
Property-based testing for Spark Streaming (Extended version)∗

Adrián Riesco and Juan Rodŕıguez-Hortalá

Technical Report SIC 02/18

Departamento de Sistemas Informáticos y Computación,

Universidad Complutense de Madrid

May 2018

∗This research has been partially supported by the Spanish MINECO projects CAVI-ART (TIN2013-44742-C4-3-R) and
TRACES (TIN2015-67522-C3-3-R) and by the Comunidad de Madrid project N-Greens Software-CM (S2013/ICE-2731).

Abstract

Stream processing has reached the mainstream in the last years, as a new generation of open source
distributed stream processing systems, designed for scaling horizontally on commodity hardware, has
brought the capability for processing high volume and high velocity data streams to companies of all
sizes. In this work we propose a combination of temporal logic and property-based testing (PBT) for
dealing with the challenges of testing programs that employ this programming model. In particular we
focus on testing Spark Streaming programs written with the Spark API for the functional language
Scala, using the PBT library ScalaCheck. For that we add temporal logic operators to a set of
new ScalaCheck generators and properties, as part of our testing library sscheck. We formalize our
approach in a discrete time temporal logic for finite words, with some additions to improve the
expressiveness of properties, which includes timeouts for temporal operators and a binding operator
for letters.
Keywords: Property-based testing, Spark Streaming, Linear temporal logic, First-order modal logic,
Scala

Contents

1 Introduction 3
1.1 The problem of testing . 4

1.1.1 Property-based testing with temporal operators. 5

2 A Logic for Testing Stream Systems 7
2.1 A Linear Temporal Logic with Timeouts for practical specification of stream processing systems . 7
2.2 A transformation for stepwise evaluation . 14
2.3 Generating words . 18

3 sscheck: using LTLss for property-based testing 19
3.1 Architecture overview . 19
3.2 Verifying AMP Camp’s Twitter tutorial with sscheck . 21

3.2.1 Extracting hashtags . 22
3.2.2 Counting hashtags . 23
3.2.3 Getting the most popular hashtag . 24
3.2.4 Defining liveness properties with the consume operator . 25

3.3 Some additional details about the implementation . 27

4 Related work 29

5 Conclusions and future work 30

A Proofs 32

scala> val cs: RDD[Char] = sc.parallelize("let’s count some letters", numSlices=3)

scala> cs.map{(_, 1)}.reduceByKey{_+_}.collect()

res4: Array[(Char, Int)] = Array((t,4), (,3), (l,2), (e,4), (u,1), (m,1), (n,1),

(r,1), (’,1), (s,3), (o,2), (c,1))

Figure 1: Letter count in Spark

1 Introduction

With the rise of Big Data technologies [Marz and Warren, 2015], distributed stream processing systems
(SPS) [Akidau et al., 2013, Marz and Warren, 2015] have gained popularity in the last years. This later
generation of SPS systems, characterized by a distributed architecture designed for horizontal scaling,
was pioneered by Internet-related companies, that had to find innovative solutions to scale their systems
to cope with the fast growth of the Internet. These systems are used to continuously process high
volume streams of data. One of the earliest examples is MillWheel [Akidau et al., 2013], which was
designed and used by Google for tasks like anomaly detection and cluster-health monitoring. Twitter is
also known for using SPS systems like Apache Storm [Marz and Warren, 2015] and its successor Twitter
Heron [Ramasamy, 2015] which are employed to process the massive continuous flow of tweets in the
Twitter Firehose, computing approximate statistics about tweets with latencies of seconds, in order to
build data products like Twitter’s trending topics. Yahoo’s S4 [Neumeyer et al., 2010] was used for live
parameter tuning of its search advertising system using the user traffic. LinkedIn built the data processing
pipeline for its social network on top of Samza [Gorawski et al., 2014] and Kafka [Kreps, 2014]. However,
the first precedents of stream processing systems come back as far as the early synchronous data-flow
programming languages like Lutin [Raymond et al., 2008] or Lustre [Halbwachs, 1992].

A plethora of new distributed SPS have arisen in the last years, with proposals like Apache Flink [Schelter et al., 2013,
Carbone et al., 2015a], Akka Streams [Kuhn and Allen, 2014], and Spark Streaming [Zaharia et al., 2013].
Among them Spark Streaming stands out as a particularly attractive option, due to the increasing ma-
turity of the Spark ecosystem and its growing adoption in the industry. In this work we focus on Spark
Streaming, and in particular on its Scala API. Spark [Zaharia et al., 2012] is a distributed processing
engine that was designed as an alternative to Hadoop MapReduce [Marz and Warren, 2015], but with a
focus on iterative processing—e.g. to implement distributed machine learning algorithms—and interactive
low latency jobs—e.g. for ad hoc SQL queries on massive datasets. The key to achieving these goals is
an extended memory hierarchy that allows for an increased performance in many situations, and a data
model based on immutable collections inspired in functional programming that is the basis for its fault
tolerance mechanism. The core of Spark is a batch computing framework [Zaharia et al., 2012] that is
based on manipulating so called Resilient Distributed Datasets (RDDs), which provide a fault tolerant
implementation of distributed collections. Computations are defined as transformations on RDDs, that
should be deterministic and side-effect free, as the fault tolerance mechanism of Spark is based on its
ability to recompute any fragment (partition) of an RDD when needed. Hence Spark programmers are
encouraged to define RDD transformations that are pure functions from RDD to RDD, and the set of
predefined RDD transformations includes typical higher-order functions like map, filter, etc., as well as
aggregations by key and joins for RDDs of key-value pairs. We can also use Spark actions, which allow us
to collect results into the driver program or store them into an external data store. The driver program is
the local process that starts the connection to the Spark cluster, and issues the execution of Spark jobs,
acting as a client of the Spark cluster. Spark actions are impure, so idempotent actions are recommended
in order to ensure a deterministic behavior even in the presence of recomputations triggered by the fault
tolerance or speculative task execution mechanisms [Apache Spark Team, 2016]. Spark is written in Scala
and offers APIs for Scala, Java, Python, and R; in this work we focus on the Scala API. The example in
Figure 1 uses the Scala Spark shell to implement a variant of the famous word count example that in this
case computes the number of occurrences of each character in a sentence. For that we use parallelize,
a feature of Spark that allows us to create an RDD from a local collection, which is useful for testing.
We start with a set of chars distributed among 3 partitions, we pair each char with a 1 by using map,
and then group by first component in the pair and sum by the second by using reduceByKey and the
addition function (_+_), thus obtaining a set of (char, frequency) pairs. We collect this set into an Array

in the driver with collect.
Besides the core RDD API, the Spark release contains a set of high level libraries that accelerates

the development of Big Data processing applications, and that are also one of the reasons for its growing
popularity. This includes libraries for scalable machine learning, graph processing, a SQL engine, and

3

object HelloSparkStreaming extends App {
val conf = new SparkConf().setAppName("HelloSparkStreaming")

.setMaster("local[5]")
val sc = new SparkContext(conf)
val batchInterval = Duration(100)
val ssc = new StreamingContext(sc, batchInterval)
val batches = "let’s count some letters, again and again"

.grouped(4)
val queue = new Queue[RDD[Char]]
queue ++= batches.map(sc.parallelize(_, numSlices = 3))
val css : DStream[Char] = ssc.queueStream(queue,

oneAtATime = true)
css.map{(_, 1)}.reduceByKey{_+_}.print()
ssc.start()
ssc.awaitTerminationOrTimeout(5000)
ssc.stop(stopSparkContext = true)

}

Time: 1449638784400 ms

(e,1)
(t,1)
(l,1)
(’,1)
...

Time: 1449638785300 ms

(i,1)
(a,2)
(g,1)

Time: 1449638785400 ms

(n,1)

Figure 2: Letter count in Spark Streaming

Spark Streaming, which is the focus of this work. In Spark Streaming, the notions of transformations
and actions are extended from RDDs to DStreams (Discretized Streams), which are series of RDDs
corresponding to splitting an input data stream into fixed time windows, also called micro batches.
Micro batches are generated at a fixed rate according to the configured batch interval. Spark Streaming
is synchronous in the sense that given a collection of input and transformed DStreams, all the batches
for each DStream are generated at the same time as the batch interval is met. Actions on DStreams are
also periodic and are executed synchronously for each micro batch. The code in Figure 2 is the streaming
version of the code in Figure 1. In this case we process a DStream of characters, where batches are
obtained by splitting a String into pieces by making groups (RDDs) of 4 consecutive characters. We use
the testing utility class QueueInputDStream, which generates batches by picking RDDs from a queue, to
generate the input DStream by parallelizing each substring into an RDD with 3 partitions. The program
is executed using the local master mode of Spark, which replaces slave nodes in a distributed cluster by
local threads, which is useful for developing and testing.

1.1 The problem of testing

Testing an SPS-based program is intrinsically hard, because it requires handling time and events. There
are several proposals in the literature that tackle the problem of testing and modeling systems that
deal with time. In this work we follow Pnueli’s approach [Pnueli, 1986] that pioneered the usage of
temporal logic for testing reactive systems. Our final goal is facilitating the adoption of temporal logic
as an every day tool for testing SPS-based programs. But, how could we present temporal logic in a
way accessible to the average software developer? Maybe using a software development technique that
already exposes developers to first order logic, and thas has some adoption in the industry, would be a good
idea. In this work we propose exploring how property-based testing (PBT) [Claessen and Hughes, 2011],
as realized in ScalaCheck [Nilsson, 2014], can be used as a bridge between formal logic and software
development practices like test-driven development (TDD) [Beck, 2003]. Classical unit testing with xUnit-
like frameworks [Meszaros, 2007] is based on specifying input – expected output pairs, and then comparing
the expected output with the actual output obtained by applying the test subject to the input. On the
other hand, in PBT a test is expressed as a property, which is a formula in a restricted version of first order
logic that relates program input and output. The testing framework checks the property by evaluating it
against a bunch of randomly generated inputs. If a counterexample for the property is found then the test
fails, otherwise it passes. This allows developers to obtain quite a good test coverage of the production
code with a fairly small investment on development time, specially when compared to xUnit frameworks.
However xUnit frameworks are still useful for testing corner cases that would be difficult to cover with a
PBT property. The following is a “hello world” ScalaCheck property that checks the commutativity of
addition:1

class HelloPBT extends Specification with ScalaCheck {

def is = s2"""Hello world PBT spec,

where int addition is commutative $intAdditionCommutative"""

def intAdditionCommutative =

Prop.forAll("x" |: arbitrary[Int], "y" |: arbitrary[Int]) { (x, y) =>

1Here we use the integration of ScalaCheck with the Specs2 [Torreborre, 2014] testing library.

4

x + y === y + x

}.set(minTestsOk = 100)

}

PBT is based on generators (the functions in charge of computing the inputs, which define the domain
of discourse for a formula) and assertions (the atoms of a formula), which together with a quantifier form
a property (the formula to be checked). In the example above the universal quantifier Prop.forAll is
used to define a property that checks whether the assertion x + y === y + x holds for 100 values for x
and y randomly generated by two instances of the integer generator arbitrary[Int]. Each of those pairs
of values generated for x and y is called a test case, and a test case that refutes the assertions of a property
is called a counterexample. Here arbitrary is a higher order generator that is able to generate random
values for predefined and custom types. Besides universal quantifiers, ScalaCheck supports existential
quantifiers—although these are not much used in practice [Nilsson, 2014, Venners, 2015]—, and logical
operators to compose properties. PBT is a sound procedure to check the validity of the formulas implied
by the properties, in the sense that any counterexample that is found can be used to build a definitive proof
that the property is false. However, it is not complete, as there is no guarantee that the whole space of test
cases is explored exhaustively, so if no counterexample is found then we cannot conclude that the property
holds for all possible test cases that could had been generated: all failing properties are definitively false,
but not all passing properties are definitively true. PBT is a lightweight approach that does not attempt
to perform sophisticated automatic deductions, but it provides a very fast test execution that is suitable
for the TDD cycle, and empirical studies [Claessen and Hughes, 2011, Shamshiri et al., 2015] have shown
that in practice random PBT obtains good results, with a quality comparable to more sophisticated
techniques. This goes in the line of assuming that in general testing of non trivial systems is often
incomplete, as the effort of completely modeling all the possible behaviors of the system under test with
test cases is not cost effective in most software development projects, except for critical systems.

1.1.1 Property-based testing with temporal operators.

Thanks to PBT, we currently have developers using first order logic to specify test cases, so to realize
our proposal all that is left is adding temporal operators to the mix. We have implemented this idea
in a library that extends ScalaCheck with temporal logic operators. Our logic includes classical linear
temporal logic (LTL) [Blackburn et al., 2006] operators with bounded time such as always ϕ in t, which
indicates that ϕ must hold for the next t instants, or ϕ until ψ in t, which indicates that ϕ currently
holds and, before t instants of time elapse, ψ must hold. This way we obtain a propositional LTL formula
extended with an outer universal quantifier over the test cases produced by the generators. Our temporal
uses discrete time, as DStreams are discrete. Also, the logic should fit the simple property checking
mechanism of PBT, that requires fast evaluation of test cases. For this reason we use a temporal logic
for finite words, like those used in the field of runtime verification [Leucker and Schallhart, 2009], instead
of using infinite ω-words as usual in model checking. Although any Spark DStream is supposed to run
indefinitely, so it might well be modeled by an infinite word, in our setting we only model a finite prefix
of the DStream. This follows the idea of PBT and allows us to implement a simple, fast, and sound
procedure for evaluating test cases, because if a prefix of a DStream refutes a property then the whole
infinite DStream refutes the property as well. On the other hand the procedure is not complete because
only a prefix of the DStream is evaluated, but anyway PBT was not complete in the first place. Hence
a test case will be a tuple of finite prefixes of DStreams, that corresponds to a finite word in this logic,
and the aforementioned external quantifier ranges over the domain of finite words. In Section 2.1 there
is a precise formulation of our logic LTLss , for now let’s consider a concrete example in order to get a
quick grasp of our proposal.

