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Abstract Erlang is a concurrent language with fea-
tures such as actor model concurrency, no shared mem-
ory, message passing communication, high scalability,
and availability. However, the development of concur-
rent programs is a complex and error prone task. In this
paper we present a declarative debugging approach for
concurrent Erlang programs. Our debugger asks ques-
tions about the validity of transitions between the dif-
ferent points of the program that involve message pass-
ing. The answers, which represent the intended behav-
ior of the program, are compared with the transitions
obtained in an actual execution of the program. The dif-
ferences allow us to detect program errors and to point
out the pieces of source code responsible for the bugs.
In order to represent the computations we present a se-
mantic calculus for concurrent Core Erlang programs.
The debugger uses the proof trees in this calculus as the
debugging trees used for selecting the questions asked
to the user. The relation between the debugging trees
and the semantic calculus allows us to establish the
soundness of the approach. The theoretical ideas have
been implemented in a debugger prototype.

Keywords Concurrency, Declarative Debugging,
Erlang, Semantics

1 Introduction

Concurrent programming has become increasingly preva-
lent in the last years, because it allows programs to
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exploit the great amount of parallelism in current hard-
ware. However, debugging concurrent programs is a com-
plex task [32] that poses additional challenges with re-
spect to sequential programming. In particular, the pro-
grammer must be very careful about the information
that is shared between processes, the execution order,
and even how the information is accessed.

One of the most successful concurrent languages of
the last few years is Erlang [5], a programming language
that combines functional programming (e.g. higher-order
functions and single assignments), with features required
in the development of scalable commercial applications
like garbage collection, built-in concurrency based on
the actor model [2], and hot-swapping of modules. The
language is used as the base of many fault-tolerant, re-
liable software systems. The development of this kind
of systems is a complicated process where tools such as
discrepancy analyzers [31], test-case generators [37,36,
6], and debuggers play an important rôle.

In this paper, we focus on the problem of debugging
Erlang concurrent programs.The standard distribution
of the language already includes a useful trace-debugger
including different types of breakpoints, stack tracing,
graphical watch of processes and messages, and other
features. However, debugging a program is still a diffi-
cult, time-consuming task, and for this reason alterna-
tive or complementary debugging tools are convenient.

The problem when tracing Erlang concurrent com-
putations is to define a suitable notion of computation
step. In the case of Erlang sequential programs there is
a typical notion of computation step: function calls. Us-
ing for instance the Erlang trace debugger, the user can
examine a function call and decide whether the returned
result was expected for the given input values. If the re-
sult is unexpected the call is considered invalid. There
are two possible explanations behind invalid calls: either
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the called function is erroneously defined or it contains
a call to another function that produces an unexpected
result. In previous works [10,11] we have shown how
this idea can be automatized to detect erroneous func-
tion definitions in sequential Erlang programs. Once an
erroneous function has been located, the bodies of its
defining rules can be further examined in order to locate
a more specific error [12].

However, in a concurrent computation the situation
is not so simple, and function calls are no longer the
computation steps that the user needs to examine in
order to find the bug. Maybe the function has returned
the expected value but it has sent and incorrect mes-
sage to some process, or it has ‘forgotten’ to create
a new process. Moreover, waiting until a function re-
turns a value is sometimes unfeasible since concurrent
functions are often defined as non-terminating loops. A
usual structure of a concurrent program, using Erlang
terminology, is:

1. Wait for input messages using a receive state-
ment, until a message matching any of the possi-
bilities enumerated in the receive statement is ac-
cepted.

2. Process the message.
3. Go back to step 1.

On the other hand, trying to depict and trace the
whole bunch of running processes with their respective
interactions can be an overwhelming task.

In this paper, we propose to use concurrent transi-
tions as suitable computation steps for debugging, dis-
tinguishing the following possibilities:

– In absence of message consumption (that is, if no
receive statement is found), we consider the com-
putation of a function result as a computation step.
This is important, because most of the errors in
concurrent programs still occur in the sequential
part [38]. However, in order to adapt to the concur-
rent setting, the result contains not only the final
value but also the messages sent and the processes
created during the transition.

– In the concurrent fragments of the computation, the
computation step is the transition from one receive
statement (the origin of the transition) to either
a final value or the next receive statement (the
destination). This transition consumes one message
and also considers as part of the result the messages
sent and the processes created.

Thus, in our debugging setting we plan to examine
the transitions of each process, giving the user the op-
portunity to indicate whether the transition result is
expected or not. A transition ends in what we call a

medium-sized normal form (mnf ), which can be either
a value or a receive statement.

Formally, our debugger is based on a general tech-
nique known as declarative debugging [42]. Also known
as declarative diagnosis and algorithmic debugging, this
technique abstracts the execution details to focus on
the validity of the results. It has been widely employed
in the logic [42], functional [34], and object-oriented [27]
programming languages. Declarative debugging is a two-
step scheme: it first computes a debugging tree repre-
senting a wrong computation, and then traverses this
tree by asking questions to the oracle (normally the
user, but other sources as unit tests can be used [44])
until the bug is identified. In our case, the debugging
trees correspond to proofs in a semantic calculus for
concurrent Core Erlang programs, the intermediate lan-
guage that Erlang uses to codify all the programs in a
uniform representation. The calculus non-trivially ex-
tends our previous work for sequential programs in [10]
with rules for process creation and message sending/re-
ceiving, elements that will play an important rôle in
the questions asked by the debugger, and also to deal
with configurations of processes instead of simple ex-
pressions.

In our setting, each debugging tree node corresponds
to a transition of a process, possibly involving message
passing and the creation of new processes. A tree node
is considered valid if the transition produced the ex-
pected result, messages, and new processes; and invalid
otherwise. The debugger navigates the tree by asking
questions to the user about the validity of some nodes
until a buggy node—an invalid node with only valid
children—is found, being its associated piece of code
the source of the error.

The main contributions of this paper are:

1. A new semantic calculus for Core Erlang concur-
rent programs, including features like message pass-
ing and process creation. This calculus uses message
outboxes instead of the traditional approach of us-
ing message inboxes. This mitigates the lack of ex-
pressiveness of single-node semantics regarding the
order of messages, as pointed out in [43], and sim-
plifies the debugging task.

2. Since we obtain our debugging trees by using this
calculus, we can prove the soundness and complete-
ness of our approach.

3. A prototype of the declarative debugger for concur-
rent Erlang programs, called EDD (Erlang Declar-
ative Debugger). This prototype, written on top of
our declarative debugger for sequential Erlang, is
written also in Erlang, and allows us to assess the
applicability of our approach. The prototype asks
questions to the user about the validity of the tran-
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sitions relevant for locating the error. Moreover, it
also generates graphical representations showing dif-
ferent perspectives of the computation steps.

4. We can detect errors in non-terminating executions,
such as deadlocks and livelocks. Since our calculus
can infer this kind of situations, a non-terminating
scenario is a possible initial symptom.

The rest of the paper is organized as follows: Sec-
tion 2 explains the basics of the Erlang language and
describes a running example used throughout the pa-
per. Section 3 presents several alternatives (including
EDD) to debug the running example, showing their
strong and weak points. Section 4 explains our debugger
in detail. Section 5 presents the calculus we have tai-
lored for concurrent Core Erlang programs. Section 6
presents the transformations applied to the proof trees
obtained from the semantic calculus to apply declar-
ative debugging, as well as the associated soundness
and completeness results and a description of the er-
rors that can be found. Section 7 presents related work
regarding debugging concurrent systems and semantics
for Erlang. Finally, Section 8 shows the conclusions and
points out the lines of the future work.

2 Erlang

Erlang [5] is a concurrent language following the func-
tional paradigm (including features such as higher-order
functions, 𝜆-abstractions, and single assignment) with
dynamic typing and strict evaluation. Regarding con-
currency, it follows the actor model [2]. It allows to
model problems where different processes communicate
through asynchronous messages, and gives support to
fault-tolerant and soft real-time applications, as well
as to non-stop applications thanks to the so-called hot
swapping.

Erlang supports basic data types such as atoms (iden-
tifiers started by a lowercase letter like ok), Boolean
values (true and false), or float numbers (3, 3.14,
1.12E-10). Unlike other functional languages, it is not
possible to define new algebraic data types in Erlang
programs, and all the data structures must be repre-
sented with tuples and lists. Tuples are sequences of
values between curly braces (e.g. {msg,hello}), while
lists are represented using a Prolog-like syntax, either
as a list of elements (e.g. [1,hello]), or using the
head-tail notation (e.g. [1 | [hello | []]]).

Variables (identifiers started by an uppercase let-
ter) are bound using pattern matching, either directly
(e.g. X=fact(3), {X,Y}=getPoint()), by parameter
passing in functions, or by branching constructions (in
case, receive, or try-catch statements).

Erlang processes have no shared memory and run
in the Erlang Virtual Machine (EVM). As they are
lightweight processes it is possible to have thousands of
them running in the same EVM at the same time [3].

The predefined Erlang function spawn creates a new
process executing a function with some arguments and
returns its process identifier (PID). Process communi-
cation is performed by means of asynchronous message
passing. The content of a message can be any Erlang
value, and are sent using the ! (pronounced bang) op-
erator. For example, to send the message {msg,hello}
to the process PID we write PID ! {msg,hello}. Each
process can read a message that has been sent to it us-
ing the receive...end construction. This instruction
can contain several clauses with a pattern, an optional
guard, and a body. The behavior is the following: it
takes the first (oldest) message and pattern-matches
it against each clause in order. If a successful match
occurs and the guard is fulfilled, it retrieves the mes-
sage, binds the variables of the pattern, and executes
the body. Otherwise, it tries with the next older mes-
sage. If no message matches the pattern and fulfilles the
guard, then the process is suspended until it receives a
new message.

Throughout the rest of the paper we use the run-
ning example of Figure 2 which represents a simplified
version of the connection process in the Transmission
Control Protocol (TCP) [39].

This method, known as three-way handshaking, is
described in the left-hand side of Figure 1. The connec-
tion starts when the client sends a SYN packet and an
initial sequence number 𝑥 to a port open in the server. If
the port is not open the server sends back a packet with
the RST bit on, indicating that the connection has been
rejected (this message is not displayed in the figure). If
the port is open, the server sends a SYN-ACK packet
back to the client, including an acknowledgment num-
ber set to one more than the received sequence number
(𝑥 + 1), and with its own sequence number 𝑦. Finally,
the client replies with an ACK back to the server, with
the sequence number set to the received acknowledge-
ment value (𝑥+1), and the new acknowledment number
to one more than the received sequence number (𝑦+1).
At this point the transmission of data packets can start.

The main function in Figure 2 creates one server
process and two client processes using the spawn calls
of lines 2–4. Each spawn call has 3 arguments: the mod-
ule that contains the code of the process (the macro
?MODULE is expanded to the current module name),
the function that the process will execute (server_fun
and client_fun, respectively), and a list of arguments
passed to that function. In this example the processes
receive as first parameter the identifier of the process to
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client1 

a)                                     b)       
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                                                                  (2) 
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                                                 SYN                         ACK                
                                                                                                  (4)  [data]
                            

server 

client2 

 main 

  ack 

Fig. 1 TCP Three-way handshake

1 main() ->
2 Server_PID = spawn(?MODULE, server_fun, [self(), 50, 500]),
3 spawn(?MODULE, client_fun, [Server_PID, 57, 100, client1]),
4 spawn(?MODULE, client_fun, [Server_PID, 50, 200, client2]),
5 receive
6 {data,D} ->
7 D
8 end.
9

10 server_fun(Main_PID, Port, Seq) ->
11 receive
12 {Client_PID, {syn, Port, SeqCl}} ->
13 Ack_PID = spawn(?MODULE, ack, [Main_PID, Port, SeqCl+1, Seq+1, Client_PID]),
14 Client_PID ! {Ack_PID, {syn_ack, SeqCl+1, Seq}},
15 server_fun(Main_PID, Port, Seq+1) ;
16 {Client_PID, {syn, _, _}} ->
17 Client_PID ! rst
18 % server_fun(Main_PID,Port,Seq+1)
19 end.
20

21 ack(Main_PID, Port, Ack, Seq, Client_PID) ->
22 receive
23 {Client_PID, {ack, Port, Seq, Ack}} ->
24 receive
25 {Client_PID, {data, Port, D} ->
26 Main_PID ! {data, D};
27 _ ->
28 Main_PID ! {data, error_data}
29 end;
30 _ ->
31 Main_PID ! {data, error_ack}
32 end.
33

34 client_fun(Server_PID, Port, Seq, Data) ->
35 Server_PID ! {self(), {syn, Port, Seq}},
36 syn_ack(Port, Data, Seq+1).
37

38 syn_ack(Port, Data, Ack) ->
39 receive
40 rst ->
41 {port_rejected, Port} ;
42 {Ack_PID, {syn_ack, Ack, Seq}} ->
43 Ack_PID ! {self(), {Ack, Port, Seq+1, ack}}, % swap Ack <--> ack
44 Ack_PID ! {self(), {data, Port, Data}},
45 {Seq+1, Ack, Port, Data}
46 end.

