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Abstract. Narrowing is a procedure that was conceived in the context of equa-
tional E-unification, and that has also been used in a wide range of applica-
tions. The classic completeness result due to Hullot states that any term rewriting
derivation starting from an instance of an expression that has been obtained by
using a normalized substitution can be ‘lifted’ to a narrowing derivation. Since
then, several variants and extensions of narrowing have been developed in order
to improve that result under certain assumptions or for particular classes of term
rewriting systems.

In this work we propose a new narrowing notion for constructor systems that
is based on the novel notion of s-unifier, that essentially allows a variable to
be bound to several expressions at the same time. A Maude-based implemen-
tation for this narrowing relation, using an adaptation of natural narrowing as
on-demand evaluation strategy, is presented, and its use for symbolic reachability
analysis applied to the verification of cryptographic protocols is also outlined.
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1 Introduction

Narrowing [3] is a procedure that was originally conceived in the context of equa-
tional E-unification, and that has also been used in a wide range of applications like
for example symbolic reachability analysis [15], test-case generation [20], or as the
basic operational mechanism of functional-logic languages [2]. Narrowing can be de-
scribed as a modification of term rewriting in which matching is replaced by unification.
By doing so, in a narrowing derivation from a starting goal expression, the narrowing
procedure is able to deduce the instantiation of the variables of the goal expression
that is needed for the computation to progress. This idea is reflected in Hullot’s lift-
ing lemma [11], the key result for the completeness of narrowing w.r.t. term rewriting,
which states that given an expression e1 if we instantiate it with a substitution θ and
we perform a term rewriting derivation e1θ→∗ e2, then we can lift it into a narrowing
derivation e1 �∗σ e3 such that e3 and σ are more general than e2 and θ—w.r.t. to the
usual instantiation preorder [4], and for the variables involved in the derivations—, pro-
vided that the starting substitution θ is normalized. This latter condition is essential: a
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normalized substitution only contains expressions in normal form in its range, which
are expressions which cannot be reduced by term rewriting. It is fairly easy to break
Hullot’s lifting lemma by dropping that condition, for example under the term rewrit-
ing system (TRS) { f (0,1)→ 2,coin→ 0,coin→ 1}, using the expression f (X ,X) and
the non-normalized substitution [X/coin] we can perform the term rewriting derivation
f (X ,X)[X/coin] = f (coin,coin)→ f (0,coin)→ f (0,1)→ 2, which cannot be lifted
by any narrowing derivation. Several variants and extensions of narrowing have been
developed in order to improve that result under certain assumptions or for particular
classes of term rewriting systems [16,21,15,8].

In this paper we propose a new narrowing relation that tries to improve the complete-
ness results for classic general narrowing, for the class of left-linear constructor-based
term rewriting systems or just constructor systems (CS’s). In particular we focus on
dropping the normalization condition over the starting substitution that is required by
Hullot’s lifting lemma. In order to test the feasibility of the approach, we have imple-
mented it in Maude [6]. The resulting prototype can be used to evaluate expressions
with free variables under any given constructor system with extra variables.

Our starting point is a previous work [12], where a sound and complete composi-
tional semantics for CS’s was presented. CS’s are characterized by having the signature
partitioned in two disjoint sets of function symbols and constructor symbols, so any
left-hand side of a rule has a function symbol in its root with constructed terms or just
c-terms (expressions built using only constructor symbols and variables) as arguments,
and no variable appears more than once in a left-hand side. CS’s are usually used to
represent programs in declarative languages, therefore we will use ‘program’ as a syn-
onym for CS from now on. The semantics from [12] gives a characterization of the set
of c-terms (an outer constructed part of any expression) reachable by term rewriting
from expressions.1 The key for getting compositionality in that semantics was using a
suitable notion of semantic value. Instead of using c-terms, which may seem the obvi-
ous choice at a first look, a structured representation of the alternatives between c-terms
in a term rewriting derivation is used so the constructor symbols have sets of values
as arguments. For example, using a constructor symbol c with arity one and under the
program {X ? Y → X ,X ? Y → Y} then c({0,1}) is a value for the expression c(0 ? 1)
but not for the expression c(0) ? c(1), which reflects the different behavior of these
expressions: if we add the rule g(c(X))→ d(X ,X) to the program then it is easy to
check that g(c(0 ? 1))→∗ d(0,1) while g(c(0) ? c(1)) �→∗ d(0,1), even though the set
of c-terms reachable by c(0 ? 1) and c(0) ? c(1) is the same. These structured values are
called s-cterms, so an s-csubstitution or just s-csubst is any substitution with s-cterms
in its range. And as that semantics is compositional—in fact it is also fully abstract
w.r.t. reachability of c-terms [12]—then any pair of expressions with the same set of
s-cterms are interchangeable in any context, as long as we are only concerned about
the set of reacheable c-terms. This is also reflected at the level of substitutions in an
intermediate result of [12], that roughly states that if we can compute a value—i.e.,
reach that value/c-term by a term rewriting derivation—for an expression instantiated
with an arbitrary substitution (for which normalization is not required), then we can

1 We use the terminology expression instead of the more usual term—in the term rewriting
community—in order to stress their difference with the more restricted notion of c-term.
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compute the same value instantiating the same expression with an s-csubst such that
every s-cterm in its range is a value for the corresponding expression in the range of the
starting substitution. This makes sense because although an arbitrary substitution may
implicitly contain an infinite amount of information in its range—as it may contain calls
to functions with unbounded recursion—any finite term rewriting derivation is a finite
computation process that therefore can only consume a finite amount of information in
the form of values from the expressions in the range of that substitution. Note that in
a sense we should consider that s-csubst are not normalized because they contain al-
ternatives between expressions, so we could evaluate any s-csubst to several c-subst by
choosing an element in each of the sets that appear in the s-cterms in the range of the
s-csubst.