Example 1 We would like to test a Spark Streaming program that receives a stream of events describing
user activity and returns a stream with the identifiers of banned users. To keep the example simple,
we assume that the input records are pairs containing a Long user id, and a Boolean value indicating
whether the user has been honest at that instant. The output stream should include the ids of all those
users that have been malicious now or in a previous instant. So, the test subject that implements it has
type testSubject: DStream[(Long, Boolean)] => DStream[Long]). Note that a trivial, stateless
implementation of this behavior that just keeps the first element of the pair should fail to achieve this
goal, as it is not able to remember which users had been malicious in the past:

def statelessListBannedUsers(ds: DStream[(Long, Boolean)]): DStream[Long] =

ds.map(_._1)

5

To define a property that captures the expected behavior, we start by defining a generator for (finite
prefixes of) the input stream. As we want this input to change with time, we use a temporal logic formula
to specify the generator. We start by defining the atomic non-temporal propositions, which are generators
of micro batches with type Gen[Batch[(Long, Boolean)]], where Batch is a class extending Seq that
represents a micro batch. We can generate good batches, where all the users are honest, and bad batches,
where a user has been malicious. We generate batches of 20 elements, and use 15L as the id for the
malicious id:

val batchSize = 20

val (badId, ids) = (15L, Gen.choose(1L, 50L))

val goodBatch = BatchGen.ofN(batchSize, ids.map((_, true)))

val badBatch = goodBatch + BatchGen.ofN(1, (badId, false))

So far generators are oblivious to the passage of time. But in order to exercise the test subject
thoroughly, we want to ensure that a bad batch is indeed generated, and that several arbitrary batches are
generated after it, so we can check that once a user is detected as malicious, it is also considered malicious
in subsequent instants. Moreover, we want all this to happen within the confines of the generated finite
DStream prefix. This is where timeouts come into play. In our temporal logic we associate a timeout to
each temporal operator, that constrains the time it takes for the operator to resolve. For example in a use
of until with a timeout of t, the second formula must hold before t instants have passed. Translated to
generators this means that in each generated DStream prefix a batch for the second generator is generated
before t batches have passed, i.e. between the first and the t-th batch. This way we facilitate that the
interesting events had enough time to happen during the limited fraction of time considered during the
evaluation of the property:

val (headTimeout, tailTimeout, nestedTimeout) = (10, 10, 5)

val gen = BatchGen.until(goodBatch, badBatch, headTimeout) ++

BatchGen.always(Gen.oneOf(goodBatch, badBatch), tailTimeout)

where BatchGen is the class for representing batches of elements a discrete data stream. The resulting
generator gen has type Gen[PDStream[(Long, Boolean)]], where PDStream is a class that represents
sequences of micro batches corresponding to a DStream prefix. Here headTimeout limits the number of
batches before the bad batch occurs, while tailTimeout limits the number of arbitrary batches generated
after that. The output stream is simply the result of applying the test subject to the input stream. Now
we define the assertion that completes the property, as a temporal logic formula:

type U = (RDD[(Long, Boolean)], RDD[Long])

val (inBatch, outBatch) = ((_: U)._1, (_: U)._2)

val formula = {

val allGoodInputs = at(inBatch)(_ should foreachRecord(_._2 == true))

val badInput = at(inBatch)(_ should existsRecord(_ == (badId, false)))

val noIdBanned = at(outBatch)(_.isEmpty)

val badIdBanned = at(outBatch)(_ should existsRecord(_ == badId))

((allGoodInputs and noIdBanned) until badIdBanned on headTimeout) and

(always { badInput ==> (always(badIdBanned) during nestedTimeout) }

during tailTimeout) }

Atomic non-temporal propositions correspond to assertions on the micro batches for the input and
output DStreams. We use an idiom where the function at below is used with a projection function like
inBatch or outBatch to apply an assertion on part of the current letter, e.g. the batch for the current
input. The assertions foreachRecord and existsRecord are custom Specs2 assertions that allow to
check whether a predicate holds or not for all or for any of the records in an RDD, respectively. This
way we are able to define non-temporal atomic propositions like allGoodInputs, that states that all the
records in the input DStream correspond to honest users.

But we know that allGoodInputs will not be happening forever, because gen eventually creates a bad
batch, so we combine the atomic propositions using temporal operators to state things like “we have good
inputs and no id banned until we ban the bad id” and “each time we get a bad input we ban the bad id for
some time.” Here we use the same timeouts we used for the generators, to enforce the formula within the
time interval where the interesting events are generated. Also, we use an additional nestedTimeout for the
nested always. Timeouts for operators that apply an universal quantification on time, like always, limit

6

the number of instants that the quantified formula needs to be true for the whole formula to hold. In this
case we only have to check badIdBanned for nestedTimeout batches for the nested always to be evaluated
to true. Following ideas from the field of runtime verification [Bauer et al., 2006, Bauer et al., 2007], we
consider a 3-valued logic where the third value corresponds to an inconclusive result used as the last
resort when the input finite word is consumed before completely solving the temporal formula. Timeouts
for universal time quantifiers help relaxing the formula so its evaluation is conclusive more often, while
timeouts for existential time quantifiers like until make the formula more strict. We consider that it is
important to facilitate expressing properties with a definite result, as quantifiers like exists, that often lead
properties to an inconclusive evaluation, have been abandoned in practice by the PBT user community
[Nilsson, 2014, Venners, 2015].

Finally, we use our temporal universal quantifier forAllDStream to put together the temporal gener-
ator and formula, getting a property that checks the formula for all the finite DStreams prefixes produced
by the generator:

forAllDStream(gen)(testSubject)(formula).set(minTestsOk = 20)

The property fails as expected for the faulty trivial implementation above, and succeeds for a correct
stateful implementation (see Appendix ?? for details).

We carried out these ideas on the testing library sscheck [Riesco and Rodŕıguez-Hortalá, 2017], that we
previously presented in a tool paper [Riesco and Rodŕıguez-Hortalá, 2016b], and in a leading engineering
conference [Riesco and Rodŕıguez-Hortalá, 2016a]. The present paper extends that work by:

• Improving the logic by (i) redefining the semantics of formulas using a first order structure for
letters, that are evaluated under a given interpretation, (ii) introducing a new operator that allows
us to bind the content and the time in the current batch, (iii) redefining the previous results for
the new logic, and (iv) defining a new recursive definition that allows us to simplify formulas in a
lazy way.

• Formally proving the theoretical results arising from the new formulation.

• Formalizing the generation of words from formulas.

• Enhancing the performance of the tool by using the laziness features of Scala to take advantage of
the step-wise transformation defined for the logic.

• Providing extensive examples of sscheck properties, including safety and liveness properties.

The rest of the paper is organized as follows: Section 2 describes our logic for testing stream processing
systems, while Section 3 presents its implementation for Spark. Section 4 discusses some related work.
Finally, Section 5 concludes and presents some subjects of future work.

2 A Logic for Testing Stream Systems

We present in this section our linear temporal logic for defining properties on Spark Streaming programs.
We first define the basics of the logic, then we show an stepwise formula evaluation procedure that is the
basis for our prototype, and finally we formalize the generation of test cases from formulas.

2.1 A Linear Temporal Logic with Timeouts for practical specification of
stream processing systems

The basis of our proposal in the LTLss logic, a linear temporal logic that combines and specializes both
LTL3 [Bauer et al., 2006] and First-order Modal Logic [Fitting and Mendelsohn, 1998], borrowing some
ideas from TraceContract [Barringer and Havelund, 2011]. LTL3 is an extension of LTL [Alur and Henzinger, 1994]
for runtime verification that takes into account that only finite executions can be checked, and hence a
new value ? (inconclusive) can be returned in case a property cannot be effectively evaluated to either
true (>) or false (⊥) in the given execution, because the word considered was too short. These values
form a lattice with ⊥ ≤ ? ≤ >; we remind how the logical connectives work in this case in Table 1.
LTLss uses the same domain as LTL3 for evaluating formulas, and the same truth tables for the basic
non-temporal logical connectives. LTLss is also influenced by First-order Modal Logic, an extension to
First-order of the standard propositional modal logic approach [Blackburn et al., 2006]. Although the

7

∨ ⊥ ? > ∧ ⊥ ? > ¬
⊥ ⊥ ? > ⊥ ⊥ ⊥ >
? ? ? > ⊥ ? ? ?
> > > > ⊥ ? > ⊥

Table 1: Truth tables for the logical connectives in LTL3

propositional approach in [Riesco and Rodŕıguez-Hortalá, 2016b] was enough for generating new values
and dealing with some interesting properties —including safety properties— we noticed that some other
properties involving variables bound in previous letters —e.g. some liveness properties— could not be
easily specified in our logic. For this reason we have extended the original version of LTLss with a binding
operator inspired by a similar construction from TraceContract [Barringer and Havelund, 2011], which
provides a form of universal quantification over letters, that makes it easy to define liveness properties,
as we will see in Section 3.2.4.

Formulae Syntax We assume a denumerable set V of variables (x, y, z, o, . . .), a denumerable set P
of predicate symbols (p, q, r, . . .) with associated arity—with Pn the set of predicate symbols with arity
n, and N ⊆ F0—, and a denumerable set F of function symbols (f, g, h, . . .) with associated arity—with
Fn the set of function symbols with arity n. Then, terms e ∈ Term are built as:

Term 3 e ::= x | f(e1, . . . , en) for x ∈ V, f ∈ Fn, e1, . . . , en ∈ Term

Typically, propositional formulations of LTL [Alur and Henzinger, 1994] consider words that use the
power set of atomic propositions as its alphabet. However, we consider the alphabet Σ = Term × N of
timed terms. Over this alphabet we define the set of finite words Σ∗, i.e. finite sequences of timed terms.
We use ε for the empty word, and the notation u = u1 . . . un to denote that u ∈ Σ∗ has length len(u)
equal to n, and ui is the letter at position i in u. Each letter ui ≡ (ei, ti) corresponds to the term ei that
can be observed at instant i after ti units of time have been elapsed. For example, for a Spark Streaming
program with one input DStream and one output DStream, the term ei would correspond to a pair of
RDDs, one representing the micro batch for the input DStream at time ti, and another the micro batch
for the output DStream at time ti.
It is important to distinguish between the instant i, which refers to logic time and can be understood
as a “counter of states,” and ti, which refers to real time. This real time satisfies the usual condition of
monotonicity (ti ≤ ti+1, i ≥ 0), but does not satisfy progress (∀t ∈ N, ∃i≥0ti > t), since we work with
finite words. It is also important to note that time is discrete but the time between successive states may
be arbitrary. Also note the condition N ⊆ F0 above ensures that the interpretations used to evaluate
formulas later in this section, are always able to provide a meaning for the time literals. The set of LTLss

formulas LTLss is defined as follows:

LTLss 3 ϕ ::= ⊥ | > | p(e1, . . . , en) | e1 = e2 | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ϕ1 → ϕ2 |
Xϕ | ♦tϕ | �tϕ | ϕ Ut ϕ | ϕ Rt ϕ | λox.ϕ

We will use the notation Xnϕ, n ∈ N+, as a shortcut for n applications of the operator X to ϕ. Al-
though we provide a precise formulation for the interpretation of these formulas later in this section, the
underlying intuitions are as follows:

• The first eight formulas are based on classical first order non-temporal logical connectives, including
contradiction, tautology, atomic formulas based on predicate application and equality, and the
negation and the usual binary connectives.

• Xϕ, read “next ϕ”, indicates that the formula ϕ should hold in the next state.

• ♦tϕ, read “eventually ϕ in t,” indicates that ϕ holds in any of the next t states (including the
current one).

• �tϕ, read “always ϕ in t,” indicates that ϕ holds in all of the next t states (including the current
one).

• ϕ1 Ut ϕ2, read “ϕ1 holds until ϕ2 in t,” indicates that ϕ1 holds until ϕ2 holds in the next t states,
including the current one, and ϕ2 must hold eventually. Note that it is enough for ϕ1 to hold until
the state previous to the one where ϕ2 holds.

8

• ϕ1 Rt ϕ2, read “ϕ2 is released by ϕ1 in t,” indicates that ϕ2 holds until both ϕ1 and ϕ2 hold in
the next t states, including the current one. However, if ϕ1 never holds and ϕ2 always holds the
formula holds as well.

• λox.ϕ, read “consume the current letter to produce ϕ”, indicates that given (e, t) the letter for the
current state, then the formula resulting from replacing in ϕ the variables x and o by e and t,
respectively, should hold in the next state. We call this the consume operator.

We say that a formula is timeless when it does not contain any of the temporal logical connectives.
An LTLss formula or term is closed or ground if it has no free variables. Free variables, that can also
appear in temporal connectives, are computed by the function fv as follows:

fv(⊥) = ∅
fv(>) = ∅
fv(x) = {x}
fv(f(e1, . . . , en)) = fv(e1) ∪ . . . ∪ fv(en)
fv(p(e1, . . . , en)) = fv(e1) ∪ . . . ∪ fv(en)
fv(t1 = t2) = fv(t1) ∪ fv(t2)
fv(¬ϕ) = fv(ϕ)
fv(ϕ1 ∨ ϕ2) = fv(ϕ1) ∪ fv(ϕ2)
fv(ϕ1 ∧ ϕ2) = fv(ϕ1) ∪ fv(ϕ2)
fv(ϕ1 → ϕ2) = fv(ϕ1) ∪ fv(ϕ2)
fv(Xϕ) = fv(ϕ)
fv(♦tϕ) = fv(t) ∪ fv(ϕ)
fv(�tϕ) = fv(t) ∪ fv(ϕ)
fv(ϕ1 Ut ϕ2) = fv(ϕ1) ∪ fv(ϕ2) ∪ fv(t)
fv(ϕ1 Rt ϕ2) = fv(ϕ1) ∪ fv(ϕ2) ∪ fv(t)
fv(λox.ϕ) = fv(ϕ)\{x, o}

We will only consider closed formulas in the following. Moreover, we will use the notation ϕ[b 7→
v1, r 7→ v2] ≡ (ϕ[b 7→ v1])[r 7→ v2] to indicate that b and r are substituted by v1 and v2, respectively.
Assuming that all variables in universal quantifiers are different under the usual alpha-conversion as-
sumption, substitutions are defined as follows:2

⊥[x 7→ v] = ⊥
>[x 7→ v] = >
f(e1, . . . , en)[x 7→ v] = f(e1[x 7→ v], . . . , en[x 7→ v])
p(e1, . . . , en)[x 7→ v] = p(e1[x 7→ v], . . . , en[x 7→ v])
(e1 = e2)[x 7→ v] = e1[x 7→ v] = e2[x 7→ v]
(¬ϕ)[x 7→ v] = ¬(ϕ[x 7→ v])
(ϕ1 ∨ ϕ2)[x 7→ v] = ϕ1[x 7→ v] ∨ ϕ2[x 7→ v]
(ϕ1 ∧ ϕ2)[x 7→ v] = ϕ1[x 7→ v] ∧ ϕ2[x 7→ v]
(ϕ1 → ϕ2)[x 7→ v] = ϕ1[x 7→ v] → ϕ2[x 7→ v]
(Xϕ)[x 7→ v] = X(ϕ[x 7→ v])
(♦tϕ)[x 7→ v] = (♦t[x 7→v]ϕ[x 7→ v])
(�tϕ)[x 7→ v] = (�t[x 7→v]ϕ[x 7→ v])
(ϕ1 Ut ϕ2)[x 7→ v] = (ϕ1[x 7→ v] Ut[x 7→v] ϕ2[x 7→ v])
(ϕ1 Rt ϕ2)[x 7→ v] = (ϕ1[x 7→ v] Rt[x 7→v] ϕ2[x 7→ v])
(λoy.ϕ)[x 7→ v] = λoy.(ϕ[x 7→ v])
x[x 7→ v] = v
x1[x2 7→ v] = x1 if x1 6= x2

Logic for finite words In order to evaluate our formulas, we need a way to interpret the timed
terms that we use as the alphabet. In line with classical formulations of first order Boolean logic
[Smullyan, 1995], formulas are evaluated in the context of an interpretation structure A, which is a
pair (A, I) where A is a non-empty set that is used as the interpreting domain, and I is an interpretation
function that assigns to each f ∈ Fn an interpreting function I (f) : An → A, and to each p ∈ Pn an
interpreting relation I (p) ⊆ An. These interpretations are naturally applied to closed terms by induction

2Note that the substitution is applied to the timeout in quantifiers. Since general timeouts are arithmetic expressions
substitutions are applied as usual; we skip these equations for the sake of simplicity.

