A calculus for sequential Erlang programs*

Rafael Caballero, Enrique Martin-Martin, Adridn Riesco, and Salvador Tamarit

Technical Report 03/13

Departamento de Sistemas Informdticos y Computacion,
Universidad Complutense de Madrid

April, 2013

*Research supported by MICINN Spanish project StrongSoft (TIN2012-39391-C04-04) and Comunidad de Madrid pro-
gram PROMETIDOS (S2009/TIC-1465).

Abstract

We present here the evaluation semantics for sequential Erlang programs. We first introduce the
syntax of the programs we want to evaluate and then present the calculus in two steps. Once the
syntax has been presented, we describe the rules for computing correct values, and then we present
the rules dealing with errors and throwing exceptions.

Keywords: Sequential Erlang, semantics.

1 Syntax

We present in this section the syntax of Sequential Erlang. Besides the standard syntactical categories
we have added eval, which stands for a correct value, and hence rules out exceptions, and evals, which
stands for a sequence of eval.

fname = Atom / Integer
lit == Atom | Integer | Float | Char | String | []
fun w= fun(var; , ..., var,) —> exprs
clause ::= pats when exprs; —> exprss
pat w= wvar| lit| [pats|pats] | { pats;, ..., pats, } | var = pats
pats m= pat| <pat, ..., pat >
exprs = expr | <expr, ..., expr >
expr w= wvar | fname | fun
[exprs | exprs]
{ exprsy, ..., exprs, }

|

|

| let vars = exprs; in exprss

| letrec fname; = fun; ...fname, = fun, in exprs

| apply exprs (exprsy , ..., exprs,)

| call exprs,41:exprs,t2 (exprsy , ..., exprs,)

| primop Atom (exprsy , ..., exprs,)

| try exprs; of < vary , ..., var, > => exprsy
catch < var’y , ..., var’,, > —> exprss

| case exprs of clause; ...clause, end

| do exprs; exprss

| catch exprs

¢ = Exception(val,,)

val u= lit | fname | fun| [vals|vals] | {valsy, ..., vals,}

eval z= lit| fname | fun| [evals|evals] | {evalsy, ..., evals,} | &
vals n= wval| <wval, ..., val >

evals u= eval | <eval, ..., eval >

vars n= wvar| <var, ..., var >

2 Calculus for values

We present in this section the inference rules used to obtain values in Erlang. The basic rule in our
calculus is (VAL), which states that values can be evaluated to themselves:

VAL
(VAL) (vals, 0) — vals

The rule (SEQ) is in charge of evaluating the expressions inside a sequence:

(expry,0) — valy ... (expr,,0) — val,

SEQ
(SEQ) (<expry, ..., expr, > 0) — < wvaly,...,val, >

Similarly, the rule (TUP) evaluates the expressions inside a tuple:

(TUP) (exprs,,0) — valsy ... (exprs,,0) — vals,

({exprsq, ..., exprs,},0) — {valsy, ..., vals,}

The rule (LIST) evaluates the first expression in a list and, if it reaches a value, then evaluates the
second expression, returning the second value:

(exprs,,0) — valsy (exprsq, 0) — valsy

LIST
(LST) ([exprs,|exprsy], 8) — [valsi|valss]

The (LET) rule evaluates exprs, and binds it to the variables. The computation continues by applying
the substitution to the body:

(LET) (exprs,,0) — valsy (exprsyb’,0') — wvals

(let wars = exprs; in exprs,,0) — wvals
where 8/ =60 W matchs(vars, valsy).
The rule (LETREC) extends the environment p to add the functions. We assume that all the function

names are different.