But what it is important for our purpose here is that this result shows that, for reacha-
bility of c-tems in CS’s, s-csubstitutions have the same power as arbitrary substitutions.
And that is good because narrowing derivations use the left-hand sides of program rules
to deduce the instantiation of variables in the goal expression needed for the computa-
tion to progress, by syntactic unification in the case of classic narrowing. But we have
seen that, in order to have the same power as arbitrary substitutions, what we need to
deduce from those left-hand sides is an s-csubst, instead of a normalized substitution.
To do that we propose a modification of a classical syntactic unification algorithm that
now allows a variable to be bound to several expressions at the same time. We use this
novel s-unification algorithm as the basis to define a new narrowing relation called s-
narrowing, that gathers up all the c-terms to which a variable has been bound during the
computation. Doing so for every variable in the starting goal expression, and also for
the variables in the expressions it has been bound to, we end up building the s-csubst
that solves the goal. Applying these ideas to lift the derivation from the example above
we get the following s-narrowing derivation:

f (X ,X) | /0 � 2 | {X �→ {0,1}}

where the following successful s-unification derivation is used in the application of the
rule for f .

{ f (0,1)
?
= f (X ,X)}; /0⇒{0 ?

= X ,1
?
= X}; /0⇒{X ?

= 0,1
?
= X}; /0

⇒{1 ?
= X};{X �→ {0}}⇒ {X ?

= 1};{X �→ {0}}⇒ /0;{X �→ {0,1}}

Regarding the prototype, s-narrowing is implemented by using an adaptation of the
natural narrowing on-demand strategy [9], which indicates the positions that must be
reduced in each step. As a proof-of-concept we have tested the prototype with several
examples, including a sketch of the verification of cryptographic protocols.

The rest of the paper is organized as follows. In Section 2 we explain the aforemen-
tioned semantics for constructor systems, and use it to formalize the intuitions presented
in the introduction. In Section 3 we present the notions of s-unification and s-narrowing
and some interesting results about them. Then in Section 4 we outline the implementa-
tion and commands of our prototype using examples. Finally, Section 5 concludes and
outlines some lines of future work. More information and detailed proofs of the results
shown here are presented in [18].
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2 Prelimininaries and Formal Setting

2.1 Basic Syntax

We consider a first order signature Σ = CS�FS, where CS and FS are two disjoint
set of constructor and defined function symbols respectively, all them with associated
arity. We write CSn (FSn resp.) for the set of constructor (function) symbols of arity n.
We write c,d, . . . for constructors, f ,g, . . . for functions and X ,Y, . . . for variables of a
numerable set V . The notation o stands for tuples of any kind of syntactic objects.

The set Exp of expressions is defined as Exp 	 e ::= X | h(e1, . . . ,en), where X ∈V ,
h ∈ CSn∪FSn and e1, . . . ,en ∈ Exp. The set CTerm of constructed terms (or c-terms) is
defined like Exp, but with h restricted to CSn (so CTerm ⊆ Exp). We will write e,e′, . . .
for expressions and t,s, . . . for c-terms. The set of variables occurring in an expression
e will be denoted as var(e). We say that an expression e is ground iff var(e) = /0. We
will frequently use one-hole contexts, defined as Cntxt 	 C ::= [ ] | h(e1, . . . ,C , . . . ,en),
with h ∈ CSn∪FSn. The application of a context C to an expression e, written by C [e],
is defined inductively as [ ][e] = e and h(e1, . . . ,C , . . . ,en)[e] = h(e1, . . . ,C [e], . . . ,en).

We also consider the extended signature Σ⊥ = Σ∪ {⊥}, where ⊥ is a new 0-arity
constructor symbol that does not appear in programs, and that stands for the undefined
value. Over this signature we define the sets Exp⊥ and CTerm⊥ of partial expressions
and c-terms resp. The intended meaning is that Exp and Exp⊥ stand for evaluable ex-
pressions, i.e., expressions that can contain function symbols, while CTerm and CTerm⊥
stand for data terms representing total and partial values resp. Partial expressions are
ordered by the approximation ordering � defined as the least partial ordering satisfy-
ing ⊥� e and e � e′ ⇒ C [e] � C [e′] for all e,e′ ∈ Exp⊥,C ∈ Cntxt. The shell |e| of
an expression e represents the outer constructed part of e and is defined as: |X | = X ;
|c(e1, . . . ,en)| = c(|e1|, . . . , |en|); | f (e1, . . . ,en)| = ⊥. It is trivial to check that for any
expression e we have |e| ∈ CTerm⊥, that any total expression is maximal w.r.t. �, and
that as consequence if t is total then t � |e| implies t = e.

