© A. Riesco & J. Rodrı́guez-Hortalá
This work is licensed under the
Creative Commons Attribution License.

Lifting Term Rewriting Derivations in Constructor Systems
by Using Generators∗

Adrián Riesco
Departamento de Sistemas Informáticos y Computación

Universidad Complutense de Madrid, Spain
ariesco@fdi.ucm.es

Juan Rodrı́guez-Hortalá
Lambdoop Solutions

juan.rodriguez@lambdoop.com

Narrowing is a procedure that was first studied in the context of equational E-unification and that has
been used in a wide range of applications. The classic completeness result due to Hullot states that
any term rewriting derivation starting from an instance of an expression can be ‘lifted’ to a narrowing
derivation, whenever the substitution employed is normalized. In this paper we adapt the generator-
based extra-variables-elimination transformation used in functional-logic programming to overcome
that limitation, so we are able to lift term rewriting derivations starting from arbitrary instances of
expressions. The proposed technique is limited to left-linear constructor systems and to derivations
reaching a ground expression. We also present a Maude-based implementation of the technique,
using natural rewriting for the on-demand evaluation strategy.

1 Introduction

Narrowing [2] is a procedure that was first studied in the context of equational E-unification and that
has been used in a wide range of applications [18, 20]. Narrowing can be described as a modification
of term rewriting in which matching is replaced by unification so, in a derivation starting from a goal
expression, it is able to deduce the instantiation of the variables of the goal expression that is needed for
the computation to progress. The key result for the completeness of narrowing w.r.t. term rewriting is
Hullot’s lifting lemma [12], which states that any term rewriting derivation e1θ →∗ e2 can be lifted into
a narrowing derivation e1 ∗σ e3 such that e3 and σ are more general than e2 and θ—w.r.t. to the usual
instantiation preorder [3], and for the variables involved in the derivations—, provided that the starting
substitution θ is normalized [19]. This latter condition is essential, so it is fairly easy to break Hullot’s
lifting lemma by dropping it: e.g. under the term rewriting system (TRS) { f (0,1)→ 2,coin→ 0,coin→
1} the term rewriting derivation f (X ,X)[X/coin]→∗ 2 cannot be lifted by any narrowing derivation.
Several variants and extensions of narrowing have been developed in order to improve that result under
certain assumptions or for particular classes of term rewriting systems [19, 18, 9].

In this paper we show how to adapt the generator-based extra variable elimination transformation
used in functional-logic programming (FLP) to drop the normalization condition required by Hullot’s
lifting lemma. The proposed technique is devised for left-linear constructor systems (CS’s) with extra
variables, and it is limited to derivations reaching a ground expression. To test the feasibility of this
approach, we have also developed a prototype in Maude [6], relying on the natural rewriting on-demand
strategy [10] to obtain an effective operational procedure.

The rest of the paper is organized as follows. In Section 2 we introduce the semantics for CS’s that
we have used to formally prove the results, and that first suggested us the feasibility of the approach.
In Section 3 we show our adaptation of the generators technique from FLP, and use the semantics for

∗Research supported by MICINN Spanish project StrongSoft (TIN2012-39391-C04-04).

http://dx.doi.org/10.4204/EPTCS.173.7
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

88 Lifting Term Rewriting Derivations by Using Generators

proving the adequacy of the technique for lifting term rewriting derivations reaching ground c-terms. In
Section 4 we outline the implementation and commands of our prototype. Finally Section 5 concludes
and outlines some lines of future work.

2 Prelimininaries and formal setting

We mostly use the notation from [2], with some additions from [15]. We consider a first order signa-
ture Σ = CS]FS, where CS and FS are two disjoint sets of constructor and defined function symbols
respectively, all of them with associated arity. We use c,d, . . . for constructors, f ,g, . . . for functions
and X ,Y, . . . for variables of a numerable set V . The notation o stands for tuples of any kind of syntac-
tic objects. The set Exp of total expressions is defined as Exp 3 e ::= X | h(e1, . . . ,en), where X ∈ V ,
h ∈ CSn ∪FSn and e1, . . . ,en ∈ Exp. The set CTerm of total constructed terms (or c-terms) is defined
like Exp, but with h restricted to CSn (so CTerm ⊆ Exp). The intended meaning is that Exp stands for
evaluable expressions, i.e., expressions that can contain function symbols, while CTerm stands for data
terms representing values. We will write e,e′, . . . for expressions and t,s, . . . for c-terms. We say that an
expression e is ground iff no variable appears in e. We will frequently use one-hole contexts, defined as
Cntxt 3 C ::= [] | h(e1, . . . ,C , . . . ,en).

Example 1 We will use a simple example throughout this section to illustrate these definitions. Assume
we want to represent the staff of a shop, so we have CS = {madrid0,vigo0, man0,woman0,pepe0, luis0,
pilar0, maria0,e2, p2}, where e will be the constructor for employees and p the constructor for pairs, and
FS = {branches0,search1,employees1}. Using this signature, we can build the set Exp = {madrid,vigo,
employees (madrid), p(pilar,X), . . .}. From this set, we have CTerm = {madrid,vigo, p(pilar,X), . . .},
while the ground terms are {employees(madrid), madrid,vigo, . . .}. Finally, a possible one-hole context
is p([],X).

