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Abstract. Testing is one of the most important and most time-consuming tasks
in the software developing process and thus techniques and systems to generate
and check test cases have become crucial. For these reasons, when specifying
a prototype of a programming language it may be very useful to have a tool
that, beyond testing the semantics of the program, generates test cases for the
programs written in the specified language. In this way, we could use the test
cases generated in the prototyping stage to check the implementation. To build
these prototypes we can use rewriting logic, which has been proposed as a logical
framework where other logics can be represented, and as a semantic framework
for the specification of languages and systems.

In this paper we propose a technique to generate test cases for programs writ-
ten in programming languages specified in Maude, although it can be generalized
to similar languages. In this way Maude becomes an even more powerful proto-
typing language providing a test-case generator (in addition to an interpreter of
the language). The test cases can be generated in two ways: computing a set of test
cases using all the instructions required by a given coverage criterion or trying to
disprove a property over the program. This methodology has been implemented
in a Maude prototype and its use is described by means of an example.
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1 Introduction

Testing is a technique for checking the correctness of programs by means of execut-
ing several inputs and studying the obtained results. Testing is one of the most impor-
tant stages of the software-development process, but it also is a very time-consuming
and tedious task, and for this reason several efforts have been devoted to automate
it [12,3]. Basically, we can distinguish two different approaches to testing: white-box
testing [9,17], that uses the specific statements of the system to generate the most appro-
priate test cases, and black-box testing [26,10,3], that considers the system as a black
box with an unknown structure and where a specification of the system is used to gener-
ate the test cases and check their correctness. When using white-box testing we can also
distinguish between generating ground test cases that are later executed and using test
cases with variables that must be refined by using the program. From the programming-
languages prototyping point of view, it would be interesting to generate test cases for
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programs written in the programming language being prototyped, instead of the stan-
dard approach which generates test cases for the semantics of the language. That is, if
we define, for example, the semantics of Java in a programming language providing
a test-case generator, we could use it for testing that the semantics are defined in the
appropriate way (e.g., the while loop works properly in general), but we could not use
it for testing a program written in Java and executed used this semantics (e.g., does my
sorting method work?). The advantages of having this kind of tool are that (i) test cases
can be obtained in the prototyping stage, executed, and used again once the real system
is implemented, and (ii) since several well-known languages have been already repre-
sented in Maude [15], we can generate test cases for them. The technique presented
here—which can be adapted to any programming language providing features similar
to reflection and narrowing—is, to the best of our knowledge, the first one applying this
“meta-level” approach.

We are especially interested in prototypes of programming languages specified in
Maude [5], a high-level language and high-performance system supporting both equa-
tional and rewriting logic computation. Maude modules correspond to specifications in
rewriting logic [14], a simple and expressive logic which allows the representation of
many models of concurrent and distributed systems. This logic is an extension of equa-
tional logic; in particular, Maude functional modules correspond to specifications in
membership equational logic [2], which, in addition to equations, allows the statement
of membership axioms characterizing the elements of a sort. Rewriting logic extends
membership equational logic by adding rewrite rules, that represent transitions in a con-
current system. Maude system modules are used to define specifications in this logic.
The current version of Maude supports a limited version of narrowing [25], a general-
ization of term rewriting that allows to execute terms with variables by replacing pattern
matching by unification, for some unconditional rewriting logic theories without mem-
berships. As a semantical framework, Maude has been used to specify the semantics
of several languages, such as LOTOS [27], CCS [27], or C [7]. These researches, as
well as several other efforts to describe a methodology to represent the semantics of
programming languages in Maude, led to the rewriting logic semantics project [15],
which presents a comprehensive compilation of these works, and to the development
of K [24], a programming language built upon a continuation-based technique that pro-
vides mechanisms (i) to ease language definitions and (ii) to translate these definitions
into Maude, allowing the programmer to uses its analysis tools.