Fig. 2 TCP Three-way handshake in Erlang
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which they must report: the server reports to the cur-
rent process—self()—and the clients to the server
process. The second parameter is the port to be used.
The third parameter is an arbitrary number of sequence.
Client processes receive an additional parameter which
here is simply an atom (client1 and client2, respec-
tively), but in general represents the data that each
client will try to transmit. The main function is ex-
pected to return the first data obtained after a suc-
cessful connection, which in this example should be
client2 because the first client tries to connect the
server by the closed port 57. The expected behavior
of the processes is explained in the right-hand side of
Figure 1. In the case of the first client—part a) of the
figure—it is expected that the server replies with RST
to SYN (line 17) because a closed port has been chosen.
The second client—part b)—sends SYN to the server
by the open port 50. Then the server sends SYN-ACK
back (line 14) and creates a new process ack that will
recieve the ACK message and, if the handshake suc-
ceeds, the data from the client. The client sends this
last ACK message and the data (lines 43–44) to this
process, which itself reports to the main process (line
26). However, the program contains two errors. The first
one is indicated by the comment (%) in line 18: the
server should never end because more clients may re-
quest new connections, but there is no recursive call to
server when a closed port is tried. Due to this miss-
ing recursive call, the server ends after attending the
first client, and the second client remains waiting for
SYN-ACK in line 42. Thus, the second client cannot
establish the connection and send its data, and hence
the user observes that the evaluation of the expression
tcp:main() never ends because it is waiting for the
data. The second error, which will be noticeable after
correcting the first one, is that the two parameters ack
and Ack should be interchanged in line 43.

3 Debugging Erlang

In this section we explore different alternatives that an
Erlang programmer could use to detect the cause of the
bugs above, and we present our approach from the point
of view of the programmer. In all the cases the start-
ing point is the same: the programmer expects a ter-
minating program that returns "client2", however,
the program does not terminate and it does not show
anything in the console.

3.1 Debugging by printing

The simplest debugging technique is often the first one
to be tried: instrumenting the code with io:format

expressions to print helpful information. This approach
allows to generate a trace of the program reduced only
to a subset of interesting events. Since the program is
not terminating, it seems convenient to print the start
and end of every function, as well as their parameters
and the process where they are executed. For example
in the server_fun function we insert the following two
expressions:
server_fun(Main_PID, Port, Seq) ->
io:format("START: server_fun(~p,~p,~p) in ~p~n",
[Main_PID,Port,Seq,self()]),

receive
...

end,
io:format("END: server_fun(~p,~p,~p) in ~p~n",
[Main_PID,Port,Seq,self()]).

After instrumenting all the functions, the execution
of the program starting from main() prints:
START: main()
START: server_fun(<0.33.0>,50,500) in <0.40.0>
START: client_fun(<0.40.0>,57,100,client1)

in <0.41.0>
START: client_fun(<0.40.0>,50,200,client2)

in <0.42.0>
START: syn_ack(57,client1,101) in <0.41.0>
START: syn_ack(50,client2,201) in <0.42.0>
END: server_fun(<0.33.0>,50,500) in <0.40.0>
END: syn_ack(57,client1,101) in <0.41.0>
END: client_fun(<0.40.0>,57,100,client1)

in <0.41.0>

The most interesting message is the following:
END: server_fun(<0.33.0>,50,500) in <0.40.0>

The function server_fun finishes, but this behav-
ior is unexpected because the server should continu-
ously listen for connections. Inspecting the code of this
function the programmer could fix the bug in line 18
by inserting the recursive call.

In order to fix the second bug we focus on the first
receive expression of the function ack, since it is the
place where the value error_ack is generated. Con-
cretely, it is very interesting to discover what message is
consumed in line 31. Since the information about func-
tion invocation does not seem very helpful for this bug,
we remove all the START and END print expressions and
modify the ack function:
...
M ->
io:format( "ack(~p,~p,~p,~p,~p) in ~p~n",
[Main_PID,Port,Ack,Seq,Client_PID,self()]),

io:format( "MESSAGE: ~p~n", [M]),
Main_PID ! {data,error_ack}

...
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With these print expressions the program generates
two lines:

ack(<0.33.0>,50,201,501,<0.42.0>) in <0.43.0>
MESSAGE: {<0.42.0>,{201,50,501,ack}}

From the actual arguments of the ack function we
know that, at this point of the handshake, Port is 50,
Ack is 201, and Seq is 501. Moreover, the received
message seems legitimate because it contains the cor-
rect client PID <0.42.0> and a tuple of 4 elements
{201,50,501,ack}, so it should have matched the
pattern in the first branch of the receive expression
(line 23). However, by carefully inspecting the message
and the pattern in the code we discover that the ack
constant is not correctly placed in the message. Since
in this small program the only function that sends ack
messages is syn_ack, a quick scrutiny of its code re-
veals the origin of the bug in line 43.

In summary, we need one execution of the program
with suitable instrumented io:format expressions to
resolve each bug. This debugging approach is simple
and fast, but it presents some disadvantages. The main
drawback is that we have to modify and restore our
program, which is prone to leave useless fragments in
the program. Moreover, the introduction of io:format
expressions must be done with care as we can inad-
vertently change the behavior of the program. For ex-
ample, inserting a io:format as the last expression
of an Erlang clause would change the returned value.
This is critical, as the programmer can end up debug-
ging a different program. Furthermore, the io:format
expressions can introduce delays in the execution that
alter the interleavings between processes and therefore
change the relative order of the messages. As a conse-
quence, the instrumented program can obtain differ-
ent values and even different bugs from the original
program. Finally, although the traces generated are fo-
cused to some relevant events for the considered bug,
programs with a high level of concurrency can produce
very long traces. Finding a hint in traces with hundreds
or thousands of lines can be unfeasible.

At a similar level of functionality to printed traces
we can consider the Erlang Event Trace application.1

This application allows programmers to select which
events to trace during the execution of the program
(messages, function calls, changes in the process status,
etc.) and display them graphically as a sequence chart.
The information in the trace is formatted in a nicer way,
although the technique presents the same drawbacks as
the traditional io:format debugging previously men-
tioned.

1 http://erlang.org/doc/man/et.html

3.2 Built-in Erlang debugger

Another common approach for debugging a program is
using the built-in Erlang debugger2 through either its
graphical interface or from the command line shell. This
powerful debugger provides many useful options like
conditional breakpoints, step-by-step execution inside
one process, a list of all the processes along with their
statuses, and the possibility of inspecting the pending
messages of any process. The debugger supports de-
bugging several modules at the same time, with the
only limitation that they must be compiled with the
debug_info flag. Figure 3 shows a debugging session
of the TCP example where there are 4 active processes
and we execute step-by-step the function server_fun

in process <0.189.0>, which has two pending mes-
sages. Since the program we are debugging is not ter-
minating, it seems convenient to execute step-by-step
all the processes and see how variables and messages
evolve. Thus, we launch the graphical debugger with
the command debugger:start(), load the module,
and add breakpoints in the first expression of the func-
tions that execute the spawned processes: server_fun,
client_fun, and ack. Then we run the goal main()
and open a window for each generated process. Since
the server starts with a receive expression, we ad-
vance the client processes first: we decide to first con-
tinue with client1 and then to client2. At this point
we can switch to the server, which has two pending mes-
sages, and execute the receive expression: it selects
the second branch, sends a rst and terminates. The
server should keep listening to new connections, so we
have spotted the bug in the server_fun function.

Detecting the cause of the second bug is easy as
error_ack messages are only generated in the ack

function. Therefore we add a breakpoint at the begin-
ning of this function and execute the program. When
the execution stops in the breakpoint, we perform some
steps and compare the message received and the pat-
tern of a valid ACK message, detecting that the ack
constant is incorrectly placed inside the message.

Similarly to debugging by printing, we need one ex-
ecution of the program with suitable breakpoints to
detect each bug. The built-in Erlang debugger is very
comfortable, since we can watch the evolution of our
concurrent program state in a step-by-step execution.
However, this is also the main drawback. When we ex-
ecute step-by-step one process and stop the others, we
are implicitly choosing one particular scheduling. This
scheduling can interleave the process and messages in
a different order from the original execution, so the

2 http://erlang.org/doc/apps/debugger/debugger_
chapter.html

http://erlang.org/doc/man/et.html
http://erlang.org/doc/apps/debugger/debugger_chapter.html
http://erlang.org/doc/apps/debugger/debugger_chapter.html
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Fig. 3 Debugging session using the Erlang built-in graphical debugger

values obtained can be different in the debugging ses-
sion. This situation easily arises in our example: if we
choose to first execute the client2 process and then
client1, the server would receive the messages in that
order. The message from client2 uses a valid port
50, so the TCP handshake succeeds and the program
returns {data, error_ack} and finishes. This situ-
ation is completely different from the non-terminating
behavior we were debugging.

As a final comment, popular integrated development
environments for Erlang like Erlide3 come with their
own debuggers integrated. Their usage is more comfort-
able since their are combined with the editor, however,
their capabilities are similar to the built-in Erlang de-
bugger.

3.3 Unit and property-based testing

Another approach that could be used to debug pro-
grams is using unit tests [40]. In this kind of testing,
individual program units (usually functions) are tested
in isolation by comparing the actual output with the
expected one for concrete arguments. Unit testing is

3 http://erlide.org/

integrated in almost every programming language, in-
cluding Erlang with the EUnit [16] testing framework.
In order to test a function, the developer must invoke it
with suitable arguments and then check that the results
are the expected ones by means of assertions. These as-
sertions usually involve the comparison of terms, but
they can also check whether the invocations raise cer-
tain exceptions or errors. EUnit executes automatically
all the tests in a module and shows a summary contain-
ing the number of passed tests. If any test has failed,
it shows the obtained and expected result. This infor-
mation is very useful as it is the initial symptom of a
wrong behavior, however, EUnit does not provide fur-
ther help to detect the fragment of code that caused
the bug.

Let us see how we could use EUnit to detect and fix
the bugs in our TCP example. First, we need to decide
which situations we want to test. Function main() rep-
resents a scenario where there are two connections, one
rejected and one successful, but we should check other
possibilities. In Figure 4 we consider 5 additional situ-
ations: rst for a single rejected connection, connect
for a single successful connection, rst_twice for two
rejected connections, connect_twice for two success-
ful connections, and interleaved for three interleaved
connections (two rejected and one successful in the mid-

http://erlide.org/
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48 tcp_test_() ->
49 [?_assertEqual(client2,main()), rst(), connect(), rst_twice(), connect_twice(), interleaved()].
50

51 get_messages() ->
52 timer:sleep(500), % Wait 0.5s for the latest messages
53 receive
54 M ->
55 [M|get_messages()]
56 after 0 ->
57 []
58 end.
59

60 rst() ->
61 Server_PID = spawn(?MODULE, server_fun, [self(), 50, 500]),
62 A = client_fun(Server_PID, 57, 100, client1),
63 Mbx = get_messages(),
64 [?_assertEqual(A,{port_rejected,57}), ?_assertEqual(Mbx,[])].
65

66 connect() ->
67 Server_PID = spawn(?MODULE, server_fun, [self(), 50, 500]),
68 A = client_fun(Server_PID, 50, 100, client1),
69 Mbx = get_messages(),
70 [?_assertEqual(A,{501,101,50,client1}), ?_assertEqual(Mbx,[{data,client1}])].
71

72 rst_twice() ->
73 Server_PID = spawn(?MODULE, server_fun, [self(), 50, 500]),
74 A = client_fun(Server_PID, 57, 100, client1),
75 B = client_fun(Server_PID, 60, 100, client2),
76 Mbx = get_messages(),
77 [?_assertEqual(A,{port_rejected,57}), ?_assertEqual(B,{port_rejected,60}), ?_assertEqual(Mbx,[])].
78

79 connect_twice() ->
80 Server_PID = spawn(?MODULE, server_fun, [self(), 50, 500]),
81 A = client_fun(Server_PID, 50, 100, client1),
82 B = client_fun(Server_PID, 50, 300, client2),
83 Mbx = get_messages(),
84 [?_assertEqual(A,{501,101,50,client1}), ?_assertEqual(B,{502,301,50,client2}),
85 ?_assertEqual(Mbx,[{data,client1},{data,client2}])].
86

87 interleaved() ->
88 Server_PID = spawn(?MODULE, server_fun, [self(), 50, 500]),
89 A = client_fun(Server_PID, 33, 0, client1),
90 B = client_fun(Server_PID, 50, 100, client2),
91 C = client_fun(Server_PID, 51, 0, client3),
92 Mbx = get_messages(),
93 [?_assertEqual(A,{port_rejected,33}), ?_assertEqual(B,{502,101,50,client2}),
94 ?_assertEqual(C,{port_rejected,51}), ?_assertEqual(Mbx,[{data,client2}])].

Fig. 4 EUnit tests for the TCP three-way handshake example.

dle). Notice that in order to check that the results are
the expected ones we use two sources of information.
First, the value returned by client_fun in line 36: if
the connection is rejected (line 41) then {port_rejected,
Port} is returned, otherwise it returns a tuple with the
sequence numbers, the port, and the data transmitted
(line 45). Secondly, we use the function get_messages
that returns a list of all the pending messages of the
current process, i.e., those messages received and for-
warded by the server to Main_PID in the ack function.

The previous functions are used by tcp_test_()

to create a nested list of assertions that will be checked

by EUnit. We only use equality assertions ?_assertEqual(E,O),
where E is the expected value and O the obtained one.
When we invoke tcp:test() EUnit executes all the
assertions in the testing functions4 of the module tcp
and show a summary of the results. With the origi-
nal code of tcp, however, this invocation does not re-
turn any value since it does not terminate. In order to
detect the source of the bug, we must test each sce-
nario individually, discovering that: a) the assertions in
rst pass, b) connect and connect_twice terminates

4 Functions whose name ends with _test_().
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with some failed assertions, and c) main, rst_twice,
and interleaved do not terminate. This behavior make
us suspect that the problem might reside in how the
server handles connections to closed ports, since ev-
ery scenario with a rejected connection followed by any
other connection does not terminate. This suspicion
leads us to the missing recursive call in line 18 after
inspecting the code.