9

on the structure of terms as [[f(e1, . . . , en)]]A = I (f)([[e1]]A, . . . , [[e1]]A) ∈ A. Our logic proves judgments
of the form u, i �A ϕ : v that state that considering the finite word u ∈ Σ∗ from the position of its
i-th letter, the formula ϕ ∈ LTLss is evaluated to the truth value v ∈ {>,⊥, ?}—where ? stands for
inconclusive—under the interpretation A. In other words, if we stand at the i-th letter of u and start
evaluating ϕ, moving forward in u one letter at a time as time progresses, and using A to interpret the
terms that appear in the word and in the formula, we end up getting the truth value v. Note that in
our judgments the same interpretation structure holds “eternally” constant for all instants, while only
one letter of u is occurring at each instant. This is modeling what happens during the testing of a
Spark Streaming job, and in general of any program: the code that defines how the program reacts to its
inputs is the same during the execution of the program—which is modeled by a constant interpretation
structure—, while the inputs of the program and their corresponding output change with time —which
is modeled by the sequence of letters that is the word. That is not able to model updates in the program
code, but is expressive enough to be used during unit and integration testing, where the program code
is fixed. Note the predicate symbols used in the formula correspond to the assertions used in the tests
[Torreborre, 2014], whose meaning is also constant during the test execution. Judgments are defined by
the following rules, where only the first rule that fits should be applied, and we assume A = (A, I):3

u, i �A v : v if v ∈ {⊥,>}

u, i �A p(e1, . . . , en) :

{
> if ([[e1]]A, . . . , [[en]]A) ⊆ I (p)
⊥ otherwise

u, i �A e1 = e2 :

{
> if [[e1]]A = [[e2]]A

⊥ otherwise

u, i �Aλox.ϕ :

{
v if i ≤ len(u) ∧ u, i+ 1 �A ϕ[x 7→ ei, o 7→ ti] : v for ui ≡ (ei, ti)
? otherwise

u, i �A Xϕ : v if u, i+ 1 �A ϕ : v

u, i �A ♦tϕ :

 > if ∃k ∈ [i, i+ (t− 1)]. u, k �A ϕ : >
⊥ if ∀k ∈ [i, i+ (t− 1)]. u, k �A ϕ : ⊥
? otherwise

u, i �A �tϕ :

 > if ∀k ∈ [i, i+ (t− 1)]. u, k �A ϕ : >
⊥ if ∃k ∈ [i, i+ (t− 1)]. u, k �A ϕ : ⊥
? otherwise

u, i �A ϕ1 Ut ϕ2 :



> if ∃k ∈ [i, i+ (t− 1)]. u, k �A ϕ2 : > ∧
∀j ∈ [i, k). u, j �A ϕ1 : >

⊥ if ∃k ∈ [i, i+ (t− 1)]. u, k �A ϕ1 : ⊥ ∧
∀j ∈ [i, k]. u, j �A ϕ2 : ⊥

⊥ if ∀k ∈ [i, i+ (t− 1)]. u, k �A ϕ1 : > ∧
∀l ∈ [i,min(i+ (t− 1), len(u))]. u, l �A ϕ2 : ⊥

? otherwise

u, i �A ϕ1 Rt ϕ2 :



> if ∃k ∈ [i, i+ (t− 1)]. u, k �A ϕ1 : > ∧
∀j ∈ [i, k]. u, j �A ϕ2 : >

> if ∀k ∈ [i, i+ (t− 1)]. u, k �A ϕ2 : >
⊥ if ∃k ∈ [i, i+ (t− 1)]. u, k �A ϕ2 : ⊥ ∧

∀j ∈ [i, k). u, j �A ϕ1 : ⊥
? otherwise

We say u �A ϕ iff u, 1 �A ϕ : >. The intuition underlying these definitions is that, if the word is
too short to check all the steps indicated by a temporal operator and neither > or ⊥ can be obtained
before finishing the word, then ? is obtained. Otherwise, the formula is evaluated to either > or ⊥ just
by checking the appropriate sub-word. Note the consume operator (λox) is the only one that accesses
the word directly, and that consume is equivalent to next applied to the corresponding formula at its

3Non-temporal operators follow the rules in Table 1.

10

body: for example 0 ε, 1 �A λox.x = 0 : v ⇐⇒ 0 ε, 1 �A X(0 = 0) : v. It is trivial to check that
timeless formulas—i.e. without temporal connectives—are always evaluated to one of the usual binary
truth values > of ⊥, and that timeless formulas are evaluated to the same truth value irrespective of
the word u and the position i considered, even for u ≡ ε or i > len(u). As a consequence of this, some
temporal formulas are true even for words with a length smaller than the number of letters referred by
the temporal connectives in the formula: for example, for any i and A we have ε, i �A X> : >—next
inspects the second letter, but the formula is true for the empty word because the body is trivially true—,
0 1 ε, i �A �10 (0 == 0) : >—this always refers to 10 letters, but it holds for a word with just 2 letters
because the body is a tautology—, and similarly 0 ε, 1 �A λox.(x = 0) : > because 0 ε, 2 �A 0 = 0 : >.

The resulting logic gives some structure to letters and words, but it is not fully a first order logic
because it does not provide neither existential or universal quantifiers for words. The consume operator
is somewhat a universal quantifier for letters, but can also be understood as a construct for parameter
passing, like the binding operator from TraceContract [Barringer and Havelund, 2011] that this operator
is modeled after.

Let us consider some example judgments for simple formulas, to start tasting the flavor of this logic.

Example 2 Assume the set of constants {a, b, c} ⊆ F0, the set of variables {x, y, z, o, p, q}, and an inter-

pretation structure (A, I) where A = F0 and ∀f ∈ F0. I (f) = f . Then for the word u ≡ (b, 0) (b, 2)

(a, 3) (a, 6) we can construct the following formulas:

• u �A ♦4 λox.x = c : ⊥, since c does not appear in the first four letters.

• u �A ♦5 λox.x = c : ?, since we have consumed the word, c did not appear in those letters but the
timeout has not expired.

• u �A �4 λ
o
x.(x = a ∨ x = b) : >, since either a or b is found in the first four letters.

• u �A �5 λ
o
x.(x = a ∨ x = b) : ?, since the property holds until the word is consumed, but the user

required more steps.

• u �A �5 λ
o
x.x = c : ⊥, since the proposition does not hold in the first letter.

• u �A λox.x = b U2 λ
p
y.y = a : ⊥, since a appears in the third letter, but the user wanted to check just

the first two letters.

• u �A λox.x = b U5 λ
p
y.y = a : >, since a appears in the third letter and, before that, b appeared in all

the letters.

• u �A λox.x = a R2 λ
p
y.y = b : >, since b appears in all the required letters.

• u �A λox.x = a R4 λ
p
y.y = b : ⊥, since a appears in the third letter but b should appear as well.

• u �A �3(λox.x = a)→ X(λpy.y = a) : >, since the formula holds in the first three letters (note that
the fourth letter is required, since the formula involves the next operator).

• u �A �4(λox.x = a)→ (λpy.y = a) : ?, since we do not know what happens in the fifth letter, which
is required to check the formula in the fourth instant.

• u �A �2(λox.x = b)→ (♦2λpy.y = a) : ⊥, since in the first letter we have b but we do not have a until
the third letter.

• u �A (λox.x = b) U2 X(λpy.y = a ∧Xλqz.z = a) : >, since X(λpy.y = a ∧ Xλqz.z = a) holds in the
second letter (that is, (λpy.y = a∧Xλqz.z = a) holds in the third letter, which can be also understood
as a appears in the third and fourth letters).

• u �A λox.�o+6 x = b : >, since the first letter is b and hence the equality is evaluated to >.

By using functions with arity greater than 0, and predicate symbols, we can construct more complex
formulas. For example given N ⊆ F0, plus ∈ F2, leq ∈ P2 and an interpretation structure (A, I) where
A = N, ∀n ∈ N. I (n) = n, I (plus)(x, y) = x+ y, I (leq) = {(x, y) ∈ N× N | x ≤ y}, then we have

(0, 0) (1, 2) (2, 3) �A ♦2 λ
o1
x .λ

o2
y .leq(5, plus(x, y) : >

11

For some examples in this paper we will assume the Spark interpretation structure AS , that captures
the observable semantics of a Spark program, and where timestamps are interpreted as Unix timestamps
as usual in Java.4 We will not provide a formalization of AS , but the idea is that the prototype we present
in Section 3 is intended to implement a procedure to prove judgments under the Spark interpretation
structure. This interpretation assumes that letters are timed tuples of terms, and that each input or
output DStream has an assigned tuple index, so that each element of the tuple represents the micro batch
at that instant for the corresponding DStream. This is expressive enough to express any Spark Streaming
program, because the set of DStreams is fixed during the lifetime of a Spark Streaming application.5 Let
us see some simple formulas we can write with this logic and how they are expressed in our prototype.

Example 3 Assuming a Spark Streaming program with one input DStream and one output DStream, the
following formula expresses the requirement that the output DStream will always contain numbers greater
than 0, for 10 batches. Here we assume that nth2 ∈ F2 is interpreted in AS as a projection function that
returns the second element of a tuple, and that allValuesGtZero ∈ P1 is a predicate that holds for those
RDDs that only contain numbers that are greater than 0.

�10 λ
o
x.allValuesGtZero(nth2(x))

This formula can be written in our prototype as follows:

always(nowTime[U]{ (letter, time) =>

letter._2 should foreachRecord { _ > 0}

}) during 10

Assuming that AS interprets the predicate leq ∈ P2 as the ≤ comparison operator, the following
formula expresses that time always increases monotonically during 10 instants:

�9 λ
o1
x1
.λo2x2

.leq(o1, o2)

which we can express in our prototype as:

always(nextTime[U]{ (letter, time) =>

nowTime[U]{ (nextLetter, nextTime) =>

time.millis <= nextTime.millis

}

}) during 9

Once the formal definition has been presented, we require a decision procedure for evaluating formulas.
Next we present a formula evaluation algorithm inferred from the logic presented above.

Decision procedure for LTLss Just like ScalaCheck [Nilsson, 2014] and any other testing tool of the
QuickCheck family [Claessen and Hughes, 2011, Papadakis and Sagonas, 2011], this decision procedure
does not try to be complete for proving the veritative value of formulae, but just to be complete for
failures, i.e. judgments to the truth value ⊥. For this purpose we define an abstract rewriting system for
reductions u �A ϕ ∗ v for v in the same domain as above. We write u � ϕ ∗ v when the interpretation
A is implied by the context. Given a letter a ∈ Σ, a word u ∈ Σ∗, a set of terms e, e1, . . . , en ∈ Term, a
timeout t ∈ N+, and formulas ϕ,ϕ1, ϕ2 ∈ LTLss , we have the following rules:6

1. Rules for u �A p(ei):

1) u �A p(e1, . . . , en) > if ([[e1]]A, . . . , [[en]]A) ⊆ I (p)
2) u �A p(e1, . . . , en) ⊥ otherwise

2. Rules for u � e1 = e2:

1) u �A e1 = e2 [[e1]]A = [[e2]]A

4As interpreted both in Spark in particular (see https://spark.apache.org/docs/1.6.2/api/scala/index.html#org.

apache.spark.streaming.Time) and in JVM languages in general (see https://docs.oracle.com/javase/8/docs/api/

java/lang/System.html#currentTimeMillis--).
5Because “once a context has been started, no new streaming computations can be set up or added to it,” see https:

//spark.apache.org/docs/1.6.2/streaming-programming-guide.html#initializing-streamingcontext
6Formulas built with propositional operators just evaluate the sub-formulas and apply the connectives as shown in

Table 1.

12

https://spark.apache.org/docs/1.6.2/api/scala/index.html#org.apache.spark.streaming.Time
https://spark.apache.org/docs/1.6.2/api/scala/index.html#org.apache.spark.streaming.Time
https://docs.oracle.com/javase/8/docs/api/java/lang/System.html#currentTimeMillis--
https://docs.oracle.com/javase/8/docs/api/java/lang/System.html#currentTimeMillis--
https://spark.apache.org/docs/1.6.2/streaming-programming-guide.html#initializing-streamingcontext
https://spark.apache.org/docs/1.6.2/streaming-programming-guide.html#initializing-streamingcontext

3. Rules for u � λox.ϕ:

1) ε � λox.ϕ ?
2) (e, t)u � λox.ϕ u � ϕ[x 7→ e][o 7→ t]

4. Rules for u � X ϕ:

1) ε � X ϕ ε � ϕ
2) au � X ϕ u � ϕ

5. Rules for u � ♦t ϕ:

1) ε � ♦t ϕ ε � ϕ
2) u � ♦0 ϕ ⊥
3) u � ♦t ϕ > if u � ϕ ∗ >
4) au � ♦t ϕ u � ♦t−1 ϕ if au � ϕ ∗ ⊥

6. Rules for u � �t ϕ:

1) ε � �t ϕ ε � ϕ
2) u � �0 ϕ >
3) u � �t ϕ ⊥ if u � ϕ ∗ ⊥
4) au � �t ϕ u � �t−1 ϕ if au � ϕ ∗ >

7. Rules for u � ϕ1 Ut ϕ2:

1) ε � ϕ1 Ut ϕ2 ε � ϕ2

2) u � ϕ1 U0 ϕ2 ⊥
3) u � ϕ1 Ut ϕ2 > if u � ϕ2 ∗ >
4) u � ϕ1 Ut ϕ2 ⊥ if u � ϕ1 ∗ ⊥ ∧ u � ϕ2 ∗ ⊥
5) au � ϕ1 Ut ϕ2 u � ϕ1 Ut−1 ϕ2 if au � ϕ1 ∗ > ∧ au � ϕ2 ∗ ⊥

8. Rules for u � ϕ1 Rt ϕ2:

1) ε � ϕ1 Rt ϕ2 ε � ϕ1

2) u � ϕ1 R0 ϕ2 >
3) u � ϕ1 Rt ϕ2 > if u � ϕ1 ∗ > ∧ u � ϕ2 ∗ >
4) u � ϕ1 Rt ϕ2 ⊥ if u � ϕ2 ∗ ⊥
5) au � ϕ1 Rt ϕ2 u � ϕ1 Rt−1 ϕ2 if au � ϕ1 ∗ ⊥ ∧ au � ϕ2 ∗ >

for ε the empty word. These rules follow this schema: (i) an inconclusive value is returned when the empty
word is found; (ii) the formula is appropriately evaluated when the timeout expires; (iii) it evaluates the
subformulas to check whether a value can be obtained; it consumes the current letter and continues the
evaluation; and (iv) inconclusive is returned if the subformulas are evaluated to inconclusive as well, and
hence the previous rules cannot be applied. Hence, note that these rules have conditions that depend on
the future. This happens in rules with a condition involving ∗ that inspects not only the first letter
of the word, i.e., what is happening now, but also the subsequent letters, as illustrated by the following
examples:

Example 4 We recall the word u ≡ (b, 0) (b, 2) (a, 3) (a, 6) from Example 2 and evaluate the
following formulas:

• (b, 0) (b, 2) (a, 3) (a, 6) � �2(λox.x = b)→ (♦2 λpy.y = a) ⊥, because first the x in (λox.x =

b) is bound to b and hence the premise holds, but (b, 0) (b, 2) (a, 3) (a, 6) � (♦2λpy.y = a)

(b, 2) (a, 3) (a, 6) � (♦1 λpy.y = a)

(a, 3) (a, 6) � (♦0λpy.y = a) ⊥.