We also consider the extended signature Σ⊥ = Σ∪{⊥}, where⊥ is a new 0-arity constructor symbol
that does not appear in programs and which stands for the undefined value. Over this signature we
define the sets Exp⊥ and CTerm⊥ of partial expressions and c-terms, respectively. The intended meaning
is that Exp⊥ and CTerm⊥ stand for partial expressions and values, respectively. Partial expressions
are ordered by the approximation ordering v defined as the least partial ordering satisfying ⊥v e and
ev e′⇒C [e]vC [e′] for all e,e′ ∈ Exp⊥,C ∈Cntxt. The shell |e| of an expression e represents the outer
constructed part of e and is defined as: |X |= X ; |c(e1, . . . ,en)|= c(|e1|, . . . , |en|); | f (e1, . . . ,en)|=⊥. It
is trivial to check that for any expression e we have |e| ∈ CTerm⊥, that any total expression is maximal
w.r.t. v, and that as consequence if t is total then t v |e| implies t = e.

Example 2 Using the signature from Example 1, we have employees(⊥) ∈ Exp⊥, p(⊥,X) ∈ CTerm⊥,
and |p(search(branches),X)|= p(⊥,X).

Substitutions θ ∈ Subst are finite mappings θ : V −→ Exp, extending naturally to θ : Exp −→ Exp.
We write ε for the identity (or empty) substitution. We write eθ to apply of θ to e, and θθ ′ for the
composition, defined by X(θθ ′) = (Xθ)θ ′. The domain and variable range of θ are defined as dom(θ) =
{X ∈ V | Xθ 6= X} and vran(θ) =

⋃
X∈dom(θ) var(Xθ). By [X1/e1, . . . ,Xn/en] we denote a substitution

σ such that dom(σ) = {X1, . . . ,Xn} and ∀i.σ(Xi) = ei. If dom(θ0)∩ dom(θ1) = /0, their disjoint union
θ0]θ1 is defined by (θ0]θ1)(X)= θi(X), if X ∈ dom(θi) for some θi; (θ0]θ1)(X)=X otherwise. Given
W ⊆ V we write θ |W for the restriction of θ to W , i.e. (θ |W)(X) = θ(X) if X ∈W , and (θ |W)(X) = X
otherwise; we use θ |\D as a shortcut for θ |(V \D). C-substitutions θ ∈ CSubst verify that Xθ ∈ CTerm for

A. Riesco & J. Rodrı́guez-Hortalá 89

all X ∈ dom(θ). We say a substitution σ is ground iff vran(σ) = /0, i.e. ∀X ∈ dom(σ) we have that σ(X)
is ground. The sets Subst⊥ and CSubst⊥ of partial substitutions and partial c-substitutions are the sets of
finite mappings from variables to partial expressions and partial c-terms, respectively.

Example 3 Using the signature from Example 1, we can define the C-substitutions θ1 ≡ X/woman,
θ2 ≡ X/man, and θ3 ≡ Y/pilar. We can define the restrictions θ1|{X} = θ1 and θ1|\{X} = ε . Finally,
given the expression p(X ,Y) we have p(X ,Y)θ1θ2 = p(woman,Y) and p(X ,Y)θ1θ3 = p(X ,Y)θ3θ1 =
p(woman,pilar).

A left-linear constructor-based term rewriting system or just constructor system (CS) or program P
is a set of c-rewrite rules of the form f (t)→ r where f ∈ FSn, r ∈ Exp and t is a linear n-tuple of c-terms,
where linearity means that variables occur only once in t. Notice that we allow r to contain so called extra
variables, i.e., variables not occurring in f (t). To be precise, we say that X ∈ V is an extra variable in
the rule l→ r iff X ∈ var(r)\var(l), and by vExtra(R) we denote the set of extra variables in a program
rule R. We assume that every CS contains the rules Q = {X ? Y → X ,X ? Y →Y}, defining the behavior
of ? ∈ FS2, used in infix mode, and that those are the only rules for ?. Besides, ? is right-associative so
e1 ? e2 ? e3 is equivalent to e1 ? (e2 ? e3). For the sake of conciseness we will often omit these rules
when presenting a CS. A consequence of this is that we only consider non-confluent programs. Given a
TRS P , its associated term rewriting relation→P is defined as: C [lσ]→P C [rσ] for any context C ,
rule l→ r ∈P and σ ∈ Subst. We write ∗→P for the reflexive and transitive closure of the relation→P .
We will usually omit the reference to P or denote it by P ` e→ e′ and P ` e→∗ e′.

Example 4 Using the signature from Example 1, we can describe the following program:

branches → madrid ? vigo
employees(madrid) → e(pepe,men)
employees(madrid) → e(maria,men)
employees(vigo) → e(pilar,women) ? e(luis,men)
search(e(N,S)) → p(N,N)

In this example, the function symbol branches defines the different branches of the company, employees
defines the employees in each branch (built with the constructor symbol e), and search returns a pair
of names, built with the constructor symbol p. Note that several different notations are possible; for
example, it is possible to define the employees of one branch by using just one rule and the ? operator or
just several different rules with the same lefthand side.

2.1 A proof calculus for constructor systems with extra variables

In [15] an adequate semantics for reachability of c-terms by term rewriting in CS’s was presented. The
key idea there was using a suitable notion of value, in this case the notion of s-cterm. SCTerm is the set
of s-cterms, which are finite sets of elemental s-cterms, while the set ESCTerm of elemental s-cterms is
defined as ESCTerm 3 est ::= X | c(st1, . . . ,stn) for X ∈ V , c ∈ CSn, st1, . . . ,stn ∈ SCTerm. We extend
this idea to expressions obtaining the sets SExp of s-expressions or just s-exp, and ESExp of elemental
s-expressions, which are defined the same but now using any symbol in Σ in applications instead of just
constructor symbols. Note that the s-expression /0 corresponds to ⊥, so s-exps are partial by default. The
approximation preorderv is defined for s-exps as the least preorder such that sev se′ iff ∀ese∈ se.∃ese′ ∈
se′ such that esev ese′, X v X for any X ∈ V , and h(se1, . . . ,sen)v h(se′1, . . . ,se′n) iff ∀i.sei v se′i.