When we fix the first bug and execute again all the
test, EUnit shows that there still are four assertions
that fail (we show only the first and the last ones):

> tcp:test().
tcp:49: tcp_test_...*failed*
**error:{assertEqual,[{module,tcp},

{line,49},
{expression,"main ( )"},
{expected,client2},
{value,error_ack}]}

output:<<"">>
(...)
tcp:94: interleaved...*failed*
**error:{assertEqual,[{module,tcp},

{line,94},
{expression,"Mbx"},
{expected,[{data,client2}]},
{value,[{data,error_ack}]}]}

output:<<"">>

====================================
Failed: 4. Skipped: 0. Passed: 11.

error

All four failed assertions show a similar symptom:
the mailbox of the main process should contain mes-
sages with the client data but it has only messages with
the constant error_ack. Since error_ack messages
are only generated in line 31 when the received mes-
sage is malformed, a close inspection of the client code
will reveal the bug resides in line 44 when submitting
data messages.

Finally, after fixing the second bug, EUnit reports
that all test cases have passed:

> tcp:test().
All 15 tests passed.
ok

Unit testing is a widely-used testing technique. How-
ever, its main goal is to detect wrong behaviors, so it
cannot directly help developers to debug the code and
identify the source of the problem. As we have shown
with our example, depending on the quality, number,
and granularity of the unit tests, it is possible to have
some hint of the cause of a wrong behavior; however,
they have not been designed for that task. On the other
hand, applying unit testing requires an extra effort of
test creation. Even in our simple example, there are in-
finite possibilities for the port numbers tried, the data
transmitted, and the possible interleavings between re-

jected/successful connections. Therefore, the manual cre-
ation of unit tests is a complex and time-consuming
task.

In order to overcome the mentioned disadvantages
of unit testing QuickCheck [19] appears, mixing ran-
dom and property-based testing. QuickCheck was ini-
tially proposed for Haskell but it has been ported to
many programming languages. The Erlang version, Quviq
QuickCheck [6] has a commercial license, so an open-
source counterpart called PropEr [37,36] has been de-
veloped. The approach of these tools is different from
unit testing: instead of writing tests for concrete sce-
narios, the developer defines general properties that
must be verified and the tool checks them using many
randomly generated values. The commonest properties
have the form ∀𝑥 ∈ 𝑇.𝑃 (𝑥), where 𝑥 is a value of type
𝑇 and 𝑃 (𝑥) is the property to verify on 𝑥. Further-
more, they have also support for stateful systems [7]
where the response of an action depends on the hidden
state, like a distributed database whose responses de-
pend on the previous queries. In stateful systems the
properties are more complex and require that devel-
opers define a state machine to create and update an
abstract state that can be inspected and is consistent
with the real hidden state. These abstract states are
then used to check whether the responses are correct
w.r.t. the current state or not. Another interesting fea-
ture of QuickCheck and PropEr is that when they find
some random value that does not verify the property,
they shrink it to find a minimal symptom.

Let us see how we could use PropEr to debug our
TCP example, which will require to extend the pro-
gram with the code in Figure 5. First, we need to de-
fine the property to verify. For simplicity, we will fo-
cus on the results of single-connection scenarios. We
define a boolean function is_correct_connection

that, given a port SP where the server is listening,
a server sequence number SS, a port CP where the
client will try to connect, a client sequence number CS,
and some data D to transmit; checks whether the re-
sult of client_fun and the received messages are cor-
rect or not. If the server and client port coincide, then
the client must return a 4-tuple containing the incre-
mented sequence numbers and the server must receive
a {data,D} message. Otherwise, the client must re-
turn {port_rejected,CP} and the server must not
receive any messages. Then we define a Boolean func-
tion prop_one_connection that contains the PropEr
property. This property uses the macro ?FORALL(V,G,E)
where V is the pattern that will contain the generated
value, G is the generator of random values, and E is the
Boolean expression to check, usually involving the vari-
ables in V. In line 109 we define a generator of 5-tuples:
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96 is_correct_connection(SP,SS,CP,CS,D) ->
97 Server_PID = spawn(?MODULE, server_fun, [self(), SP, SS]),
98 A = client_fun(Server_PID, CP, CS, D),
99 Mbx = get_messages(),

100 case SP == CP of
101 true ->
102 A == {SS+1,CS+1,SP,D} andalso Mbx == [{data,D}];
103 false ->
104 A == {port_rejected,CP} andalso Mbx == []
105 end.
106

107 prop_one_connection() ->
108 ?FORALL( {SP,SS,CP,CS,D},
109 {integer(10,20),integer(15,25),non_neg_integer(),non_neg_integer(),term()},
110 is_correct_connection(SP,SS,CP,CS,D)).

Fig. 5 PropEr property used to debug single-connection TCP scenarios.

the first 4 elements are integer numbers, whereas the
last element of the tuple is any Erlang term. We use
two integer generators: integer(Min,Max) to gener-
ate port numbers in a range, and non_neg_integer()
to generate non negative sequence numbers. For every
5-tuple generated, is_correct_connection (line 110)
is invoked.

Once we have defined the property, we launch PropEr:

> proper:quickcheck(tcp:prop_one_connection()).
......................................!
Failed: After 39 test(s).
{10,20,10,23,’R\007gro-a’}

Shrinking ....(4 time(s))
{10,15,10,0,0}
false

We obtain a fail after 39 tests, and the value that
does not verify the property is {10,15,10,0,0} after
shrinking, i.e., a situation where both the server and
the client use port 10 and transmit the message 0. Un-
like EUnit, PropEr does not show further detailed in-
formation about what failed, so we need to invoke the
Boolean function again with the found value to detect
which equality is failing. After detecting that the prob-
lem resides in the error_ack message inside Mbx, a
close inspection of the code would reveal the bug prob-
lem in line 44 when submitting data messages.

We know that the TCP example contains two bugs,
but after fixing the first one PropEr passes all the tests:

> proper:quickcheck(tcp:prop_one_connection()).
.........................................
.........................................
..................
OK: Passed 100 test(s).
true

The reason is that the prop_one_connection prop-
erty cannot reproduce the nontermination behavior, as
it arises when the server receives a connection in a

closed port followed by any other connection. There-
fore we would need to create more complex properties
chaining 2, 3, or any list of randomly generated con-
nections. Since we are dealing with nontermination, we
must use the wrapper ?TIMEOUT to consider as failing
those properties whose evaluation needs more time than
a given limit; otherwise PropEr will block and will not
show any information. Using these more complex prop-
erties, PropEr reports only the first shrunk value that
break the property, so detecting the source of the error
from this small information will be harder than in the
EUnit case.

Concluding, random property-based testing frame-
works like PropEr or QuickCheck overcome some lim-
itations of unit testing, however, they require to write
complex properties and particular generators to cover
the desired situations. Moreover, they do not detect the
cause of the bug but discover the values that generate a
wrong behavior regarding a concrete property. In that
sense they are purely testing tools and do not help to
spot the source of the bugs.

3.4 Other automatic testing tools

Although EUnit and QuickCheck/PropEr are the most
popular testing tools in Erlang, we would like to men-
tion other important testing tools. The first tool to
consider is the DIscrepancy AnaLYZer for ERlang pro-
grams (Dialyzer) [31], included in the OTP/Erlang sys-
tem. This completely automatic tool performs static
analysis to identify software discrepancies and bugs such
as definite type errors [41], race conditions [18], un-
reachable code, redundant tests, unsatisfiable conditions,
and more. Although useful in many situations, it cannot
detect any discrepancy in the TCP example:
$ dialyzer tcp.erl
Proceeding with analysis... done in 0m0.32s
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done (passed successfully)

McErlang [23] is a model checking tool [20] for Er-
lang programs. It accepts an Erlang program, which is
the model, and checks its execution against a correct-
ness property. These correctness properties are imple-
mented as monitors: observers that can examine pro-
gram states and actions in order to verify the program.
Monitors are written manually by the developer, or
they can be automatically created from linear temporal
logic [8,20] (LTL) formulas. If McErlang finds an error
in the model, it generates a counterexample (an execu-
tion trace) where the property does not hold. If we want
to use McErlang to debug our TCP example, we must
implement our own monitor or generate it from an LTL
formula. However, since the information that McErlang
provides is an execution trace that does not verify the
property, its debugging capabilities are somewhat lim-
ited: we would need to inspect the code globally using
the hints we could obtain from the counterexample.

Finally, Concuerror [17] is also a model checking
tool, however, its approach is different fromMcErlang’s.
Given an Erlang program and its test suite, Concuerror
systematically explores process interleaving and presents
detailed interleaving information about errors that oc-
cur during the execution of these tests: abnormal pro-
cess exits, stuck processes, and assertion violations. In
this case the developer does not need to provide an
explicit specification of the property to check. An in-
teresting feature of Concuerror is that it does not ex-
plore all the possible interleavings naively, but uses Dy-
namic Partial Order Reduction [1] (DPOR) techniques
to eagerly prune equivalent interleavings. Similarly to
McErlang, applying Concuerror to debug our TCP ex-
ample will only detect the problematic symptoms and
provide some detailed information about the interleav-
ing. For example, executing Concuerror starting from
function interleaved in Figure 4 will detect that all
the processes have finished but one client is blocked in
the receive expression at line 39.

Erroneous interleaving 1:

* Blocked at a ’receive’ (when all other processes
have exited):

P in tcp.erl line 39

Since we do not expect the server to exit, this in-
formation could help us to spot the first bug about the
missing recursive call in the rst case. However, Con-
cuerror cannot help with the second bug: it only in-
forms that the server process is blocked waiting for mes-
sages when all other processes have exited, but this is
the expected behavior. Concuerror cannot find out that
the syn_ack message that clients send to the server
(line 43) is ill-formed, since these messages do not cause

abnormal process exits, stuck processes, or assertion vi-
olations.

3.5 Debugging with EDD

We propose to debug the TCP program of Figure 2
using EDD. As mentioned, this tool guides the debug-
ging session by asking questions about some fragments
of the computation until it finds the source of the er-
ror, namely a function or a receive expression. The
version of EDD that we present here is an extension of
the tool developed for sequential programs [10,13], so it
shows a similar interface and behavior. However, it has
been profoundly modified to handle concurrency: pro-
cess creation, message passing, and receive expres-
sions.

In the rest of this section we show step-by-step how
to use EDD to find the errors in the code of Figure 2. We
will present all the questions with full detail. Although
their length is greater than the other approaches, we
remark that they focus on particular fragments of the
computation and thus they are easy to understand and
answer. In order to debug the TCP program with EDD,
we start the debugger with edd:cdd("tcp:main()",500),
which launches a concurrent debugging session starting
from tcp:main() with a timeout of 500 milliseconds.
The debugger shows then a summary of the processes
(user’s answers are remarked with a box):

**********************************
Pid selection

**********************************
1.- <0.131.0>
First call:
tcp:client_fun(<0.129.0>, 50, 200, client2)

Result:
Blocked because it is waiting for a message

2.- <0.130.0>
First call:
tcp:client_fun(<0.129.0>, 57, 100, client1)

Result:
{port_rejected,57}

3.- <0.129.0>
First call:
tcp:server_fun(<0.127.0>, 50, 500)

Result:
rst

4.- <0.127.0>
First call:
tcp:main()

Result:
Blocked because it is waiting for a message

(...)

Please, insert a PID where you have observed a
wrong behavior: 3

We already know that tcp:main is not working prop-
erly, but the summary provided by EDD can guide us
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to a concrete “suspicious” process to start the debug-
ging session. With this information we are sure that
something is happening with process <0.129.0>. This
process represents the server (it executes the function
tcp:server_fun), so it should keep listening for con-
nections. However, this process has finished with result
rst. Therefore, we select the option 3 to start the de-
bugging session from this process.

After selecting the suspicious process <0.129.0>,
EDD asks the first question:5

Process <0.129.0> called
tcp:server_fun(<0.127.0>, 50, 500).

