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Abstract. We propose a bidirectional collaboration between declara-
tive debugging and testing for detecting errors in the sequential subset
of the programming language Erlang. In our proposal, the information
obtained from the user during a debugging session is stored in form of
unit tests. These test cases can be employed afterwards to check, through
testing, if the bug has been actually corrected. Moreover, the debugger
employs already existing tests to determine the correctness of some sub-
computations, helping the user to locate the error readily. The process,
contrarily to usual debugger frameworks is cumulative: if later we find
a new bug we have more information from the previous debugging and
testing iterations that can contribute to find the error readily.

1 Introduction

One of the most important underlying ideas of the software development life
cycle [1] is that the assets from one phase can be employed both in the next
phases and in successive iterations of the cycle. For instance, the testing phase
produces test cases that allow checking whether the system satisfies the initial
requirements. If later the system is modified, for instance to improve its efficiency,
the initial tests (or at least part of them) can be employed again to check whether
the initial requirements are still verified.

However, there is a task in the software development cycle that often consti-
tutes the exception to this rule: debugging. In spite of the introduction of tools
that try to automatize the location of errors, debugging is still a manual and
very time-consuming non-trivial task that requires a careful comparison between
the actual and the expected results of some subcomputations. Unfortunately, the
very useful information gathered during a debugging session is usually thrown
away once the debugging session is finished.
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We propose a modification of the general framework followed in declarative
debugging, also known as algorithmic debugging [9], a debugging technique that
asks questions to the user until a bug is found. In our proposal the answers
given by the user are stored in the form of test cases that make persistent the
valuable information obtained during a debugging session. In order to prove the
applicability of the new debugging schema, we have implemented the new schema
in the Erlang Declarative Debugger EDD [3]. The same ideas can enhance any
declarative debugger implemented for a system allowing unit tests.

Furthermore, the relation between debugging and testing can be seen as
a bidirectional collaboration. One of the major complaints about declarative
debugging is the large number of questions asked to the user in order to find the
bug. In our proposals, each question is compared in advance with the existing
test cases, in order to determine if the answer can be entailed without further
assistance from the user. We have observed that this feature is very helpful in
practice, especially if there are more than one bug in the system, since the user
can focus directly on the code affected by the error, disregarding the fragments
of code that have been checked and found correct in previous debugging sessions.

The rest of the paper is structured as follows: Sect. 2 presents our proposal
as a new general debugging framework. Section 3 describes how our tool takes
advantage of test cases to improve declarative debugging, while Sect. 4 shows how
test cases are generated by our declarative debugger. Finally, Sect. 5 concludes
and discusses some lines of future work. The tool EDD, modified to take into
account the generation and use of test cases, is publicly available at https://
github.com/tamarit/edd.

2 A New General Debugging Schema

Declarative debugging is a semi-automatic debugging technique that abstracts
the execution details to focus on results. It can be presented as a general schema
with the following structure:

declarative debugger(initialSymptom) −>
T = execution tree(initialSymptom)
while (|T| �= 1)

pick up a node N in T with N �= root(T)
ask the oracle whether N is valid/invalid
if N is valid:

remove N and its subtree from T
else

T = subtree rooted by N
return root(T)

The debugger starts when the user detects a computation returning an unex-
pected result, the initialSymptom. Then, it builds an execution tree representing
the initial symptom. The nodes of the tree can be depicted with the form C = V ,
with C a computation (function evaluation) and V its computed result. A node
is considered valid if its result is the expected for the associated computation,

https://github.com/tamarit/edd
https://github.com/tamarit/edd
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and invalid otherwise. In particular, the root of the tree represents the compu-
tation of the initial symptom and thus it is invalid. The children of each node
correspond to the subcomputations needed to obtain the result at the parent.
The final goal is to locate a buggy node, an invalid node with valid children. The
fragment of code represented by this node is then considered as the source of
the error, because it has produced an erroneous output from valid inputs (the
children results). Each iteration of the main loop chooses an unknown node N,
possibly following some strategy [10], and asks to the user about its validity.
If N is valid, the subtree rooted by N is removed from the tree. If it is invalid
then the subtree rooted by N becomes the new debugging tree. Observe that
after each iteration the size of the tree decreases, and that in every iteration its
root is invalid. Then, it is possible to ensure that in a finite number of iterations
we will get a tree with only one node (|T| = 1), and that this node is a buggy
node. Both operations, removing subtrees rooted by valid nodes, and replacing
the tree by a subtree rooted by an invalid node, are safe, in the sense that the
tree obtained after the operation contains at least one buggy node, and every
buggy node in the new tree is also buggy in the original tree.

