
Test-Case Generation for Maude Functional Modules�

Adrián Riesco

Facultad de Informática, Universidad Complutense de Madrid, Spain
ariesco@fdi.ucm.es

Abstract. Testing takes much of the time of the software development process,
so several efforts have been devoted to automate it. We present here a tool that
is able to generate test cases for Maude functional modules, and check their cor-
rectness with respect to a given specification or select a subset of these test cases
to be checked by the user by using different strategies. Since these processes are
very expensive we also present different trusting techniques to ease them.

Keywords: Test cases, Maude, black-box testing, white-box testing, code
coverage.

1 Introduction

Testing takes much of the time of the software development process, so several efforts
have been devoted to automate it. Although initially much progress was done in testing
for imperative languages [17,14,12], during the last years several efforts have been de-
voted to develop test-case generators for declarative languages [9,10,4,2,5], being spe-
cially notable the development of Quickcheck [4], a very powerful test-case generator
developed for Haskell (and coded in Haskell itself) that has been adapted to imperative
languages as Java1 or C++,2 thus filling the gap between testing strategies for impera-
tive and declarative languages. To perform testing we use test cases, whose definition
depends on the programming language being tested, that the programmer uses to exam-
ine his program by checking the correctness of these test cases against an oracle, which
usually is a specification of the system or the programmer himself.

These test cases are generated following two different strategies: black-box and white-
box testing. The former uses a specification language, usually with a formal semantics,
to generate the test cases that are later translated to test cases in the implementation lan-
guage; a semantical relation must be established between the test cases in both languages
to determine the correctness of the implementation. Examples of black-box testing are
the translation to Java and C++ of the test cases generated by Quickcheck presented above
and the language Congu,3 a framework to create algebraic specifications to test Java pro-
grams. On the other hand, white-box testing (also known as glass-box testing) uses the

� Research supported by MICINN Spanish project DESAFIOS10 (TIN2009-14599-C03-01) and
Comunidad de Madrid program PROMETIDOS (S2009/TIC-1465).

1 https://quickcheck.dev.java.net/
2 http://software.legiasoft.com/quickcheck/
3 http://gloss.di.fc.ul.pt/congu/

T. Mossakowski and H.-J. Kreowski (Eds.): WADT 2010, LNCS 7137, pp. 287–301, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

https://quickcheck.dev.java.net/
http://software.legiasoft.com/quickcheck/
http://gloss.di.fc.ul.pt/congu/

288 A. Riesco

current implementation of the system to select the most appropriate test cases. Both ap-
proaches have been followed in imperative and declarative contexts; black-box testing
has been studied in imperative languages [12,13], in declarative languages [4,15,2], and
in general contexts [1,11], while white-box testing has been investigated in [17,14] for
imperative programming and in [10,9] for declarative programming.

Maude [6] is a high-level language and high-performance system supporting both
equational and rewriting logic computation for a wide range of applications. Maude
modules correspond to specifications in rewriting logic [16], a simple and expressive
logic which allows the representation of many models of concurrent and distributed
systems. This logic is an extension of equational logic; in particular, Maude functional
modules correspond to specifications in membership equational logic [3], which, in
addition to equations, allows the statement of membership axioms characterizing the
elements of a sort. Rewriting logic extends membership equational logic by adding
rewrite rules, that represent transitions in a concurrent system. Maude system modules
are used to define specifications in this logic.

Although the initial aim of the Maude system was to be used as a specification lan-
guage, the last releases of the system introduce new features such as TCP/IP sockets [6,
Chapter 11] and unification [7] that encourage to use Maude as a programming lan-
guage. Thus, Maude specifications grow in size and complexity, growing consequently
the difficulty to debug and analyze them. As part of an ongoing project to debug Maude
specifications, we have already implemented a declarative debugger for Maude [19] that
allows to debug both wrong and missing answers (incorrect and incomplete results, re-
spectively). Following this line, this paper presents a methodology to test Maude func-
tional modules by using both black-box testing, where the specification language is
Maude itself, and white-box testing, where we adapt some strategies already developed
for declarative languages and, in addition, present a new strategy to test sort inferences.
These techniques have been implemented in Maude and integrated with the the declar-
ative debugger, which allows the user to debug the erroneous test cases at once.