90 Lifting Term Rewriting Derivations by Using Generators

E se _ /0

RR {X}_ {X} if X ∈ V

DC
se1 _ st1 . . . sen _ stn

{c(se1, . . . ,sen)}_ {c(st1, . . . ,stn)} if c ∈ CS

MORE
se _ st1 . . .se _ stn
se _ st1∪ . . .∪ stn

LESS

{esa1}_ st1 . . . {esam}_ stm

{ese1, . . . ,esen}_ st1∪ . . .∪ stm

if n≥ 2,m > 0, for any
{esa1, . . . ,esam}
⊆ {ese1, . . . ,esen}

ROR
se1 _ p̃1θ . . . sen _ p̃nθ r̃θ _ st

{ f (se1, . . . ,sen)}_ st if
(f (p1, . . . , pn)→ r) ∈P
θ ∈ SCSubst

Figure 1: A proof calculus for constructor systems

Example 5 Using the signature from Example 1, and given the s-cterm sct ≡ e({pepe,pilar}, {men,
women}), we have sct ∈ ESCTerm, while {sct} ∈ SCTerm. Similarly, given the es-exp esex≡ employees
({madrid,vigo}) we have esex ∈ ESExp and esex 6∈ ESCTerm. Finally, we have that {esex} ∈ SExp.

The sets SSubst and SCSubst of s-substitutions and s-csubstitutions (or just s-csubst) consist of finite
mappings from variables to s-exps or s-cterms, respectively. We extend s-substs to be applied to ESExp
and SExp as σ : ESExp→ SExp defined by Xσ = σ(X), h(se)σ = {h(seσ)}; and σ : SExp→ SExp
defined by seσ =

⋃
ese∈se eseσ . The approximation preorder v is defined for s-substs as σ v θ iff ∀X ∈

V .σ(X) v θ(X). For any nonempty and finite set {θ1, . . . ,θn} ⊆ SCSubst we define
⋃{θ1, . . . ,θn} ∈

SCSubst as
⋃{θ1, . . . ,θn}(X) = θ1(X)∪ . . .∪θn(X).

Example 6 Using the signature from Example 1, we can define the s-csubstitution σ ≡{X/{pepe,pilar},
Y/{men,women}}∈ SCSubst. Hence, given esex≡ e({X},{Y})∈ESExp we have that esexσ ≡ e({pepe,
pilar}, {men,women}).

We obtain the denotation of an expression as the denotation of its associated s-expression, assigned by
the operator ˜ : Exp⊥→ SExp, defined as ‹⊥= /0; X̃ = {X} for any X ∈ V ; Â�h(e1, . . . ,en) = {h(‹e1, . . . ,‹en)}
for any h ∈ Σn. The operator ˜ is extended to s-substitutions as ‹σ(X) = flσ(X), for σ ∈ Subst⊥. It is easy
to check that›eσ = ẽ‹σ (see [15]). Conversely, we can flatten an s-expression se to obtain the set flat(se)
of expressions “contained” in it, so flat(/0) = {⊥} and flat(se) =

⋃
ese∈se flat(ese) if se 6= /0, where the

flattening of elemental s-exps is defined as flat(X) = {X} ; flat(h(se1, . . . ,sen)) = {h(e1, . . . ,en) | ei ∈
flat(sei) for i = 1..n}.

Example 7 Using the signature from Example 1, we have that ·�p(X ,Y)= {p({X},{Y})} and flat({p({X},
{Y,Z})}) = {p(X ,Y), p(X ,Z)}

In Figure 1 we can find the proof calculus that defines the semantics of s-expressions. Our proof
calculus proves reduction statements of the form se _ st with se ∈ SExp and st ∈ SCTerm, expressing
that st represents an approximation to one of the possible structured sets of values for se. We refer the
interested reader to [15] for detailed explanations about the calculus.We write P ` se _ st to express that
se _ st is derivable in our calculus under the CS P . We say that a proof for a statement P ` se _ st is
ground iff se, st and all the s-exp in the premises are ground. The denotation of an s-expression se under

A. Riesco & J. Rodrı́guez-Hortalá 91

a CS P is defined as [[se]]P = {st ∈ SCTerm |P ` se _ st}, so [[e]]P = [[ẽ]]P . In the following we will
usually omit the reference to P . The denotation of σ ∈ SSubst is defined as [[σ]] = {θ ∈ SCSubst | ∀X ∈
V ,σ(X) _ θ(X)}, so for θ ∈ Subst⊥ we define [[θ]] = [[θ̃]].

Example 8 Using the signature from Example 1 and the rules from Example 4, we have employees({X})
_ {e(pepe,men)}, given the substitution X/{madrid}. Moreover, we can use this same substitution to
reach {e(maria,men)} by using a different program rule.

The setting presented in [15] was not able to deal with extra variables. As programs with extra
variables are very common when using narrowing, for this work we decided to extend the setting to deal
with them. But then we realized that the semantics had the foundations to deal with extra variables, as the
rule ROR from Figure 1 allows to instantiate extra variables freely with s-cterms: therefore all that was
left was proving the adecuacy of the semantics in this extended scenario. Nevertheless, as a consequence
of the freely instantiation of extra variables in ROR, then every program with extra variables turns into
non-deterministic. For example consider a program { f → (X ,X)} for which the constructors 0,1 ∈ CS0

are available, then we can do:

{0}_ {0} DC

{0,1}_ {0} LESS
. . .