What is wrong?
1. - Previous evaluated receive:
receive
{Client_PID, {syn, Port, SeqCl}} ->
Ack_PID = spawn(tcp, ack, [Main_PID,
Port, SeqCl + 1, Seq + 1, Client_PID]),

Client_PID ! {Ack_PID, {syn_ack,
SeqCl + 1, Seq}},

server_fun(Main_PID, Port, Seq + 1);
{Client_PID, {syn, _, _}} ->
Client_PID ! rst

end
in tcp.erl:11
Context:
’Client_PID’ = <0.130.0>
’Main_PID’ = <0.127.0>
’Port’ = 50
’Seq’ = 500

Received messages:
{<0.130.0>,{syn,57,100}}
(from <0.130.0> to <0.129.0>)

{<0.131.0>,{syn,50,200}}
(from <0.131.0> to <0.129.0>)

Consumed message:
{<0.130.0>,{syn,57,100}}
(from <0.130.0> to <0.129.0>)

2. - Evaluated to value: rst
3. - Sent messages:

rst (from <0.129.0> to <0.130.0>)
4. - No created processes
5. - Nothing

[1/2/3/4/5/t/d/c/s/p/r/u/h/a]: 2

The first lines show that the question is about the
process <0.129.0>, which invoked tcp:server_fun

with arguments <0.127.0>, 50, and 500. It follows a
list of fragments of the computation and the user must
select the first option that is wrong, or 5 if everything
is correct. The first line states that process <0.129.0>
has reached the receive expression in line 11 with a
particular mapping of variables (called context) and the
set of received messages. EDD also shows the message
that the mentioned receive expression has consumed.
This information seems correct, so we continue with the
next option, which states that process <0.129.0> is
evaluated to rst. The server should not finish with a

5 EDD output has been slightly reshaped to fit in the page.

value but keep listening for new connections, so this
option is wrong. Therefore, we type 2 and obtain a new
question:

Process <0.129.0> evaluated
receive
{Client_PID, {syn, Port, SeqCl}} ->
Ack_PID = spawn(tcp, ack, [Main_PID,
Port, SeqCl + 1, Seq + 1, Client_PID]),

Client_PID ! {Ack_PID, {syn_ack,
SeqCl + 1, Seq}},

server_fun(Main_PID, Port, Seq + 1);
{Client_PID, {syn, _, _}} ->
Client_PID ! rst

end
in tcp.erl:11
What is wrong?
1.- Context:
’Client_PID’ = <0.130.0>
’Main_PID’ = <0.127.0>
’Port’ = 50
’Seq’ = 500

2.- Received messages:
{<0.130.0>,{syn,57,100}}
(from <0.130.0> to <0.129.0>)
{<0.131.0>,{syn,50,200}}
(from <0.131.0> to <0.129.0>)

3.- Consumed message:
{<0.130.0>,{syn,57,100}}
(from <0.130.0> to <0.129.0>)

4. - Evaluated to value: rst
5. - Sent messages:
rst (from <0.129.0> to <0.130.0>)

6. - No created processes
7. - Nothing

[1/2/3/4/5/6/7/t/d/c/s/p/r/u/h/a]: 4

This question focus on the receive expression at
line 11, the same that was mentioned in the first op-
tion of the previous question. This question contains
more details about the receive expression (final re-
sult, sent messages, and created processes) and it asks
us to select the first aspect that is wrong. The context
and received/consumed messages are correct (options
1–3). However, we do not expect the receive expres-
sion to be evaluated to rst. Instead, we expect that
it keeps listening to connections. Therefore, we select
option 4.

After answering the second question, EDD detects
the error in the code:

The error has been detected:
The problem is in pid <0.129.0>
while running receive
receive
{Client_PID, {syn, Port, SeqCl}} ->
Ack_PID = spawn(tcp, ack, [Main_PID,
Port, SeqCl + 1, Seq + 1, Client_PID]),

Client_PID ! {Ack_PID, {syn_ack,
SeqCl + 1, Seq}},

server_fun(Main_PID, Port, Seq + 1);
{Client_PID, {syn, _, _}} ->
Client_PID ! rst
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end
in tcp.erl:11

EDD spots that the origin of the bug is the receive
expression at line 11 using only two questions. That is
indeed the place of the first bug, as the second branch
should invoke server_fun recursively after sending
the rst message.

After fixing the first bug, we still observe an anoma-
lous behavior: the message received is error_ack in-
stead of client2. Therefore, we start a new debugging
session using edd:cdd("tcp:main()", 500) as be-
fore.

**********************************
Pid selection

**********************************
1.- <0.621.0>
First call:
tcp:ack(<0.616.0>, 50, 201, 502, <0.620.0>)

Result:
{data,error_ack}

2.- <0.620.0>
First call:
tcp:client_fun(<0.618.0>, 50, 200, client2)

Result:
{502,201,50,client2}

3.- <0.619.0>
First call:
tcp:client_fun(<0.618.0>, 57, 100, client1)

Result:
{port_rejected,57}

4.- <0.618.0>
First call:
tcp:server_fun(<0.616.0>, 50, 500)

Result:
Blocked because it is waiting for a message

5.- <0.616.0>
First call:
tcp:main()

Result:
error_ack

6.- Choose an event
7.- None

Please, insert a PID where you have observed a
wrong behavior: [1..7]: 6

This time we will start the debugging session by se-
lecting a suspicious event from the communication and
creation diagram. This sequence diagram is generated
by EDD and shows the different concurrent events that
have happened during the execution of the program.
As shown in Figure 6, process creation is represented as
horizontal red arrows, message submission as horizontal
black arrows between processes and message consump-
tion in a receive expression as vertical black arrows
inside a process. We observe that there is a suspicious
error_ack sent in event number 21, so it seems a good
starting point for the debugging session. Therefore we
select option 6 and indicate the event we want to start
from:

**********************************
Select an event from the sequence diagram: 21
Selected event:
Sent message: {data,error_ack}
(from <0.621.0> to <0.616.0>)

Then EDD shows the first question of the debugging
session, concerning process <0.621.0>:

Process <0.621.0> called
tcp:ack(<0.616.0>, 50, 201, 502, <0.620.0>).

What is wrong?
1. - Previous evaluated receive:
receive
{Client_PID, {ack, Port, Seq, Ack}} ->
receive
{Client_PID, {data, Port, D}} ->
Main_PID ! {data, D};

_ -> Main_PID ! {data, error_data}
end;

_ -> Main_PID ! {data, error_ack}
end
in tcp.erl:22

Context:
’Ack’ = 201
’Client_PID’ = <0.620.0>
’Main_PID’ = <0.616.0>
’Port’ = 50
’Seq’ = 502

Received messages:
{<0.620.0>,{201,50,ack,502}}
(from <0.620.0> to <0.621.0>)

{<0.620.0>,{data,50,client2}}
(from <0.620.0> to <0.621.0>)

Consumed message:
{<0.620.0>,{201,50,ack,502}}
(from <0.620.0> to <0.621.0>)

2. - Evaluated to value: {data,error_ack}
3. - Sent messages:
{data,error_ack}
(from <0.621.0> to <0.616.0>)

4. - No created processes
5. - Nothing

[1/2/3/4/5/t/d/c/s/p/r/u/h/a]: 1

Process <0.621.0> executes the ack function that
handles the second part of the connection handshake
of the second client, which has PID <0.620.0> and
uses the correct port 50. As before we must select the
first option that is wrong, or 5 if everything is correct.
It is correct that the process reached the received at
line 22, and the context is legitimate, however, the re-
ceived messages are wrong. In partticular, the first mes-
sage {<0.620.0>,{201,50,ack,502}} is ill-formed:
the constant ack must be the first element of the mes-
sage body, but it appears in the third position. We could
abort the debugging session at this moment and inspect
manually the code trying to detect where ack messages
are submitted. However we will continue with the ses-
sion, and EDD will lead us directly to the code that is
causing the bug.
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Fig. 6 Communication and creation diagram created by EDD for the second debugging session.
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After selecting 1 as the first wrong option, EDD asks
about that particular receive expression:

Process <0.621.0> evaluated
receive
{Client_PID, {ack, Port, Seq, Ack}} ->
receive
{Client_PID, {data, Port, D}} ->
Main_PID ! {data, D};

_ -> Main_PID ! {data, error_data}
end;

_ -> Main_PID ! {data, error_ack}
end

in tcp.erl:22
What is wrong?
1. - Context:
’Ack’ = 201
’Client_PID’ = <0.620.0>
’Main_PID’ = <0.616.0>
’Port’ = 50
’Seq’ = 502

2. - Received messages:
{<0.620.0>,{201,50,ack,502}}
(from <0.620.0> to <0.621.0>)

{<0.620.0>,{data,50,client2}}
(from <0.620.0> to <0.621.0>)

3. - Consumed message:
{<0.620.0>,{201,50,ack,502}}
(from <0.620.0> to <0.621.0>)

4. - Evaluated to value: {data,error_ack}
5. - Sent messages:
{data,error_ack}
(from <0.621.0> to <0.616.0>)

6. - No created processes
7. - Nothing

[1/2/3/4/5/6/7/t/d/c/s/p/r/u/h/a]: 2

**********************************
Which one is not expected?
1. - {<0.620.0>,{201,50,ack,502}}
(from <0.620.0> to <0.621.0>)

2. - {<0.620.0>,{data,50,client2}}
(from <0.620.0> to <0.621.0>)

[1/2/t/d/c/s/p/r/u/h/a]: 1

We answer that the received messages are wrong,
and in the next question we select the ill-formed ack

message (option 1). With this information EDD moves
to the process <0.620.0> (from the initial process in-
formation we know that <0.620.0> is client2) to
continue the debugging session:

Process <0.620.0> evaluated
receive
rst ->
{port_rejected, Port};

{Ack_PID, {syn_ack, Ack, Seq}} ->
Ack_PID ! {self(), {Ack, Port, ack,
Seq + 1}},

Ack_PID ! {self(), {data, Port, Data}},
{Seq + 1, Ack, Port, Data}

end
in tcp.erl:39
What is wrong?
1. - Context:

’Ack’ = 201
’Ack_PID’ = <0.621.0>
’Data’ = client2
’Port’ = 50
’Seq’ = 501

2. - Received messages:
{<0.621.0>,{syn_ack,201,501}}
(from <0.618.0> to <0.620.0>)

3. - Consumed message:
{<0.621.0>,{syn_ack,201,501}}
(from <0.618.0> to <0.620.0>)

4. - Evaluated to value: {502,201,50,client2}
5. - Sent messages:
{<0.620.0>,{201,50,ack,502}}
(from <0.620.0> to <0.621.0>)

{<0.620.0>,{data,50,client2}}
(from <0.620.0> to <0.621.0>)

6. - No created processes
7. - Nothing

[1/2/3/4/5/6/7/t/d/c/s/p/r/u/h/a]: 5

We expect process <0.620.0> to reach the receive
expression at line 39 (which is inside function syn_ack)
and the context, received messages and consumed mes-
sage are correct. However, the first sent message is the
ill-formed ack message, so we select option 5. After
selecting the ill-formed message as the unexpected sub-
mitted message in the next question, EDD locates the
source of the bug in the receive expression at line 39,
i.e., in the syn_ack function:

Which one is not expected?
1. - {<0.620.0>,{201,50,ack,502}}
(from <0.620.0> to <0.621.0>)

2. - {<0.620.0>,{data,50,client2}}
(from <0.620.0> to <0.621.0>)

[1/2/t/d/c/s/p/r/u/h/a]: 1
The error has been detected:
The problem is in pid <0.620.0>
while running receive
receive
rst ->
{port_rejected, Port};

{Ack_PID, {syn_ack, Ack, Seq}} ->
Ack_PID ! {self(), {Ack, Port, ack,
Seq + 1}},

Ack_PID ! {self(), {data, Port, Data}},
{Seq + 1, Ack, Port, Data}

end
in tcp.erl:39

In summary, EDD has detected the exact location
of both bugs using two debugging sessions, one for each
bug. The former is shorter, only two questions, while
the latter requires 5 questions. In both cases we have
selected a suspicious process or event to start the de-
bugging sessions. EDD has guided us to concrete iso-
lated fragments of the computation, namely processes
and receive expressions, whose validity is not triv-
ial but easier to determine than considering the whole
program. Moreover, we have not needed to modify the
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program by instrumenting the code or to define prop-
erties and test cases to find the bugs.

4 EDD

We describe in this section the features of our Erlang
Declarative Debugger, EDD. We describe the intuitive
ideas underlying the debugger, the diagrams generated
to ease the process, the questions performed by the tool,
and the navigation strategies.

4.1 The ideas

The main ideas underlying declarative debugging are:
– A debugging tree representing the erroneous compu-

tation is built. The nodes of this tree represent the
subcomputations that took place during the whole
computation. Although details on this tree can be
found in Section 5, from the user point of view it
is more important to understand the computation
that took place, described in Section 4.2, and the
possible questions, shown in Section 4.3.

– This tree is traversed by using a navigation strategy
and by asking questions to an oracle, usually the
user. These strategies are described in Section 4.4.

– The navigation strategy looks for a node that (i)
is invalid w.r.t. the behavior expected by the oracle
and (ii) has only valid (w.r.t. the expected behavior)
children. This is node the so-called buggy node, and
it must point out the buggy code that generated the
error in the computation. We describe in Section 4.5
the errors detected by EDD.

4.2 The diagrams

As we have introduced in the previous section, debug-
ging concurrent applications is a tough process that re-
quires the user to have in mind a lot of information
about the different processes involved. In order to help
the user EDD provides two different diagrams that can
be used to answer the questions presented in the next
section.

The first of these diagrams is the communication
and creation diagram, as shown in Figure 6 in the pre-
vious section. It displays, for each process, the pro-
cesses created, the messages sent and received, and the
receive expressions executed.

The relation between processes is hierarchically dis-
played in the creation tree, as shown in Figure 7 for
the example in Section 2. This tree depicts more suc-
cinctly the relations between process, helping the user
to understand how processes are created.

4.3 The questions

We have developed EDD taking into account that, in a
concurrent system with several processes, it is too diffi-
cult to apprehend the behavior of the whole system and
hence it is easier for the user to consider the behavior
of each specific process. However, when a process re-
ceives several messages it is also difficult to understand
the complete execution of a process, so it is worth split-
ting it into smaller pieces that the user can easily ex-
amine. Following these premises, we consider a natural
point to stop the execution those pieces of code where
a function “stopped” because it could not progress any
further without external information: receive expres-
sions. Therefore, the questions presented by EDD focus
on steps between these receive expressions, distin-
guishing the sequential part (the computed values) and
the concurrent one (the message received, the messages
sent, and the processes spawned). More specifically, our
debugger asks questions of the form:

– Is this evaluation correct? This question asks whether,
given a function call and the value for its argu-
ments, the following values, obtained when execut-
ing the program, are correct: (i) the reached expres-
sion, which can be either a value or a receive ex-
pression, (ii) the messages sent, and (iii) the pro-
cesses spawned. If all these values are correct then
the node is valid; otherwise the node is invalid.