• (b, 0) (b, 2) (a, 3) (a, 6) � (λox.x = b) U2 X(λpy.y = a ∧Xλqz.z = a)

(b, 2) (a, 3) (a, 6) � (λox.x = b) U1 X(λpy.y = a∧Xλqz.z = a), which requires to check the second

and third letters to check that the second formula does not hold. Then we have (b, 2) (a, 3) (a, 6) �
(λox.x = b) U1 X(λpy.y = a ∧Xλqz.z = a) > after checking the third and fourth letters.

• (b, 0) (b, 2) (a, 3) (a, 6) � λox.�o+6x = b

(b, 2) (a, 3) (a, 6) � �6>, just by binding the variables. Then we have (b, 2) (a, 3) (a, 6) �

13

�6>
(a, 3) (a, 6) � �5>
(a, 6) � �4> ε � �3> ε � > > just by applying the rules for �.

To use this procedure as the basis for our implementation, we would had to keep a list of suspended
alternatives for each of the rules above, that are pending the resolution of the conditions that define each
alternative, that will be solved in the future. For example if we apply rule 5 to an application of ♦t for a
non empty word and t > 0 then we get 2 alternatives for sub-rules 5.3 and 5.4, and those alternatives will
depend on whether the nested formula ϕ is reduced to > or ⊥ using ∗, which cannot be determined at
the instant when rule 5 is applied. This is because, although we do have all the batches for a generated
test case corresponding to an input stream, the batches for output streams generated by transforming the
input will be only generated after waiting the corresponding number of instants, as our implementation
runs the actual code that is the subject of the test in a local Spark cluster. This leads to a complex
and potentially expensive computation, since many pending possible alternatives have to be kept open.
Instead of using this approach, it would be much more convenient to define a stepwise method with
transition rules that only inspect the first letter of the input word.

2.2 A transformation for stepwise evaluation

In order to define this stepwise evaluation, it is worth noting that all the properties are finite (that is, all
of them can be proved or disproved after a finite number of steps). It is hence possible to express any
formula only using the temporal operators next and consume, which leads us to the following definition.

Definition 1 (Next form) We say that a formula ψ ∈ LTLss is in next form iff. it is built by using
the following grammar:

ψ ::= ⊥ | > | p(e, . . . , e) | e = e | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | ψ → ψ | Xψ | λox.ψ

We can extend the transformation in [Riesco and Rodŕıguez-Hortalá, 2016b] for computing the next
form of any formula ϕ ∈ LTLss :

Definition 2 (Explicit next transformation) Given a formula ϕ ∈ LTLss , the function nte(ϕ) com-
putes another formula ϕ′ ∈ LTLss , such that ϕ′ is in next form and ∀u ∈ Σ∗.u � ϕ ⇐⇒ u � ϕ′.

nte(>) = >
nte(⊥) = ⊥
nte(p(e1, . . . , en)) = p(e1, . . . , en)
nte(e1 = e2) = e1 = e2
nte(¬ϕ) = ¬nte(ϕ)
nte(ϕ1 ∨ ϕ2) = nte(ϕ1) ∨ nte(ϕ2)
nte(ϕ1 ∧ ϕ2) = nte(ϕ1) ∧ nte(ϕ2)
nte(ϕ1 → ϕ2) = nte(ϕ1)→ nte(ϕ2)
nte(Xϕ) = Xnte(ϕ)
nte(λox.ϕ) = λox.nte(ϕ)
nte(♦tϕ) = nte(ϕ) ∨Xnte(ϕ) ∨ . . . ∨Xt−1nte(ϕ)
nte(�tϕ) = nte(ϕ) ∧Xnte(ϕ) ∧ . . . ∧Xt−1nte(ϕ)
nte(ϕ1 Ut ϕ2) = nte(ϕ2) ∨ (nte(ϕ1) ∧Xnte(ϕ2))∨

(nte(ϕ1) ∧Xnte(ϕ1) ∧X2nte(ϕ2)) ∨ . . .∨
(nte(ϕ1) ∧Xnte(ϕ1) ∧ . . . ∧Xt−2nte(ϕ1) ∧Xt−1nte(ϕ2))

nte(ϕ1 Rt ϕ2) = (nte(ϕ2) ∧Xnte(ϕ2) ∧ . . . ∧Xt−1nte(ϕ2))∨
(nte(ϕ1) ∧ nte(ϕ2)) ∨ (nte(ϕ2) ∧X(nte(ϕ1) ∧ nte(ϕ2)))∨
(nte(ϕ2) ∧Xnte(ϕ2) ∧X2(nte(ϕ1) ∧ nte(ϕ2))) ∨ . . .∨
(nte(ϕ2) ∧Xnte(ϕ2) ∧ . . . ∧Xt−2nte(ϕ2) ∧Xt−1(nte(ϕ1) ∧ nte(ϕ2))

for e1, e2 ∈ Term, x, o ∈ V, p ∈ Pn, and ϕ,ϕ1, ϕ2 ∈ LTLss .

Note that (i) it is not always possible to compute the next form a priori, since the time in temporal
operators might contain variables that need to be bound and (ii) the transformation might produce large
formulas. For these reasons, it is worth transforming the formula following a lazy strategy, which only
generates the subformulas required in the current and the next states. We present next a recursive
function that allows us to compute the next form in a lazy way, which we use to improve the efficiency
of our prototype, as we will see in Section 3.3:

14

Definition 3 (Recursive next transformation) Given a formula ϕ ∈ LTLss , the function nt(ϕ)
computes another formula ϕ′ ∈ LTLss , such that ϕ′ is in next form and ∀u ∈ Σ∗.u � ϕ ⇐⇒ u � ϕ′.

nt(>) = >
nt(⊥) = ⊥
nt(p(e1, . . . , en)) = p(e1, . . . , en)
nt(e1 = e2) = e1 = e2
nt(¬ϕ) = ¬nt(ϕ)
nt(ϕ1 ∨ ϕ2) = nt(ϕ1) ∨ nt(ϕ2)
nt(ϕ1 ∧ ϕ2) = nt(ϕ1) ∧ nt(ϕ2)
nt(ϕ1 → ϕ2) = nt(ϕ1)→ nt(ϕ2)
nt(Xϕ) = Xnt(ϕ)
nt(λox.ϕ) = λox.nt(ϕ)
nt(♦1ϕ) = nt(ϕ)
nt(♦tϕ) = nt(ϕ) ∨Xnt(♦t−1ϕ) if t ≥ 2
nt(�1ϕ) = nt(ϕ)
nt(�tϕ) = nt(ϕ) ∧Xnt(�t−1ϕ) if t ≥ 2
nt(ϕ1 U1 ϕ2) = nt(ϕ2)
nt(ϕ1 Ut ϕ2) = nt(ϕ2) ∨

(nt(ϕ1) ∧Xnt(ϕ1 Ut−1 ϕ2)) if t ≥ 2
nt(ϕ1 R1 ϕ2) = nt(ϕ1) ∧ nt(ϕ2)
nt(ϕ1 Rt ϕ2) = (nt(ϕ1) ∧ nt(ϕ2))∨

(nt(ϕ2) ∧Xnt(ϕ1 Rt−1 ϕ2)) if t ≥ 2

for e1, e2 ∈ Term, x, o ∈ V, p ∈ Pn, and ϕ,ϕ1, ϕ2 ∈ LTLss .

It is easy to see that the relation nt(ϕ)[x 7→ v] ≡ nt(ϕ[x 7→ v]) holds, which will be useful in the
implementation. Next, we present some results about these transformations:

Theorem 1 (Transformation equivalence) Given a formula ϕ ∈ LTLss such that ϕ does not contain
variables in temporal connectives, we have nt(ϕ) = nte(ϕ).

It is straightforward to see that the formula obtained by this transformation is in next form, since
it only introduces formulas using the temporal operators next or consume. The equivalence between
formulas is stated in Theorem 2:

Theorem 2 Given an alphabet Σ, an interpretation A, and formulas ϕ,ϕ′ ∈ LTLss , such that ϕ′ ≡
nt(ϕ), we have ∀u ∈ (Σ× N)∗.u �A ϕ ⇐⇒ u �A ϕ′.

Both theorems are proved by induction in the structure of formulas and using an auxiliary lemma (see 1)
that indicates that, if two formulas are equivalent at time 1, then they keep being equivalent after Detailed
proofs are available in A.

Example 5 We present here how to transform some of the formulas from Example 2. Note that the last
one cannot be completely transformed a priori:

• nt(♦4 λox.x = c) = λox.x = c ∨Xλox.x = c ∨X2λox.x = c ∨X3λox.x = c

• nt(�4 λ
o
x.(x = a ∨ x = b)) = (x = a ∨ x = b) ∧X(x = a ∨ x = b) ∧

X2(x = a ∨ x = b) ∧X3(x = a ∨ x = b)

• nt(λox.x = b U2 λ
o
x.x = a) = λox.x = a ∨ (λox.x = b ∧Xλox.x = a)

• nt(λox.x = a R2 λ
p
y.y = b) = (λox.x = a ∧ λpy.y = b) ∨ (λox.x = a ∧X(λox.x = a ∧ λpy.y = b))

• nt(�2(λox.x = b)→ (♦2λpy.y = a) = (λox.x = b→ (λpy.y = a ∨Xλpy.y = a)) ∧X(λox.x = b→ (λpy.y =
a ∨Xλpy.y = a))

• nt((λox.x = b) U2 X(λpy.y = a ∧Xλqz.z = a)) = X(λpy.y = a ∧Xλqz.z = a) ∨ (λox.x = b ∧X2(λpy.y =
a ∧Xλqz.z = a))

The following example illustrates this lazy behavior:

15

Example 6 We present the lazy next transformation for some formulas, where we just apply the first
transformation. Note that in the last example it is not possible to compute the next form in an eager way:

• nt(�2(λox.x = b)→ (♦2λpy.y = a)) = (λox.x = b)→ (♦2λpy.y = a) ∧Xnt(�1(λox.x = b)→ (♦2λpy.y =
a))

• nt(λox.�o+6x = b) = λox.nt(�o+6x = b)

Once the next form of a formula has been computed, it is possible to evaluate it for a given word
just by traversing its letters. We just evaluate the atomic formulas in the present moment (that is, those
properties that does not contain the next operator) and remove the next operator otherwise, so these
properties will be evaluated for the next letter. This method is detailed as follows:

Definition 4 (Letter simplification) Given a formula ψ in next form, a letter s ∈ Σ, where s can be
either (e, t), with e ∈ Term, t ∈ N, or the empty letter ∅, and an interpretation A = (A, I), the function
lsA(ψ, s) (ls(ψ, s) when A is clear from the context) simplifies ψ with s as follows:

• ls(>, s) = >.

• ls(⊥, s) = ⊥.

• lsA(p(e1, . . . , en), s) = ([[e1]]A, . . . , [[en]]A) ⊆ I (p).

• lsA(e1 = e2, s) = synEq([[e1]]A, [[e2]]A).

• ls(ψ1 ∨ ψ2, s) = ls(ψ1, s) ∨ ls(ψ2, s).

• ls(ψ1 ∧ ψ2, s) = ls(ψ1, s) ∧ ls(ψ2, s).

• ls(ψ1 → ψ2, s) = ls(ψ1, s)→ ls(ψ2, s).

• ls(Xψ, (e, t)) = ψ.

• ls(Xψ, ∅) = ls(ψ, ∅).

• ls(λox.ψ, (e, t)) = ψ[x 7→ e][o 7→ t].

• ls(λox.ψ, ∅) = ?.

where synEq stands for syntactic equality. Note that using the empty letter forces the complete evaluation
of the formula. Using this function and applying propositional logic and the interpretationA when definite
values are found it is possible to evaluate formulas in a step-by-step fashion.7 In this way, we can solve
the formulas from the previous example as follows:

Example 7 We present here the lazy evaluation process for some formulas in Example 4 using the word
u ≡ (b, 0) (b, 2) (a, 3) (a, 6) .

• nt(�2(λox.x = b)→ (♦2λpy.y = a)) = (λox.x = b)→ (λpy.y = a∨(Xnt(♦1λpy.y = a)))∧Xnt(�1(λox.x =
b)→ (♦2λpy.y = a)) (from Example 6).

– ls((λox.x = b) → (λpy.y = a ∨ (Xnt(♦1λpy.y = a))) ∧ Xnt(�1(λox.x = b) → (♦2λpy.y =
a)), (b, 0))) = (consume letter)
> → (⊥ ∨ nt(♦1λpy.y = a)) ∧ nt(�1(λox.x = b)→ (♦2λpy.y = a))
≡ (simplification)
nt(♦1λpy.y = a) ∧ nt(�1(λox.x = b)→ (♦2λpy.y = a))
≡ (lazy evaluation of the next transformation)
λpy.y = a ∧ λox.x = b→ (λpy.y = a ∨Xnt(♦1λpy.y = a))).

– ls(λpy.y = a ∧ λox.x = b→ (λpy.y = a ∨Xnt(♦1λpy.y = a))), (b, 2))
= (consume letter)
⊥ ∧> → (⊥ ∨ nt(♦1λpy.y = a)))
≡ (simplification)
⊥.

7Note that the value ? is only reached when the word is consumed and this simplification cannot be applied.

16

• nt(λox.�o+6x = b) = λox.nt(�o+6x = b) (from Example 6).

– ls(λox.nt(�o+6x = b), (b, 0)) = nt(�6b = b)
≡ (lazy evaluation of the next transformation)
> ∧Xnt(�5b = b)
≡ (simplification)
Xnt(�5b = b)

– ls(Xnt(�5b = b), (b, 2)) = nt(�5b = b)
≡ (lazy evaluation of the next transformation and simplification)
Xnt(�4b = b)

– ls(Xnt(�4b = b), (a, 3)) = nt(�4b = b)
≡ (lazy evaluation of the next transformation and simplification)
Xnt(�3b = b)

– ls(Xnt(�3b = b), (a, 6)) = nt(�3b = b)
≡ (lazy evaluation of the next transformation and simplification)
Xnt(�2b = b)

– ls(Xnt(�3b = b), ∅) = nt(�3b = b)
≡ (lazy evaluation of the next transformation and simplification)
Xnt(�2b = b)

– ls(Xnt(�2b = b), ∅) = ls(nt(�2b = b), ∅)
≡ (lazy evaluation of the next transformation and simplification)
ls(nt(�1b = b), ∅)
≡ (lazy evaluation of the next transformation and simplification)
ls(>, ∅) ≡ >

When no variables appear in the timeouts of temporal operators, the next transformation gives also the
intuition that inconclusive values can be avoided if we use a word as long as the number of next/consume
operators nested in the transformation.8 We define this safe word length as follows:

Definition 5 (Safe word length) Given a formula ϕ ∈ LTLss without variables in any timeouts of the
temporal operators that occur in it, its longest required check swl(ϕ) ∈ N is the maximum word length of
a word u such that we have u � ϕ ∈ {>,⊥}. It is defined as follows:

swl(>) = 0
swl(⊥) = 0
swl(f(e1, . . . , en)) = 0
swl(t1 = t2) = 0
swl(¬ϕ) = swl(ϕ)
swl(ϕ1 ∨ ϕ2) = max (swl(ϕ1), swl(ϕ2))
swl(ϕ1 ∧ ϕ2) = max (swl(ϕ1), swl(ϕ2))
swl(ϕ1 → ϕ2) = max (swl(ϕ1), swl(ϕ2))
swl(Xϕ) = swl(ϕ) + 1
swl(♦tϕ) = swl(ϕ) + (t− 1)
swl(�tϕ) = swl(ϕ) + (t− 1)
swl(ϕ1 Ut ϕ2) = max (swl(ϕ1), swl(ϕ2)) + (t− 1)
swl(ϕ1 Rt ϕ2) = max (swl(ϕ1), swl(ϕ2)) + (t− 1)
swl(λox.ϕ) = swl(ϕ) + 1

Example 8 We present here the safe word length for some of the formulas in Example 2:

• swl(♦4 λox.x = c) = 4.