{0,1}_ {1}fi(X ,X)[X/{0,1}] = {({0,1},{0,1})}_ {({0},{1})}
DC

f̃ = { f}_ {({0},{1})}=fi(0,1) ROR

But in fact this is not very surprising, and it has to do with the relation between non-determinism and
extra variables [1], but adapted to the run-time choice semantics [13, 23] induced by term rewriting. As
a consequence of this we assume that all the programs contain the function ?, so we only consider non-
confluent TRS’s. We admit that this is a limitation of our setting, but we also conjecture that for confluent
TRS’s a simpler semantics could be used, for which the packing of alternatives of c-terms would not be
needed. However, the important point to bear in mind is that having ? at one’s disposal is enough to
express the non-determinism of any program [11], so we can use it to define the transformation Û from
s-exp and elemental s-exp to partial expressions that, contrary to flat, now takes care of the keeping
the nested set structure by means of uses of the ? function. Then Û : ESExp → Exp⊥ is defined byÛX = X , ˇ�h(se1, . . . ,sen) = h(ŝe1, . . . , ŝen); and Û : SExp→ Exp⊥ is defined by Û/0 =⊥, ˇ�{ese1, . . . ,esen} =
ēse1 ? . . . ? ēsen for n > 0, where in the case for ˇ�{ese1, . . . ,esen} we use some fixed arbitrary order
on terms in the line of Prolog [24] for arranging the arguments of ?. This operator is also overloaded
for substitutions as Û : SSubst→ Subst⊥ as (Ùσ)(X) = σ̆(X). Thanks to the power of ? to express non-
determinism, that transformation preserves the semantics from Figure 1, and we can use it to prove the
following new result about the adequacy of the semantics for programs with extra variables—see [21]
for a detailed proof.

Theorem 1 (Adequacy of [[]]) For all e,e′ ∈ Exp, t ∈ CTerm⊥,st ∈ SCTerm:
Soundness st ∈ [[ẽ]] and t ∈ flat(st) implies e→∗ e′ for some e′ ∈ Exp such that t v |e′|. Therefore, t̃ ∈ [[ẽ]]
implies e→∗ e′ for some e′ ∈ Exp such that t v |e′|. Besides, in any of the previous cases, if t is total then
e→∗ t.
Completeness e→∗ e′ implies ›|e′| ∈ [[ẽ]]. Hence, if t is total then e→∗ t implies t̃ ∈ [[ẽ]].

We refer the interested reader to [15] and [14] (Theorems 2 and 3) for more properties of [[]] like com-
positionality or monotonicity, some of which are used in the proofs for the results in the present paper.

92 Lifting Term Rewriting Derivations by Using Generators

` l ⊆CS×SCTerm×Exp
P ` st l e if ∀est ∈ st,P ` est l e

` l ⊆CS×ESCTerm×Exp
P ` X l e if P ` e→∗ X
P ` c(st)l e if P ` e→∗ c(e) for some e

such that ∀ei ∈ e,P ` sti l ei

Figure 2: Domination relation

There is another characterization of [[]] closer to term rewriting which is based of the domination re-
lation l presented in Figure 2 (we will omit the prefix “P `” when it is implied by the context).
With this relation we try to transfer to the rewriting world the finer distinction between sets of val-
ues that the structured representation of SCTerm allows us to perform. We extend the relation l to
` l ⊆CS×SCSubst×Subst by θ lσ iff ∀X ∈ V ,θ(X)lσ(X). As can be seen in [14], this relation

is a key ingredient to prove the soundness of [[]], and its equivalence to [[]] is stated in the following
result.

Lemma 1 (Domination) For all e ∈ Exp,st ∈ SCTerm, st ∈ [[ẽ]] iff st l e. Besides, regarding substitu-
tions, for all σ ∈ Subst, θ ∈ SCSubst we have that θ ∈ [[‹σ]] iff θ lσ .

3 The generators approach

In this section we will show a proposal for adapting the generators technique from the field of functional-
logic programming [8, 1] to the lifting of term rewriting derivations from arbitrary instances of expres-
sions. This technique consists in replacing free and extra variables by a call to a generator function that
can be reduced to any ground c-term. The generator function gen is defined as follows:

Definition 1 (Generator function) For any program P we can define a fresh function gen as follows:
for each c ∈ CSn we add a new rule gen→ c(gen, . . . ,gen) to the program. By G we denote the program
that consists of the set of rules for gen.

Example 9 Given the system in Example 4, the rules for gen are G ≡{gen→madrid,gen→ vigo,gen→
pepe,gen → luis,gen → maria,gen → pilar,gen → men,gen → women, gen → e(gen, gen), gen →
p(gen,gen)}.

The point with gen is that we can use it to compute any ground value:

Proposition 1 For all t ∈ CTerm, st ∈ SCTerm and θ ∈ SCSubst such that those are ground we have
gen→∗ t, st ∈ [[gen]] and θ ∈ [[[X/gen]]] for X = dom(θ).

Then the main idea with generators is that given some e ∈ Exp with var(e) = X , we can simulate
narrowing with e by performing term rewriting with e[X/gen]. As gen can be reduced to any ground s-
cterm, then Lemma 1 from [15] suggests that this procedure will be able to lift derivations eσ →∗ t with
an arbitrary σ ∈ Subst, even those which are not normalized: e.g. we can easily apply this technique
to the example in Section 1, getting f (X ,X)[X/gen]→∗ f (0,1)→ 2. Sadly, on the other hand, only
derivations reaching a ground c-term will be lifted, and the reason for that is that gen can be reduced to an
arbitrary ground c-term, but it cannot be reduced to any c-term with variables. Thus, under the program
{g(c(X))→ X} the term rewriting derivation g(Y)[Y/c(X)]→ X cannot be lifted by using generators, as
g(Y)[Y/gen]→ g(c(gen))→ gen 6→∗ X , even though [Y/c(X)] is a normalized substitution.