Substitutions θ ∈ Subst are finite mappings θ : V −→ Exp, extending naturally
to θ : Exp −→ Exp. We write ε for the identity (or empty) substitution. We write
eθ for the application of θ to e, and θθ′ for the composition, defined by X(θθ′) =
(Xθ)θ′. The domain and range of θ are defined as dom(θ) = {X ∈ V | Xθ �= X} and
vran(θ) =

�
X∈dom(θ) var(Xθ). By [X1/e1, . . . ,Xn/en] we denote a substitution σ such

that dom(σ) = {X1, . . . ,Xn} and ∀i.σ(Xi) = ei. Similarly the notation [X/e | P(X ,e)]
where P is some predicate over X and e is used to define substitutions using a set-like
notation, so ([X/e | P(X ,e)])(Y ) = e′ if P(Y,e′), and ([X/e | P(X ,e)])(Y ) = Y other-
wise. If dom(θ0)∩dom(θ1) = /0, their disjoint union θ0�θ1 is defined by (θ0�θ1)(X)=
θi(X), if X ∈ dom(θi) for some θi; (θ0�θ1)(X) = X otherwise. Given W ⊆V we write
θ|W for the restriction of θ to W , i.e. (θ|W )(X) = θ(X) if X ∈W , and (θ|W )(X) = X
otherwise; we use θ|\D as a shortcut for θ|(V \D). C-substitutions θ ∈ CSubst verify that
Xθ ∈ CTerm for all X ∈ dom(θ). We say a substitution σ is ground iff vran(σ) = /0,
i.e. ∀X ∈ dom(σ) we have that σ(X) is ground. The sets Subst⊥ and CSubst⊥ of partial
substitutions and partial c-substitutions are the sets of finite mappings from variables to
partial expressions and partial c-terms, respectively.
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A constructor-based term rewriting system or just constructor system or program P
(CS) is a set of c-rewrite rules of the form f (t)→ r where f ∈ FSn, r ∈ Exp and t is
a linear n-tuple of c-terms, where linearity means that variables occur only once in t.
Notice that we allow r to contain so called extra variables, i.e., variables not occurring
in f (t). To be precise, we say that X ∈ V is an extra variable in the rule l → r iff
X ∈ var(r) \ var(l). the set of extra variables in a program rule R. A fresh variant of
a program rule is the result of taking a program rule and applying to it a substitution
that replaces each variable of the rule by a fresh variable. We assume that every CS
contains the rules Q = {X ? Y → X ,X ? Y → Y}, defining the behavior of ? ∈ FS2,
used infix mode, and that those are the only rules for ?. Besides, ? is right-associative
so e1 ? e2 ? e3 is equivalent to e1 ? (e2 ? e3). For the sake of conciseness we will often
omit these rules when presenting a CS. A consequence of this is that we only consider
non-confluent programs.

Given a TRS P , its associated term rewriting relation→P is defined as: C [lσ]→P
C [rσ] for any context C , rule l→ r ∈ P and σ ∈ Subst. We write

∗→P for the reflexive
and transitive closure of the relation →P . In the following, we will usually omit the
reference to P or denote it by P � e→ e′ and P � e→∗ e′. By P � e1 ↓ e2 we denote
that e1 and e2 are joinable under P , i.e., it exists some expression e3 such that P �
e1 →∗ e3

∗← e2, where ← denotes the inverse of →, and ∗← the reflexive-transitive
closure of←.

2.2 A Proof Calculus for Constructor Systems with Extra Variables

In [12] an adequate semantics for reachability of c-terms by term rewriting in CS’s
was presented. As we mentioned in Section 1, the key idea in that semantics is using a
suitable notion of value, in this case the notion of s-cterm, which is a structured repre-
sentation of alternative between c-terms in a term rewriting derivation. An s-cterm is a
finite set of elemental s-cterms, that are variables or constructors applied to s-cterms, so
SCTerm is an alias for the set of finite sets of elemental s-cterms and the set ESCTerm
of elemental s-cterms is defined as ESCTerm 	 est ::= X | c(st1, . . . ,stn) for X ∈ V ,
c ∈ DCn, st1, . . . ,stn ∈ SCTerm. We extend this idea to expressions obtaining the sets
SExp of s-expressions or just s-exp, and ESExp of elemental s-expressions, which are
defined the same but now using any symbol in Σ in applications instead of just con-
structor symbols. Note that for s-expressions /0 corresponds to ⊥, so s-exps are partial
by default. The approximation preorder � is defined for s-exps as the least preorder
such that se � se′ iff ∀ese ∈ se.∃ese′ ∈ se′ such that ese� ese′, X � X for any X ∈ V ,
and h(se1, . . . ,sen)� h(se′1, . . . ,se′n) iff ∀i.sei � se′i.

The sets SSubst and SCSubst of s-substitutions and s-csubstitutions (or just s-csubst)
consist of finite mappings from variables to s-exps or s-cterms, respectively. Some care
must be taken when extending s-substs to be applied to ESExp and SExp, so for any
σ ∈ SSubst we define σ : ESExp→ SExp as Xσ = σ(X), h(se)σ = {h(seσ)}; and σ :
SExp→ SExp as seσ =

�
ese∈se eseσ. The approximation preorder � is defined for s-

substs as σ� θ iff ∀X ∈ V .σ(X)� θ(X).
In this semantics the denotation of an expression is obtained as the denotation of its

associated s-expression, assigned by the operator� : Exp⊥ → SExp, which is defined as
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E se � /0