In previous works we have presented a tool to generate test cases for Maude mod-
ules [19,20]. This kind of tool generates test cases in different ways: they can try to use
all the equations, membership axioms, and rules required by a given coverage criterion;
they can try to falsify a given property; or they can check whether a given Maude sys-
tem module, the implementation, performs the same actions as another Maude system
module, the specification, which has been previously tested and debugged. However,
when specifying other programming languages the user could test the Maude specifi-
cation but not the programs written in that programming language. In this paper we
present a methodology for generating test cases for the programming languages speci-
fied in Maude. In this way, one of the main features of Maude, providing an interpreter
of the language being described for free (obtained because Maude specifications are
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executable) is now extended with a test-case generator for the language being specified.
This tool computes test cases (i) trying to cover all the statements of the sort indicated
by the user (as we will explain later, this is known as global branch coverage), what
means that he can e.g. try to cover all the assignments in imperative languages or all the
equations in functional languages; and (ii) trying to disprove a property over the pro-
gram. As an extra feature obtained from the coverage approach, we can perform static
analysis in the programs written in these languages and check whether all the statements
are reachable, that is, if the program contains dead code.

The rest of the paper is organized as follows: Section 2 presents the related work and
the differences with our approach. Section 3 introduces Maude and narrowing, while
Section 4 describes the methodology followed to test programs whose semantics has
been previously specified in Maude. Section 5 shows how this approach has been im-
plemented in a Maude prototype by means of an example. Finally, Section 6 concludes
and outlines the future work. The source code of the tool, examples, related papers, and
much more information is available at http://maude.sip.ucm.es/testing/ .

2 Related Work

Different approaches to testing have been proposed in the literature. We present in this
section the most similar approaches to ours: testing of imperative languages following
a declarative approach (in the sense that they use a methodology initially designed for
declarative languages) and testing using symbolic execution approaches (like narrow-
ing). We thus rule out from the picture other interesting approaches like conformance
testing [26], which checks that an implementation performs the same actions as a given
specification, because it is very different from the ideas presented here, although we
consider it an interesting subject of future work. Correspondingly, we do not include
the verification of security protocols [13], that symbolically explore the state space try-
ing to find a flaw in the protocol, because they focus on a very specific problem.

An important example of test-case generator initially developed for a functional lan-
guage that has been extended to imperative languages is Quickcheck [4], a tool devel-
oped for Haskell specifications where the programmer writes assertions about logical
properties that a function should fulfill; test cases are randomly generated by using the
constructors of the data type to test and attempt to falsify these assertions. Note that
these test cases are just ground terms used to check whether the properties stated by
the user hold. The project, started in 2000, has been extended to generate test cases for
several languages such as Java, C++, Erlang, and several others following the same ap-
proach. Quickcheck has also inspired other tools like PropEr [18], a test case generator
for Erlang, although we will focus our comparison on Quickcheck.

An interesting symbolic approach is applied by Lazy Smallcheck [23] (an improve-
ment of a previous system called SparseCheck), a library for Haskell to test partially-
defined values that uses a mechanism similar to narrowing to test whether the system
fulfills some requirements. Another way of achieving symbolic execution in a generic
way is by considering that the statements in the program under test introduce con-
straints on the variables, an approach followed by PET (Partial Evaluation-based Test
Case Generation) [11], that uses Constraint Logic Programming to generate test cases
satisfying some coverages on object-oriented languages (focusing on Java bytecode).

http://maude.sip.ucm.es/testing/
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Table 1. Comparison of different test-case generators

Quickcheck Lazy Smallcheck PET MSTCG
Tested language Haskell, C++, Languages

Java, Erlang, Haskell Java bytecode specified
and others in Maude

Type of testing Property-based Property-based Code coverage Property-based
and code coverage

Technique Random testing Narrowing Constraints Narrowing
Other Shrinking Shrinking Breakpoints Shrinking

remarks Best performance Research tool GUI Generic approach
(industrial tool) More coverages Research tool