– Is this transition correct with the given state? This
question evaluates how a function, currently eval-
uating a receive expression, should behave in a
given state when a message is consumed. To sim-
plify the presentation, and taking into account that
Erlang, as described in Section 3, does not guarantee
a certain delivery order when several processes are
involved, EDD only displays the messages received
from the process that sent the consumed message;
we will show in Section 6 that this is enough to de-
bug the system. Hence, EDD presents (i) the values
bound to each variable in scope, (ii) the messages
received thus far, (iii) the consumed message, and
the results obtained once this message is consumed:
(iv) the expression reached, (v) the messages sent,
and (vi) the processes spawned.
If (i) or (ii)6 is found to be invalid by the user EDD
discards the standard navigation strategies presented
below and focuses on the functions that generated
these values, which happened before this execution
took place. If any result in (iii) - (vi) is incorrect
then the node is invalid and the debugging pro-

6 Note that (ii) can be wrong either because more messages
were expected or because some of them are incorrect.
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<0.618.0>
tcp:server_fun(<0.616.0>, 50, 500)

<0.621.0>
tcp:ack(<0.616.0>, 50, 201, 502, <0.620.0>)

<0.620.0>
tcp:client_fun(<0.618.0>, 50, 200, client2)

<0.616.0>
tcp:main()

<0.619.0>
tcp:client_fun(<0.618.0>, 57, 100, client1)

Fig. 7 Creation tree for the example in Section 2, second debugging session.

cess continues with the standard navigation strate-
gies, which will focus on the functions that gener-
ated these results after the question currently asked.
Otherwise, the node is valid.

– Is this receive expression being correctly executed?
Note that the questions above, if found invalid, would
lead the debugger to a buggy function call (revealed
by the first question). However, since receive ex-
pressions are the key feature used by concurrent Er-
lang systems we consider they deserve a more refined
error detection, and hence EDD asks the user ques-
tions about the correctness of these expression. In
particular, EDD presents the same question as the
one described above for a specific receive expres-
sion, and process the answers in the same way.

– Did you expect to reach a deadlock? We find a par-
ticular case of the question above when no messages
can be consumed. In this case EDD presents the
receive expression, including (i) the current state
of the variable and (ii) the messages sent to the cur-
rent process by all processes, and ask the user to
point out whether it is incorrect (i) to have this state
for the variables, (ii) to receive these messages, or
(iii) to fail to consume a message. If (i) or (ii) are
incorrect then EDD focuses on the functions that
generated these values, while for (iii) it focuses in
the receive expression.

4.4 The navigation strategies

The tree can be traversed following different navigation
strategies. EDD implements three different strategies:

Heaviest-first top-down. This strategy starts the navi-
gation from the root and then asks about the cor-
rectness of its children. When an invalid children is
found it is used as new root and, when all the chil-
dren of the current root are correct, then a buggy
node has been found.

Divide and query. This strategy asks in each step about
the correctness of a node rooting a subtree with ap-
proximately half the size of the whole tree. If the
node is correct then the subtree is discarded; other-
wise, the subtree is set as current tree and the rest
is discarded.

Process-directed. This strategy, developed specifically
for EDD, requires the user to point out a process
whose execution went wrong. The debugger will fo-
cus in this process until the error is found or another
process is suspicious (because it sent an unexpected
message), hence changing the focus to this process.

4.5 The detected errors

Buggy nodes point to erroneous parts of the code. EDD
can find the following errors in Erlang programs:

Wrong functions. This error indicates that the body of
a function is buggy. Note that EDD has already dis-
carded errors in the calls performed in this function
and in the receive expressions used, so the user
can focus in the rest of the function.

Wrong receive expressions. This error indicates that
a receive expression (identified by its line in the
source code) is buggy. Since the function calls have
already been checked by EDD, the user must check
whether the patterns, the conditions, or the expres-
sions used in the receive expression are correct.

5 A Calculus for Concurrent Erlang

The debugging tree employed by EDD is obtained from
a proof tree in a suitable semantic calculus for concur-
rent Erlang programs, called CEC (Concurrent Erlang
Calculus) and presented in this section. This calculus
defines the semantics of Core Erlang [14,15], a flattened
and normalized version of Erlang used as an intermedi-
ate step during bytecode compilation.
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5.1 Core Erlang

Core Erlang can be considered as a flat version of Er-
lang where the syntactic constructs have been reduced
by removing syntactic sugar. It is interesting in our con-
text, because it simplifies both the tool implementation
and the theoretical results since they have to deal with
a smaller and more uniform set of syntactic elements.
Moreover, the use of Core Erlang does not impose any
limitation in the debugging process, as the Core con-
structions can always be related back to their original
Erlang fragments.

The complete syntax of Core Erlang and its behav-
ior can be found in [14,15]. A Core Erlang program is
a set of function definitions. Each function is defined
by exactly one rule, so Erlang functions with various
clauses are translated into a single rule that starts with
a case expression that performs the dispatching. Other
difference with Erlang is that in Core Erlang the ar-
guments of function calls and case constructions are
not arbitrary expressions but only values or variables,
which have been previously computed by means of let
expressions. Finally, sequence of Erlang instructions are
translated into nested Core let expressions. Figure 8
shows the translation of the function ack (lines 21–
32 in Figure 2) omitting some irrelevant parts. This
function generates a Core function that takes 5 vari-
ables as arguments: _cor4, _cor3, . . . , _cor0.7 The
sequence of receive expressions is translated as a let
expression—note that the variable _cor5 is not used
in the body of the let. Finally, the Core program ex-
plicitly contains the implicit after clauses of receive
expressions to set timeouts when receiving messages.

5.2 A calculus for concurrent Core Erlang

A process computation in CEC is represented as a tuple
of the form <<pid , ⟨expr , 𝜃⟩, 𝑙>>, where:

– pid is the (unique) process identifier.
– expr is the expression being evaluated in the pro-

cess. Occasionally the notation 𝐸[expr ] is used to
represent evaluation contexts, indicating that the
expression expr is a subexpression of 𝐸.

– 𝜃 is a substitution mapping variables to values and
standing for the context where expr appears. This
substitution is not necessary when the expression is
a value. We denote by id the empty substitution.

– 𝑙 is the outbox for the messages sent by the process
and not received by the addresee yet. It has the form

7 Variables starting with an underscore (_) are generated by
the Erlang-to-Core translation.

𝑙 ≡ [pid1 ! val1 , . . . , pidm ! valm ], indicating the or-
der of the messages, which is important in the case
of multiple repetitions of the same process identifier
pidi in the list.

A set of process computations is called a configuration
in our framework and represented as 𝛱. An impor-
tant idea in CEC is that of medium-sized normal form
(mnf ), which stands for expressions that cannot be fur-
ther reduced by themselves. More specifically, an mnf
can be either a value, represented by val in CEC , or a
tuple ⟨𝑒𝑥𝑝𝑟, 𝜃⟩ with expr is a receive expression, that is
an expression whose leftmost, innermost subexpression
is a receive statement, and 𝜃 is a substitution with
the context for expr . In Core Erlang, receive expres-
sions can only be evaluated in let bindings, thus expr
has the general form expr ≡ let 𝑥1 = (. . . (let 𝑥𝑛 =

receive . . . end in 𝑒𝑛) . . . ) in 𝑒1. Finally, we use ref-
erences in some rules. References are unique identifiers
that point to specific parts of the code, and they can be
understood as a tuple containing the module name, the
line, and the row in the source code; we use them to dis-
tinguish between the actual code and the behavior the
user had in mind when writing the code, as explained in
the next section. The CEC calculus proves three kinds
of statements:

1. 𝛱 ⇒ 𝛱 ′: indicates that the configuration 𝛱 evolves
into 𝛱 ′ by evaluating the processes in 𝛱 and (pos-
sibly) creating new processes.

2. ⟨expr , 𝜃⟩ → (mnf , 𝑙,𝛱), with expr a non-receive
expression, which indicates that expr has reached
the medium-sized normal form mnf , sending the
messages stored in the outbox 𝑙, and creating the
new process computations in 𝛱.

3. ⟨expr , 𝜃⟩ 𝑙,𝑖−→ (mnf , 𝑙′, 𝛱), with expr a receive ex-
pression, which indicates that expr is evaluated to
the medium-sized normal form mnf by receiving the
𝑖th message from an outbox 𝑙.

A special case of the first type inference is 𝛱 ⇒
endlock , meaning that a non-empty subset of the con-
figuration is blocked in receive statements with no
possibility to continue. The third statement type also
has a special case with the form ⟨expr , 𝜃⟩ 𝑙,0−→ lock ,
which indicates that no message can be consumed. Al-
though the three statements occur in the calculus, only
statements two and three are used in the debugging
trees since the validity of statements of type one will
be inferred readily from the validity of statements of
type two and three.

In particular, statements of type two correspond to
non-receive expressions that can be evaluated to mnf
without consuming any message, while the type three
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1 ’ack’/5 =
2 fun (_cor4,_cor3,_cor2,_cor1,_cor0) ->
3 let _cor5 = receive
4 {_cor10,_cor11,’ack’,_cor12,_cor13} when ... ->
5 ’ok’
6 _cor20 when ’true’ ->
7 call ’erlang’:’!’(_cor4, {’data’,’error_ack’})
8 after ’infinity’ ->
9 ’ok’

10 in receive
11 {_cor21,_cor22,’data’,D} when ... ->
12 call ’erlang’:’!’(_cor4, {’data’,D})
13 _cor25 when ’true’ ->
14 call ’erlang’:’!’(_cor4, {’data’,’error_data’})
15 after ’infinity’ ->
16 ’true’

Fig. 8 Translation of the ack function into Core Erlang

stands for receive expressions that progress by consum-
ing a message.

5.3 Matching

In Erlang, variables are bound to values through the
pattern matching mechanism. The result of the follow-
ing syntactic matching function is a substitution 𝜃. The
case where the matching fails is represented by ⊥.

Definition 1 (Syntactic matching)
match(var , val) = [var ↦→ val ]

match(lit1 , lit2 ) = id , if lit1 ≡ lit2
match([pat1 |pat2 ], [val1 |val2 ]) = 𝜃1 ⊎ 𝜃2,

where 𝜃𝑖 ≡ match(pati , vali)

match({pat1 , . . . , patn}, {val1 , . . . , valn}) = 𝜃1⊎. . .⊎ 𝜃𝑛
where 𝜃𝑖 ≡ match(pati , vali)

match(var = pat , val) = 𝜃[var ↦→ val ],
where 𝜃 ≡ match(pat , val)

match(_,_) = ⊥, if none of the previous rules apply.

The operator ⊎ stands for the union of two substi-
tutions with disjunct domain. It verifies:

⊥ ⊎ 𝜃 = 𝜃 ⊎ ⊥ = ⊥

for any substitution 𝜃. Notice that the translation to
Core Erlang generates patterns without duplicated vari-
ables, therefore the substitutions 𝜃𝑖 obtained for com-
pound patterns must have disjoint domains and ⊎ can
be applied. From this definition of match it is easy to
define when a receive branch fails:

Definition 2 (Failing receive branch)
We say that the expression fails(𝑏, val , 𝜃) holds,

with 𝑏 a receive branch of the form

pat when expr -> expr ′

iff 𝜃′ ≡ match(pat𝜃, val) verifies either

1. 𝜃′ =⊥, or
2. 𝜃′ ̸= ⊥, 𝜃′′ ≡ 𝜃 ⊎ 𝜃′, and ‖ expr𝜃′′ ‖→ ’false’

The definition of fails can be extended to check
whether a receive statement fails to accept a mes-
sage of a list of messages, and also to define when a
message in a list is accepted:

Definition 3 (Failing and succeeding receive)
Let 𝑟 be a reference to a receive statement of the

form:
receive pat1 when expr ′1 ->

𝑟1 expr ′′1
. . .

patn when expr ′𝑛 ->𝑟𝑛 expr ′′𝑛 end

and 𝑙 a list of messages, 𝑙 ≡ [val1, . . . val𝑚]. Then we
say that:

– fails(𝑟, val , 𝜃) holds iff every branch 𝑏 in 𝑟,

𝑏 ≡ pat when expr -> expr ′

in 𝑟, verifies that fails(val , 𝑝.𝑟, 𝜃)
– fails(𝑟, 𝑙, 𝜃) holds iff fails(𝑟, val 𝑖, 𝜃) for every 1 ≤

𝑖 ≤ 𝑚.
– succeeds(𝑟, 𝑙, 𝑗, 𝜃) → expr ′𝑘𝜃

′′ holds iff
1. 1 ≤ 𝑗 ≤ 𝑚, 1 ≤ 𝑘 ≤ 𝑛.
2. fails(𝑝.𝑟, [val1, . . . , val 𝑗−1], 𝜃).
3. fails(𝑏𝑖, val 𝑗 , 𝜃) for every 𝑖 = 1 . . . 𝑘 − 1, with 𝑏𝑖

the 𝑖th branch of the receive expression refer-
enced by 𝑟.

4. Let 𝑏𝑘 be the 𝑘th branch of the receive state-
ment referenced by 𝑟,

𝑏𝑘 ≡ patk when exprk -> expr ′𝑘

Then, 𝜃′ ≡ match(pat𝜃, val 𝑗) verifies
– 𝜃′ ̸=⊥,
– 𝜃′′ ≡ 𝜃 ⊎ 𝜃′, and
– ‖ 𝑒𝑥𝑝𝑟𝜃′′ ‖→ ’true’
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(PROC)
⟨expr , 𝜃⟩ → (mnf , 𝑙′, 𝛱′)

𝛱,<<pid , ⟨expr , 𝜃⟩, 𝑙>>⇒ 𝛱,<<pid ,mnf , 𝑙+ 𝑙′>>,𝛱′

(CONSUME1)
⟨expr , 𝜃⟩

𝑙′2,𝑗−→ (mnf ′, 𝑙′, 𝛱′)

𝛱,<<pid1, ⟨expr , 𝜃⟩, 𝑙1>>,<<pid2,mnf2 , 𝑙2>>⇒ 𝛱,𝛱′ <<pid1,mnf ′, 𝑙1 + 𝑙′>>,<<pid2,mnf2 , 𝑙′′2 >>

where 𝑙′2 ≡ 𝑙2|pid1
, 1 ≤ 𝑗 ≤ |𝑙′2|, 𝑖 the position of the 𝑗th message of 𝑙′2 in 𝑙2, 𝑙′′2 is 𝑙2 after removing the 𝑖th message.