Exploiting the fact that rewriting logic is reflective [8], a key distinguishing fea-
ture of Maude is its systematic and efficient use of reflection through its predefined
META-LEVEL module [6, Chap. 14], that allows access to metalevel entities such as spec-
ifications or computations as usual data. Therefore, we are able to generate and check
the test cases in Maude itself. The system provides another module, Full Maude [6,
Chap. 18], that includes features for parsing, evaluating, and pretty-printing terms, im-
proving the input/output interaction. By extending Full Maude our test-case generator,
including its user interactions, is implemented in Maude itself.

Although the Maude metalevel allows an efficient implementation of black-box test-
ing by providing mechanisms to test the correctness of a Maude module against another
one and, consequently, its performance should be comparable to Quickcheck’s [4], the
main drawback of our approach is the term generation: while Quickcheck uses nar-
rowing to obtain the test cases, the Maude’s machinery for narrowing is still under
development4 and cannot be used with general Maude theories, so we incrementally

4 Currently, the narrowing command only supports some theories, does not allows the user to
introduce a condition the returned terms are assumed to fulfill, and does not allow incremental
searches, that is, we cannot obtain new results without computing again the previous ones.

Test-Case Generation for Maude Functional Modules 289

generate terms and then check whether they are appropriate for testing. Although our
black-box testing is less efficient that the one in Quickcheck, we overcome it by pro-
viding white-box testing. This testing is based on [10], which adopted some techniques
from imperative languages to select a set of terms fulfilling a giving coverage, that is,
a number of statements that must be executed to consider the specification tested. We
improve these coverage techniques by providing coverage for membership inferences,
which takes into account both positive (statements used) and negative (statements that
could not be used) information.

The rest of the paper is organized as follows. After briefly introducing Maude func-
tional modules in Section 2, we describe how the terms are generated in Section 3. Our
methodology to test Maude functional modules is described in Section 4, while Sec-
tion 5 outlines the implementation of the tool. Section 6 concludes and outlines some
future work.

More information about the test-case generator, related papers, examples, and its
source code can be found at http://maude.sip.ucm.es/testing/.

2 Maude

Maude [6] is a declarative language based on both equational and rewriting logic for the
specification and implementation of a whole range of models and systems. Functional
modules define data types and operations on them by means of membership equational
logic theories [3] that support multiple sorts, subsort relations, equations, and assertions
of membership in a sort. In this way, Maude makes possible the faithful specification of
data types (like sorted lists or search trees) whose data are not only defined by means of
constructors, but also by the satisfaction of additional properties. It is important to note
that in membership equational logic sorts are grouped into equivalence classes called
kinds. For this purpose, two sorts are grouped together in the same equivalence class if
and only if they belong to the same connected component.

For our purposes in this work we take advantage of the fact that membership equa-
tional logic theories are assumed to be terminating, confluent, and sort decreasing [6].
In this way, we can use a calculus that modifies the usual one shown in [3] by consider-
ing that equations are only applied from left to right, which allows us to infer judgments
of the form t →n t ′ and t :ls s, introduced in [18] and which indicate, respectively, that
the normal form of t is t ′ and that the least sort of t is s. Models of these judgments,
given a signature Σ and a set of equations and membership axioms E , are Σ-term models
TΣ/E [16]; see [18] for details in the relation between models and judgments.

Below we present the basics of Maude functional modules and present an example
that will be used throughout the rest of the paper.