(LETREC) (exprs, 0) — vals

(letrec fname,=fun, ... fname,=fun, in exprs,d) — vals
where p has been extended with [fname,, — fun,,]

The rule (APPLY;) evaluates a function defined be means of a lambda-expression. It evaluates the
function and the arguments and uses them to obtain the value:

(exprs, 0) — 1
(exprs,,0) — valy ... (exprs,,0) — val,
(rx, 0") — vals

(APPLY)
(apply exprs(exprsy,...,exprsy,),0) — vals

where 7\ references a lambda abstraction, ry = fun(vary, ... ,var,) => exprs’, and 0’ = O[var,, — val,)

Analogously, the rule (APPLY>) evaluates a function defined in a letrec expression, thus contained
in p. The rule first evaluates the arguments and then uses the definition of the function to reach the final
result:

(exprs, 0y — Atom/n
(exprs,,0) — valy ... (exprs,,0) — val,
{exprs'®',0") — vals’'

(APPLY)) -
(apply exprs(exprsy, ..., exprs,),0) — vals

if p(Atom/n) = fun(vary , ..., vary,) => exprs’ and ' = Olvar, — val,]

The rule (APPLY3) indicates that first we need to obtain the name of the function, which must be
defined in the current module (extracted from the reference to the reserved word apply) and then compute
the arguments of the function. Finally the function, described by its reference, is evaluated using the
substitution obtained by binding the variables in the function definition to the values for the arguments:

(exprs,0) — Atom/n
(exprs,,0) — valy ... (exprs,,0) — val,

0" = val
(APPLY3) (ry, 0') =" vals

(apply” exprs(exprsy,...,exprs,),0) — vals

where 1 < i < m, Atom/n ¢ dom(p), Atom/n is a function defined in the module r.mod, and r; its
reference, which must be of the form:

Atom/n = fun (vary , ..., var,) => case exprs of clause; ... clause,, end
and 0" = [var,, — val,]

The rule (CALL) evaluates a function defined in another module:

(exprs, 1,0) — Atomy (exprs, o,0) — Atoms

exprsq,0) — valy exprs, ,0) — val,
< 1 . n
(rs,0"y =" vals
(CALL) L
(call exprs, q:exprs, o(exprsy,...,exprsy),0) — vals

where 1 < ¢ < m, Atoms/n is a function defined in the Atom; module (Atom; must be different from
the built-in module erlang), r; its reference, which must be of the form:

fun Cvary , ..., var,) => case exprs of clause; ... clause,, end
and 0" = [var,, — val,]

In the same way, the (CALL_EVAL) rule is in charge of evaluating built-in functions:

(exprs, 1,0) — >erlang’ (eaprs, o,0) — Atoms

(exprsy, 0) — valy (exprs,,, 0) — val,
eval(Atoma, valy, ..., val,) = vals
(CALL_EVAL) (2, valy, ..., valn)
(call exprs, q:exprs, o(exprsy,...,exprsy),0) — vals

where Atoms/n is a built-in function included in the erlang module

The (BFUN) rule evaluates a reference to a function, given a substitution binding all its arguments.
This is accomplished by applying the substitution to the body of the function (with notation exprs)
and then evaluating it. This rule takes advantage of the fact that all Erlang functions are translated
to Core Erlang as a case-expression distinguishing the different clauses. Since the evaluation of this
case-expression provides the branch used to obtain the final value (i.e. the 7 labeling the evaluation), we
are able to keep the clause used to evaluate the function:

(BFUN) (case exprst of clause10 ... clause,,0 end,) —* vals

(s, 0) =" vals
where 1 <7 < m and r; references to a function f defined as
f/n=fun Cvary , ..., var,) => case exprs of clause; ... clause,, end
The rule (A) follows the ideas shown for (BFUN) to evaluate a lambda-expression. It uses the body
of the referenced function to obtain the final value:

(expr,0) — wvals

(rx, 0) — vals
where 7y references to fun(vary,...,var,) => expr

The rule (PRIMOP) evaluates Erlang predefined functions by using an auxiliary function eval, which
returns the value Erlang would compute:

(exprsy,0) — valy ... (exprs,,0) — val,
eval(Atom, valy, . .., val,) = vals’

(PRIMOP) -

(primop Atom(exprsy,...,exprs,),0) — vals

The rule (TRY;) evaluates a try expression when no exceptions are thrown. It just evaluates the
expressions and continues with the expression in the body:

(TRY,) {exprs,,0) — vals’ (exprs,0',0') — vals
1

(try exprs, of <war,> -> exprs, catch <var},> -> exprs,,0) — vals
with 8/ =60 W matchs(<var,>, vals’) and vals’ is not an exception

The rule (TRY>) is in charge of evaluating try expressions throwing exceptions. It finds the pattern
matching the exception and the evaluates the expression in the catch branch:

{exprs,,0) — Ezcept(valy,) (exprstd,0’) — wvals

(TRY>)

(try exprs, of <war,> -> exprs, catch <var,,> -> exprss,0) — vals
with 8/ =60 W [var!, — val,,]

The (CASE) rule is in charge of evaluating case-expressions. It first evaluates the expression used to
select the branch. Then, it checks that the values thus obtained match the pattern on the ith branch and
verify the when guard, while the side condition indicates that this is the first branch where this happens.
The evaluation continues by applying the substitution to the body of the ith branch:

(CASE) (exprs” 0) — vals”" (exprsid',0') — >true’ (exprs,0’,0") — vals

(case exprs” of pats, when exprs], -> exprs, end,O) —' vals

where 0/ = 0 W matchs(pats;, vals"); ¥j < i.70;.matchs(pats;, vals") = 6; A (exprsi0j, 0;) — true’;
and matchs a function that computes the substitution binding the variables to the corresponding values
using syntactic matching as follows:

matchs(< paty, ..., pat, >,< valy,...,val, >) =01 W...W6,, with §; = match(pat;, val;)
with match an auxiliary function defined as:

match(var, val) = [var — wval|

match(lity, lity) = id, if lit; = lity

match([pat;|pats)], [val;|valz]) = 61 W 6, where 6; = match(pat;, val;)
match({paty,...,pat,},{valy,...,val,}) =601 W ... W O,

where 6; = match(pat;, val;)

match(var = pat, val) = O[var — wval], where 8 = match(pat, val)

Finally, the rules (DO) and (CATCH) expressions, simply reuse previous constructions, since they are
syntactic sugar [1]:

(let _ = exprs, in exprs,,) — vals

(DO)

(do exprs, exprsq,0) — vals

(CATCH) (expr’,0) — wvals

(catch exprs,l) — wvals

try exprs of < wary,...,var, > ->
<wari,...,var, >
catch < varyy1,varp42, var,43 > =>
case vary41 of
‘throw‘ when ‘true‘ ->
with expr’ = { VAT 2
‘exit‘ when ‘true‘ ->
{‘EXIT‘, varp42}
‘error‘ when ‘true‘ ->
{‘EXIT‘, {var, 2, primop exc_trace(varpys)}}
end

3 Calculus for exceptions

We present in this section the inference rules to generate and propagate exceptions.
The rule (VAR_E) indicates that a variable cannot be evaluated:

(VAR_E) :
(var,0) — Ezxception(error,unbound var,...)

The rule (SEQ-E) propagates an exception thrown inside a sequence:

(expry,0) — valy ... (expr;,0) — val;
(SEQ.E) <6Ipri+1a9> —§&
B (< expry,...,expr, > 0) — &

Similarly, the rule (TUP_E) propagates an exception thrown inside a tuple:

(expry,0) — wvalsy ... ({expr;,0) — vals;
(expriyy,0) — &
({exprsy, ..., exprs,},0) — &
We use the rules (LIST_E;) and (LIST_E,) to propagate an exception thrown on the first or second
component of a list, respectively:

(TUP_E)

(exprsy,0) — &
([exprs,|ezprsy], 0) — &

(LIST_E;)

(exprs,,0) — vals; (exprsy,0) — &

(LIST-Ez) ([exprs,|exprs,),0) — &

The rule (LET_E) propagates an exception thrown in the expression:

e (eaprs;,0) = &

(let < wary,...,var, > = exprs, in exprs,l) — &

The rules (APPLY_E;) and (APPLY_E;) indicate that an exception is thrown if either the function or
the arguments throw an exception:

(exprs,0) — &
(apply exprs(exprsy,...,exprs,),0) — &

(APPLY _E;)

(exprs,) — wvals
exprsy,0) — valsy ... exprs;, 0) — vals;
1,0 l 00 l
<693P7"5i+1a 0) — &
(apply exprs(exprsy,...,exprs,),0) — &

(APPLY _Ey)
The rule (APPLY _E3) throws a bad_function exception when the function being applied has not been
defined:

(exprs, 0y — wvals
(exprs,,0) — valsy ... (exprs,,0) — vals,

(APPLY_E3) :
(apply” exprs(exprsy,...,exprs,),0) — Except(error,bad function,...)

if wals is neither a lambda abstraction nor an fname defined in p or in r.mod.