The comparison between these tools and ours (called MSTCG, from Maude Seman-
tical Test-Case Generator) is outlined in Table 1. Note that we do not include our own
test-case generator for Maude specifications [19], because it would share part of the
features of Quickcheck and Lazy Smallcheck, and thus it would not add any new in-
formation. The table presents the tested language, the focus of the test cases generated
(property-based or code coverage), the mechanism used to generate them, and some
interesting remarks about them; we discuss in the following the main points of this
comparison. Quickcheck is applied to several different languages; however, the tool for
testing each language is implemented specifically and thus it is not generic. From the
features point of view, it provides property-based testing and, since it is an industrial
tool with several heuristics, it presents a better performance than our tool. On the other
hand, an advantage of our tool is the computation of test cases fulfilling a coverage cri-
terion, allowing the user to test the specification by checking test cases “by hand” (that
is, against his intended interpretation) even when no properties over the specification are
stated. Finally, Quickcheck implements a mechanism called shrinking that computes,
for a test-case disproving the property, the smaller one (in terms of constructors) that
also disproves it. Test cases obtained by using symbolic execution provide a similar re-
sult (for both code coverage and property-based testing in our case), due to the fact that
they perform the smallest amount of modifications to the initial terms in order to exe-
cute the given program; in this way, we are sure that the test cases are the smallest ones.
Lazy Smallcheck is very similar to our tool in the sense that both are narrowing-based
experimental tools that focus on research rather than in efficiency, and thus they present
a similar performance; however, this tool is not generic and only applies property-based
testing. Finally, PET is not generic and does not allow the user to state properties over
the program. However, it is more mature than MSTCG and presents many advantages:
its provides a graphical user interface, which allows the user to see which commands
are covered with each test case, put breakpoints in the code that are later used for the
tool, and many other options; and offers more coverage strategies than our approach.

Summarizing, an important point of our approach is that it is generic, in the sense
that any user can define the semantics of a programming language and then generating
test cases for its programs; our tool is to the best of our knowledge the first one of
this kind. It is also important to note that we provide two different techniques: code
coverage and property-based testing, while most tools only provide one of them. The
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strong point of our tool reveals its main weaknesses: (i) it is necessary to specify in
Maude the semantics of the language and (ii) the performance of the tool is low due to
the intensive use of metalevel computation, which takes a great amount of time.

3 Preliminaries

We present in this section the Maude system and its narrowing mechanisms [6].

3.1 Maude

Maude modules are executable rewriting logic specifications. Maude functional mod-
ules [5, Chap. 4], introduced with syntax fmod ... endfm, are executable member-
ship equational specifications that allow the definition of sorts (by means of keyword
sort(s)); subsort relations between sorts (subsort); operators (op) for building val-
ues of these sorts, giving the sorts of their arguments and result, and which may have
attributes such as being associative (assoc) or commutative (comm), for example; mem-
berships (mb) asserting that a term has a sort; and equations (eq) identifying terms.
Both memberships and equations can be conditional (cmb and ceq). Maude system
modules [5, Chap. 6], introduced with syntax mod ... endm, are executable rewrite
theories. A system module can contain all the declarations of a functional module and,
in addition, declarations for rules (rl) and conditional rules (crl).

We introduce Maude modules with an example showing how to define the evalua-
tion semantics of a simple imperative language; the complete specification of this lan-
guage is presented in [27]. In the following, we will call this programming language
the object language to distinguish it from Maude; we will also use this name in general
to refer to any programming language specified in Maude. Assume we have defined
in a module called EVALUATION-EXP-EVAL the syntax of a language with the empty
instruction skip, assignment, If statement, While loop, and composition of instruc-
tions, all of them of sort Com; some simple operations over expressions and Boolean
expressions such as addition and equality; and a state, of sort ST, mapping variables
to values. Using this module we specify the evaluation semantics of this language in
EVALUATION-SEMANTICS, that first defines a Program as a pair of a term of sort Com
and a state:

(mod EVALUATION-SEMANTICS is
pr EVALUATION-EXP-EVAL .
op <_,_> : Com ST -> Program .

The semantics for the assignment are described by the rule AsR, that computes the
value of the expression in the condition and then updates the state of the variables by
substituting the value in the variable with the one computed in the condition:

crl [AsR] : < X := e, st > => < skip, st[v / X] >
if < e, st > => v .

The rules IfR1 and IfR2 describe the behavior of the If statement. If the boolean
condition be reaches the value T (which stands for true) then we execute the Then
branch and return the reached state st’; otherwise, the Else part is executed:
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crl [IfR1] : < If be Then C Else C’, st > => < skip, st’ >
if < be, st > => T /\

< C, st > => < skip, st’ > .
crl [IfR2] : < If be Then C Else C’, st > => < skip, st’ >
if < be, st > => F /\

< C’, st > => < skip, st’ > .