(CONSUME2)
⟨expr , 𝜃⟩ 𝑙′,𝑗−→ (mnf ′, 𝑙1, 𝛱′)

𝛱,<<pid , ⟨expr , 𝜃⟩, 𝑙>>⇒ 𝛱,𝛱′ <<pid ,mnf ′, 𝑙′′ + 𝑙1>>

where 𝑙′ ≡ 𝑙|pid , 1 ≤ 𝑗 ≤ |𝑙′|, 𝑖 the position of the 𝑗th message of 𝑙′ in 𝑙, 𝑙′′ is 𝑙 after removing the 𝑖th message.

(Tr)
𝛱 ⇒ 𝛱1 𝛱1 ⇒ 𝛱′

𝛱 ⇒ 𝛱′

(RCV1)
⟨expr1 , 𝜃⟩

𝑙1,𝑗−→ (val , 𝑙, 𝛱) ⟨expr2 𝜃′, 𝜃′⟩ → (mnf , 𝑙′, 𝛱′)

⟨let var = expr1 in expr2 , 𝜃⟩
𝑙1,𝑗−→ (mnf , 𝑙+ 𝑙′, (𝛱,𝛱′))

where 𝜃′ ≡ 𝜃 ⊎ {var ↦→ val}.

(RCV2)
⟨expr1 , 𝜃⟩

𝑙1,𝑗−→ (⟨mnf , 𝜃′⟩, 𝑙, 𝛱)

⟨let var = expr1 in expr2 , 𝜃⟩
𝑙1,𝑗−→ (expr ′, 𝑙, 𝛱)

where mnf is not a value and expr ′ ≡ ⟨let var = mnf in expr2 , 𝜃′⟩.

(RCV3)
succeeds(𝑟, 𝑙, 𝑗, 𝜃) → expr𝜃′ ⟨expr𝜃′, 𝜃′⟩ → (mnf , 𝑙′, 𝛱)

⟨𝑟, 𝜃⟩ 𝑙,𝑗−→ (mnf , 𝑙′, 𝛱)

where val j ∈ 𝑙 and 𝑟 is the reference to a receive statement, and succeeds defined as in Definition 3

Fig. 9 Rules for processes I

5.4 Outboxes versus inboxes

An important novelty of our calculus is that it employs
outboxes for message passing instead of inboxes. The
majority of semantics [22,26,21,45] consider that every
process contains an inbox where incoming messages are
stored. In these semantics, when a Erlang bang (!) in-
struction is executed to send a message 𝑚 to a process
pid , 𝑚 is immediately enqueued to the inbox of pro-
cess pid . In single-node environments this behavior is
acceptable, since the communication delay is insignif-
icant. However, in a distributed system with multiple
nodes, messages can suffer different delays. One of the
fundamental ideas behind Erlang is that message pass-
ing between a pair of processes is assumed to be or-
dered [4], but the behavior of messages from different
processes is not guaranteed, so any possibility must be
supported by the semantic calculus. This distributed
situation is explained in detail in [43] by means of an
example: suppose three processes 𝑃1, 𝑃2, and 𝑃3, each
one running in a different node. Process 𝑃1 sends mes-
sage hello to 𝑃2, and then sends world to 𝑃3. Process
𝑃3 simply resends to 𝑃2 any message that it receives.
The key question is: in this scenario, which message will
arrive first to 𝑃2? In single-node semantics the message
hello will arrive always before world, as it will be

inserted immediately into 𝑃3 mailbox, but in a multi-
node setting any of the two mesagges can be received
first. The semantic calculus presented in this section is
not limited to single-node environments, because sent
messages are inserted into the sender outbox instead of
the destination inbox—see rule (BANG) in Figure 10.
When a process reads a message using the receive

statement, it will fetch the first message destined for it
from any outbox—rules (CONSUME*) in Figure 9. In
the example, when 𝑃3 executes the receive statement
it can fetch hello from the 𝑃1 outbox or world from
𝑃2 outbox, since both process have messages to 𝑃3.

In our setting outboxes are represented as lists with
elements of the form pid ! message. In the example
above, after sending the two messages, hello to 𝑃2

and world to 𝑃3, and assuming that no message has
ben consumed yet, the outbox of 𝑃1 is the list 𝑙 ≡
[𝑃2 ! hello, 𝑃3 ! world]. In the calculus we use the no-
tation |𝑙| to represent the number of elements in an out-
box list, 𝑙+ 𝑙′ to indicate the concatenation, and 𝑙|𝑃 to
indicate the restriction of 𝑙 to the messages for process
𝑃 and containing only the messages, not the addressee.
For instance, in the same example 𝑙|𝑃3 = [world].
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(ENDLOCK)
⟨expr1 , 𝜃1⟩

𝑙′1,0−→ lock . . . ⟨exprk , 𝜃𝑘⟩
𝑙′𝑘,0−→ lock

𝛱 ⇒ endlock

𝛱 ≡<<pid1 ,mnf1 , 𝑙1>>, . . . , <<pidk ,mnfk , 𝑙𝑘>>,<<pidk+1 , valk+1 , lk+1 >>, . . . , <<pidn , valn , ln >>,
𝑘 > 0, 𝑙′𝑖 ≡ 𝑙1 + . . .+ 𝑙𝑛 restricted to messages addressed for pid𝑖 for 𝑖 = 1 . . . 𝑘, and mnfi ≡ ⟨expri , 𝜃𝑖⟩, with 1 ≤ 𝑖 ≤ 𝑘.

(LOCK)
fails(𝑟, 𝑙, 𝜃)

⟨expr [𝑟], 𝜃⟩ 𝑙,0−→ lock

where 𝑟 is reference to a leftmost innermost receive statement to be evaluated in 𝑒𝑥𝑝𝑟 and fails as defined in Definition 3

(SPAWN)
⟨expr1 , 𝜃⟩ → (val1 , 𝑙1, 𝛱1) . . . ⟨exprn , 𝜃⟩ → (valn , 𝑙𝑛, 𝛱𝑛)

⟨spawn(𝑚, 𝑓, [expr1 , . . . , exprn ]), 𝜃⟩ → (pid , 𝑙, 𝛱)

with f defined as f = fun(𝑣𝑎𝑟1, . . . , 𝑣𝑎𝑟𝑛) -> expr , 𝑙 ≡ 𝑙1 + . . . + 𝑙𝑛, 𝛱 ≡ (𝛱1, . . . , 𝛱𝑛, << 𝑝𝑖𝑑, ⟨rf , {var1 ↦→ val1 , . . . , varn ↦→
valn}⟩, []>>), rf a reference to the function f, and pid a new process identifier.

(BANG)
⟨expr1, 𝜃⟩ → (𝑝𝑖𝑑, 𝑙1, 𝛱1) ⟨expr2, 𝜃⟩ → (val , 𝑙2, 𝛱2)

⟨expr1 ! expr2, 𝜃⟩ → (val , 𝑙1 + 𝑙2 + [pid ! val ], (𝛱1, 𝛱2))

Fig. 10 Rules for processes II

5.5 Inference rules

The inference rules defining the CEC calculus are shown
in Figures 9, 10, and 11. To ease the description we only
present the fragment of rules relevant for debugging. A
complete description, including the inference rules deal-
ing with exception propagation, can be found at [9].

Figure 9 presents the rules for evolving processes,
combining steps, and evaluating expressions after re-
ceiving a message. The former may occur by either
evaluating the inner expressions or by consuming a mes-
sage. More specifically, we define the following rules:

– (PROC). This rule indicates how configurations can
evolve by processing non-receive expressions. This
is done by selecting a process pid with a current
non-receive expression, and performing a evalua-
tion step, which yields to a tuple (mnf , 𝑙′, 𝛱 ′). The
values 𝑙′ and 𝛱 ′ refer to the list of messages sent
and the new processes created during the computa-
tion step, respectively. The list 𝑙′ is incorporated to
the output list of pid , while the new processes 𝛱 ′

are included in the configuration set.
– (CONSUME1) and (CONSUME2). Configurations also

evolve when a process that is currently evaluating
a receive expression consumes a message from an
outbox. The rule (CONSUME1) indicates that this
message is taken from the outbox of another pro-
cess, while (CONSUME2) illustrates the case where
the message is taken from the outbox of the same
process that consumes the message (the so called
self messages).

– (Tr). The transitivity rule combines the inferences
for evolving processes and consuming messages.

– (RCV1) and (RCV2). The rules for evaluating receive
expressions take advantage of the Core transforma-

tion sketched before, since this expression is only
nested in let expressions. The rule (RCV1) reduces
the argument in the let expression, when it is eval-
uated to a value, and continues the evaluation with
the body by using the appropriate substitution; oth-
erwise, (RCV2) places the new lock in the let ex-
pression.

– (RCV3). Once the receive statement is reached,
succeeds returns the body of the computed receive
branch that accepts the message j (otherwise this
rule cannot be applied), including 𝜃′ as an extension
of 𝜃 including the binding due to the mathching.
The right-hand side premise of the inference evalu-
ates the expression until it reaches a medium-sized
normal form.

It is important to note that, as (CONSUME*) rules
take from the outboxes the first (oldest) message di-
rected to the process, they guarantee the order of mes-
sages between a pair of processes. They also solve the
problem shown by the example in Section 5.4. In this
example, a possible configuration after 𝑃1 sends mes-
sage hello to 𝑃2, world to 𝑃3, and assuming that no
message has been consumed yet is:

<<𝑃1,mnf 1, [𝑃2 ! hello, 𝑃3 ! world]>>,

<<𝑃2,mnf 2, 𝑙2>>,

<<𝑃3,mnf 3, 𝑙3>>

Figure 10 shows the rules in charge of detecting
deadlocks, as well as the rules for sending messages and
creating processes. More specifically:

– The rule (ENDLOCK) characterizes locks. It requires
that all the processes contain either a value or an
expression in medium-sized normal form which is
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locally locked, that is, there are no messages that
can be accepted by the receive expression that
must be evaluated next.

– The rule (LOCK) is in charge of checking that a par-
ticular process cannot receive any of the messages
addressed to it.

– The rule (SPAWN) shows that a spawn expression is
reduced to the new process identifier, creating a new
process during its execution Note that the evalua-
tion of the subexpressions may generate new mes-
sages and processes, which are added to the final
tuple.

– Similarly, the rule (BANG) indicates that a bang is
evaluated to the sent message, which is also returned
to add it into the outbox.

We present in Figure 11 the main rules for sequential
evaluation:

– Function references are evaluated by the (BFUN)
rule, which just evaluates the reference to the func-
tion with the given substitution for its arguments.
This rule will be invoked by the following (APPLY)
and (CALL) rules and its main goal is to abstract
the actual function application in a common node
of the resulting debugging tree—see Section 6.

– The rule (APPLY) indicates that first we need to ob-
tain the name of the function, which must be defined
in the current module r (extracted from the refer-
ence to the reserved word apply) and then compute
the arguments of the function. Finally the function,
described by its reference, is evaluated using the
substitution obtained by binding the variables in the
function definition to the values for the arguments.

– Similarly, the rule (CALL) evaluates a function de-
fined in another module.

– The rule (LET1) evaluates the inner expression in a
let expression to a value, binds this value to the
appropriate variable, and continues by evaluating
the body of the expression.

– In contrast to the rule (LET1), the rule (LET2) can-
not evaluate the inner expression to a value but a
medium-sized normal form. Hence, it just updates
the expression but does not continue with the body
of the expression.

In the rest of the paper we will use the notation
| 𝑒 | for the translation of the expression 𝑒 to Core Er-
lang. It is extended to medium-sized normal forms as
|val | = val and |⟨expr , 𝜃⟩| = ⟨|expr |, 𝜃⟩, and to configu-
rations as | << pid1, 𝑒1, 𝑙1 >> . . . << pid𝑛, 𝑒𝑛, 𝑙𝑛 >> | =<<

pid1, |𝑒1|, 𝑙1>> . . . <<pid𝑛, |𝑒𝑛|, 𝑙𝑛>>.

5.6 Evaluating expressions using the calculus

We present here a simple example to illustrate how the
calculus works, focusing on how medium-sized normal
forms are obtained and solved. Assume we have the fol-
lowing Erlang program. Here, we implement a dummy
function f that just returns the value computed by g

when using the same parameter as f; g creates a new
process that will execute function i taking as param-
eter the identifier of the process being currently exe-
cuted, keeps the process identifier of this new process,
and then returns the value generated by h when receiv-
ing the same parameter as g and the new pid ; h waits
for a message from the new process created in g and,
once such a message is received, returns the value ob-
tained by adding the message and the input argument;
finally, the function i just sends a tuple with the num-
ber 3 and its own process identifier to the pid received
as argument:

1 f(X) -> g(X) .
2

3 g(X) -> Pid = spawn(?MODULE,i,[self()]),
4 h(X, Pid) .
5

6 h(X, Pid) ->
7 receive
8 {Pid, M} -> M + X
9 end.