The rules (APPLY_E,) and (APPLY_Es) throw an exception indicating that the number of arguments
is different from the number of parameters. The former is in charge of lambda abstractions while the
latter is in charge of defined functions:

(exprs,) — fun(vary, ... ,var,) -> exprs’

APPLY.E4) (exprs,,0) — valsy ... (exprs,,,0) — valsy,

(-t (apply exprs(exprsy,..., exprs,),0) — Except(error,anon called with m args,...)
ifm#n

APPLY E (exprs,) — Atom/m (exprs,,0) — vals;y ... (exprs,,0) — vals,

(-5s) (apply exprs(exprsy,...,exprs,),0) — Except(error,called with n args,...)
ifm#n

The rules (CALL_E;), (CALL_E;), and (CALL_E3) throw an exception when either the module name,
the function name, or any of the arguments are evaluated to an exception:

(exprs, 1,0) — &

CALL_E
(v (call exprs, i :exprs, o(exprsy,...,exprsy),0) — &
(CALLES) (exprs, 1,0) — valsy (exprs, ,,0) — &
B (call exprs, ,:exprs, o(exprsy,...,exprsy),0) — &
(exprs, y1,0) — vals'y (exprs, q,0) — vals'y
(CALLED (exprsy,0) — valsy ... (exprs;, 0) — vals; (exprs; ,,0) — &
- (call exprs, ,:exprs, o(exprsy,...,exprs,),0) — &

The rules (CALL_E4) and (CALL_Es) throw a bad_argument exception when either the module or the
function is not an atom:

(exprs, . 1,0) — vals's (exprs, ,,0) — vals'y
(exprs,,0) — valsy ... (exprs,,0) — valsy

CALL_E
(2 (call exprs, :exprs, ,(exprs,,..., exprsy),0) — Exception(error,bad argument,...)

if vals’y is not an atom

(exprs, . 1,0) — Atom1 (exprs, ,,0) — vals'y
(exprs,,0) — valsy ... (exprs,,0) — valsp

(CALL_Es) :
(call exprs, ,:exprs, o(exprs,,..., exprs,),0) — Ezception(error,bad argument,...)

if vals’s is not an atom

The rule (CALL_Eg) throws an undefined_function exception when the function is not defined in
the specified module:

(exprs, ;1,0) — Atom1 (exprs, o,0) — Atoma
(exprsy, 0) — wvalsy (exprs,,,0) — valsn

CALL_E
(o) (call exprs, yq:exprs, o(exprsy,. .., exprsy),0) — Exception(error,undefined function,...)

if the function Atoms/n is not defined and exported in module Atom;

The rule (PRIMOP_E) propagates the exceptions thrown by its arguments:

exprsy, 0) — wvals exprs;,) — vals; exprs; 1,0) —
(PRIMOP*E)<p1> 1 (exprs;, 0) (exprsiyy,0) — ¢

(primop Atom(exprsy,...,exprs,),0) — &
The rule (PATH_E) indicates that none of the paths can be taken by proving that all of them fail:

fails(0,vals, pats,, exprs;) ... fails(0, vals, pats,,, exprs,,)

(PATH.E)
path(0, vals, pats,,, exprs,) — L

The rule (CASE_E;) propagates an exception thrown while evaluating the expression:

(CASE.E1) (exprs,,0) — &

(case exprs, of pats, when exprs] -> exprs, end, 9> — &

The rule (CASE_E;) throws an exception when the value obtained from the expression does not allow
to take any of the branches in the case expression:

(CASE.E») (exprsy,0) — valsy path(0,vals, pats,,, exprs,,) — L
-E2

(case exprs; of pats, when exprs) -> exprs, end,d) — Ezception(error,casematch fail,...)

References

[1] Richard Carlsson, Bjorn Gustavsson, Erik Johansson, Thomas Lindgren, Sven-Olof Nystrom, Mikael
Pettersson, and Robert Virding. Core Erlang 1.0.3 language specification, November 2004. Available
at http://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf.

http://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf

	Syntax
	Calculus for values
	Calculus for exceptions