In this paper, we consider EDD [3], a declarative debugger for the sequential
subset of the programming language Erlang [6] that follows this schema. The
nodes of the execution trees in EDD have the form m : f(t1, . . . , tn) = r, with m
the name of an Erlang module, f a function defined in m, t1, . . . , tn the arguments
of a call to f occurred during the computation, and r the computed result. EDD
also debugs anonymous functions, and allows the user inspecting the body of
functions looking for more particular errors [4] but these features are not used
in this paper.

Our proposal extends the initial framework by taking into account exist-
ing test cases and also by generating new test cases following the information
gathered from the user. We distinguish two kinds of test cases:1

– Positive test cases, depicted as ?assertEqual(C,V), indicating that V is the
expected result for computation C.

– Negative test cases ?assertNotEqual(C,V’), indicate that V’ is not the
expected result for C.

The extended framework that we propose is presented in Fig. 1. It takes as
additional input parameter a set of test cases inputTCs, used to decide initially
that some of the nodes of the execution tree are valid or invalid. In particular, the
lines 5 and 6 look for positive test cases that occur in the tree. These nodes are
valid, and their subtrees can be safely removed. Lines 7–10 initialize outputTCs,
the list that stores the new test cases obtained after each question answered
by the user. It takes the initial symptom with its value as first negative test
case if there is not a positive test case for the same call in the initial set of

1 Erlang also supports test cases ?assert(...) with predicates. Our system can han-
dle these test cases when their predicates involve equality or inequality operators,
but we will focus only on ?assertEqual and ?assertNotEqual for simplicity in the
presentation.
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Fig. 1. Declarative debugging with test cases

test cases.2 Line 13 looks for nodes that can be detected as invalid from the
information contained in the test cases. This is the task of the Boolean function
invalidTC defined in lines 29–31, which receives a node and a set of input test
cases and return true if it is possible to determine that the node is invalid from
the information contained in the test cases. As the function indicates, a node in
the tree can be pointed out as invalid in two situations:

1. If there is a positive test case for the same computation but with a different
associated value (then the value contained in the node is not the correct
result).

2. If there is a negative test case for the same computation and for the same
value, that is, the test case indicates directly that the result is unexpected.

2 The positive test case, if exists, indicates that the initial symptom is wrong indicating
also the expected value. This makes the addition of the negative test case redundant.
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It is safe to replace the tree T by the subtree T’ rooted by a node verifying
any of these two conditions. Line 12 of Fig. 1 takes the smallest tree T’ with
these characteristics; although this tree might not be unique, the completeness
property for debugging trees with an invalid root [4] ensures that any of these
trees will reveal an error. This is important, because a smaller tree means, gen-
erally, less questions to the user. The rest of the code is similar to the original
schema. Finally, both the buggy node and the new test cases are returned.

This general idea has been put into practice extending EDD using EUnit
tests [5]. EUnit belongs to the general testing framework family known as unit
testing, a well-established testing methodology that allows users to indicate the
expected values obtained when executing a function with some specific argu-
ments. Thus, the tests generated by EDD can be executed using EUnit, which
allows the user to check that the problem has been actually solved after the error
has been corrected, simply running the generated tests. Notice that the tests will
check not only the main result, that could be checked readily by the user, but
also all the intermediate results obtained during the debugging process. This is
important because correcting an error sometimes introduces inadvertently a new
one. The exhaustive checking of the computation helps to check that this is not
the case. Note also that the tests generated are not affected by code changes since
they are only expressing the intended interpretation of one particular function.