RR {X}� {X} if X ∈V

DC

se1 � st1 . . . sen � stn

{c(se1, . . . ,sen)}� {c(st1, . . . ,stn)} if c ∈ CS

MORE

se � st1 . . . se � stn

se � st1 ∪ . . .∪ stn

LESS

{esa1}� st1 . . . {esam}� stm

{ese1, . . . ,esen}� st1 ∪ . . .∪ stm

if n≥ 2,m > 0, for any
{esa1, . . . ,esam}
⊆ {ese1, . . . ,esen}

ROR

se1 � �p1θ . . . sen � �pnθ �rθ � st

{ f (se1, . . . ,sen)}� st if
( f (p1, . . . , pn)→ r) ∈ P
θ ∈ SCSubst

Fig. 1. A proof calculus for constructor systems

�⊥= /0; �X = {X} for any X ∈V ;�h(e1, . . . ,en) = {h(�e1, . . . ,�en)} for any h∈Σn. The oper-

ator� is extended to s-substitutions as �σ(X) =�σ(X), for σ ∈ Subst⊥. Is is easy to check
that�eσ = �e�σ (see [12]). Conversely, we can flatten an s-expression se to obtain the set
flat(e) of expressions “contained” in it, so flat( /0) = {⊥} and flat(se) =

�
ese∈se flat(ese)

if se �= /0, where the flattening of elemental s-exps is defined as flat(X)= {X}; flat(h(se1,
. . . ,sen)) = {h(e1, . . . ,en) | ei ∈ flat(sei) for i = 1..n}.

In Figure 1 we can find the proof calculus that defines the semantics of s-expressions.
Our proof calculus proves reduction statements of the form se � st with se ∈ SExp
and st ∈ SCTerm, expressing that st represents an approximation to one of the possible
structured sets of values for se. We refer the interested reader to [12] for a detailed
explanation of the intuitions behind the rules of the calculus. We write P � se � st to
express that se � st is derivable in our calculus under the CS P . The denotation of an
s-expression se under a CS P is defined as [[se]]P = {st ∈ SCTerm | P � se � st}. In the
following we will usually omit the reference to P . The denotation of an s-substitution
σ is defined as [[σ]] = {θ ∈ SCSubst | ∀X ∈V ,σ(X) � θ(X)}.

The setting originally presented in [12] was not able to deal with extra variables, but
in [17] we extended it to deal with them, which is just needed for the present work,
as extra variables are very common when using narrowing. To do that we were not
required to change the rules of the calculus, but only the proof for the adequacy, as
the rule ROR from Figure 1 already allows to instantiate extra variables freely with
s-cterms. Nevertheless, as a consequence of that freely instantiation of extra variables,
every program with extra variables turns into non-deterministic. For example consider
a program { f → (X ,X)} for which the constructors 0,1 ∈ CS0 are available, then we

can prove �f = { f} � {({0},{1})} =�(0,1). But in fact this is not very surprising,
and it has to do with the relation between non-determinism and extra variables [1],
but adapted to the run-time choice semantics [19] induced by term rewriting. As a
consequence of this—as seen in Section 2.1—we assume that all the programs con-
tains the function ? defined by the rules Q = {X ? Y → X ,X ? Y → Y}, so we only
consider non-confluent TRS’s. We admit that this is a limitation of our setting, but
we also conjecture that for confluent TRS’s a simpler semantics could be used, for
which the packing of alternatives of c-terms would not be needed. Anyway, the point



142 A. Riesco and J. Rodrı́guez-Hortalá

is that having ? at one’s disposal is enough to express the non-determinism of any pro-
gram [10], so we can use it to define the transformation � from s-exp and elemental
s-exp to partial expressions that, contrary to flat, now takes care of keeping the nested
set structure by means of uses of the ? function. Then � : ESExp→ Exp⊥ is defined

by �X = X , 	h(se1, . . . ,sen) = h(
se1, . . . ,
sen); and � : SExp→ Exp⊥ is defined by �/0 =⊥,
	{ese1, . . . ,esen}=�ese1 ? . . . ?�esen for n > 0, where in the case for 	{ese1, . . . ,esen} we

use some fixed arbitrary order on terms for arranging the arguments of ?. This operator

is also overloaded for substitutions as� : SSubst→ Subst⊥ as (�σ)(X) =�σ(X). Thanks to
the power of ? to express non-determinism, that transformation preserves the semantics
from Figure 1, so the following result can be proved—see [12] for details about the
proof.

Theorem 1 (Adequacy of [[ ]]). For all e,e′ ∈ Exp, t ∈ CTerm⊥,st ∈ SCTerm:
Soundness st ∈ [[�e]] and t ∈ flat(st) implies e→∗ e′ for some e′ ∈ Exp such that t � |e′|.
Therefore, �t ∈ [[�e]] implies e→∗ e′ for some e′ ∈ Exp such that t � |e′|. Besides, in any
of the previous cases, if t is total then e→∗ t.

Completeness e→∗ e′ implies�|e′| ∈ [[�e]]. Hence, if t is total then e→∗ t implies�t ∈ [[�e]].
We conclude this section with the following result, that formalizes the intuitions we
gave in Section 1 stating that we only need to compute an s-csubst in order to lift
any term rewriting derivation starting from an expression instatiated with an arbitrary
substitution, if we only care about reachability of c-terms—or its outer constructed part,
expressed by the notion of shell.

Proposition 1. For all e,e′ ∈ Exp, σ ∈ Subst, eσ→∗ e′ implies ∃θ ∈ [[σ]]. e�θ→∗ e′′
such that |e′| � |e′′|. Note that θ ∈ [[σ]] implies θ ∈ SCSubst. Besides, if e′ = t ∈ CTerm
then e�θ→∗ t.

3 S-Narrowing and S-Unification

In this section we will present our proposal for the novel s-narrowing relation—where
‘s’ stands for “set,” as in s-cterm—in which we realize the ideas about a new narrow-
ing relation discussed in Section 1. As suggested by Proposition 1, in s-narrowing we
use the information contained in the left-hand sides of program rules to compute an
s-csubst, in order to lift any term rewriting derivation starting from the instantiation
of an expression with an arbitrary substitution. To do that we rely on the notion of s-
unification, a modification of syntactic unification that basically allows a variable to be
bound to several expressions at the same time.