Analogously, WhileR1 and WhileR2 describe the behavior of the while loop:
crl [WhileR1] : < While be Do C, st > => < skip, st >
if < be, st > => F .
crl [WhileR2] : < While be Do C, st > => < skip, st’ >
if < be, st > => T /\

< C ; (While be Do C), st > => < skip, st’ > .

Finally, the rule ComR combines two different computations, using the state reached
in the first one to continue with the second one:
crl [ComR] : < C ; C’, st > => < skip, st’’ >
if < C, st > => < skip, st’ > /\

< C’, st’ > => < skip, st’’ > .
endm)

Given this semantics, we can now write and execute programs of the form:
< If Equal(x, 0) Then y := 0

Else y := 1 ;
If Equal(w, 0) Then z := 0

Else z := 1, st:ST >

where st is a free variable of sort ST (the state) that will be instantiated by the testing
process. We can see now the differences between testing the Maude specification and
testing the imperative program executed by Maude.1 Assuming that in both Maude and
our imperative language the coverage criteria is global branch coverage [9], which re-
quires that all the reachable statements (membership, equations, and rules in the Maude
case; assignments, If, and While statements otherwise) are executed, we would obtain
the following results: the state x = 0, w = 1 would cover all the possible Maude rules
(AsR, IfR1, IfR2, and ComR rules, the rest of the rules are not reachable) but only covers
two assignments y := 0 and z := 1 (and, obviously, the two If statements), that is,
we would need another state (e.g. x = 1, w = 0) to meet the criterion. It is easy to see
that, although the techniques for covering Maude specifications and for programs writ-
ten in another language previously specified in Maude are similar, the rules that must be
applied are different, and thus it is necessary to specify the kind of statements we want
to cover, manipulate the object program to “mark” these statements,2 and indicate for
each Maude rule the statements that are executed. We will see the details in Section 4.

1 In fact, test case generation is even more different between Maude and any other program
written in the given object language, because in Maude we would start with a term containing
only variables, that is, the initial term would be < prog:Com, st:ST >. However, we present
the differences over this partially instantiated term to show that even setting the program the
required coverage is different.

2 In this specific example we want to cover assignments, but note that this methodology also
works for other languages and even other paradigms. For example, in Haskell-like programs
we would want to cover all the cases for all the reachable functions.
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3.2 Narrowing

Narrowing [25,8,16] is a generalization of term rewriting that allows free variables in
terms and replaces pattern matching by unification in order to reduce these terms. It
was first used for solving equational unification problems [22] and then generalized
to deal with problems of symbolic reachability. Similarly to rewriting, where at each
rewriting step one must choose which subterm of the subject term and which rule of the
specification are going to be considered, at each narrowing step one must choose which
subterm of the subject term, which rule of the specification, and which instantiation of
the variables of the subject term and the rule’s lefthand side are going to be considered.
The difference between a rewriting step and a narrowing step is that in both cases we
use a rewrite rule l ⇒ r to rewrite t at a position p, but narrowing unifies the lefthand
side l and the chosen subject term t before actually performing the rewriting step, while
in rewriting this term must be an instance of l (i.e., only matching is required). Using
this narrowing approach, we can obtain a substitution that, applied to an initial term that
contains variables, generates the most general term that can apply the traversed rules.

We denote by t �σ
θ t ′, with σ = q1; . . . ;qn a sequence of labels, the succession of

narrowing steps applying (in the given order) the statements q1; . . . ;qn that leads from
the initial term t (possibly with variables) to the term t ′, and where θ is the substi-
tution used by this sequence, which results from the composition of the substitutions
obtained in each narrowing step. The latest version of Maude includes an implemen-
tation of narrowing for unconditional free, C, AC, or ACU theories in Full Maude [6].
We have improved this implementation by using the techniques described in [20] to use
membership axioms and conditional statements.

4 Using Semantics to Generate Test Cases

We describe in this section the methodology to test programs whose semantics has been
previously specified in Maude. It consists of three steps: identifying the appropriate sort
of statements that must be covered, manipulating the program to mark these statements,
and modifying the Maude rules to indicate the statements applied by each of them. It is
important to state first that the coverage criterion applied to all the programs is global
branch coverage, that tries to apply all the reachable statements, as illustrated above.
Also note that some of the steps explained in this section will be later performed auto-
matically, as shown in Section 5. Note that this approach is only required for coverage
strategies, and hence property checking will be explained later.