• swl(λox.x = b U2 λ
p
y.y = a) = 2.

• swl(�3(λox.x = a)→ X(λpy.y = a)) = 4.

• swl(�2(λox.x = b)→ (♦2λpy.y = a)) = 3.

• swl((λox.x = b) U2 X(λpy.y = a ∧Xλqz.z = a)) = 4.

On the other hand, we cannot define a safe word length for arbitrary formulas with variables in
timeouts, because an application of the consume operator might bind those variables using a letter of the
input word, so there is no way to determine the value of the timeout for all possible words.

8Note that it might be possible to avoid an inconclusive value with shorter words, so this is a sufficient condition.

17

2.3 Generating words

Besides stating properties, formulas can be used to generate words. In particular, we will generate
sequences of terms from formulas; these sequences can then be extended by pairing each letter with a
number generated by an arbitrary monotonically increasing function, hence obtaining words with timed
terms as letters. The formulas used for generating terms have the following restrictions:

• Given a formula λox.ϕ, we have o 6∈ fv(ϕ). Since in this stage we do not generate times, they cannot
be used.

• Formulas do not contain the negation operator or the false constant. The process tries to generate
words that make the formula evaluate to true, so we would not generate any word for a contradiction.
Besides, we do not support negation because that would imply maintaining a set of excluded words,
and we wanted to define simple ScalaCheck generators in the most straightforward way.

For describing how the generators compute the sequences we first need to introduce a constant err ∈
Term∗ that stands for an erroneous sequence. Moreover, we use the notation + : Term∗×Term∗ → Term∗

(u+ err = err + u = err) for composing words, and extend the union on Term∗ as:

a u ∪ b v = (a ∪ b) + u ∪ v
u ∪ ε = u
u ∪ err = err

for a, b ∈ Term and u, v ∈ Term∗. Note that we assume that syntax for sets and unions is defined in F .
Using these ideas, we have:

Definition 6 (Random word generation) Given an interpretation A, e1, . . . , en ∈ Term, p ∈ Pn,
formulas ψ, ψ1, and ψ2 in next form, the function genA (gen when A is clear from the context) generates
a finite word u ∈ Term∗. If different equations can be applied for a given formula any of them can be
chosen:

gen(>) = ∅
genA(p(e1, . . . , en)) = ∅ if ([[e1]]A, . . . , [[en]]A) ⊆ I (p)
genA(e1 = e2) = ∅ if [[e1]]A = [[e2]]A

gen(ψ1 ∨ ψ2) = gen(ψ1)
gen(ψ1 ∨ ψ2) = gen(ψ2)
gen(ψ1 ∧ ψ2) = gen(ψ1) ∪ gen(ψ2)
gen(ψ1 → ψ2) = gen(ψ2)
gen(Xψ) = ∅+ gen(ψ)
gen(λox.ψ) = {e}+ gen(ψ) if x 6∈ fv(ψ), pick an e ∈ Term

s.t. gen(ψ[x 7→ e]) 6= err
gen(ψ) = err otherwise

where ∅ stands for an empty term and indicates that the batch can be empty.

Note that this definition interprets conjunctions as unions. Hence, the formula ψ ≡ (λox.x = a) ∧
(λox.x = b) is interpreted as ψ ≡ (λox.x ⊃ {a}) ∧ (λox.x ⊃ {b}) and generates a single batch containing a
and b.

Example 9 We present here the generation process for a formula from Example 2.

• gen(�2(λox.x = b) → (♦2λpy.y = a)) = gen((λox.x = b) → (λpy.y = a ∨ (Xnt(♦1λpy.y = a))) ∧
Xnt(�1(λox.x = b)→ (♦2λpy.y = a))) (from Example 6).

• gen((λox.x = b)→ (λpy.y = a ∨ (Xnt(♦1λpy.y = a))) ∧Xnt(�1(λox.x = b)→ (♦2λpy.y = a))) =
gen((λox.x = b)→ (λpy.y = a ∨ (Xnt(♦1λpy.y = a)))) ∪
gen(Xnt(�1(λox.x = b)→ (♦2λpy.y = a))) =

a ∪ ∅ a = a a

Since we have, for the first term of the union:

• gen((λox.x = b)→ (λpy.y = a ∨ (Xnt(♦1λpy.y = a)))) =
gen(λpy.y = a ∨ (Xnt(♦1λpy.y = a))) =
gen(λpy.y = a) =

a

18

Similarly we would generate the second term of the union. Note that in both cases we decided to
generate values for the first term of the disjunction. A similar process can be followed to obtain different
values.

3 sscheck: using LTLss for property-based testing

We have developed a prototype that allows using the LTLss logic for property-based testing of Spark
Streaming programs, as the Scala library sscheck [Riesco and Rodŕıguez-Hortalá, 2017]. This library
extends the popular PBT library ScalaCheck [Nilsson, 2014] with custom generators for Spark DStreams,
and with a property factory that allows developers to check a LTLss formula against the finite DStream
prefixes generated by another LTLss formula.

3.1 Architecture overview

In order to write a temporal property in sscheck, the user extends the trait (the Scala version of an abstract
class) DStreamTLProperty, and then implements some abstract methods to configure Spark Streaming
(e.g. defining the batch interval or the Spark master). The method DStreamTLProperty.forAllDStream

is used to define temporal ScalaCheck properties:

type SSeq[A] = Seq[Seq[A]]

type SSGen[A] = Gen[SSeq[A]]

def forAllDStream[In:ClassTag,Out:ClassTag](

generator: SSGen[In])(

transformation: (DStream[In]) => DStream[Out])(

formula: Formula[(RDD[In], RDD[Out])])(

implicit pp1: SSeq[In] => Pretty): Prop

The function forAllDStream takes a ScalaCheck generator of sequences of sequences of elements, that
are interpreted as finite DStream prefixes, so each nested sequence is interpreted as an RDD. Our li-
brary defines a case class Batch[A] that extends Seq[A] to represent an RDD for a micro batch, and a
case class PDStream[A] that extends Seq[Batch[A]] to represent a finite DStream prefix. For example
Batch("scala", "spark") represents an RDD[String] with 2 elements, and PDStream(Batch("scala",

"spark"), Batch(), Batch("spark")) represents a finite prefix of a DStream[String] consisting in a
micro batch with 2 elements, followed by an empty micro batch, and finally a micro batch with a single
element. The sscheck classes BatchGen and PDStreamGen and their companion objects can be used to
define generators of Batch and PDStream objects—hence generators of SSeq[A]—using temporal opera-
tors, that are interpreted according to the LTLss logic as described in Section 2.3. The trait Formula is
used to represent LTLss formulas. This trait is extended in different case classes Always, And, etc. cor-
responding to the different logical operators, thus representing the set of formulas LTLss as an algebraic
data type, as usual in functional programming. All basic literals corresponding to formulas of the shape
of ⊥, >, p(e1, . . . , en), and e1 = e2 are represented by the case class Solved, that takes an expression
of type org.scalacheck.Prop.Status or org.specs2.execute.Result for the literal. Note the type
parameter of Formula is (RDD[In], RDD[Out]), which means in formula the letter corresponding to
each instant is a pair of RDDs, one for the input DStream and another for the output DStream. Finally
the function transformation is the test subject which correctness is checked during the evaluation of the
property.

In order to evaluate the resulting ScalaCheck Prop, first we apply a lazy variant of the transformation
from Definition 3 (see Section 3.3 for details.) to formula, in order to get an equivalent formula in next
form. Then the following process iterates until the specified number of test cases has passed, or until a
failing test case—i.e. a counterexample—is found, whatever happens first. A test case of type SSeq[In]

is generated using generator, which corresponds to a finite prefix for the input DStream, and a fresh
Spark StreamingContext is created. The test case, the streaming context, and the transformation are
used to create a TestCaseContext that encapsulates the execution of the test case. The program then
blocks until the test case is executed completely by the Spark runtime, and then a result for the test
case is returned by the test case context. Test case results can be inconclusive, which corresponds to
the truth value ? in LTLss , in case the generated test case is too short for the formula. Internally the
test case context defines an input DStream by parallelizing the test case —using the Spark-testing-base
package [Holden Karau, 2015a]—, and applies the test subject transformation to it to define an output

19

DStream. It also maintains variables for the number of remaining batches (initialized to the length of the
test case), and the current value for the formula, and registers a foreachRDD Spark action that updates
the number of remaining batches, and the current formula using the letter simplification procedure from
Definition 4. This action also stops the Spark streaming context once the formula is solved or there are
no remaining batches. Other variants of forAllDStream can be used for defining properties with more
than one input DStream and one output DStream.

Therefore forAllDStream(gen)(transformation)(formula) is trying to prove ∀ug ∈ gen(ϕg).(u, 1 �A
S

ϕp : >) ∨ (u, 1 �A
S
ϕp : ?) for the Spark interpretation structure AS , formulas ϕg, ϕp corresponding to

gen and formula respectively, and u ≡ zip(zip(ug, uo), ut) where uo is a word which interpretation under
AS corresponds to the result of applying transformation to the interpretation of ug under AS , and
ut = ct (ct + b) (ct + 2b) (ct + 3b) . . . is the sequence of time stamps starting from the unix timestamp
ct at the start of the execution of the property and moving b milliseconds at a time for b the configured
batch interval. Here zip is the usual operator that combines two sequences element wise to produce a
sequence of pairs of elements in the same position, truncating the longest of the two sequences to the
length of the shortest. This way we add an additional external universal quantifier on the domain of finite
words, as usual in PBT, but inside that scope we have a propositional LTLss formula, and we evaluate
the whole formula with the usual sound but incomplete PBT evaluation procedure.

Example 10 Let’s ground all those ideas with the following simple property, that checks that if we gener-
ate a stream of positive integers, and we filter out the negative numbers, then we get a stream of numbers
that are greater or equal to zero.

class SimpleStreamingFormulas

extends org.specs2.Specification

with DStreamTLProperty

with org.specs2.ScalaCheck {

// Spark configuration

// run in local mode using 1 worker per machine core

override def sparkMaster : String = "local[*]"

// use batch interval of 100 milliseconds

override def batchDuration = Duration(100)

// use 4 partitions by default when creating

// DStreams for test cases

override def defaultParallelism = 4

def is =

sequential ^ s2"""

Simple demo Sscheck example for ScalaCheck

- Given a stream of integers

When we filter out negative numbers

Then we get only numbers greater or equal to

zero $filterOutNegativeGetGeqZero

"""

def filterOutNegativeGetGeqZero = {

type U = (RDD[Int], RDD[Int])

val numBatches = 10

val gen = BatchGen.always(BatchGen.ofNtoM(10, 50, arbitrary[Int]),

numBatches)

val formula = always(nowTime[U]{ (letter, time) =>

val (_input, output) = letter

output should foreachRecord {_ >= 0}

}) during numBatches

forAllDStream(

gen)(

_.filter{ x => !(x < 0)})(

formula)

}.set(minTestsOk = 50).verbose

}

20

Here we use the type alias U for the letters. Also here we use the testing library Specs2 [Torreborre, 2014] to
handle the creation and closing of the Spark contexts, as part of the implementation of DStreamTLProperty.
Besides, we have defined some custom Specs2 Matchers on RDDs that are helpful when defining properties—
see Appendix ?? for details.

/** @return a matcher that checks whether predicate holds for all the

* records of an RDD or not

*/

def foreachRecord[T](predicate: T => Boolean): Matcher[RDD[T]]

/** @return a matcher that checks whether predicate holds for at least

* one of the records of an RDD or not.

*/

def existsRecord[T](predicate: T => Boolean): Matcher[RDD[T]]

/** @return a Matcher that checks that both RDDs are equal as sets

*/

def beEqualAsSetTo[T](actualRDD: RDD[T]): Matcher[RDD[T]]

3.2 Verifying AMP Camp’s Twitter tutorial with sscheck

Now we will present a more complex example, adapted for Berkeley’s AMP Camp training on Spark,9

but adding sscheck properties for the functions implemented in that tutorial. The complete code for these
examples is available at https://github.com/juanrh/sscheck-examples/releases/tag/0.0.4.

Our test subject will be an object TweetOps—see Appendix ?? for the source code—that defines a
series of operations on a stream of tweets. A tweet is a piece of text of up to 140 characters, together
with some meta-information like an identifier for the author or the creation date. Those words in a tweet
that start with the # character are called “hashtags”, and are used by the tweet author to label the tweet,
so other users that later search for tweets with a particular hashtag might locate those related tweets
easily. The operations below take a stream of tweets and, respectively, generate the stream for the set of
hashtags in all the tweets; the stream of pairs (hashtags, number of occurrences) in a sliding time window
with the specified size10; and the stream that contains a single element for the most popular hashtag, i.e.
the hastag with the highest number of occurrences, again for the specified time window.

object TweetOps {

def getHashtags(tweets: DStream[Status]): DStream[String]

def countHashtags(batchInterval: Duration, windowSize: Int)

(tweets: DStream[Status]): DStream[(String, Int)]

def getTopHashtag(batchInterval: Duration, windowSize: Int)

(tweets: DStream[Status]): DStream[String]

}

In this code, the class twitter4j.Status from the library Twitter4J [Yamamoto, 2010] is used to rep-
resent each particular tweet. In the original AMP Camp training, the class TwitterUtils11 is used to
define a DStream[Status] by repeatedly calling the Twitter public API to ask for new tweets. Instead,
in this example we replace the Twitter API by an input DStream defined by using an sscheck generator,
so we can control the shape of the tweets that will be used as the test inputs. To do that we employ
the mocking [Mackinnon et al., 2001] library Mockito [Kaczanowski, 2012] for stubbing [Fowler, 2007]
Status objects, i.e. to easily synthetize objects that impersonate a real Status object, and that provide
predefined answers to some methods, in this case the method that returns the text for a tweet. The differ-
ent functions of the TwitterGen object produce such DStreams of mock Status objects —see Appendix
?? for details.

object TwitterGen {

/** Generator of Status mocks with a getText method

* that returns texts of up to 140 characters

*

* @param noHashtags if true then no hashtags are generated in the

* tweet text

* */

9http://ampcamp.berkeley.edu/3/exercises/realtime-processing-with-spark-streaming.html
10See https://spark.apache.org/docs/1.6.2/streaming-programming-guide.html#window-operations for details on

Spark Streaming window operators.
11https://spark.apache.org/docs/1.6.0/api/java/org/apache/spark/streaming/twitter/TwitterUtils.html

21

https://github.com/juanrh/sscheck-examples/releases/tag/0.0.4
http://ampcamp.berkeley.edu/3/exercises/realtime-processing-with-spark-streaming.html
https://spark.apache.org/docs/1.6.2/streaming-programming-guide.html#window-operations
https://spark.apache.org/docs/1.6.0/api/java/org/apache/spark/streaming/twitter/TwitterUtils.html

def tweet(noHashtags: Boolean = true): Gen[Status]

/** Take a Status mocks generator and return a Status mocks

* generator that adds the specified hashtag to getText

* */

def addHashtag(hashtagGen: Gen[String])

(tweetGen: Gen[Status]): Gen[Status]

def tweetWithHashtags(possibleHashTags: Seq[String]): Gen[Status]

def hashtag(maxLen: Int): Gen[String]

def tweetWithHashtagsOfMaxLen(maxHashtagLength: Int): Gen[Status]

}

3.2.1 Extracting hashtags

Now we are ready to write our first property, which checks that getHashtags works correctly, that is,
it computes the set of hashtags (words starting with #). In the property we generate tweets that use a
predefined set of hashtags, and then we check that all hashtags produced in the output are contained in
that set.

def getHashtagsOk = {

type U = (RDD[Status], RDD[String])

val hashtagBatch = (_ : U)._2

val numBatches = 5

val possibleHashTags = List("#spark", "#scala", "#scalacheck")

val tweets = BatchGen.ofNtoM(5, 10,

tweetWithHashtags(possibleHashTags)

)

val gen = BatchGen.always(tweets, numBatches)

val formula = always {

at(hashtagBatch){ hashtags =>

hashtags.count > 0 and

(hashtags should foreachRecord(possibleHashTags.contains(_)))

}

} during numBatches

forAllDStream(

gen)(

TweetOps.getHashtags)(

formula)

}

This is a very basic safety property. Note also the different style we have employed for accessing the
different RDDs for the current letter. While in the property from Example 10 we used matching with a
partial function to access the batch for the output DStream, here we use Function.at, that allows us to
combine a projection function with an assertion that uses the result of the projection.