For the sake of conciseness of the notation, in the rest of the paper we will often omit
the braces in singleton sets, so the context determines wheter e refers to {e}—as {0} in
c(0) ∈ SExp—or just to e—as 0 in c(0) ∈ Exp.

3.1 S-Unification

The main difference between s-unification and syntactic unification is that, instead of
finding a substitution that makes two expressions equal, in s-unification we look for an
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VTRIV {X ?
= X}�P;S⇒ P;S if X ∈ V

DEC {h(e1, . . . ,en)
?
= h(e′1, . . . ,e

′
n)}�P;S⇒ {e1

?
= e′1, . . . ,en

?
= e′n}�P;S

CLASH {h1(e1)
?
= h2(e2)}�P;S⇒ fail if h1 �= h2

TURN {e ?
= X}�P;S⇒{X ?

= e}�P;S if e �∈ V
ADDBIND {X ?

= e}�P;S⇒ P;S⊕{X �→ e}

Fig. 2. S-Unification algorithm S

s-subst that makes the intersection of two expressions a nonempty set. From the term
rewriting point of view this means that an s-unifier of two expressions makes them join-
able. Formally, σ∈ SSubst is an s-unifier of e1,e2 ∈ Exp iff Q � e1�σ ↓ e2�σ. A particular-
ity of s-unification is that occurs check is not needed: for example we can instantiate the
expressions X and c(X) so they have a nonempty intersection by using [X/{X ,c(X)}],
as Q � X 	[X/{X ,c(X)}] = X ? c(X)→ c(X)← c(X ? c(X)) = c(X)	[X/{X ,c(X)}].

In Figure 2 we formulate our rule-based s-unification algorithm S , following the
style of the rule-based algorithm U from [4] for computing the most general syntactic
unifier. Hence, in S we rewrite configurations of the shape P;S where P is the problem,
i.e., a finite set of equations of the shape e1

?
= e2 between the expressions to unifiy,

and S is the solution computed so far, represented as a finite set of bindings of the
shape X �→ {e1, . . . ,en} for X ∈ V and e1, . . . ,en ∈ Exp. The special configuration fail
is used to indicate a failure in the s-unification process. Given a solution S, its domain
dom(S) is the set of variables for which a binding is defined in S. By S[X ] we denote
the binding corresponding to X in S, and by S[X �→ s] we denote the solution S′ such
that S′[X ] = s and S′[Y ] = S[Y ] for each Y ∈ dom(S) \ {X}. The operator ⊕ is used
to add a new element to the binding for a variable in a solution, and it is defined as
S⊕{X �→ e} = S[X �→ {e}] if X �∈ dom(S); S[X �→ c]⊕{X �→ e} = S[X �→ c∪ {e}]
otherwise. Given some W ⊆ V by S|W we denote the restriction of S to W , i.e., the
result of dropping from S the bindings for variables which are not contained in W ; and
by S|\W we denote S|(V \W ).

In order to s-unify two given expressions e1,e2 ∈ Exp we start with {e1
?
= e2}; /0

as the initial configuration and apply the rules of S in a don’t care non-deterministic
fashion until reaching fail or a configuration of the shape /0;S, which is a configura-
tion in solved form. By ⇒∗ we denote the reflexive-transitive closure of⇒, therefore
{e1

?
= e2}; /0⇒∗ /0;S indicates that the s-unification procedure for e1 and e2 has ended

with success computing the solution S. The rules VTRIV, DEC, CLASH and TURN are
standard in unification algorithms. The novelty in S compared to U is the rule AD-
DBIND that, together with the abstence of a rule for occurs check, tries to reflect the
intended meaning of an s-unifier discussed above. Maybe the reader could expect a
special case for occurs check where a binding X �→ {X ,e} would be added to the solu-
tion, but that case is not needed because of the way we interpret the solutions computed
by S , as we will see below.

We conjecture that the set of pairs of expressions that are s-unifiable is bigger
than the set of pairs of expressions that are unifiable. However, the algorithm S only
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grants the abstence of cycles in the computed solutions when unifiying pairs of ex-
pression e1 and e2 such that var(e1)∩ var(e2) = /0 and e1 is linear, which is enough
for its uses in s-narrowing. Otherwise the computed solution may contain cyclic bind-
ings: consider for example the problem h(X ,Z,Y )

?
= h(Z,Y,X) which is unifiable with

[Z/Y,X/Y ], and for which S computes the cyclic solution [X/Z,Z/Y,Y/X ]; or the
problem d(X ,c(X))

?
= d(Y,Y ) which is not unifiable but for which S computes the

cyclic solution [X/Y,Y/c(X)], even though d(X ,c(X)) and d(Y,Y ) do not share vari-
ables. The abstence in S of a rule for variable elimination, that would propagate the
binding computed for one variable to the rest of the problem, allows us for exam-
ple to s-unify d(X ,X) and d(0,1) with [X/{0,1}]. But, at the same time, it implies
that sometimes S will not compute the most general unifier for two unifiable expres-
sions, so it is not a conservative extension of a unification algorithm. For example
f (c(U),c(V ))

?
= f (X ,X); /0 ⇒∗ /0;{X �→ {c(U),c(V)}}, while [X/c(U),V/U ] is the

most general unifier of f (c(U),c(V )) and f (X ,X). In order to be more conservative,
we could have opted for an alternative definition of the rule ADDBIND in which the
bindings computed so far would be reused. But, as we will see in Section 3.2, that
would entail computing an s-narrowing solution that would be more concrete that what
is needed to lift the term rewriting derivations, so we use ADDBIND as defined above.
The algorithm S is terminating as shown in the following result, in the line of [4].