The first step relies on the user to indicate the sort of statements that he wants to
cover. In our example, the user should mark Com, the sort for all the possible instructions
(skip, assignment, If conditional, and While loop) as this sort. The second step is
automatically performed by the tool, and consists of “marking” the given program and
each Maude rule with a unique identifier distinguishing the different statements. For
example, the program presented at the end of Section 3.1 would be marked as follows:3

3 In fact, an extra label for the whole program, which will be executed by an application of
the extraInfo-ComR rule, would also be computed. We do not show it here for the sake of
readability.
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< 1If Equal(x, 0)
Then 2y := 0
Else 3y := 1 ;
4If Equal(w, 0)
Then 5z := 0
Else 6z := 1, st:ST>

where the two conditional statements and the four assignments have been labeled with
natural numbers indicating that they are statements of the sort given by the user. The
test-case generator will look for states executing all of these commands. In the same
way, rules have to be modified to deal with this kind of terms by adding variables of
sort Nat (the predefined sort for natural numbers) to each statement of the given sort. In
this way, the rule IfR1 is extended as follows:

crl [extraInfo-IfR1] : <nIf be Then n′C Else n′′C’, st> => <skip, st’>
if < be, st > => T /\

< n′C, st > => < skip, st’ > .

Note that extended rules are renamed by using the prefix extraInfo. We can see now
in the extraInfo-IfR1 rule above that it contains several labeled statements, but not
all of them are executed by the rule: the Else branch is never executed, the Then branch
is executed in the conditions (and thus the execution of this statement is in charge of the
the assignment rule, which will indicate that this statement has been used), and finally
the whole If statement is executed. As we will show in the next section, we provide
a semi-automatic approach to relate rules and executed statements: the tool computes
a mapping following a fixed strategy, that the user can check and edit it if required.
Finally, note that the initial term must also be provided by the user. It must contain at
least one variable, indicating the values of the variables through the execution of the
program, which is instantiated to generate the test cases.

We can use now narrowing to our labeled initial term. Assuming that initial is the
labeled term shown above, we can apply the following narrowing step:

initial�extraInfo-ComR < skip, x = 0 y = 0 w = 0 z = 0 >

after applying the statements 1, 2, 4, and 5, where extraInfo-ComR is a rule that defines
the composition of statements by execution them in the conditions and then putting the
result in the righthand side of the rule. However, this step does not clarify the process
due to the fact that all the important steps are applied in the rewrite conditions. For
this reason, let’s see how the first If statement is executed (note here the importance
of transmitting the label information to the conditions, which requires a careful rule
transformation) by using a narrowing step with the rule extraInfo-IfR1 shown above:

< 1If Equal(x, 0) Then 2y := 0 Else 3y := 1, st >�IfR1

< skip, x = 0 st’ >

It is important to see that the mapping between rules and applied statements com-
puted by the tool indicates that extraInfo-IfR1 applies (covers) the statement labeled
with n in the transformed rule above, which refers to the complete If statement. In this
case n is bound to 1, and thus this rule is executing the first If statement. Again, most
of the information is developed in the rewrite conditions. Although we have not shown
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the rule for the equality, it is easy to see that it requires both values in Equal to be equal
to return T. Hence, in this step we really see how narrowing works, since thus far all
the rules have been applied by using matching instead of unification. In this case, unifi-
cation requires the state to contain the variable x mapped to the value 0, while another
state st’ remains:

< Equal(x, 0), st >�EqR1
st �→ x = 0 st’ < T, x = 0 st’ >

where EqR1 is the rule in charge of the positive case of Equal; note that this rule has not
been modified with respect to the original module because it does not contain statements
of sort Com, and thus its label does not use the extraInfo prefix. Once this first rewrite
condition of extraInfo-IfR1 holds, we try to fulfill to second one, that contains the
statement labeled with 2 in the initial term. Before using narrowing, the substitution
obtained in the previous step is applied:

< 2y := 0, x = 0 st’ >�AsR < skip, x = 0 y = 0 st’’ >

where the new state requires a simple application of narrowing to update the state that
we can omit. The main points in this step, which concludes the execution of the first
If statement, is that the statement labeled with 2 is executed and y = 0 added to the
state. The second If statement can be executed in a similar way to obtain the final state
x = 0 y = 0 w = 0 z = 0. Note that this is the final state reached after executing
the statements 1, 2, 4, and 5, and thus we need now to compute the initial one. For
this reason, our tool also returns the initial states, which consists of the term introduced
by the user with the variables instantiated with the substitution computed during the
narrowing process, in this case it would be st �→ x = 0 y = 0 w = 0 z = 0.