In order to prove the completeness of the generators technique for the reachability of ground c-terms,
we rely on the following modification of Lemma 1 from [15].

A. Riesco & J. Rodrı́guez-Hortalá 93

Lemma 2 For all σ ∈ SSubst, se ∈ SExp, st ∈ SCTerm, if st is ground then seσ _ st implies ∃θ ∈ [[σ]]
such that seθ _ st, θ is ground and dom(θ) = dom(σ).

Note the restriction to ground s-cterms in Lemma 2 is crucial, and that it reflects the lack of complete-
ness for reaching non-ground c-terms of the generators technique: e.g. under the program { f → c(X)}
using se = {Y}, σ = [Y/{ f}] and st = {c({X})} the only θ ∈ [[[Y/{ f}]]] fulfilling the first condition
is θ = [Y/{c({X})}], which is not ground. On the other hand those s-csubst obtained by Lemma 2 are
ground, and so they are in the denotation of an appropriate substitution with only generators in its range.

Generators can be introduced in programs systematically in order to eliminate extra variables from
program rules using a program transformation in the line of those from [8, 1]. In those works the usual
call-time choice semantics for functional-logic programming [20] was adopted, therefore we use a differ-
ent transformation that is adapted to the use of term rewriting, which leads to a different set of reachable
c-terms than that obtained with call-time choice [23]. The point in eliminating extra variables is that
in this way we eliminate the “oracular guessing” that is performing in a term rewriting step using ex-
tra variables: by this guessing we refer for example to the instantiation performed under the program
{ f → g(X),g(0)→ 1} in the first step of the derivation f → g(0)→ 1 for the extra variable X , that
has to be instantiated with 0 in order for the derivation to continue. That, combined with a suitable
on-demand evaluation strategy like natural rewriting [10], turns term rewriting with generators into an
effective mechanism for lifting term rewriting derivations. We formalize our extra variable elimination
transformation through the following definition.

Definition 2 (Generators program transformation)
Given a program P its transformation P̂ consists of the rules G for gen together with the trans-
formation of each rule in P , defined as ¤�f (p1, . . . , pn)→ r = f (p1, . . . , pn) → r[X/gen], where X =
vExtra(f (p1, . . . , pn)→ r).

Then it is clear that for any program P its transformation P̂ does not have any extra variable in its rules.
Note that, contrary to the proposals from [8, 1], this transformation destroys the sharing that normally
appears when there are several occurrences of the same variable, in procedures that instantiate variables
like narrowing or SLD resolution. In our transformation, however, once instantiated with gen every
occurrence of the same variable evolves independently. This is needed to ensure completeness under
the transformed program, which can be seen considering the program P = { f → (g(X),h(X),g(0)→
1,h(1)→ 2} and the derivation P ` f → (g(0 ? 1),h(0 ? 1))→∗ (g(0),h(1))→∗ (1,2): as extra variables
can be instantiated with arbitrary expressions that implies that in particular those can be instantiated
with “alternatives” of expressions built using the ? function, which can evolve independently after the
alternative between them is resolved. We can lift that derivation with our transformation as P̂ ` f →
(g(gen),h(gen))→∗ (g(0),h(1))→∗ (1,2). The adequacy of the transformation is formulated in the
following result, in the same terms as the variable elimination result from [8].

Theorem 2 For any program P , se ∈ SExp, st ∈ SCTerm if st is ground then G]P ` se _ st iff
P̂ ` se _ st.

After eliminating extra variables with the proposed program transformation, we can then emulate the
instantiation of variables performed by a narrowing procedure by just replacing free variables with gen,
thus lifting any term rewriting derivation starting from an arbitrary instance of an expression to a ground
c-term.

94 Lifting Term Rewriting Derivations by Using Generators

Theorem 3 (Lifting) For any program P , e,e′ ∈ Exp such that e′ is ground:
Soundness P̂ ` e[X/gen]→∗ e′ implies ∃σ ∈ Subst such that P ` eσ →∗ e′′ for some e′′ ∈ Exp such
that |e′| v |e′′| with dom(σ) = X. As a consequence, if e′ = t ∈ CTerm then P ` eσ →∗ t.
Completeness For any σ ∈ Subst we have that P ` eσ→∗ e′ implies P̂ ` e[X/gen]→∗ e′′ for some e′′ ∈
Exp such that |e′| v |e′′| with X = dom(σ). As a consequence, if e′ = t ∈CTerm then P̂ ` e[X/gen]→∗ t.

4 Maude prototype

We present in this section our prototype; much more information can be found at http://gpd.sip.
ucm.es/snarrowing. The prototype is started by typing loop init-s ., that initiates an input/output
loop where programs and commands can be introduced. These programs have syntax smod NAME is

STMNTS ends, where NAME is the identifier of the program and STMNTS is a sequence of constructor-
based left-linear rewrite rules. For instance, Example 4 would be written as follows:

(smod CLERKS is

branches -> madrid ? vigo .

employees(madrid) -> e(pepe, men) .

employees(madrid) -> e(maria, men) .

employees(vigo) -> e(pilar, women) ? e(luis, men) .

search(e(N,S)) -> p(N,N) .

ends)

where upper-case letters are assumed to be variables. We can evaluate terms with variables with the
command eval-gen, that transforms each variable in the term into the gen constant described above
and evaluates the thus obtained expression in the module extended with the gen rules:

Maude> (eval-gen search(X,X) .)

Result: p(madrid, madrid)

That is, the tool first finds a result with the same value for the two elements of the pair. We can ask the
system for more solutions with the next command until no more solutions are found, which will reveal
pairs with different values:

Maude> (next .)