Proposition 2. For any problem P, every sequence P; /0⇒ P1;S1⇒ P2;S2⇒ . . . termi-
nates either with fail or with a configuration of the shape /0;S

By S∗[X ] we denote the binding corresponding to X in S after resolving the indirec-
tions caused by variables in S[X ] that are also in the domain of S, which is defined as
S∗[X ] = (S[X ])[Y/S∗[Y ]] for Y = var(S[X ])∩ dom(S). Hence in general S∗[X ] ∈ SExp.
Note that S∗[X ] is only well defined for solutions S without cyclic bindings, but that
is enough for us as we will only deal with solutions with acyclic bindings. Using
this notion we define the SSubst corresponding to a solution S, denoted by σS, as
σS = [X/S∗[X ] | X ∈ dom(S)]. Although we do not provide a formal proof, we con-
jecture that if var(e1)∩ var(e2) = /0 and e1 is linear then {e1

?
= e2}; /0⇒∗ /0;S implies

that σS
o is an s-unifier of e1 and e2, where the opening σo of an s-subst σ is defined as

(σo)(X) = {X}∪σ(X). In fact, in s-unification and s-narrowing we treat any substitu-
tion and its opening as if they were indistinguishable, which reflects a view of variables
as ever fruitful sources of c-terms. In s-narrowing free variables are never really instan-
tiated, but different alternative binding for the variables are collected, hence a variable
can always “be itself” again when needed, so it can be bound to a c-term it was not
previously bound.

3.2 S-Narrowing

The s-narrowing relation is defined in Figure 3. In s-narrowing we work with configu-
rations of the shape e | S where e is a goal expression and S is a solution like those used
in s-unification. We do this in order to avoid instantiating the variables in the goal, so
we could bind them to several c-terms at the same time. In this way, we collect in S the
bindings for those variables. The idea of s-narrowing is pretty simple. First we s-unify
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C [ f (e)] | S1 � C [rσp] | S2 for any fresh variant ( f (p)→ r) ∈ P such that:

i) { f (p)
?
= f (e)};S1⇒∗ /0;S ii) Sp = S|var(p) and S2 = S|\var(p) iii) σp =
σSp

Fig. 3. S-Narrowing

an expression f (e) occurring in the goal expression with the left hand-side of a fresh
variant of a programa rule. To do that we start s-unification using the solution computed
so far, that contains the bindings collected for the goal subexpression. As the variant is
fresh then occurs check is not needed. If s-unification succeeds then we take the part Sp

of the solution corresponding to the fresh left-hand side and use it for parameter pass-
ing. The following result ensures that each s-expressions in the range of Sp is singleton,
so
σSp = σp ∈ Subst:

Lemma 1. For all e1,e2 ∈ Exp if e1 is linear, var(e1)∩var(e2) = /0 and {e1
?
= e2}; /0⇒∗

/0;S, then for Se1 = S|var(e1) ∀X ∈ dom(Se1) Se1 [X ] is singleton.

Then the propagation of the bindings computed for f (e) is implicitly performed by
using S2 in the resulting s-narrowing configuration, as it is the part of the solution for
the s-unification that does not affect the fresh left-hand side. By �∗ we denote the
reflexive-transitive closure of �. A successful s-narrowing derivation for an expression
e is a derivation e | /0 �∗ t | S where t is a c-term. Then, similarly to s-unification, the
s-subst computed as solution by that s-narrowing derivation is σS

o.
Note that the application of σp to r is needed to ensure soundness, as we can see

considering the program { f (X)→ g(X),g(1)→ 2}. If we drop the application of σp at
each step, then we can do:

f (0) | /0 � g(X1) | {X1 �→ {0}} as { f (X1)
?
= f (0)}; /0⇒∗ /0;{X1 �→ {0}}

� 2 | {X1 �→ {0,1}} as {g(1) ?
= g(X1)};{X1 �→ {0}}⇒∗ /0;{X1 �→ {0,1}}

but this is clearly unsound because f (0)[X1/0?1] �→∗ 2, and in fact there is no σ ∈
Subst such that f (0)σ →∗ 2. Thus the application of σp is necessary to respect the
restrictions imposed by the symbols of Σ present in the goal expression which, contrary
to variables, cannot be replaced by the application of substitutions. Conversely, if we use
� as defined in Figure 3 then the derivation gets stuck after the first step, as expected:

f (0) | /0 � g(0) | /0 as { f (X1)
?
= f (0)} | /0⇒∗ /0 | {X1 �→ {0}}

and we cannot continue as {g(1) ?
= g(0)}; /0⇒ {1 ?

= 0}; /0⇒ fail. Just like classical
narrowing can be rephrased as a unification step followed by a term rewriting step,
i.e. as C [ f (e)] ⇒ C σ[ f (e)σ] → C σ[rσ], we could similarly rephrase s-narrowing as
C [ f (e)] | S1⇒ C [ f (e)σp] | S2→ C [rσp] | S2.