2.1 Maude Functional Modules

Maude functional modules [6, Chapter 4], introduced with syntax fmod ... endfm,
are executable membership equational specifications and their semantics is given by
the corresponding initial membership algebra in the class of algebras satisfying the
specification.

http://maude.sip.ucm.es/testing/

290 A. Riesco

In a functional module we can declare sorts (by means of keyword sort(s)); subsort
relations between sorts (subsort); operators (op) for building values of these sorts, giv-
ing the sorts of their arguments and result, and which may have attributes such as being
associative (assoc) or commutative (comm), for example;5 memberships (mb) asserting
that a term has a sort; and equations (eq) identifying terms. Both memberships and
equations can be conditional (cmb and ceq). In Maude the user can specify each opera-
tor with its own syntax, which can be prefix, postfix, infix, or any “mixfix” combination.
This is done by indicating with underscores the places where the arguments appear in
the mixfix syntax. Another interesting feature for our tool is that Maude allows both
equations and membership axioms to be identified with a label, which is introduced
after either the keyword eq or ceq (mb or cmb for memberships).6

Maude does automatic kind inference from the sorts declared by the user and their
subsort relations. Kinds are not declared explicitly, and correspond to the connected
components of the subsort relation. The kind corresponding to a sort s is denoted [s].

For example, we show how to specify lists of natural numbers in the module LIST
below. We declare the sort List for these lists, while the subsort declaration indicates
that a single natural number is also a list:

fmod LIST is
pr NAT .

sort List .
subsort Nat < List .

Lists are built with the operator nil for empty lists and the juxtaposition operator _ _,
which is associative and has nil as identity, for bigger lists:

op nil : -> List [ctor] .
op _ _ : List List -> List [ctor assoc id: nil] .

Finally, we define a function reverse to reverse a list. Note that this function is buggy:
the equation labeled with rev1 should return nil instead of 0:

var N : Nat .
var L : List .

op reverse : List -> List .
eq [rev1] : reverse(nil) = 0 .
eq [rev2] : reverse(N L) = reverse(L) N .

endfm

3 Term Generation

The tool is able to generate terms by using the constructor information provided by the
user. As a first approach, we computed them in a recursive fashion: starting with con-
stants, in each step the new terms were computed from the ones previously obtained.

5 It is important to note that the equational theory works modulo these axioms.
6 It is also possible to write this label at the end of the statement as an attribute, although we will

always use labels in the way described above.

Test-Case Generation for Maude Functional Modules 291

We can also understand this approach as a grammar, where sorts are non-terminals,
constants are terminals, and operators are production rules. After each step, member-
ship axioms were applied to ensure the terms were assigned the appropriate sort. For
example, the terms in the LIST example above (assuming that the predefined natural
numbers have constructors 0 and s_ for zero and successor) were generated as follows:

1. The constants 0 and nil for natural numbers and lists respectively are built.
2. Sort inference is applied. Thus, the term 0 is also considered a term of sort List.
3. Nontrivial constructors are applied. The term s(0) (pretty printed as 1 by Maude)

is built for natural numbers, while the term 0 0 is generated for lists.
4. Steps 2 and 3 are applied until enough terms have been generated.

However, although this method builds up to several thousand terms very quickly, it
presents a major drawback: most of the terms are very similar and thus they find the
same bugs, while some other problems, that would be found with more complex terms,
cannot be found due to the quick growth in the number of terms, that prevents the
system from computing more terms once a few steps have been performed (although
the user can select the number of steps that are applied in function of the complexity of
the constructors, the amount of time required for big bounds greatly limits this option).

To palliate this problem we tried to use the narrowing features available in Maude,
using the constructors to distinguish between the different kinds of terms and then trying
to fulfill the conditions imposed by the equations and membership axioms. However,
these narrowing features do not support general theories and some combinations of at-
tributes cannot be used. Another major problem is that the narrowing command returns
the first n solutions but, since it does not receive the condition to be fulfilled but only
the lefthand side of the statement to be matched, it is possible to obtain terms that fi-
nally cannot be used as term cases, and thus more terms are needed but, with the current
format, the system has to recalculate the n previous solutions. We expect this command
to be improved soon and thus incorporate this feature to our test generator.

Since narrowing did not improve the tool as expected, for the time being we decided
to randomly remove some terms in each iteration of the previous algorithm in order to
reduce the number of combinations in the next levels and thus be able to generate bigger
terms.7 Once these terms are computed, we can start the testing process.