Result: p(madrid,vigo)

Finally, the system combines the on-demand strategy with two different search strategies: depth-first
and breadth-first, and allows the user to check the trace in order to see how the generators are instantiated.
We will show in the following section how to use these commands.

4.1 Looking for alternatives

We present here a more complex example, which introduces how to use our tool to search for different
paths leading to the solution. This example presents a simplified version of the intruder protocol intro-
duced in [22], which is also executable with the generators approach presented here and is available at
http://gpd.sip.ucm.es/snarrowing.

The module PARTY below describes the specification of a party. Our goal in this party is to have fun,
so we define the function success, which receives a set of friends F and a set of elements that we already
have. It is reduced to the function haveFun applied to the set obtained after calling to our friends:

http://gpd.sip.ucm.es/snarrowing
http://gpd.sip.ucm.es/snarrowing
http://gpd.sip.ucm.es/snarrowing

A. Riesco & J. Rodrı́guez-Hortalá 95

(smod PARTY is

success(F, S) -> haveFun?(makeCalls(F, S)) .

The function haveFun is reduced to tt (standing for the value true) when it receives the constant
fun:

haveFun(fun) -> tt .

The function makeCalls combines the current items with the ones obtained by making further calls
using the new items obtained by offering your items to your friends:

makeCalls(F, S) -> S ? makeCalls(F, makeAnOffer(F, S)) .

We can reach different results by using makeAnOffer. First, it is possible to combine the current
items to obtain a new one:

makeAnOffer(F, S) -> combine(S, S) .

This combination, achieved by the combine function, generates a burger from bread and meat,
and fun when a burger and a videogame are found:

combine(bread, meat) -> burger .

combine(burger, videogames) -> fun .

Another possibility is to call a friend and show him the items we have obtained so far:

makeAnOffer(F, S) -> call(F, S) .

This call depends on the friend we call. We present below the different possibilities:

call(enrique, drink) -> music .

call(adri, meat) -> bread .

call(rober, music) -> videogames .

call(nacho, videogames) -> music .

call(juan, food) -> drink .

ends)

Once this module is loaded into the interpreter, we indicate that we want to activate the path. In this
way, we can explore the different ways to reach the values:

Maude> (path on.)

Path activated.

We also set the exploration strategy to breadth first, so the tool finds the shortest solutions first:

Maude> (breadth-first .)

Breadth-first strategy selected.

We can now look for solutions to the success function, using a variable as argument:

Maude> (eval-gen success(F, S) .)

Result: tt

We can now examine the path traversed by the tool to reach the result as follows:

96 Lifting Term Rewriting Derivations by Using Generators

Maude> (show path .)

haveFun(makeCalls(gen,gen))

--->

haveFun(gen ? makeCalls(gen,makeAnOffer(gen,gen)))

--->

haveFun(gen)

--->

haveFun(fun)

--->

tt

It shows how it simply requires start with fun to obtain fun at the end. Since this answer is not
useful we look for the next one:

Maude> (next .)

Result: tt

Maude> (show path .)

haveFun(makeCalls(gen,gen))

--->

haveFun(gen ? makeCalls(gen,makeAnOffer(gen,gen)))

--->

haveFun(makeCalls(gen,makeAnOffer(gen,gen)))

--->

haveFun(makeAnOffer(people,gen) ?

makeCalls(makeAnOffer(people,makeAnOffer(people,gen))))

--->

haveFun(makeAnOffer(people,gen))

--->

haveFun(combine(gen,gen))

--->

haveFun(combine(burger,gen))

--->

haveFun(combine(burger,videogames))

--->

haveFun(fun)

--->

tt

In this case we would require to start having a burger and videogames, so they can be combined
in order to reach the fun. In this case no friends were required. However, the next search (where we just
show the last steps) requires a burger, music, and our friend rober:

...

haveFun(combine(gen,call(gen,gen)))

--->

haveFun(combine(burger,call(gen,gen)))

--->

haveFun(combine(burger,call(rober,gen)))

--->

haveFun(combine(burger,call(rober,music)))

--->

haveFun(combine(burger,videogames))

A. Riesco & J. Rodrı́guez-Hortalá 97

--->

haveFun(fun)

--->

tt

We can keep looking for more results until we find the one we are looking for or we reach the limit
on the number of steps (which can be modified by means of the depth command).

4.2 Implementation notes

We have implemented our prototype in Maude [6], a high-level language and high-performance system
supporting both equational and rewriting logic computation for a wide range of applications. Maude
modules correspond to specifications in rewriting logic [16], a simple and expressive logic which allows
the representation of many models of concurrent and distributed systems. This logic is an extension
of equational logic; in particular, Maude functional modules correspond to specifications in member-
ship equational logic [4], which, in addition to equations, allows the statement of membership axioms
characterizing the elements of a sort. Rewriting logic extends membership equational logic by adding
rewrite rules, that represent transitions in a concurrent system. This logic is a good semantic framework
for formally specifying programming languages as rewrite theories [17]; since Maude specifications are
executable, we obtain an interpreter for the language being specified.

Exploiting the fact that rewriting logic is reflective [7], an important feature of Maude is its systematic
and efficient use of reflection through its predefined META-LEVEL module [6, Chapter 14], a characteristic
that allows many advanced metaprogramming and metalanguage applications. This powerful feature
allows access to metalevel entities such as specifications or computations as usual data. In this way,
we define the syntax of the modules introduced by the user, manipulate them, direct the evaluation of
the terms (by using the on-demand strategy natural narrowing [10]), and implement the input/output
interactions in Maude itself.