The following example shows why we open the substitution computed as solu-
tion. Given the program { f (0,1,X)→ X ,coin→ 0,coin→ 1} and the goal f (X ,X ,X)
for which we can compute f (X ,X ,X) | /0 � X | {X �→ {0,1}}. If we use σS with
S = {X �→ {0,1}} as the computed solution then we could not reach X by term rewrit-

ing, as f (X ,X ,X)[X/{0,1}] �→∗ X , while we can reach it using the non-normalized
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substitution [X/coin ? X ]. But if we open the solution and use σS
o as the computed so-

lution, as we originally proposed, then f (X ,X ,X)�[X/{0,1}]o →∗ f (0,1,X)→ X . This
is also coherent with our view of free variables in s-narrowing, which are never instan-
tiated and are always implicitly bound to (the singleton set containing) themselves.

In Section 3.1 we saw that s-unification is not a conservative extension of unifi-
cation because the bindings in the solution computed so far are not reused to solve
subsequent equations. The following example illustrates how reusing those bindings
would result in computing too specific solutions. Consider the program { f (c(X),Y )→
h(X ,Y ),h(X ,c(Y ))→ g(X ,Y ),g(0,1)→ 2} and the goal expression f (X ,X), for which
we can do f (X ,X) | /0 � h(U,X) | {X �→ c(U)}—for the sake of conciseness we drop
the bindings for irrelevant variables. Now in order to unify h(U,X) with h(W,c(V))—a
fresh variant of the left-hand side of the rule for h—we have two options. On the one
hand, if we modify the rule ADDBIND in order to reuse the binding in {X �→ c(U)}
then we can perform the step h(U,X) | {X �→ c(U)}� g(U,U) | {X �→ c(U)} and
then g(U,U) | {X �→ c(U)} � 2 | {X �→ c(U),U �→ {0,1}}, thus getting the solu-
tion [X/c({0,1})]o—for conciseness here we restrict the solution to the variables in the
starting goal. On the other hand, if we use the proposed definition of s-unification then
derivation proceeds as h(U,X) | {X �→ c(U)} � g(U,V) | {X �→ {c(U),c(V)}} �
2 | {X �→ {c(U),c(V )},U �→ 0,V �→ 1}, getting the solution [X/{c(0),c(1)}]o. Al-

though both solutions are sound in the sense that both f (X ,X)	[X/c({0,1})]o →∗ 2

and f (X ,X) 	[X/{c(0),c(1)}]o →∗ 2, the solution computed by the original definition
is better in the sense that [X/{c(0),c(1)}]o � [X/c({0,1})]o while [X/c({0,1})]o ��
[X/{c(0),c(1)}]o. This is also reflected at the term rewriting level, as seen with function
g in Section 1. For these reasons we have chosen not to reuse bindings in s-unifications.

We have not obtained any formal result about the adequacy of s-narrowing yet, so
we only have some conjectures. Regarding soundness, we think that e1 | S1 �∗ e2 | S2

implies e1�σS2
o→∗ e2. For completeness we would like to prove a lifting lemma in the

style of Hullot’s one, but first we have to find an appropiate order to be used there.
That is pretty difficult because that order should be able to express at the same time
that the computed substitution neither instantiates too much, nor introduces redundant
alternatives in the sets contained in the s-expressions in its range. Therefore it would
be a combination of the usual instantiation preorder [4] and the preorder �, that also
should treat any expression and its opening as equivalent. Hence, a lot of additional
work should be put in developing the theory of s-unification.

4 Maude Prototype and Sample Application

We present in this section our prototype and outline its implementation. Much more
information can be found at http://gpd.sip.ucm.es/snarrowing .

4.1 Implementation Notes

We have implemented our prototype in Maude [6], a high-level language and high-
performance system supporting both equational and rewriting logic computation for a

http://gpd.sip.ucm.es/snarrowing
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wide range of applications. Maude modules correspond to specifications in rewriting
logic [13], a simple and expressive logic which allows the representation of many mod-
els of concurrent and distributed systems. This logic is an extension of equational logic;
in particular, Maude functional modules correspond to specifications in membership
equational logic [5], which, in addition to equations, allows the statement of member-
ship axioms characterizing the elements of a sort. Rewriting logic extends membership
equational logic by adding rewrite rules, that represent transitions in a concurrent sys-
tem. This logic is a good semantic framework for formally specifying programming
languages as rewrite theories [14]; since Maude specifications are executable, we ob-
tain an interpreter for the language being specified.

Exploiting the fact that rewriting logic is reflective, an important feature of Maude
is its systematic and efficient use of reflection through its predefined META-LEVEL mod-
ule [6, Chapter 14], a characteristic that allows many advanced metaprogramming and
metalanguage applications. This feature allows access to metalevel entities such as spec-
ifications or computations as usual data. In this way, we define the syntax of the modules
introduced by the user, manipulate them, direct the evaluation of the terms (by using on-
demand strategies), and implement the input/output interactions in Maude itself.

An important point of our implementation is the use of an adaptation of the on-
demand evaluation strategy natural narrowing [9], which generates a matching defini-
tional trees for each function symbol and then traverses them to decide the position of
the current term where narrowing must be applied. However, the description of natural
narrowing presented in [9] used syntactic unification while traversing the definitional
trees used by the technique, which leads to incompleteness in our approach. For this
reason we have slightly modified the algorithm to use s-unification, which implies mod-
ifying the application of the unifier to the current term in order to preserve matching.