10

11 i(X) -> X ! {self(), 3} .

The code above is translated into Core Erlang by
following the ideas discussed in Section 5.1. Function f

just applies function g; function g requires two let ex-
pressions for evaluating the function self(), evaluat-
ing spawn, and finally calling h with variables; function
h is translated as a receive expression with function
calls and a default after branch; finally, function i

uses a let expression for evaluating self() and send-
ing the message using only variables and constants:

1 ’f’/1 = fun (_cor0) -> apply ’g’/1(_cor0)
2

3 ’g’/1 = fun (_cor0) ->
4 let <_cor1> =
5 call ’erlang’:’self’()
6 in let <Pid> =
7 call ’erlang’:’spawn’(’test’,’i’,[_cor1|[]])
8 in apply ’h’/2(_cor0, Pid)
9

10 ’h’/2 = fun (_cor1,_cor0) ->
11 receive <{M,_cor4}>
12 when call ’erlang’:’=:=’(_cor0, _cor4) ->
13 call ’erlang’:’+’(M, _cor1)
14 after ’infinity’ -> ’true’
15

16 ’i’/1 = fun (_cor0) ->
17 let <_cor1> =
18 call ’erlang’:’self’()
19 in
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(BFUN)
⟨𝑒𝑥𝑝𝑟𝜃, 𝜃⟩ → (mnf , 𝑙, 𝛱)

⟨f , 𝜃⟩ → (mnf , 𝑙, 𝛱)

where f references a function f defined as f = fun(𝑣𝑎𝑟1, . . . , 𝑣𝑎𝑟𝑛) -> expr

(APPLY)

⟨expr , 𝜃⟩ → (Atom/𝑛, 𝑙,𝛱)
⟨expr1, 𝜃⟩ → (val1, 𝑙1, 𝛱1) . . . ⟨expr𝑛, 𝜃⟩ → (val𝑛, 𝑙𝑛, 𝛱𝑛)

⟨rf , 𝜃′⟩ → (mnf , 𝑙′, 𝛱′)

⟨apply𝑟 expr(expr1, . . . , exprn), 𝜃⟩ → (mnf ,nl , 𝑛𝛱)

where Atom/n is a function defined in the module r.mod as Atom/n = fun (var1, . . ., var𝑛) -> expr, rf its reference, 𝜃′ ≡
{var1 ↦→ val1, . . . , var𝑛 ↦→ val𝑛}, nl ≡ 𝑙+ 𝑙1 + . . .+ 𝑙𝑛 + 𝑙′, and 𝑛𝛱 ≡ (𝛱,𝛱1, . . . , 𝛱𝑛, 𝛱′).

(CALL)

⟨expr𝑛+1, 𝜃⟩ → (Atom1, 𝑙, 𝛱) ⟨expr𝑛+2, 𝜃⟩ → (Atom2, 𝑙′, 𝛱′)
⟨expr1, 𝜃⟩ → (val1, 𝑙1, 𝛱1) . . . ⟨expr𝑛, 𝜃⟩ → (val𝑛, 𝑙𝑛, 𝛱𝑛)

⟨rf , 𝜃′⟩ → (mnf , 𝑙′′, 𝛱′′)

⟨call expr𝑛+1:expr𝑛+2(expr1, . . . , exprn), 𝜃⟩ → (mnf ,nl , 𝑛𝛱)

where Atom2/𝑛 is a function defined as Atom2/𝑛 = fun (var1, . . ., var𝑛) -> expr in the Atom1 module (Atom1 must be
different from the built-in module erlang), rf its reference, 𝜃′ ≡ {var1 ↦→ val1, . . . , var𝑛 ↦→ val𝑛}, nl ≡ 𝑙+ 𝑙′ + 𝑙1 + . . .+ 𝑙𝑛 + 𝑙′′,
and 𝑛𝛱 ≡ (𝛱,𝛱′, 𝛱1, . . . , 𝛱𝑛, 𝛱′′).

(LET1)
⟨expr1 , 𝜃⟩ → (val , 𝑙, 𝛱) ⟨expr2 𝜃′, 𝜃′⟩ → (mnf , 𝑙′, 𝛱′)

⟨let var = expr1 in expr2 , 𝜃⟩ → (mnf , 𝑙+ 𝑙′, (𝛱,𝛱′))

where 𝜃′ ≡ 𝜃 ⊎ {var ↦→ val}.

(LET2)
⟨expr1 , 𝜃⟩ → (⟨mnf , 𝜃′⟩, 𝑙, 𝛱)

⟨let var = expr1 in expr2 , 𝜃⟩ → (⟨let var = mnf in expr2 , 𝜃′⟩, 𝑙, 𝛱)

where mnf is not a value.

Fig. 11 Rules for sequential Erlang

20 call ’erlang’:’!’(_cor0, {_cor1, 3})

Assume we want to compute the value for f(4). In
our framework, we consider this program is executed in
three steps:

1. f(4) is evaluated while possible, which means that
g(4) is called. In turn, g(4) evaluates self() to
a value, e.g. p1 , creates a new process with ID p2
that will execute i(p1), and calls h(4, p2), which
does not finish because there are no messages for
this process. Note that, right now, the call to f(4)
has been reduced to the receive expression in h.

2. The new process p2 sends the message {p2,4} to
p1 and it is evaluated to {p2,4}.

3. The process p1 receives the message sent in the pre-
vious step, hence evaluating the receive expres-
sion we obtained in the first step.

The proof tree in Figure 12(top) depicts the infer-
ence for ⟨rf , 𝜃0⟩ → mnf , where rf is the reference to
function f, mnf ≡ ⟨receiveℎ, {_cor0 ↦→ p2 ,_cor1 ↦→
4 ⟩, 𝜃0 ≡ {_cor0 ↦→ 4}, and 𝛱 ≡<<p2 , ⟨𝑟𝑖, {_cor0 ↦→
𝑝1}⟩, []>> We briefly describe the different nodes, start-
ing from the root:

– The root applies the rule (BFUN) to evaluate the
reference to the function f.

– Since the body of the function f corresponds to
the application of another function, we use the rule
(APPLY) to evaluate it.

– The rule for applying a function first reduce the
function name (’g’/1) and the parameters (4). Since
this inference is trivial in this case, we have substi-
tuted the corresponding trees by ▽0 and ▽1, re-
spectively. The third premise required by the rule
requires to evaluate the reference to g.

– In this case, the body of the function g consists of a
let expression (identified as let4 because it is the
let expression located in line 4 in the core program
above) whose argument can be fully evaluated, so it
is inferred with the (LET1) rule.

– The argument of the let expression is evaluated to
a value (p1 , abbreviated in the subtree ▽3) while its
body is another let expression (identified as let6,
since it is located at line 6. Hence, we have 𝜃1 ≡
𝜃0 ∪ {_cor1 ↦→ p1} for evaluating let6 with the
rule (LET1).

– This inference is computed by first using (SPAWN)
for generating a new process and then using (APPLY)
with the substitution 𝜃2 ≡ 𝜃1 ∪ {PID ↦→ p2}.

– Finally, using the substitution 𝜃3 ≡ {_cor0 ↦→ pid2 ,

_cor1 ↦→ 4} we can apply (BFUN), which just sub-
stitutes the call to the function by its body.
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The proof tree in Figure 12(bottom) continues the
execution by evaluating the function in process 𝑝2:

– The (PROC) rule evaluates the reference generated
by spawn in the previous computation.

– As described for the previous tree, the (BFUN) rule
substitutes the reference by the body of the function
in the premises to compute the final result. Since in
this case we have a let expression, we will use the
rule (LET1).

– The rule (LET1) evaluates self() (in ▽4) and then
evaluates the bang expression with the substitution
𝜃4 ≡ {_cor0 ↦→ 𝑝1, {_cor1 ↦→ 𝑝2}.

– Finally, the message is sent just by evaluating the
expressions to be sent, the atoms 3 and 𝑝2, which is
computed in ▽5 and ▽6, respectively.

Finally, we sketch the final tree in Figure 13, where
we reuse the variables for substitutions, expressions,
and configurations from Figure 12. We also use 𝑇1 for
the tree in Figure 12(top), 𝑇2 for the tree in Figure 12(bot-
tom), 𝛱𝑖 ≡<<𝑝1,𝑚𝑛𝑓, []>><<𝑝2, {3, p2}, 𝑝1 ! {3, p2}>>,
and 𝛱𝑓 ≡<< 𝑝1, 7, []>><< 𝑝2, {3, p2}, 𝑝1 ! {3, p2}>>. In
this tree we just use the transitivity rule to put to-
gether the steps explained above for this program. First
we evaluate the function in the initial process, then
we evaluate the new process, and finally we consume
the message by using (CONSUME1). Note that we use
(RCV3), where 𝑙 ≡ [𝑝1 ! {3, p2}], to consume the only
message in the list. The tree ▽7 is used to compute
succeeds, while ▽8 evaluates the final expression.

6 Theoretical Basis

In this section we define formally the errors that our
proposal can detect and the correctness of the proposal.
This is done by defining first the concept of intended
interpretation, represented as ℐ, which corresponds to
the behavior expected by the user for the basic pieces
of the program. Choosing these basic pieces is impor-
tant. On the one hand, small pieces of code can lead to
very precise errors, but also to a large number of com-
plicated questions during the debugging session. On the
other hand, if the piece of code is very large, debugging
sessions would be easier but the error would not very
informative.

In the case of distributed Erlang programs we choose
two basic pieces of code: user functions and receive
statements. In the following we denote by 𝑓 a refer-
ence to a user function, by 𝑟 a reference to a receive
statement, and by 𝑝 either 𝑟 or 𝑓 .

We assume that the user knows the expected behav-
ior of these pieces. This behavior is then extrapolated
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(Tr)

(PROC)
𝑇1

<<𝑝1, ⟨𝑟𝑓 , 𝜃0⟩, []>>⇒<<𝑝1,𝑚𝑛𝑓, []>> 𝛱
(Tr)

𝑇2

(CONSUME1)

(RCV3)
▽7 ▽8

mnf
𝑙,0−→ (7, [], ∅)

𝛱𝑖 ⇒ 𝛱𝑓

<<𝑝1,𝑚𝑛𝑓, []>> 𝛱 ⇒ 𝛱𝑓

<<𝑝1, ⟨𝑟𝑓 , 𝜃0⟩, []>>⇒ 𝛱𝑓

Fig. 13 Proof tree for the inference <<𝑝1, ⟨𝑟𝑓 , 𝜃0⟩, []>>⇒ 𝛱𝑓

to complete programs by suitable calculi ICEC pre-
sented in this section. The discrepancies between the
results produced by the program, represented by CEC

and the results expected by the user, represented by
ICEC , define the buggy parts of the program.

6.1 Intended Interpretations

The intended interpretation of a program 𝑃 is defined
as the union of two sets:

ℐ = ℐfun ∪ ℐrcv

The first set defines the expected values for function
calls, and has the form:

ℐfun = {. . . , ⟨f , 𝜃⟩ → (mnf , 𝑙,𝛱), . . .} where

– f is a reference to a function defined as
f/n = fun ( var1 , . . ., var𝑛 ) -> exprs.

– The domain of the substitution 𝜃 must be {var1,
. . . , var𝑛}.

Thus, ℐfun contains the results expected for any pos-
sible function call to program functions. This notion
can be easily extended to lambda abstractions, which
are not discussed here por simplicity. The other set con-
forming ℐ refers to the intended behavior of receive
expressions and it is a set union of the form:

ℐrcv =
⋃︁

⟨ 𝑝.𝑟, 𝑙, 𝜃 ⟩

ℐ⟨ 𝑝.𝑟, 𝑙, 𝜃 ⟩

With 𝑝 any program piece of code, 𝑟 any receive

statement reachable from 𝑝 during a computation, 𝜃

a variable substitution, and 𝑙 a list of incoming mes-
sages. ℐ⟨ 𝑝.𝑟, 𝑙, 𝜃 ⟩ represents the expected behavior of 𝑝
when stopped in 𝑟 and in a presence of the incoming
messages 𝑙. As usual, 𝜃 represents the context, that is,
the binding of variables in 𝑝.𝑟 occurred so far.

Asuming that 𝑙 is the incoming list for the process
computing 𝑝.𝑟, we can distinguish two possible forms
for each set ℐ⟨ 𝑝.𝑟, 𝑙, 𝜃 ⟩:

1. Ipr = {ℐfails(𝑟, 𝑙, 𝜃)} if the user expected the pro-
cess to be blocked.

2. Ipr = {ℐsucceeds(𝑝.𝑟, 𝑙, 𝑗, 𝜃) → (mnf , 𝑙′, 𝛱)} if the
computation of 𝑝 is expected to continue consuming
the 𝑗th message of 𝑙, reaching the new medium-sized
normal form mnf , producing in between the list of
output messages 𝑙′, and the new processes 𝛱. It is
worth noticing that 𝑙 is a list of input messages to
this processes of the form [val1, . . . , val𝑛], while 𝑙′ is
an output box list of the form

𝑙′ ≡ [pid1 ! val1 , . . . , pidm ! valm ]

A particular case of Ipr are the sets Irr that contain
the expect behavior of the receive statement without
taking into account the piece of code where the compu-
tation has been originated.