In the next example we use the “reference implementation” PBT technique [Nilsson, 2014] to check
the implementation of TweetOps.getHashtags, which is based on the Spark transformations flatMap

and filter also using String.startsWith, against a regexp-based reference implementation. This gives
us a more thorough test, because we use a different randomly generated set of hashtags for each batch of
each test case, instead of a predefined set of hashtags for all the test cases.

private val hashtagRe = """#\S+""".r

private def getExpectedHashtagsForStatuses(statuses: RDD[Status])

: RDD[String] =

statuses.flatMap { status => hashtagRe.findAllIn(status.getText)}

def getHashtagsReferenceImplementationOk = {

type U = (RDD[Status], RDD[String])

val (numBatches, maxHashtagLength) = (5, 8)

val tweets = BatchGen.ofNtoM(5, 10,

tweetWithHashtagsOfMaxLen(maxHashtagLength))

22

val gen = BatchGen.always(tweets, numBatches)

val formula = alwaysR[U] { case (statuses, hashtags) =>

val expectedHashtags = getExpectedHashtagsForStatuses(statuses).cache()

hashtags must beEqualAsSetTo(expectedHashtags)

} during numBatches

forAllDStream(

gen)(

TweetOps.getHashtags)(

formula)

}

3.2.2 Counting hashtags

In order to check countHashtags, in the following property we setup a scenario where the hashtag
#spark is generated for some period, and then the hashtag #scala is generated for another period, and
we express the expected counting behaviour with several subformulas: we expect to get the expected
count of hashtags for spark for the first period (laterAlwaysAllSparkCount); we expect to eventually
get the expected count of hastags for scala (laterScalaCount); and we expect that after reaching the
expected count for spark hashtags, we would then decrease the count as time passes and elements leave
the sliding window (laterSparkCountUntilDownToZero).

def countHashtagsOk = {

type U = (RDD[Status], RDD[(String, Int)])

val countBatch = (_ : U)._2

val windowSize = 3

val (sparkTimeout, scalaTimeout) = (windowSize * 4, windowSize * 2)

val sparkTweet = tweetWithHashtags(List("#spark"))

val scalaTweet = tweetWithHashtags(List("#scala"))

val (sparkBatchSize, scalaBatchSize) = (2, 1)

val gen = BatchGen.always(BatchGen.ofN(sparkBatchSize, sparkTweet),

sparkTimeout) ++

BatchGen.always(BatchGen.ofN(scalaBatchSize, scalaTweet),

scalaTimeout)

def countNHashtags(hashtag : String)(n : Int) =

at(countBatch)(_ should existsRecord(_ == (hashtag, n : Int)))

val countNSparks = countNHashtags("#spark") _

val countNScalas = countNHashtags("#scala") _

val laterAlwaysAllSparkCount =

later {

always {

countNSparks(sparkBatchSize * windowSize)

} during (sparkTimeout -2)

} on (windowSize + 1)

val laterScalaCount =

later {

countNScalas(scalaBatchSize * windowSize)

} on (sparkTimeout + windowSize + 1)

val laterSparkCountUntilDownToZero =

later {

{ countNSparks(sparkBatchSize * windowSize) } until {

countNSparks(sparkBatchSize * (windowSize - 1)) and

next(countNSparks(sparkBatchSize * (windowSize - 2))) and

next(next(countNSparks(sparkBatchSize * (windowSize - 3))))

} on (sparkTimeout -2)

} on (windowSize + 1)

val formula =

laterAlwaysAllSparkCount and

laterScalaCount and

laterSparkCountUntilDownToZero

23

forAllDStream(

gen)(

TweetOps.countHashtags(batchInterval, windowSize)(_))(

formula)

}

Then we check the safety of countHashtags by asserting that any arbitrary generated hashtag is
never skipped in the count. Here we again exploit the reference implementation technique to extract the
expected hashtags, and join this with the output counts, so we can assert that all and only all expected
hastags are counted, and that those countings are never zero at the time the hashtag is generated.

def hashtagsAreAlwasysCounted = {

type U = (RDD[Status], RDD[(String, Int)])

val windowSize = 3

val (numBatches, maxHashtagLength) = (windowSize * 6, 8)

val tweets = BatchGen.ofNtoM(5, 10,

tweetWithHashtagsOfMaxLen(maxHashtagLength))

val gen = BatchGen.always(tweets, numBatches)

val alwaysCounted = alwaysR[U] { case (statuses, counts) =>

val expectedHashtags = getExpectedHashtagsForStatuses(statuses).cache()

val expectedHashtagsWithActualCount =

expectedHashtags

.map((_, ()))

.join(counts)

.map{case (hashtag, (_, count)) => (hashtag, count)}

.cache()

val countedHashtags = expectedHashtagsWithActualCount.map{_._1}

val countings = expectedHashtagsWithActualCount.map{_._2}

// all hashtags have been counted

countedHashtags must beEqualAsSetTo(expectedHashtags) and

// no count is zero

(countings should foreachRecord { _ > 0 })

} during numBatches

forAllDStream(

gen)(

TweetOps.countHashtags(batchInterval, windowSize)(_))(

alwaysCounted)

}

3.2.3 Getting the most popular hashtag

Now we check the correctness of getTopHashtag, that extracts the most “popular” hashtag, i.e. the
hashtag with the highest number of occurrences at each time window. For that we use the following
property where we define a scenario in which we start with the hashtag #spark as the most popular
(generator sparkPopular), and after that the hashtag #scala becomes the most popular (generator
scalaPopular), and asserting on the output DStream that #spark is the most popular hashtag until
#scala is the most popular.

def sparkTopUntilScalaTop = {

type U = (RDD[Status], RDD[String])

val windowSize = 1

val topHashtagBatch = (_ : U)._2

val scalaTimeout = 6

val sparkPopular =

BatchGen.ofN(5, tweetWithHashtags(List("#spark"))) +

BatchGen.ofN(2, tweetWithHashtags(List("#scalacheck")))

24

val scalaPopular =

BatchGen.ofN(7, tweetWithHashtags(List("#scala"))) +

BatchGen.ofN(2, tweetWithHashtags(List("#scalacheck")))

val gen = BatchGen.until(sparkPopular, scalaPopular, scalaTimeout)

val formula =

{ at(topHashtagBatch)(_ should foreachRecord(_ == "#spark")) } until {

at(topHashtagBatch)(_ should foreachRecord(_ == "#scala"))

} on (scalaTimeout)

forAllDStream(

gen)(

TweetOps.getTopHashtag(batchInterval, windowSize)(_))(

formula)

}

Finally, we state the safety of getTopHastag by checking that there is always one top hashtag.

def alwaysOnlyOneTopHashtag = {

type U = (RDD[Status], RDD[String])

val topHashtagBatch = (_ : U)._2

val (numBatches, maxHashtagLength) = (5, 8)

val tweets =

BatchGen.ofNtoM(5, 10,

tweetWithHashtagsOfMaxLen(maxHashtagLength))

val gen = BatchGen.always(tweets, numBatches)

val formula = always {

at(topHashtagBatch){ hashtags =>

hashtags.count === 1

}

} during numBatches

forAllDStream(gen)(

TweetOps.getTopHashtag(batchInterval, 2)(_))(

formula)

}

3.2.4 Defining liveness properties with the consume operator

So far we have basically defined two types of properties: properties where we simulate a particular
scenario, and safety properties where we assert that we will never reach a particular “bad” state. It
would be also nice to be able to write liveness properties in sscheck, which is another class of properties
typically used with temporal logic, where we express that something good keeps happening with a formula
of the shape of �t1(ϕ1 → ♦t2ϕ2). In this kind of formulas it would be useful to define the conclusion
formula ϕ2 that should happen later, based on the value of the word that happened when the premise
formula ϕ1 was evaluated. This was our motivation for adding to the LTLss logic the consume operator
λox.ϕ, that can be used in liveness formulas of the shape �t1(λox.♦t2ϕ2) or �t1(λox.ϕ1 → ♦t2ϕ2). One
example of the former is the following liveness property for countHashtags, that checks that always each
hashtag eventually gets a count of 0, if we generate empty batches at the end of the test case so all
hashtags end up getting out of the counting window.

def alwaysEventuallyZeroCount = {

type U = (RDD[Status], RDD[(String, Int)])

val windowSize = 4

val (numBatches, maxHashtagLength) = (windowSize * 4, 8)

// repeat hashtags a bit so counts are bigger than 1

val tweets = for {

hashtags <- Gen.listOfN(6, hashtag(maxHashtagLength))

tweets <- BatchGen.ofNtoM(5, 10,

addHashtag(Gen.oneOf(hashtags))(tweet(noHashtags=true)))

25

} yield tweets

val emptyTweetBatch = Batch.empty[Status]

val gen = BatchGen.always(tweets, numBatches) ++

BatchGen.always(emptyTweetBatch, windowSize*2)

val alwaysEventuallyZeroCount = alwaysF[U] { case (statuses, _) =>

val hashtags = getExpectedHashtagsForStatuses(statuses)

laterR[U] { case (_, counts) =>

val countsForStatuses =

hashtags

.map((_, ()))

.join(counts)

.map{case (hashtag, (_, count)) => count}

countsForStatuses should foreachRecord { _ == 0}

} on windowSize*3

} during numBatches

forAllDStream(gen)(

TweetOps.countHashtags(batchInterval, windowSize)(_))(

alwaysEventuallyZeroCount)

}

One example of the second shape of liveness properties, that use an implication in the body of an always,
is the following property for getTopHashtag, that checks that if we superpose two generators, one for
a random noise of hashtags that have a small number of occurrences (generator tweets), and another
for a periodic peak of a random hashtag that suddenly has a big number of occurrences (generator
tweetsSpike), then each time a peak happens then the corresponding hashtag eventually becomes the
top hashtag.

def alwaysPeakImpliesEventuallyTop = {

type U = (RDD[Status], RDD[String])

val windowSize = 2

val sidesLen = windowSize * 2

val numBatches = sidesLen + 1 + sidesLen

val maxHashtagLength = 8

val peakSize = 20

val emptyTweetBatch = Batch.empty[Status]

val tweets =

BatchGen.always(

BatchGen.ofNtoM(5, 10,

tweetWithHashtagsOfMaxLen(maxHashtagLength)),

numBatches)

val popularTweetBatch = for {

hashtag <- hashtag(maxHashtagLength)

batch <- BatchGen.ofN(peakSize, tweetWithHashtags(List(hashtag)))

} yield batch

val tweetsSpike = BatchGen.always(emptyTweetBatch, sidesLen) ++

BatchGen.always(popularTweetBatch, 1) ++

BatchGen.always(emptyTweetBatch, sidesLen)

// repeat 6 times the superposition of random tweets

// with a sudden spike for a random hastag

val gen = Gen.listOfN(6, tweets + tweetsSpike).map{_.reduce(_++_)}

val alwaysAPeakImpliesEventuallyTop = alwaysF[U] { case (statuses, _) =>

val hashtags = getExpectedHashtagsForStatuses(statuses)

val peakHashtags = hashtags.map{(_,1)}.reduceByKey{_+_}

.filter{_._2 >= peakSize}.keys.cache()

val isPeak = Solved[U] { ! peakHashtags.isEmpty }

val eventuallyTop = laterR[U] { case (_, topHashtag) =>

topHashtag must beEqualAsSetTo(peakHashtags)

} on numBatches

26

isPeak ==> eventuallyTop

} during numBatches * 3

forAllDStream(

gen)(

TweetOps.getTopHashtag(batchInterval, windowSize)(_))(

alwaysAPeakImpliesEventuallyTop)

}

The consume operator is also useful to define other types of properties like the following, that only
uses consume and next as temporal operators, but that is able to express the basic condition for counting
correctly and on time. It states that for any number of repetitions n less or equal to the counting window
size, and for any random word prefix, if we repeat the word prefix n times then after the n− 1 instants
we will have a count of at least (to account for hashtags randomly generated twice) n for all the hashtags
in the first batch. Here we use def next[T](times: Int)(phi: Formula[T]) that returns the result
of applying next times times on the given formula.

def forallNumRepetitionsLaterCountNumRepetitions = {

type U = (RDD[Status], RDD[(String, Int)])

val windowSize = 5

val (numBatches, maxHashtagLength) = (windowSize * 6, 8)

// numRepetitions should be <= windowSize, as in the worst case each

// hashtag is generated once per batch before being repeated using

// Prop.forAllNoShrink because sscheck currently does not support shrinking

Prop.forAllNoShrink(Gen.choose(1, windowSize)) { numRepetitions =>

val tweets = BatchGen.ofNtoM(5, 10,

tweetWithHashtagsOfMaxLen(maxHashtagLength))

val gen = for {

tweets <- BatchGen.always(tweets, numBatches)

// using tweets as a constant generator, to repeat each generated

// stream numRepetitions times

delayedTweets <- PDStreamGen.always(tweets, numRepetitions)

} yield delayedTweets

val laterCountNumRepetitions = nextF[U] { case (statuses, _) =>

val hashtagsInFirstBatch = getExpectedHashtagsForStatuses(statuses)

// -2 because we have already consumed 1 batch in the outer nextF, and

// we will consume 1 batch in the internal now

next(max(numRepetitions-2, 0))(now { case (_, counts) =>

val countsForHashtagsInFirstBatch =

hashtagsInFirstBatch

.map((_, ()))

.join(counts)

.map{case (hashtag, (_, count)) => count}

countsForHashtagsInFirstBatch should foreachRecord { _ >= numRepetitions }

})