Given the explanation above for the variables, it may seem strange to have the vari-
ables y and z with value 0, since these variables may contain any value and it does not
affect the executed statements, and thus it deserves a careful explanation. In fact, the
rule in charge of updating the state checks whether the variable is already there. If it is
not in the state, what would force the state to be empty, then it is added and it would not
appear in the initial state, but in this case the next statements cannot be applied because
the state does not contain y and the process cannot continue. For this reason, we (as
well as the tool in the next section) have used the rule that forces the state to contain
the variable. Thus, at the end of the process, the term representing the initial state will
contain a value of the form y = N:Nat, with N:Nat a fresh variable. This variable is
instantiated, to ease the readability, with the smaller term of the appropriate sort, which
is the constant 0. The same happens with the remaining variable of sort ST, that would
be named st’’’’, which is substituted with the identity element for states, empty, and
thus disappears.

5 Maude Prototype

We briefly present in this section the Maude prototype and its main commands by using
the example in the previous sections. Much more information about the prototype can
be found at http://maude.sip.ucm.es/testing/.

http://maude.sip.ucm.es/testing/
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5.1 Code Coverage

Once all the modules have been introduced in Full Maude and the tool has been started,
we can indicate the module where testing must take place and the sort of the statements
that we want to cover with the following commands:

Maude> (semantics module EVALUATION-SEMANTICS .)
Module EVALUATION-SEMANTICS selected for semantics testing.
Maude> (set sort statements Com .)
Sort Com selected as sort of statements.

Once these commands are introduced the tool manipulates the rules in the (flattened)
EVALUATION-SEMANTICS module as described in the previous section. We can display
these modified rules with the command (show semantics rules .), but it is worth
seeing the map between the rules and the executed statements. The tool follows a simple
strategy to generate this map that consists of selecting as executed statement the first
term of the given sort found (i) in the lefthand side of the rule, traversed following
a breadth-first search in the tree representing the term; or (ii) in the conditions if the
lefthand side does not contain a term of this sort. Note that, although this strategy is
quite simple, it works very well in practice because, when several statements appear in
a term, the outermost is the one usually applied (e.g. to direct the execution of the inner
ones). The command in charge of showing this information is:

Maude> (show applied statements .)
The rule extraInfo-AsR :
crl < stmntIndx(X:Var := e:Exp,V$#0:Nat),st:ST >
=> < skip,st:ST[v:Num / X:Var]>
if < e:Exp,st:ST > => v:Num .
applies the statement
X:Var := e:Exp identified by the variable V$#0

...

which shows for each rule the associated statement, as in the extraInfo-AsR shown
above, where the new variables have the form V$# to avoid clashes with other variables
in the rule and the operator stmntIndx generates pairs of the given sort and variables.
When the tool fails to associate the appropriate information to a rule, the following
commands can be used:

Maude> (rule Q is not associated to any statement .)
The mapping for rule Q has been updated.
Maude> (rule Q is associated to VL .)
The mapping for rule Q has been updated.

where Q is a rule label and VL is the list of variables identifying the applied statements.
We can now introduce the program we want to test with the following command:

Maude> (object program init .)
Object program introduced.

where init has the form indicated in the previous section (a term with variables instead
of state). It will be reduced by using equations before labeling to allow the user to use
constants instead of big terms in the command line. Assuming that init is the program
described at the end of Section 3.1 and it is labeled as shown in Section 4 (which
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can be checked with the command (show object program .)), the tool can start the
test generation process. However, we may be interested in only covering some of the
statements of the initial coverage (e.g., because we want to know whether a specific one,
such as an exception, is reached). The user can modify the statements in the coverage
with:
Maude> (statements in coverage NL .)
The required coverage has been updated.