Fig. 2. Code for the quicksort function and its corresponding tests

3 When Declarative Debugging Met Testing

We illustrate these ideas with the quicksort module presented in Fig. 2, which is
an adaptation of the code in [7]. The module contains 3 functions: qs, leq and
partition. The function qs takes as arguments a binary predicate F representing
the notion of order and a list, and returns the list ordered using the QuickSort
algorithm. Lists in Erlang are represented as sequences of elements [E1,. . ., En] or
[H|T] where H is the first element of the list (called head) and T is the rest of the
list (called tail). Erlang also allows the use of tuples, represented as sequences of
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elements enclosed in curly braces: {E1,. . ., En}. As usual in functional languages,
the function qs is defined by two clauses that are tried in top-down order by
applying pattern matching. The first clause (line 3) returns the empty list if the
argument is an empty list. The second clause (lines 4–6) accepts a non-empty
list [E|R], splits the tail R using E as pivot and recursively sort the partitions
A and B. The function leq is simply a wrapper of the predefined operator =<.
Finally, the function partition takes as input parameters an order function F, a
pivot element E and a list and divides the latter into two according to the pivot
and the order function. Notice the usage of a case expression to decide in which
partition the head H must be inserted. The module quicksort includes also a
testing function (quicksort test) defining four simple positive unit tests obtained
from a previous debugging session. The third test in this function (line 21) fails,
hence revealing that there is at least one error. We start the debugging process
by introducing the failing test case in EDD:

> edd:dd(”quicksort:qs( fun quicksort:leq/2, [7,1] )”).

Following the schema of Fig. 1, EDD builds the execution tree corresponding
to this computation, which can be examined in Fig. 3(A),3 and uses the same
test cases to prune the tree, obtaining that nodes 3, 5, 6, and 7 are entailed as
valid (marked with diagonals in the corners) and can be safely removed together
with their subtrees. The pruning of the associated subtrees removes 5 of the 8
initial possible questions, and leaves only the shaded nodes in the debugging
tree. Then, the following question about node 2 is asked to the user:

quicksort:partition(fun quicksort:leq/2, 7, [1]) = {[1], []}? y

The intended meaning of partition is to split the input list ([1]) into two
lists, one containing the elements less than or equal to 7, and another one with
the elements greater than 7. The result of the call is valid so the user answers y
(yes). At this point, after just one user answer, the debugger identifies node 8
as buggy:

Call to a function that contains an error:
quicksort:qs(fun quicksort:leq/2, [7, 1]) = [7, 1]
Please, revise the second clause:
qs(F, [E | R]) −> {A, B} = partition(F, E, R),

qs(F, B) ++ [E] ++ qs(F, A).

The error is in line 6, which should be qs(F, A) ++ [E] ++ qs(F, B). Before
starting the next section we assume that the error has been corrected.

It is important to note that, since EDD is based in a formal semantics, it is
possible to prove the soundness and completeness of the technique. The key point
for proving these properties is the existence of an intended interpretation, that
corresponds with the semantics that the programmer had in mind when imple-
menting the system; by comparing this intended interpretation with the actual
execution we are able to discover the buggy node. In our work, the soundness
and completeness results are easily extended by ensuring that the test cases are
3 Nodes’ modules are not shown for the sake of clarity.
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Fig. 3. Debugging trees of the EDD sessions

a subset of the intended interpretation, that can be used to appropriately prune
the tree before asking the user to answer the rest of the questions. More details
on the proofs are available in [4].

4 When Testing Met Declarative Debugging

The previous debugging session not only finds a bug but it also generates one new
positive test case4 ?assertEqual(partition(fun leq/2, 7, [1]), {[1], [ ]}). As outlined
4 Notice that, as explained in Sect. 2, a negative test case ?assertNotEqual for the root
qs(fun leq/2, [7,1]) is not generated as the test suite already contains a positive test
for it (see line 21 in Fig. 2).
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in the introduction, this test case can be used later in the software development
cycle, as well as by EDD in later debugging sessions. In fact, if we execute the
test cases again after fixing the bug detected in the previous section, we find
out that the fourth unit test of quicksort test (line 22) still fails, indicating that
another bug is hidden in the program:

> quicksort:qs( fun quicksort:leq/2, [ 7, 8, 1 ] ).
[1,7]

Again we start the debugger, using this unit test as initial symptom. In this
case, the execution tree contains 11 nodes—Fig. 3(B)—with 10 potential ques-
tions to be asked. Thanks to the original test suite together with the unit test
case generated in the previous debugging session, the debugger prunes the tree,
keeping only the 3 grey nodes, i.e., 2 potential questions. As explained before,
nodes with diagonals in the corners correspond to valid results w.r.t. the test
cases.