4.2 Prototype

The prototype is started by typing loop init-s ., that initiates an input/output loop
where programs and commands can be introduced. These programs have syntax smod
NAME is STMNTS ends, where NAME is the identifier of the program and STMNTS is a
sequence of constructor-based left-linear rewrite rules, written in the following format:

(smod ICTAC is
f(c(X),Y) -> h(X,Y) .
h(X, c(Y)) -> g(X,Y) .
g(0,1) -> 2 . ends)

where upper-case letters are assumed to be variables. We can first see how the tool
solves s-unification problems with the =? command:

Maude> (g(0, 1) =? g(X,X) .)
X -> 0 ? 1

We can evaluate terms with variables by using s-narrowing with the natural narrow-
ing strategy, which is used with the command:

Maude> (narrowing f(X,X) .)
{2, X -> c(0) ? c(1)}
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The narrowing command returns the obtained result (2 in this case) as well as the
required substitution, that in this case indicates that the variable X must take the set of
values composed of c(0) and c(1). We can ask the system for more solutions with the
cont command until no more solutions (as in the current example) are found:

Maude> (cont .)
No more solutions.

Finally, the system combines the on-demand techniques, that indicate the positions
and the rules that must be used, with two different search strategies: depth-first and
breadth-first. These strategies can be switched with breadth-first and depth-first.

4.3 The Dolev-Yao Intruder Model Using S-Narrowing

We present an implementation of the Dolev-Yao intruder model [7] in the line of [15]
but now using s-narrowing, as proof-of-concept of our system. Note that the different
features provided but these languages make the implementation rather different. We
first define alice and bob as the possible roles or participants:

roles -> alice .
roles -> bob .

Decryption of messages is specified by using a ground simulation of the equality
constraint, where we use the constructor enc to define the encryption of messages and
inv as data constructor for inverting a key:

decrypt(enc(M,k1),inv(k1)) -> M .
decrypt(enc(M,k2),inv(k2)) -> M .

The protocol function associates to each participant a set of actions, which are
the answers he or she returns for a given question. First, alice share a pair with the
messages ma1 and ma2, using the key received as parameter to encrypt them. Note that
the same parameter is used in both messages:

protocol(alice, X) -> p(enc(ma1, X), enc(ma2, X)) .

When bob receives the message ma1 encrypted with the k1 key he sends mb1; simi-
larly, he sends mb2 when he receives ma2 encrypted with k2. In these rules and the one
above lies the novelty of the s-narrowing approach: the variable X above must be bound
to both k1 and k2 for bob to send the appropriate messages:

protocol(bob, enc(ma1, k1)) -> mb1 .
protocol(bob, enc(ma2, k2)) -> mb2 .

Finally, if alice receives a pair with the two messages from bob she sends the in-
verse of k1, that can be used to decrypt, for example, enc(ma1, k1):

protocol(alice, p(mb1, mb2)) -> inv(k1) .

The function discover models the messages that can be deduced by the intruder
from a starting set of messages, where discStep combines the information generated
by the responses of alice and bob to the queries of the intruder, and the one generated
by the intruder by combining the starting messages according to the Dolev-Yao model:

discover(M) -> M ? discover(discStep(M) ? M) .
discStep(M) -> protocol(roles, M) ? dyStep(M) .
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The auxiliary dyStep function can generate pairs of the elements, split these pairs,
encrypt, and decrypt, thus representing the recombination of information the intruder is
able to perform, according to the Dolev-Yao model for the intruder capabilities. Note
that in this function the same variable M appears twice in the right-hand side of the first,
third, and fourth rules. This variable will be bound to a set of values (built with the ?
function symbol) in the s-narrowing, thus allowing the program to use different values:
dyStep(M) -> p(M, M) .
dyStep(p(M1, M2)) -> M1 ? M2 .
dyStep(M) -> enc(M, M) .
dyStep(M) -> decrypt(M, M) .

Finally, we define a function attack that returns true if the secret, ma1, is found:
attack(M) -> secret(discover(M)) .
secret(ma1) -> true .

Once this module is loaded into the prototype, we can use s-narrowing to find the
initial information required to break the protocol, i.e. the instantiation of X for this goal:
Maude> (narrowing attack(X) .)
{true, X -> ma1}

This result shows the trivial answer: if we already posses the secret information the
attack is successful. We can ask for more interesting answers with the cont command:
Maude> (cont .)
{true, X -> p(ma1,V:Exp)}

In this case the tool deduces that we can split the pair and use the secret. Using this
command we find several other possible attacks, like:
{true, X -> p(enc(ma1,k1),V#1:Exp) ? p(inv(k1),V#2:Exp)}

which indicates that we can split the pairs and use the inverse of k1 to decrypt ma1.
After many other results, the tool answers that the substitution k1 ? k2 allows us to
find the secret by using it in the first message sent by alice.

5 Concluding Remarks and Ongoing Work

In this work we propose a new narrowing relation for called s-narrowing that is based
on the novel notion of s-unification, a modification of syntactic unification that allows
variables to be bound to sets of expressions. It has been devised with the aim of improv-
ing the completeness results of classic narrowing. Although we think that s-unification
has great potential, we still have to develop the theory of s-unification so we can use it
to prove the adequacy of s-unification. This proposal has been implemented in a Maude
prototype that allows us to study their expressivity and possible applications. The pro-
totype uses an adaptation to s-narrowing of natural narrowing [9] as its on-demand
strategy, thus providing an efficient implementation that allows us to use the tool with
complex examples—see http://gpd.sip.ucm.es/snarrowing for more programs.

Regarding future work, our priority is proving the adequacy of s-narrowing, which
implies defining an adequate order over s-unifiers. Besides, we should prove that our
adaptation of natural narrowing to s-unification is still complete and optimal. We also
consider expanding the prototype with search commands in the style of Maude to spec-
ify the shape of the solutions, thus avoiding irrelevant results.

http://gpd.sip.ucm.es/snarrowing
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