where NL is a list of natural numbers indicating the statements to be covered. When
all the options have been set, we can start the testing process. The current version of
the tool only supports, as explained in the previous section, the global branch coverage
strategy, and thus the following result is obtained:
Maude> (start semantics testing .)
2 test cases must be checked by the user:
The program reaches the state < skip, x = 0 y = 0 w = 0 z = 0 >

starting with the substitution st:ST |-> x = 0 y = 0 w = 0 z = 0
and covers the statements 1, 2, 4, 5
The program reaches the state < skip, x = 1 y = 1 w = 1 z = 1 >

starting with the substitution st:ST |-> x = 1 y = 0 w = 1 z = 0
and covers the statements 1, 3, 4, 6
All the statements were covered

Where the variables y and z appear in the initial state for the reasons given in the
previous section. The user would be now in charge of checking whether the reached
states are the expected ones. Remember that an important idea behind this tool is to
use the generated test cases during the prototyping stage to test programs written in the
programming language prototyped in Maude once it is implemented in other language.
In this case, we can introduce the values for the variables in the “real” language and
then check that the results obtained in both cases are equivalent.

5.2 Property-Driven Test-Case Generation

Another very useful way of testing a program is by defining a property and then trying
to find a state where the negation of the property holds, that is, where the property
does not hold. This generic scheme has been studied in [5, Chapter 12] when using
the Maude search command to check invariants; we apply the same idea here with
symbolic search. Note that, since we are just trying to check if the property holds in
all the reachable states we are not concerned about coverages, and thus the module
transformations presented above are not required, although the underlying narrowing
mechanism remains unchanged. It is also important to note that, as explained below, we
take conditions into account when performing this search, thus making this approach
much more powerful than the current narrowing search available in Maude.

The current command is an improvement of a previous command used in [20], where
we provided a command to check whether a property holds in a Maude specification
providing the name of the function we wanted to test, when dealing with functional
modules, or the sort under test, when working with system modules. We have modified
this command to accept terms partially instantiated that, as we have seen above, stand in
our case for programs written in some programming language specified in Maude. For
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the sake of example, we can state a very simple property over the program described
in the previous sections. We can define a function allEq that checks whether all the
variables in a state contain the same values. Since we use the negation of the property,
what we are really checking is that all the reachable states contain at least two different
values, which is incorrect, as we have seen in Section 4. The command for this kind of
testing is:

Maude> (semantics property reaches < skip, st’:ST > s.t. allEq(st’:ST) .)
The property does not hold.
The program reaches the state < skip, x = 0 y = 0 w = 0 z = 0 >

starting with the substitution st:ST |-> x = 0 y = 0 w = 0 z = 0

where the command mimics the standard search command available in Maude and
thus requires a pattern to wrap the reached state and a condition over that pattern;4

note that the initial state is introduced with the command described above for the object
program and thus it is not necessary. An interesting approach using this pattern would
consist of trying to match part of the program, for example related to loops, and then
check that some properties hold before and after the loop. In our case, the pattern is
< skip, st’:ST >, indicating that the program has finished, while the condition is
allEq(st’:ST). As expected, the tool has found a counterexample proving that the
property does not hold, showing the initial and final states.

Observe that, in this kind of analysis it is not necessary to extend the test case (if it
exists) to the implementation. We have proved the program is erroneous and must be
modified; once it is fixed and the property holds, we could use global branch coverage
to test all its possible branches. It is also important to note that, as the rest of testing ap-
proaches, the ones used by our tool are not complete, in the sense that the program may
contain a bug and it cannot be found. To palliate this problem the tool uses a bound in the
number of steps that can be modified by the user with (set narrowing depth N .),
with N a natural number, in order to traverse a bigger search space.

5.3 Implementation Notes

Exploiting the fact that rewriting logic is reflective, a key distinguishing feature of
Maude is its systematic and efficient use of reflection through its predefinedMETA-LEVEL
module [5, Chap. 14], a feature that makes Maude remarkably extensible and that al-
lows many advanced metaprogramming and metalanguage applications. This power-
ful feature allows access to metalevel entities such as specifications or computations
as usual data. In this way, we can manipulate the modules introduced by the user, di-
rect the narrowing process, and implement the input/output interactions in Maude it-
self. More specifically, we are interested in the metaNarrowSearchPath function that,
given a term and a bound on the number of narrowing steps, returns all the possible
paths starting from this term, the used substitutions, and the applied rules. We use this
command to perform a breadth-first search of the state space. Moreover, the test-case
generator is implemented on top of Full Maude [5, Chap. 18], a tool completely writ-
ten in Maude which includes features for parsing, storing modules, and pretty-printing

4 Obviously, if the pattern contains enough information about the reached state the condition
can be nil.
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terms, improving the input/output interaction. Although conceptually our tool uses two
levels of reflection (the meta-represented Maude module standing for the semantics of a
programming language and the program written in this language, which is used to gener-
ate the test cases; this second level is the novelty of our approach), at the implementation
level one reflection level is enough.