Hence, the debugger presents the following debugging session:

> edd:dd( ”quicksort:qs( fun quicksort:leq/2 , [7,8,1 ] )” ).
quicksort:partition(fun quicksort:leq/2, 7, [8, 1]) = {[1], []}? v
What is the value you expected? {[1],[8]}
quicksort:leq(8, 7) = false? t

Call to a function that contains an error:
quicksort:partition(fun quicksort:leq/2, 7, [8, 1]) = {[1], []}
Please, revise the second clause
partition(F, E, [H | T]) −>

{A, B} = partition(F, E, T),
case F(H, E) of
true −> {[H | A], B};
false −> {A, B}

end.

The first question is about the validity of the partition of [8,1] using 7 as pivot.
The result {[1],[]} is wrong, so the user could simply answer n (no). However,
our debugger introduces a refinement on the schema of Fig. 1. Since positive test
cases are more informative than negative ones and they allow EDD to prune more
nodes, we have introduced in EDD an option (letter v from value) that allows
the user to type the correct value in addition to answering no. This command
produces an ?assertEqual test case instead of the negative one. In this session
the user decides to use this option and indicates that the correct value should
be {[1],[8]}. The second question is answered by the user with t, meaning
trusted. In EDD this answer indicates that the user considers that function leq
is correct so all the nodes containing a call to leq must be marked as valid,
therefore generating as many positive ?assertEqual unit tests as distinct calls to
leq are found in the tree—in this case there are two calls. Finally, EDD points
out to the second error (line 15 in Fig. 2). We realize that the false branch inside
partition is incorrect: the first element H of the list, which is greater than the
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pivot E, must be appended to B. Fixing this second bug will result in replacing
line 15 by false−> {A, [H|B]}.

As well as detecting the buggy function, EDD has extended the test suite
with four unit tests:

?assertEqual(partition(fun leq/2, 7, [1]), {[1], []}),
?assertEqual(partition(fun leq/2, 7, [8, 1]), {[1],[8]}),
?assertEqual(leq(8, 7), false),
?assertEqual(leq(1, 7), true).

Of course, although very useful, employing/generating test can be disabled
in EDD using options:

– not load tests: do not use existing EUnit tests to prune the execution tree.
– not save tests: do not generate EUnit tests from the user answers.

5 Conclusions and Ongoing Work

Debugging is usually a manual task that involves the comparison of the actual
and the expected behavior of the debugged system. Unfortunately, this very
valuable information, which requires a great amount of time and effort, is dis-
carded once the error is found. In fact, debuggers are often considered auxiliary
tools and are not properly integrated in the software development cycle. In this
paper we have shown how to improve this situation by employing an algorithmic
debugger that stores the information extracted from the user during the debug-
ging sessions in the form of unit tests. These tests are especially useful to check
whether the error has been effectively corrected, and can become part of the
tests produced during the testing phase.

Moreover, the result of this fruitful collaboration between testing and algo-
rithmic debugging is also beneficial for the debugger, since the unit tests can
be employed for automatically detecting if some subcomputations are valid or
not, thus reducing the number of questions that the user must consider. The
unit tests employed for this purpose can be both those generated in a previous
debugging session and those produced during the testing phase. We have applied
the new general framework to the EDD, an already existing declarative debugger
for the sequential subset of the programming language Erlang. The result is a
debugger that generates for free and uses unit tests in the format required by
the EUnit tool.

It is worth mentioning that although generated automatically, our test cases
are different from those generated by usual automated test case generators, where
the user needs to examine the generated test suites looking for unit tests pro-
ducing erroneous results. This is known as the oracle problem [2]. In our case,
the test case output is obtained directly from the user during the debugging,
and thus this problem does not occur.

As future work, it would be interesting to use and generate not just spe-
cific tests but properties, as those defined by PropEr [8], a QuickCheck-inspired
property-based testing tool for Erlang. In this way we could further prune the
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debugging tree and store trust answers more accurately. Finally, it would also be
interesting to apply the same framework to different languages, and performing
an extensive experimental work to check the impact of the proposal.
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