5 Concluding remarks and ongoing work

In this work we have proposed and formally proved the adequacy of a technique for lifting term rewriting
derivations from an arbitrary instance of an expression to a constructed term—or the outer constructed
part of any expression—using left-linear constructor systems. It is based on the generator technique from
the field of functional-logic programming [8, 1], but adapted to the different semantic context of term
rewriting [23]. For proving the adequacy of the proposed technique we have employed the semantics
for constructor systems defined in [15] as the main technical tool. This way we have put the semantics
in practice by using it for solving a technical problem that was not stated in the original paper. Along
the way we have extended the semantics to support extra variables in rewriting rules, as those are very
frequent when using narrowing, which is the context of the present paper. To do that we have made the
necessary adjustments to the formulation of the semantics and to the proofs for its properties.

A fundamental limitation of the generators is that they can only be used for reaching ground c-terms
or the outer constructed part of expressions. This limitation can be somewhat mitigated by reducing the
reachability to a non-ground value to the reachability of a ground value: for example to test for e→∗ c(X)
we can define a new function f by the rule f (c(X))→ true and then test for f (e)→∗ true. Anyway this is
a partial solution, and moreover the instantiation of free variables corresponding to the evaluation of gen
cannot be obtained by a transformation in that line, for example by evaluating (f (X),X) in the previous

98 Lifting Term Rewriting Derivations by Using Generators

example, due to the aforementioned loss of sharing between different occurrences of the same variable.
This latter limitation could only be possibly overcomed by using some metaprogramming capabilities of
the rewriting engine used to implement this technique. The generators technique has been used in prac-
tical systems, for example as the basis for an implementation of the functional-programming language
Curry [5]. There the information provided by a Damas-Milner like type system is used to improve the ef-
ficiency, because instead of just one universal generator, like in our proposal, several generators are used,
one for each type, which results in a great shrink of the search space for the evaluation of generators.
One could argue that our generators are fundamentally equivalent to defining a generator genE that could
be reduced to any expression, and then replacing each free or extra variable with genE, which would be
trivially complete. Nevertheless, in our approach the search space for generators is significantly smaller,
especially when combined with type information.

The system has been implemented in a Maude prototype that allows us to study their expressivity and
possible applications. This prototype uses the on-demand strategy natural rewriting [10], thus providing
an efficient implementation.

Regarding future work, we plan to improve our implementation by using the reflection capabilities
of Maude to collect the evaluation of generators, in order to be able to present a computed answer for
generators derivations, instead of relying on the trace to extract this information.

References

[1] Sergio Antoy & Michael Hanus (2006): Overlapping Rules and Logic Variables in Functional Logic Pro-
grams. In Sandro Etalle & Miroslaw Truszczynski, editors: Logic Programming, 22nd International Confer-
ence, ICLP 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, Lecture Notes in Computer Science
4079, Springer, pp. 87–101, doi:10.1007/11799573 9.

[2] Franz Baader & Tobias Nipkow (1998): Term rewriting and all that. Cambridge University Press,
doi:10.1017/CBO9781139172752.

[3] Franz Baader & Wayne Snyder (2001): Unification Theory. In John Alan Robinson & Andrei Voronkov,
editors: Handbook of Automated Reasoning (in 2 volumes), Elsevier and MIT Press, pp. 445–532,
doi:10.1016/B978-044450813-3/50010-2.

[4] Adel Bouhoula, Jean-Pierre Jouannaud & José Meseguer (2000): Specification and proof in membership
equational logic. Theoretical Computer Science 236(1-2), pp. 35–132, doi:10.1016/S0304-3975(99)00206-
6.

[5] Bernd Braßel, Michael Hanus, Björn Peemöller & Fabian Reck (2011): KiCS2: A New Compiler from Curry
to Haskell. In Herbert Kuchen, editor: Functional and Constraint Logic Programming - 20th International
Workshop, WFLP 2011, Odense, Denmark, July 19th, Proceedings, Lecture Notes in Computer Science
6816, Springer, pp. 1–18, doi:10.1007/978-3-642-22531-4 1.

[6] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martı́-Oliet, José Meseguer & Car-
olyn L. Talcott, editors (2007): All About Maude - A High-Performance Logical Framework, How to Spec-
ify, Program and Verify Systems in Rewriting Logic. Lecture Notes in Computer Science 4350, Springer,
doi:10.1007/978-3-540-71999-1.

[7] Manuel Clavel, José Meseguer & Miguel Palomino (2007): Reflection in membership equational logic, many-
sorted equational logic, Horn logic with equality, and rewriting logic. Theor. Comput. Sci. 373(1-2), pp.
70–91, doi:10.1016/j.tcs.2006.12.009.

[8] Javier de Dios Castro & Francisco Javier López-Fraguas (2007): Extra Variables Can Be Elim-
inated from Functional Logic Programs. Electr. Notes Theor. Comput. Sci. 188, pp. 3–19,
doi:10.1016/j.entcs.2006.05.049.

http://dx.doi.org/10.1007/11799573_9
http://dx.doi.org/10.1017/CBO9781139172752
http://dx.doi.org/10.1016/B978-044450813-3/50010-2
http://dx.doi.org/10.1016/S0304-3975(99)00206-6
http://dx.doi.org/10.1016/S0304-3975(99)00206-6
http://dx.doi.org/10.1007/978-3-642-22531-4_1
http://dx.doi.org/10.1007/978-3-540-71999-1
http://dx.doi.org/10.1016/j.tcs.2006.12.009
http://dx.doi.org/10.1016/j.entcs.2006.05.049

A. Riesco & J. Rodrı́guez-Hortalá 99

[9] Francisco Durán, Steven Eker, Santiago Escobar, José Meseguer & Carolyn L. Talcott (2011): Variants,
Unification, Narrowing, and Symbolic Reachability in Maude 2.6. In Manfred Schmidt-Schauß, editor: Pro-
ceedings of the 22nd International Conference on Rewriting Techniques and Applications, RTA 2011, May
30 - June 1, 2011, Novi Sad, Serbia, LIPIcs 10, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp.
31–40, doi:10.4230/LIPIcs.RTA.2011.31.