It is worth mentioning some important implementation issues. First, and following
the module transformation described in [20], we consider that equations are oriented
from left to right and thus can be transformed into rules (analogously transforming
equational conditions into rewrite conditions with fresh variables), allowing the nar-
rowing process to use equations to refine the variables. Moreover, the current narrowing
commands available in Maude only work with unconditional rules, which prevents us
from using this kind of rules. Since this constraint would exclude most of the language
specifications developed in Maude thus far, we use a mechanism [20] that checks by
using narrowing, for each narrowing step, the rewrite conditions (remember that, as
said above, equational conditions become rewrite conditions), and adds the obtained
substitution to the one obtained with the body of the rule. In this way we can extend the
substitution obtained for the rule with the extra variables that appear in rewrite condi-
tions and may appear, as shown in the example at the end of Section 4, in the righthand
side of the rule. This extension makes the search command used in the previous sec-
tion more powerful than the current narrowing search available in Maude. Finally, we
provide a rule-based definition for some predefined functions, such as _<_ for natural
numbers. They follow the standard definitions distinguishing the different constructors
(0 and successor) of these functions and allow us to apply our technique to a much
wider range of programming languages, that use most of these functions in conditions.

6 Concluding Remarks and Ongoing Work

We have presented a methodology to test programs written in any programming lan-
guage whose semantics has been previously defined. In this way we propose a novel
way to generate test-cases using a meta-level approach, instead of just testing the given
semantics. We use this approach to improve the Maude features as prototyping language
because it provides now, in addition to an interpreter of the language being specified, a
test-case generator for programs written in that language. These test cases can be also
used after prototyping to check that the implementation follows the specification or to
detect dead code. The process to accomplish this generic coverage is semi-automatic:
the user is in charge of indicating the sort of statements he wants to cover and of check-
ing that the rules execute the statements inferred by the tool, modifying them if needed;
the rest of module manipulations is automatically performed by the tool. Finally, we
also allow the user to check whether a property holds in the program.

The work presented in this paper offers a good basis for potential extensions and
enrichment that can improve its usability and generality. We are currently working
on a generic way to modify the output generated by the tool; our goal is to gener-
ate JUnit-like [1] output for each programming language, i.e., an executable program
with assertions written in the object language that allows the user to really test its pro-
gram in the original language. This idea would be an important step to perform testing
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against the specification [10] in a natural and automatic way. Similarly, it is interest-
ing to study how to combine conformance testing [26] with our approach, that is, how
to check that transitions used in the specification are replicated in the implementation.
Moreover, expanding our approach to deal with program definitions specified in the K
framework [24] would also be very useful. This option is not available in the current
version of the tool due to the internal transformations of K, which modifies the form
of the rewrite rules. We also want to provide more coverage criteria in addition to the
global branch coverage criterion presented in this work. However, we require generic
criteria, that is, criteria that can be applied independently of the paradigm of the object
language, which makes the implementation of these criteria far more complicated than
for specific programming languages. It would also be interesting to see how the random
testing approach, successfully followed in other tools like Quickcheck [4], works here.
Furthermore, we plan to extend our declarative debugger [21], that currently presents
the same problem as the previous version of the test-case generator: it can only debug
Maude specifications, but not the object language. Our aim is to develop a universal
declarative debugger that takes as input a program in any object language specified in
Maude, applies the test-case generator presented in this work and, if any of the test
cases reveal an error, debug it with this new debugger. Finally, we want to study how
the test-case generator works for languages with parallelism and synchronization. We
expect the narrowing mechanism to traverse all the possible paths and check, following
the ideas of property-based testing, whether the program fulfills some requirements.
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