}

forAllDStream(

gen)(

TweetOps.countHashtags(batchInterval, windowSize)(_))(

laterCountNumRepetitions)

}

}

3.3 Some additional details about the implementation

As seen in the examples from Section 2.1, there are additional factory methods in Formula for us-
ing the time argument in the consume operator, which are easily implemented by using the over-
load of DStream.foreachRDD that passes a Time object besides the current micro batch in the ar-
gument callback. Also, in the first liveness property from Section 3.2.4 we use some factory func-
tions from Formula for abbreviating the combination of a consume operator with other temporal op-
erators. The case class BindNext represents the consume operator, but it is mostly hidden to the

27

user through factories of Formula like def now[T](letterToResult: T => Result): BindNext[T]

= BindNext(letterToResult), used for applications of consume that return a timeless formula, and def

next[T](letterToFormula: T => Formula[T] = BindNext.fromAtomsConsumer(letterToFormula),
used for applications of consume that return an arbitrary formula. The property is more intuitive when
considering that the result should hold immediately after consuming the letter, i.e. now, and that is not
incorrect when the resulting formula is timeless, because it will hold irrespectively of the input word.
Besides, the implementation also stops as soon as the current formula is in a solved state, without wait-
ing for the next letter/RDD. It is also natural to use overloads of the next factory both for BindNext

and the case class Next for the next operator because, as seen in Section 2.1, consume is basically a
capturing version of next. This way alwaysF is defined as def alwaysF[T](letterToFormula: T =>

Formula[T]): TimeoutMissingFormula[T] = always(next(letterToFormula)).
It is also worth mentioning some details about the way we have implemented the computation of the

next form. Instead of using Formula to represent formulas in next form, we use a trait NextFormula that
extends Formula, and a parallel type hierarchy with classes NextNot, NextAnd, etc., and even NextNext.
This might sound at first like a bad design, but it has a number of advantages. Considering the recursive
next transformation (Definition 3), we can see how those sub-formulas that cannot be evaluated in
the current instant are nested under an application of the next operator. We exploit this by using a
lazy argument in the constructor of the class NextNext[T](_phi: => NextFormula[T]) that represents
applications of the next operator that are in next form. The transformation is implemented as an abstract
member def nextFormula: NextFormula[T] of Formula, where the recursive calls to nextFormula are
postponed for the arguments of NextNext. This way those sub-formulas are only built in the moment
they can be evaluated, which improves the memory behavior of the program, and allows us to mitigate
the effect of the explosion in the size of the formulas due to using large timeouts. The BindNext class
that represents an application of the consume operator λox.ϕ also builds the next form for ϕ lazily, after
instantiating ϕ when values for x and o become available.

We perform another optimization in the classes NextOr and NextAnd that represent applications of
the ∨ and ∧ operators in next form, respectively. These classes extend NextBinaryOp that takes a par-
allel collection of NextFormula objects—using Scala’s ParSeq trait—that will be reduced in parallel to
a result by applying a commutative and associative operator like ∨ or ∧ [Prokopec et al., 2011]. One
might think that this parallel evaluation on the Spark driver is unnecessary, because Spark is already
a distributed processing engine. However, each call to a Spark action implied by assertions like those
defined by foreachRecord or existsRecord blocks the calling thread, so in a sequential implementation
of NextOr and NextAnd we would only be able to submit a single Spark job at a time. Our parallel imple-
mentation on the other hand is able to invoke several actions corresponding to assertions in parallel, thus
taking more advantage to the Spark distributed execution, that is saturated of tasks execution requests,
which improves the performance. Note this parallel sequences are frequent due to the disjunctions and
conjunctions introduced by the transformation to next form.

Finally, we implement the safe word length computation from Definition 5 as a method safeWordLength:

Option[Timeout] of Formula. As discussed in that definition, the safe word length can only be computed
statically for some classes of formulas, that in sscheck is the class of formulas such that in all sub-formulas
of the form λox.ϕ we have that ϕ is a basic literal. As all bound variables are introduced by usages of the
consume operator, that implies no variable applies in a timer for a temporal operator and therefore we
can apply Definition 5. To do that we use a custom subclass of scala.Function in the factories of Now
to mark that we can safely assume that evaluating that application of the consume operator will only
take a single letter, and we return None in other case.

Regarding performance, on an Intel Core i7-3517U dual core 1.9 GHz and 8 GB RAM the test suite
for AMP Camp’s Twitter tutorial completes with success in around 22 minutes, with Spark running
in local mode. That is a reasonable time for an integration test, and could be used as an automated
validation step in a continuous integration pipeline [Fowler and Foemmel, 2006]. sscheck local execution
could be also used for local developing to fix a broken test, using a longer batch interval configuration
and smaller number of passing test cases to adapt to an scenario with less computing resources. On the
other hand, if a cluster is available, sscheck could be executed using Spark distributed mode —by setting
the sparkMaster field appropriately—, using a shorter batch interval, higher default parallelism, and a
higher number of passing tests. In the future we also plan to develop a new feature to allow several test
cases for the same property to be execute in parallel. This is not trivial because Spark is limited to a
single Spark context per Java virtual machine (JVM)12 but that feature, combined with a test runner

12https://issues.apache.org/jira/browse/SPARK-2243

28

https://issues.apache.org/jira/browse/SPARK-2243

that creates multiple JVMs,13 would be very useful to decrease the testing time, specially if a cluster was
available for testing.

A previous version of sscheck without the consume operator and the lazy optimization for next form
was presented in [Riesco and Rodŕıguez-Hortalá, 2016b]. sscheck has also be present in leading industry
conferences in the Big Data fields either presented by us [Riesco and Rodŕıguez-Hortalá, 2016a] or by
others [Karau, 2015], and it has also been referred in books and technical blogs remarkable in the field
[Holden Karau, 2015b, Karau and Warren, 2017], showing that it presents a good performance and that
it stands as an alternative choice for state-of-the-art testing frameworks.

4 Related work

At first sight, the system presented in this paper can be considered an evolution of the data-flow ap-
proaches for the verification of reactive systems developed in the past decades, exemplified by systems
like Lustre [Halbwachs, 1992] and Lutin [Raymond et al., 2008]. In fact, the idea underlying both stream
processing systems and data-flow reactive systems is very similar: processing a potentially infinite input
stream while generating an output stream. Moreover, they usually work with formulas considering both
the current state and the previous ones, which are similar to the “forward” ones presented here. There
are, however, some differences between these two approaches, being an important one that sscheck is
executed in a parallel way using Spark.

Lustre is a programming language for reactive systems that is able to verify safety properties by
generating random input streams. The random generation provided by sscheck is more refined, since it is
possible to define some patterns in the stream in order to verify some behaviors that can be omitted by
purely random generators. Moreover, Lustre specializes in the verification of critical systems and hence
it has features for dealing with this kind of systems, but lacks other general features as complex data-
structures, although new extensions are included in every new release. On the other hand, it is not possible
to formally verify systems in sscheck; we focus in a lighter approach for day-to-day programs and, since it
supports all Scala features, its expressive power is greater. Lutin is a specification language for reactive
systems that combines constraints with temporal operators. Moreover, it is also possible to generate
test cases that depend on the previous values that the system has generated. First, these constraints
provide more expressive power than the atomic formulas presented here, and thus the properties stated
in Lutin are more expressive than the ones in sscheck. Although supporting more expressive formulas
would be an interesting subject of future work, in this work we have focused on providing a framework
where the properties are “natural” even for engineers who are not trained in formal methods; once we
have examined the success of this approach we will try to move into more complex properties. Second,
our framework completely separates the input from the output, and hence it is not possible to share
information between these streams. Although sharing this information is indeed very important for
control systems, we consider that stream processing systems usually deal with external data and hence
this relation is not so relevant for the present tool. Finally, note that an advantage of sscheck consists in
using the same language for both programming and defining the properties.

In a similar note, we can consider runtime monitoring of synchronous systems like Lola [D’Angelo et al., 2005],
a specification language that allows the user to define properties in both past and future LTL. Lola guar-
antees bounded memory for monitoring and allows the user to collect statistics at runtime. On the other
hand, and indicated above, sscheck allows to implement both the programs and the test in the same
language and provides PBT, which simplifies the testing phase, although actual programs cannot be
traced.

TraceContract [Barringer and Havelund, 2011] is a Scala library that implements a logic for analyzing
sequences of events (traces). That logic is a hybrid between state machines and temporal logic, that is
able to express both past time and future time temporal logic formulas, and that allows a form of first
order quantification over events. The logic is implemented as a shallow internal DSL, just we do for LTLss

in sscheck, and it also supports step-wise evaluation of traces so it can be used for online monitoring of
a running system, besides evaluating recorded execution traces. On the other hand TraceContract is not
able to generate test cases, and it is not integrated with any standard testing library like Specs2.

Regarding testing tools for Spark, the most clear precedent is the unit test framework Spark Test
Base [Holden Karau, 2015b], which also integrates ScalaCheck for Spark but only for Spark core. To the
best of out knowledge, there is no previous library supporting property-based testing for Spark Streaming.

13E.g. SBT support for forking http://www.scala-sbt.org/0.13/docs/Forking.html

29

http://www.scala-sbt.org/0.13/docs/Forking.html

5 Conclusions and future work

In this paper we have presented sscheck, a property-based testing tool for Spark Streaming programs.
sscheck allows the user to define generators and to state properties using LTLss , an extension of Linear
Temporal Logic with timeouts in temporal operators and a special operator for binding the current batch
and time. This logic allows a stepwise transformation that only requires/generates the current batch;
using this quality the Scala implementation of sscheck takes advantage of lazy functions to efficiently
implement the tool. The benchmarks presented in the paper show that the approach works well in
practice. With these features in mind, we hope sscheck will be accepted by the industry; we consider the
presentation at Apache Europe [Riesco and Rodŕıguez-Hortalá, 2016a], and citations in books written
by remarkable members of the Spark community [Karau and Warren, 2017], are important steps in this
direction.

There are many open lines of future work. First, adding support for arbitrary nesting of ScalaCheck
forall and exists quantifiers inside LTLss formula would be an interesting extension. Moreover, we also
consider developing versions for other languages with Spark API, in particular Python, or supporting other
SPS, like Apache Flink [Carbone et al., 2015b] or Apache Bean [Akidau et al., 2015]. This would require
novel solutions, as these systems are not based on synchronous micro-batching but they process events one
at a time, and also have interesting additional features like the capability for handling different event time
characteristics for supporting out of order streams, and several types of windows [Akidau et al., 2015].
Besides, we plan to explore whether the execution of several test cases in parallel minimize the test
suite execution time. Finally, we intend to explore other formalisms for expressing temporal and cyclic
behaviors [Wolper, 1983].

References

[Akidau et al., 2013] Akidau, T., Balikov, A., Bekiroğlu, K., Chernyak, S., Haberman, J., Lax, R.,
McVeety, S., Mills, D., Nordstrom, P., and Whittle, S. (2013). MillWheel: fault-tolerant stream
processing at internet scale. Proceedings of the VLDB Endowment, 6(11):1033–1044.

[Akidau et al., 2015] Akidau, T., Bradshaw, R., Chambers, C., Chernyak, S., Fernández-Moctezuma,
R. J., Lax, R., McVeety, S., Mills, D., Perry, F., Schmidt, E., et al. (2015). The dataflow model: a
practical approach to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-order
data processing. Proceedings of the VLDB Endowment, 8(12):1792–1803.

[Alur and Henzinger, 1994] Alur, R. and Henzinger, T. A. (1994). A really temporal logic. J. ACM,
41(1):181–204.

[Apache Spark Team, 2016] Apache Spark Team (2016). Spark programming guide. https://spark.

apache.org/docs/latest/programming-guide.html.

[Barringer and Havelund, 2011] Barringer, H. and Havelund, K. (2011). Tracecontract: A scala DSL
for trace analysis. In Butler, M. J. and Schulte, W., editors, Proceedings of the 17th International
Symposium on Formal Methods, FM 2011, volume 6664 of Lecture Notes in Computer Science, pages
57–72. Springer.

[Bauer et al., 2006] Bauer, A., Leucker, M., and Schallhart, C. (2006). Monitoring of real-time properties.
In FSTTCS 2006: Foundations of Software Technology and Theoretical Computer Science, pages 260–
272. Springer.

[Bauer et al., 2007] Bauer, A., Leucker, M., and Schallhart, C. (2007). The good, the bad, and the ugly,
but how ugly is ugly? In Runtime Verification, pages 126–138. Springer.

[Beck, 2003] Beck, K. (2003). Test-driven development: by example. Addison-Wesley Professional.

[Blackburn et al., 2006] Blackburn, P., van Benthem, J., and Wolter, F., editors (2006). Handbook of
Modal Logic. Elsevier.

[Carbone et al., 2015a] Carbone, P., Ewen, S., Haridi, S., Katsifodimos, A., Markl, V., and Tzoumas, K.
(2015a). Apache flink: Stream and batch processing in a single engine. Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering, 38(4):11.

30

https://spark.apache.org/docs/latest/programming-guide.html
https://spark.apache.org/docs/latest/programming-guide.html

[Carbone et al., 2015b] Carbone, P., Fóra, G., Ewen, S., Haridi, S., and Tzoumas, K. (2015b).
Lightweight asynchronous snapshots for distributed dataflows. arXiv preprint arXiv:1506.08603.

[Claessen and Hughes, 2011] Claessen, K. and Hughes, J. (2011). QuickCheck: a lightweight tool for
random testing of Haskell programs. Acm sigplan notices, 46(4):53–64.

[D’Angelo et al., 2005] D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B.,
Sipma, H. B., Mehrotra, S., and Manna, Z. (2005). LOLA: runtime monitoring of synchronous systems.
In Proceedings of the 12th International Symposium on Temporal Representation and Reasoning, TIME
2005, pages 166–174. IEEE Computer Society.

[Fitting and Mendelsohn, 1998] Fitting, M. and Mendelsohn, R. L. (1998). First-Order Modal Logic,
volume 277 of Science & Business Media. Springer.

[Fowler, 2007] Fowler, M. (2007). Mocks aren’t stubs. https://martinfowler.com/articles/

mocksArentStubs.html.

[Fowler and Foemmel, 2006] Fowler, M. and Foemmel, M. (2006). Continuous integration. Thought-
Works) http://www. thoughtworks. com/Continuous Integration. pdf, page 122.

[Gorawski et al., 2014] Gorawski, M., Gorawska, A., and Pasterak, K. (2014). A survey of data stream
processing tools. In Information Sciences and Systems 2014, pages 295–303. Springer.

[Halbwachs, 1992] Halbwachs, N. (1992). Synchronous programming of reactive systems. Number 215 in
Springer International Series in Engineering and Computer Science. Kluwer Academic Publishers.

[Holden Karau, 2015a] Holden Karau (2015a). Spark-testing-base. http://spark-packages.org/

package/holdenk/spark-testing-base.

[Holden Karau, 2015b] Holden Karau (2015b). Spark-testing-base. http://blog.cloudera.com/blog/

2015/09/making-apache-spark-testing-easy-with-spark-testing-base/.

[Kaczanowski, 2012] Kaczanowski, T. (2012). Practical Unit Testing with TestNG and Mockito. Tomasz
Kaczanowski.