[10] Santiago Escobar (2004): Implementing Natural Rewriting and Narrowing Efficiently. In Yukiyoshi
Kameyama & Peter J. Stuckey, editors: Functional and Logic Programming, 7th International Symposium,
FLOPS 2004, Nara, Japan, April 7-9, 2004, Proceedings, Lecture Notes in Computer Science 2998, Springer,
pp. 147–162, doi:10.1007/978-3-540-24754-8 12.

[11] Michael Hanus (2005): Functional Logic Programming: From Theory to Curry. Technical Report, Christian-
Albrechts-Universität Kiel.

[12] Jean-Marie Hullot (1980): Canonical Forms and Unification. In Wolfgang Bibel & Robert A. Kowalski,
editors: 5th Conference on Automated Deduction, Les Arcs, France, July 8-11, 1980, Proceedings, Lecture
Notes in Computer Science 87, Springer, pp. 318–334, doi:10.1007/3-540-10009-1 25.

[13] H. Hussmann (1993): Non-Determinism in Algebraic Specifications and Algebraic Programs. Birkhäuser
Verlag.

[14] F. López-Fraguas, J. Rodrı́guez-Hortalá & J. Sánchez-Hernández (2009): A Fully Abstract Semantics
for Constructor Systems (Extended version). Technical Report SIC-2-09, Departamento de Sistemas In-
formáticos y Computación, Universidad Complutense de Madrid.

[15] Francisco Javier López-Fraguas, Juan Rodrı́guez-Hortalá & Jaime Sánchez-Hernández (2009): A Fully Ab-
stract Semantics for Constructor Systems. In Ralf Treinen, editor: Rewriting Techniques and Applications,
20th International Conference, RTA 2009, Brası́lia, Brazil, June 29 - July 1, 2009, Proceedings, Lecture
Notes in Computer Science 5595, Springer, pp. 320–334, doi:10.1007/978-3-642-02348-4 23.

[16] José Meseguer (1992): Conditioned Rewriting Logic as a Unified Model of Concurrency. Theor. Comput.
Sci. 96(1), pp. 73–155, doi:10.1016/0304-3975(92)90182-F.

[17] José Meseguer & Grigore Rosu (2007): The rewriting logic semantics project. Theor. Comput. Sci. 373(3),
pp. 213–237, doi:10.1016/j.tcs.2006.12.018.

[18] José Meseguer & Prasanna Thati (2007): Symbolic reachability analysis using narrowing and its application
to verification of cryptographic protocols. Higher-Order and Symbolic Computation 20(1-2), pp. 123–160,
doi:10.1007/s10990-007-9000-6.

[19] Aart Middeldorp & Erik Hamoen (1994): Completeness Results for Basic Narrowing. Appl. Algebra Eng.
Commun. Comput. 5, pp. 213–253, doi:10.1007/BF01190830.

[20] Juan Carlos González Moreno, Maria Teresa Hortalá-González, Francisco Javier López-Fraguas & Mario
Rodrı́guez-Artalejo (1999): An Approach to Declarative Programming Based on a Rewriting Logic. J. Log.
Program. 40(1), pp. 47–87, doi:10.1016/S0743-1066(98)10029-8.

[21] A. Riesco & J. Rodrı́guez-Hortalá (2012): Generators: Detailed proofs. Technical Report 07/12, De-
partamento de Sistemas Informáticos y Computación, Universidad Complutense de Madrid. Available at
http://gpd.sip.ucm.es/snarrowing.

[22] Adrián Riesco & Juan Rodrı́guez-Hortalá (2012): S-Narrowing for Constructor Systems. In Abhik Roy-
choudhury & Meenakshi D’Souza, editors: Theoretical Aspects of Computing - ICTAC 2012 - 9th Inter-
national Colloquium, Bangalore, India, September 24-27, 2012. Proceedings, Lecture Notes in Computer
Science 7521, Springer, pp. 136–150, doi:10.1007/978-3-642-32943-2 10.

[23] Juan Rodrı́guez-Hortalá (2008): A Hierarchy of Semantics for Non-deterministic Term Rewriting Sys-
tems. In Ramesh Hariharan, Madhavan Mukund & V. Vinay, editors: IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2008, December 9-
11, 2008, Bangalore, India, LIPIcs 2, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 328–339,
doi:10.4230/LIPIcs.FSTTCS.2008.1764.

[24] L. Sterling & E. Shapiro (1986): The Art of Prolog. MIT Press, doi:10.1109/MEX.1987.4307074.

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.31
http://dx.doi.org/10.1007/978-3-540-24754-8_12
http://dx.doi.org/10.1007/3-540-10009-1_25
http://dx.doi.org/10.1007/978-3-642-02348-4_23
http://dx.doi.org/10.1016/0304-3975(92)90182-F
http://dx.doi.org/10.1016/j.tcs.2006.12.018
http://dx.doi.org/10.1007/s10990-007-9000-6
http://dx.doi.org/10.1007/BF01190830
http://dx.doi.org/10.1016/S0743-1066(98)10029-8
http://gpd.sip.ucm.es/snarrowing
http://dx.doi.org/10.1007/978-3-642-32943-2_10
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2008.1764
http://dx.doi.org/10.1109/MEX.1987.4307074

	1 Introduction
	2 Prelimininaries and formal setting
	2.1 A proof calculus for constructor systems with extra variables

	3 The generators approach
	4 Maude prototype
	4.1 Looking for alternatives
	4.2 Implementation notes

	5 Concluding remarks and ongoing work