6.2 Intended Semantic Calculus

The validity of the nodes in a CEC -proof tree is ob-
tained by defining the intended interpretation calculus.
This calculus, called ICEC is described in the following
definition:

Definition 4 The calculus ICEC contains the same
inference rules as CEC , prefixing the label of each rule
by ℐ to avoid confusion. The definitions of the rules are
also the same in both calculi, except by:

1. (ℐBFUN), which adds the following additional side
condition to (BFUN):

⟨f , 𝜃⟩ → (mnf , 𝑙,𝛱) ∈ ℐfun
2. (ℐRCV1) also adds to (RCV1) a new side condition

of the form

succeedsℐ(𝑝.𝑟, 𝑙1, 𝑗, 𝜃) → 𝑅

where:
– 𝑅 is the right-hand side of the statement that

can be found as conclusion of the inference rule
(RCV1) in Figure 9.

– 𝑟 a reference to the leftmost, innermost receive
in the left-hand side of the conclusing of the in-
ference rule (RCV1).

– 𝑝 is the smallest (closest) piece of code (either a
function or a receive statement) that contains
the let statement.
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3. (ℐRCV3) adds to (RCV3), the new side condition:

(ℐsucceeds(𝑟.𝑟, 𝑙, 𝑗, 𝜃) → (mnf , 𝑙′, 𝛱)) ∈ ℐ

4. (ℐLOCK), which adds a new side condition ℐfails(𝑟, 𝑙, 𝜃)
∈ ℐ to (LOCK).

The differences between ICEC and CEC are easy to
understand. The first point forces (ℐ_BFUN) to check
whether the first step of a function call is a valid state-
ment in ℐ. Analogously, (ℐ_RCV1) and (ℐ_RCV3) only
allow expected transitions. In the rule (ℐ_RCV1) we
only check the outer let expression, but other inner ex-
pressions are also checked while evaluating the premises
of the inference rule. It is worth observing that the
closest piece of code can be either the function 𝑓 that
contains the associated Erlang code (the code that has
given raise to the let), or a receive statement defined
in 𝑓 , which contains the let in the body of some rule.
Finally, (ℐLOCK) ensure that failures are only accepted
if expected in the intended interpretation.

Summarizing, we can say that ICEC only computes
intended values. Analogously to the case of CEC , the
notation

ICEC |=(𝑃,ℐ,𝑇 ) ℰ

indicates that the evaluation ℰ can be proven w.r.t. the
program 𝑃 and the intended interpretation ℐ with proof
tree 𝑇 in ICEC , while ICEC 2(𝑃,ℐ) ℰ indicates that ℰ
cannot be proven in ICEC . The tree 𝑇 , the program
𝑃 , and the intended interpretation ℐ are only made
explicit when they are needed.

CEC is used by our tool in order to represent ac-
tual Erlang computations, while ICEC represents the
knowledge that the tool obtains from the user. In prac-
tice only the minimum number of nodes of ICEC are
obtained during the debugging session, since each one
corresponds to a question. ICEC determines the valid-
ity of computations as indicates the following definition.

Definition 5 Let 𝑃 be a Core Erlang Program, let 𝑇
be a CEC computation tree with respect to 𝑃 , and let
𝑁 be a node in 𝑇 containing an evaluation ℰ .

1. 𝑁 is valid with respect to ICEC when ICEC |=(𝑃,ℐ)
ℰ , and invalid when ICEC 2(𝑃,ℐ) ℰ .

2. 𝑁 is called buggy with respect to ICEC if ℰ is in-
valid with all its children valid (in both cases w.r.t.
ICEC ).

The idea behind these definitions is that a buggy
node represents an erroneous computation based on
correct subcomputations. Thus, the piece of code as-
sociated to a buggy node represents an error in the
program. This informal idea is formalized in the rest of
the section.

The rôle of the two calculi is further clarified by the
next assumption:

Assumption 1 Let 𝑃 be an Erlang program and | · |
the transformation that converts an Erlang expression
into a Core expression. Then:

1. An evaluation of the form 𝑒𝜃 → (mnf , 𝑙,𝛱) is com-
puted by some Erlang system8 with respect to 𝑃 iff
CEC |=𝑃 ⟨|𝑒|, 𝜃⟩ → (|mnf |, 𝑙, |𝛱|).

2. An evaluation of the form 𝑒𝜃 → (mnf , 𝑙,𝛱) com-
puted by some Erlang system is considered unex-
pected with respect to ICEC by the user iff ICEC 2𝑃

⟨|𝑒|, 𝜃⟩ → (|mnf |, 𝑙, |𝛱|).
Analogous considerations are applied for 𝑒𝜃 → lock ,
𝑒𝜃

𝑙,𝑖→ (mnf , 𝑙,𝛱), and <<pid , ⟨𝑒, id⟩, []>>⇒ 𝛱.

Now we are ready to define the errors detected by
our tool.

6.3 Errors in Erlang Programs revisited

Next we define precisely the errors that can detected
with our technique:

Definition 6 Let 𝑃 be an Erlang program, ℐ its ex-
pected interpretation, and 𝑇 a CEC computation tree.
Let 𝑟 be a reference to a receive expression statement
in 𝑃 and 𝑓 a reference to a program function. Then, we
say that:

1. 𝑟 is erroneously failing if it is the receive state-
ment referenced in a buggy node of 𝑇 rooted by the
label (LOCK).

2. 𝑟 is erroneously succeeding if it it is the receive

statement referenced in a buggy node of 𝑇 rooted
by the label (RCV3).

3. 𝑟 (respectively 𝑓) contains an erroneous transition
if its body (in the case of 𝑟 the body of the branch
reached accepting a previous message) is the con-
clusion of a buggy (RCV1) inference rule in 𝑇 .

4. 𝑓 contains an erroneous first step if it is the function
referenced in a buggy (BFUN).

The errors are detected as discrepancies between
the actual computations represented by CEC and the
‘ideal’ computations represented by ICEC .

Observe, for instance the definition of erroneously
failing receive. Looking to the inference rule (LOCK)
and considering the definition of buggy node (invalid
conclusion with valid premises) it says in other words
that:

8 In our context this sentence must be understood as “by exe-
cuting 𝑒 with the values indicated by 𝜃 in Erlang we reach mnf,
generating during the execution the messages in 𝑙 and creating
the processes in 𝛱.”
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– fails(𝑟, 𝑙, 𝜃), but
– ICEC 2(𝑃,ℐ) ℐfails(𝑟, 𝑙, 𝜃), that is, ℐfails(𝑟, 𝑙, 𝜃) /∈

ℐ

We say that a Core Erlang program is a wrong program
when it contains any of the errors mentioned in the
previous definition. We also say that an Erlang program
is a wrong program if its Core representation is wrong.
The next proposition ensures that only the inference
rules mentioned in the previous definition can be buggy:

Proposition 1 Let 𝑃 a Core Erlang program. Let 𝑇 a
CEC computation tree with invalid root. Then:

1. 𝑇 contains at least one buggy node.
2. Every buggy node corresponds to either a (BFUN).

(RCV1), (RCV3), or (LOCK) inference.

The first item is a general property of computation
trees which can be proved easily by induction on the size
of the tree: in every tree with invalid root it is possible
to find at least one invalid node with all its children
valid.

The second item is a direct consequence of Defini-
tion 4 since only (BFUN), (RCV1), (RCV3), and (LOCK)
are different in both calculus. In particular the ICEC

version of the rules is more restrictive since they add
new side conditions. Then it is straightforward to check
that only inferences rooted by these rules can be buggy.

Now we are ready to state our main theoretical re-
sult:

Theorem 1 Let 𝑃 be an Erlang program, ℐ its ex-
pected interpretation and 𝜖 an unexpected evaluation in
𝑃 . Then:

1. 𝑃 is a wrong program.
2. A debugger examining the computation tree repre-

senting this computation in Core Erlang will find at
least one of the errors described in Definition 6.

Proof sketch

1. To prove the first item it is enough to check that the
Core version of the program is a wrong program.
According to Assumption 1 there is a computation
tree 𝑇 such that

CEC |=𝑃,𝑇 ⟨|𝜖|, 𝜃⟩ → (|mnf |, 𝑙, |𝛱|)

since ⟨𝜖, 𝜃⟩ is evaluated by the program 𝑃 . Moreover,
the same assumption ensures that since the result
obtained is unexpected we have

ICEC 2𝑃 ⟨|𝜖|, 𝜃⟩ → (|mnf |, 𝑙, |𝛱|)

Then, applying the Definition 1 we have that the
root of 𝑇 , which is the node ⟨|𝜖|, 𝜃⟩ → (|mnf |, 𝑙, |𝛱|)

is invalid. Then, by Proposition 1, 𝑇 contains a
buggy node which corresponds to either a (BFUN).
(RCV1), (RCV3), or (LOCK) inference rule, which
in turn means that contains some of the errors de-
scribed in Definition 6, and thus it is wrong pro-
gram.

2. A top-down navigation strategy can find at least one
buggy node, since the tree is finite.

Thus, our debugger based on the technique depicted
in this paper is suitable for finding the errors in the
Erlang programs with unexpected behavior.

7 Related work

One of the first papers that focus on the complexity
of debugging concurrent programs is [32]. This seminal
survey covers the problems related to debugging con-
current programs and presents some techniques that do
not include declarative debugging. Apart from the men-
tioned paper, the debugging of concurrent programs has
received much attention during the last two decades.
There are papers devoted to the organization of de-
buggers [25], to the reproduction of bugs once they are
discovered [33], or to the slicing of programs to obtain
a program fragment that causes an anomalous behav-
ior [28]. The declarative approach to debugging was ex-
tended to reactive systems in [30], concretely to Flat
Concurrent Prolog (FCP). In the underlying concurrent
model the processes are tuples containing the original
goal, a list of input and output events that bind vari-
ables, and the final state. We could see these variable-
binding events as message passing, but in this case the
behavior is different from the Erlang model: binding a
variable can affect several processes, whereas in Erlang
messages are sent to exactly one process. In [24], the
declarative debugging approach is applied to concur-
rent constraint programs. These programs are similar
to logical ones, but have a store of constraints for the
synchronization of processes. Before spawning a process
the store may be forced to fulfill some preconditions
(ask constraints), and the execution of a process may
change the store (tell constraints). The semantics of a
process is a set of pairs (𝑠, 𝑡) where 𝑠 is the initial store
and 𝑡 the final store, and the questions of the debugger
focus on these kind of transitions. As the store is shared
by all the processes, it shows a similar behavior to bind-
ing events in FCP. The closest work to our paper is [35],
that presents the application of a declarative debugging
approach to a procedural language—concretely the lan-
guage C, and integrated into GDB (GNU Project De-
bugger). Although the underlying model is procedural
and not functional, it presents some similarities with
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the Erlang model like the absence of shared memory
and the use of send and receive expressions (less pow-
erful than Erlang’s). On the other hand, it does not sup-
port the creation of processes, having a fixed number
of them. Furthermore, it does not use a formal seman-
tics to build a tree, but a graph where the nodes are
the send and receive events and the edges are obtained
from a happened before relation [29].

The semantic calculus presented in this paper is in-
spired by other standard operational semantics for Er-
lang [26,45], adapted to the syntax of Core Erlang [14].
They have in common that the semantic rules rewrite
configurations of processes, which are tuples composed
by a PID, an expression, and a mailbox. However, it
presents two main differences: First, message passing is
modeled by outboxes instead of inboxes. Thus, we de-
scribe more realistic Erlang computations, where mes-
sages from different processes may arrive in any order,
solving the limitations of single-node semantics [43].
Second, we use medium-sized normal forms, which are
expressions that cannot be further reduced because they
are values or are receive expressions that need to read
a message to continue. These normal forms are essen-
tial when debugging because they delimit the minimum
transitions of the system whose validity is asked to the
user.

8 Concluding Remarks and Ongoing Work

Debugging concurrent Erlang programs can be a puz-
zling task. A usual computation involves many pro-
cesses that combine sequential portions of code with
message passing and process creation. The usual step-
by-step methodology employed in usual sequential trace
debuggers is no longer valid, and the users must design
their own strategy for tracing the source of the error
employing any of the (powerful) tools available such as
the Erlang trace debugger.

For this reason in this paper we present a semi-
automatic methodology that guides the user in the diffi-
cult task of finding the error. The step is defined here as
a ‘jump’ between two receive statements, focusing on
the messages that allow the computation to progress.
We think that this is a quite natural way of under-
standing a concurrent computation. Moreover, it has
been claimed that message passing errors are the most
difficult errors to find in terms of time [38].

The debugger has been built on top of a previous
debugger for sequential Erlang programs [11]. Thus,
our tool can debug both concurrent and sequential pro-
grams, adapting to the specifities of each computation.

From the point of view of the underlying logics, we
have extended the semantic calculus for Core Erlang

presented in [10] to deal with sets of processes (con-
figurations), message passing instructions, and process
creation (spawn). In this calculus, processes are accom-
panied by outboxes of sent messages not processed yet,
overcoming the lack of expressiveness of some single-
node semantics [43]. The proof trees are traversed in-
teracting with the user through questions until a buggy
node is found and the corresponding error is pointed
out. The soundness and completeness of our debugging
approach [9] has been established, and we have imple-
mented a prototype of the declarative debugger that
can be applied to average Erlang programs. Our set-
ting even allows debugging non-terminating programs,
a feature scarcely provided by declarative debuggers.

There are several lines of future work. Following the
Erlang approach “let it crash and let someone else deal
with it,” processes can be linked to provide robustness:
when a process dies abnormally it sends the exit sig-
nal to all the processes linked to it. These linked pro-
cesses can terminate abnormally or trap the signal to
release some resources or restart the terminated pro-
cess. A natural line of future work is extending the de-
bugger to deal with process linkage and signals, which
will require the extension of the calculus. Moreover, we
are also interested in simplifying the questions asked to
the user by taking into account the previous answers.
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