[Karau, 2015] Karau, H. (2015). Effective testing of spark programs and jobs. In Strata + Hadoop World
2015 NYC. O’Reilly. https://conferences.oreilly.com/strata/big-data-conference-ny-2015/
public/schedule/detail/42993.

[Karau and Warren, 2017] Karau, H. and Warren, R. (2017). High Performance Spark: Best Practices
for Scaling and Optimizing Apache Spark. O’Reilly Media, Incorporated.

[Kreps, 2014] Kreps, J. (2014). I Heart Logs: Event Data, Stream Processing, and Data Integration.
O’Reilly Media.

[Kuhn and Allen, 2014] Kuhn, R. and Allen, J. (2014). Reactive design patterns.

[Leucker and Schallhart, 2009] Leucker, M. and Schallhart, C. (2009). A brief account of runtime verifi-
cation. The Journal of Logic and Algebraic Programming, 78(5):293–303.

[Mackinnon et al., 2001] Mackinnon, T., Freeman, S., and Craig, P. (2001). Endo-testing: unit testing
with mock objects. Extreme programming examined, 1:287–302.

[Marz and Warren, 2015] Marz, N. and Warren, J. (2015). Big Data: Principles and best practices of
scalable realtime data systems. Manning Publications Co.

[Meszaros, 2007] Meszaros, G. (2007). xUnit test patterns: Refactoring test code. Pearson Education.

[Neumeyer et al., 2010] Neumeyer, L., Robbins, B., Nair, A., and Kesari, A. (2010). S4: Distributed
stream computing platform. In Data Mining Workshops (ICDMW), 2010 IEEE International Confer-
ence on, pages 170–177. IEEE.

[Nilsson, 2014] Nilsson, R. (2014). ScalaCheck: The Definitive Guide. IT Pro. Artima Incorporated.

[Papadakis and Sagonas, 2011] Papadakis, M. and Sagonas, K. (2011). A PropEr integration of types
and function specifications with property-based testing. In Proceedings of the 10th ACM SIGPLAN
workshop on Erlang, pages 39–50. ACM.

31

https://martinfowler.com/articles/mocksArentStubs.html
https://martinfowler.com/articles/mocksArentStubs.html
http://spark-packages.org/package/holdenk/spark-testing-base
http://spark-packages.org/package/holdenk/spark-testing-base
http://blog.cloudera.com/blog/2015/09/making-apache-spark-testing-easy-with-spark-testing-base/
http://blog.cloudera.com/blog/2015/09/making-apache-spark-testing-easy-with-spark-testing-base/
https://conferences.oreilly.com/strata/big-data-conference-ny-2015/public/schedule/detail/42993
https://conferences.oreilly.com/strata/big-data-conference-ny-2015/public/schedule/detail/42993

[Pnueli, 1986] Pnueli, A. (1986). Applications of temporal logic to the specification and verification of
reactive systems: a survey of current trends. Springer.

[Prokopec et al., 2011] Prokopec, A., Bagwell, P., Rompf, T., and Odersky, M. (2011). A generic parallel
collection framework. In European Conference on Parallel Processing, pages 136–147. Springer.

[Ramasamy, 2015] Ramasamy, K. (2015). Flying faster with twitter heron. The Official Twitter Blog.
https://blog.twitter.com/2015/flying-faster-with-twitter-heron.

[Raymond et al., 2008] Raymond, P., Roux, Y., and Jahier, E. (2008). Lutin: A language for specifying
and executing reactive scenarios. EURASIP J. Emb. Sys., 2008.

[Riesco and Rodŕıguez-Hortalá, 2017] Riesco, A. and Rodŕıguez-Hortalá, J. (2015–2017). sscheck:
Scalacheck for spark v0.3.2. https://github.com/juanrh/sscheck/releases/tag/0.3.2. See Scal-
aDoc documentation at https://juanrh.github.io/doc/sscheck/scala-2.10/api, and basic setup
instructions at https://github.com/juanrh/sscheck/wiki/Quickstart.

[Riesco and Rodŕıguez-Hortalá, 2016a] Riesco, A. and Rodŕıguez-Hortalá, J. (2016a). Property-based
testing for spark streaming. In Apache Big Data Europe 2016. The Linux Foundation. http://

events.linuxfoundation.org/events/apache-big-data-europe/program/schedule.

[Riesco and Rodŕıguez-Hortalá, 2016b] Riesco, A. and Rodŕıguez-Hortalá, J. (2016b). Temporal random
testing for spark streaming. In Abraham, E. and Huisman, M., editors, Proceedings of the 12th In-
ternational Conference on integrated Formal Methods, iFM 2016, volume 9681 of Lecture Notes in
Computer Science. Springer.

[Schelter et al., 2013] Schelter, S., Ewen, S., Tzoumas, K., and Markl, V. (2013). All roads lead to
Rome: optimistic recovery for distributed iterative data processing. In Proceedings of the 22nd ACM
international conference on Conference on information & knowledge management, pages 1919–1928.
ACM.

[Shamshiri et al., 2015] Shamshiri, S., Rojas, J. M., Fraser, G., and McMinn, P. (2015). Random or
genetic algorithm search for object-oriented test suite generation? In Proceedings of the 2015 on
Genetic and Evolutionary Computation Conference, pages 1367–1374. ACM.

[Smullyan, 1995] Smullyan, R. M. (1995). First-order logic. Courier Corporation.

[Torreborre, 2014] Torreborre, E. (2014). Specs2 user guide. https://etorreborre.github.io/specs2/
guide/SPECS2-3.6.2/org.specs2.guide.UserGuide.html.

[Venners, 2015] Venners, B. (2015). Re: Prop.exists and scalatest matchers. https://groups.google.

com/forum/#!msg/scalacheck/Ped7joQLhnY/gNH0SSWkKUgJ.

[Wolper, 1983] Wolper, P. (1983). Temporal logic can be more expressive. Information and Control,
56(1/2):72–99.

[Yamamoto, 2010] Yamamoto, Y. (2010). Twitter4j-a java library for the twitter api.

[Zaharia et al., 2012] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M. J., Shenker, S., and Stoica, I. (2012). Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation, pages 2–2. USENIX Association.

[Zaharia et al., 2013] Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., and Stoica, I. (2013). Dis-
cretized streams: Fault-tolerant streaming computation at scale. In Proceedings of the 24th ACM
Symposium on Operating Systems Principles, pages 423–438. ACM.

A Proofs

We present in this sections the proofs for the theorems presented in the paper.
Theorem 1. Given a formula ϕ ∈ LTLss such that ϕ does not contain variables in temporal connectives,
we have nt(ϕ) = nte(ϕ).

32

https://blog.twitter.com/2015/flying-faster-with-twitter-heron
https://github.com/juanrh/sscheck/releases/tag/0.3.2
https://juanrh.github.io/doc/sscheck/scala-2.10/api
https://github.com/juanrh/sscheck/wiki/Quickstart
http://events.linuxfoundation.org/events/apache-big-data-europe/program/schedule
http://events.linuxfoundation.org/events/apache-big-data-europe/program/schedule
https://etorreborre.github.io/specs2/guide/SPECS2-3.6.2/org.specs2.guide.UserGuide.html
https://etorreborre.github.io/specs2/guide/SPECS2-3.6.2/org.specs2.guide.UserGuide.html
https://groups.google.com/forum/#!msg/scalacheck/Ped7joQLhnY/gNH0SSWkKUgJ
https://groups.google.com/forum/#!msg/scalacheck/Ped7joQLhnY/gNH0SSWkKUgJ

Proof. We prove it by induction on the structure of the formula. The base cases are the formulas for >,
⊥, terms, atomic propositions, and equalities, that are not modified and hence the property holds.

Then, it is easy to see that the property holds for the formulas defining and, or, implication, next, and
consume just by applying the induction hypothesis, since both functions apply the same transformation.

Finally, we need to apply induction on the time used in temporal connectives. We present the proof
for the always connective; the rest of them follow the same schema. For the base case we have:

• nt(�1ϕ) = nt(ϕ).

• nte(�1ϕ) = nte(ϕ) ∧X0nte(ϕ) = nte(ϕ)

This case holds by induction hypothesis in the structure of the formula. Then, assuming nt(♦tϕ) =
nte(♦tϕ), with t ≥ 2, we need to prove nt(♦t+1ϕ) = nte(♦t+1ϕ).

nt(�t+1ϕ) = nt(ϕ) ∧Xnt(�tϕ)
=HI nt(ϕ) ∧Xnte(�tϕ)
=HI (struct) nte(ϕ) ∧Xnte(�tϕ)
=def nte(ϕ) ∧X(nte(ϕ) ∧Xnte(ϕ) ∧ . . . ∧Xt−1nte(ϕ))
= nte(ϕ) ∧Xnte(ϕ) ∧ . . . ∧Xtnte(ϕ)

ut

Lemma 1 Given an alphabet Σ and formulas ϕ,ϕ′ ∈ LTLss , if ∀u ∈ Σ∗.u, 1 � ϕ ⇐⇒ u, 1 � ϕ′ then
∀u ∈ Σ∗,∀n ∈ N+.u, n � ϕ ⇐⇒ u, n � ϕ′.

Proof. Since u ≡ a1 . . . am, m ∈ N, we distinguish the cases n > m and n ≤ m:

n > m It is easy to see for all possible formulas that only ? can be obtained, so the property trivially
holds.

n ≤ m Then we have u′ ≡ an . . . am and, since we know that u′ � ϕ ⇐⇒ u′ � ϕ′, the property holds.
ut

Theorem 2. Given an alphabet Σ, an interpretation A, and formulas ϕ,ϕ′ ∈ LTLss , such that ϕ′ ≡
nt(ϕ), we have ∀u ∈ (Σ× N)∗.u �A ϕ ⇐⇒ u �A ϕ′.

Proof. We apply induction on formulas.
Base case. It is straightforward to see that the result holds for the constants > and ⊥ and for an

atomic predicate p.
Induction hypothesis. Given the formulas ϕ1, ϕ2, ϕ

′
1, ϕ
′
2 ∈ sstl, such that ϕ′1 ≡ nt(ϕ1) and ϕ′2 ≡

nt(ϕ2), we have ∀u ∈ Σ∗.u � ϕi ⇐⇒ u � ϕ′i, i ∈ {1, 2}.
Inductive case. We distinguish the different formulas in LTLss :

• For the formulas ⊥,>, p,¬ϕ1, ϕ1∨ϕ2, ϕ1∧ϕ2, and ϕ1 → ϕ2 is straightforward to see that the result
holds, since the same operators are kept and the subformulas are equivalent by hypotheses.

• For the formula t1 = t2 is straightforward to see that the result holds, since it remains unchanged.

• For the formula λox.ϕ is also straightforward, since by hypothesis the subformula is equivalent and
then the same variables are bound.

• Given the formula Xϕ1, we have to prove that ∀u ∈ Σ∗.u � Xϕ1 ⇐⇒ u � Xϕ′1. This expression
can be transformed using the definition for the satisfaction for the next operator into ∀u ∈ Σ∗.u, 2 �
ϕ1 ⇐⇒ u, 2 � ϕ′1, which holds by hypothesis and Lemma 1.

• Given the formula ♦tϕ1, t ∈ N+, we have to prove that ∀u ∈ Σ∗.u � ♦tϕ1 ⇐⇒ u � ϕ′1 ∨Xϕ′1 ∨
. . . ∨Xt−1ϕ′1. We distinguish the possible values for u � ♦tϕ1:

– u � ♦tϕ1 : >. In this case the property holds because there exists i, 1 ≤ i ≤ t such that
u, i � ϕ1 : >. Hence, u � Xi−1ϕ′1 by hypothesis and the definition of the next operator (note
that for i = 1 we just have u � ϕ′).

– u � ♦tϕ1 : ⊥. In this case ∀i, 1 ≤ i ≤ t, u, i � ϕ1 : ⊥, so we have u � Xi−1ϕ′1 : ⊥ for 1 ≤ i ≤ t
and the transformation is also evaluated to ⊥.

33

– u � ♦tϕ1 : ?. In this case we have u of length n, n < t, and ∀i, 1 ≤ i ≤ n, u, i � ϕ1 : ⊥. Hence,
we have u � Xi−1ϕ′1 : ⊥ for 1 ≤ i ≤ n and u � Xj−1ϕ′1 : ? for n+ 1 ≤ j ≤ t. Hence, we have
⊥ ∨ . . . ∨ ⊥ ∨ ? ∨ . . . ∨ ? = ? and the property holds.

• The analysis for �tϕ1 is analogous to the one for ♦tϕ1.

• Given the formula ϕ1 Ut ϕ2, t ∈ N+, we have to prove that ∀u ∈ Σ∗.u � ϕ1 Ut ϕ2 ⇐⇒ u �
ϕ′2 ∨ (ϕ′1 ∧Xϕ′2)∨ . . .∨ (ϕ′1 ∧Xϕ′1 ∧ . . .∧Xt−2ϕ′1 ∧Xt−1ϕ′2). We distinguish the possible values for
u � ϕ1 Ut ϕ2:

– u � ϕ1 Ut ϕ2 : >. In this case we have from the definition that ∃i, 1 ≤ i ≤ t such that
u, i � ϕ2 : > and ∀j, 1 ≤ j < i, u, j � ϕ1 : >. Hence, applying the induction hypothesis we
have u � ϕ′1 ∧Xϕ′1 ∧ . . . Xi−2ϕ′1 ∧Xi−1ϕ′2 : >, and hence the property holds.

– u � ϕ1 Ut ϕ2 : ⊥.

∗ Case a) ∀i, 1 ≤ i ≤ t.u, i � ϕ2 : ⊥. In this case we have ∀i, 1 ≤ i ≤ t, u, i � Xi−1ϕ′2 : ⊥,
and hence the complete formula is evaluated to ⊥.

∗ Case b) ∃i, 1 ≤ i ≤ t, ∀j, 1 < j ≤ i.u, j � ϕ1 : >, u, j � ϕ2 : ⊥ u, i � ϕ1 : ⊥, and
u, i � ϕ2 : ⊥. In this case we have ∀k, 0 ≤ k < i, u � Xkϕ′2 : ⊥ and u � Xi−1ϕ′1 : ⊥
by inductive hypothesis. Hence, all the conjunctions are evaluated to ⊥ and the property
holds.

– u � ϕ1 Ut ϕ2 : ?. In this case we have u of length n, n < t, ∀i, 1 ≤ i ≤ n, u, i � ϕ2 : ⊥, and
u, i � ϕ1 : >. Hence, the first i conjunctions in the transformation are evaluated to ⊥ by the
induction hypothesis, while the rest are evaluated to ? by the definition of the next operator
and the property holds.

• The analysis for ϕ1 Rt ϕ2 is analogous to the one for ϕ1 Ut ϕ2, taking into account that formula
also holds if ϕ2 always holds.

ut

34

	Introduction
	The problem of testing
	Property-based testing with temporal operators.

	A Logic for Testing Stream Systems
	A Linear Temporal Logic with Timeouts for practical specification of stream processing systems
	A transformation for stepwise evaluation
	Generating words

	sscheck: using LTLss for property-based testing
	Architecture overview
	Verifying AMP Camp's Twitter tutorial with sscheck
	Extracting hashtags
	Counting hashtags
	Getting the most popular hashtag
	Defining liveness properties with the consume operator

	Some additional details about the implementation

	Related work
	Conclusions and future work
	Proofs