4 Testing Maude Functional Modules

We define a test case in Maude as a judgment t →n t ′ or t :ls s, where t and t ′ are terms
and s is a sort. We describe in this section how, starting with the terms generated in the
previous section, test cases of this form are generated in Maude and used for testing.
First, we show in Section 4.1 how they can be checked against a correct specification;
then Section 4.2 describes how to select a set of terms to be inspected by the user de-
pending on different strategies. Finally, Section 4.3 explains how to improve the testing
process by allowing the user to select some statements as trusted, preventing the tool
from taking them into account when creating this set of terms.

7 Although this technique does not guarantee that the terms are more suitable for testing, we
have checked that it works better in practice.

292 A. Riesco

4.1 Black-Box Testing

Usually, a good approach to testing consists in checking the correctness of several test
cases against a specification of the system [4,12]. In our case this relation can be easily
established because both the correct specification and the program under test are Maude
specifications: assuming that T is the model of the correct specification and T ′ the
model of the specification under test, then a test case j fulfills the specification when
T |= j ⇐⇒ T ′ |= j. This technique can be efficiently adopted in our prototype thanks to
the reflective capabilities of Maude, that allow us to use modules as data. Thus, the tool
compares the results obtained from the current specification with respect to the correct
one and extracts several pieces of information: the results are different (either they have
different constructors or the terms are equal but the inferred sorts are different), the term
is not in normal form, or the results are incomparable. Note that it is not necessary to
have a correct module with the same functions used in the tested module: if a property
over the function to be tested can be defined, it is enough to define this property in a
correct module as a constant function that always returns true:

fmod MY-SPEC is fmod PROP is fmod CORRECT is
... pr MY-SPEC . pr MY-SPEC .
endfm op prop : ... -> Bool . op prop : ... -> Bool .

eq prop(...) = eq prop(...) = true .
... endfm
endfm

More specifically, we can define the property revProp for our lists specification, stating
that the reverse of a composition of lists is equal to the composition of the reverses of
the lists in inverse order, as follows:

fmod REV_LIST is
pr LIST .
vars L1 L2 : List .
var N : Nat .

op revProp : List List -> Bool .
eq [prop] : revProp(L1, L2) = reverse(L2) reverse(L1) == reverse(L1 L2) .
endfm

Now, we create a new module CORRECT_LIST where a function with the same name
and profile is defined as the constant true, that is, our specification indicates that this
property is true:

fmod CORRECT_LIST is
pr LIST .
vars L1 L2 : List .

op revProp : List List -> Bool .
eq revProp(L1, L2) = true .

endfm

Test-Case Generation for Maude Functional Modules 293

Now, we can use our tool to check the property. First, we identify which is the correct
module, and then we start the testing process with the test command:

Maude> (correct test module CORRECT_LIST .)
CORRECT_LIST selected as correct module for testing.

Maude> (test in REV_LIST : revProp .)
8464 test cases were generated.
8464 test cases are incorrect with respect to the correct module.

Notice that the property never holds. We can ask the tool to show some of the incorrect
test cases found, and use the debugger to fix the specification:

Maude> (show 1 incorrect .)
The following test cases are incorrect with respect to the correct module:
1. The term test(0,0) has been reduced to false

Maude> (invoke debugger with incorrect test case 1 .)
Declarative debugging of wrong answers started.
...
The buggy node is:
reverse(nil) -> 0
with the associated equation: rev1

Complete explanations of this example and the ones in the following sections, including
the debugging sessions, are available at http://maude.sip.ucm.es/testing/ .

4.2 White-Box Testing

Since Maude is a specification language itself, the user does not always have another
specification (or is able to define a property) to check the results with. In this case the
correctness of the test cases depends on the intended semantics given by the user, and
hence a strategy that selects a subset of the generated terms, called code coverage, is
needed in order to be easily checked by humans. We assume that this intended interpre-
tation is a Σ-term model I corresponding to the model that the user had in mind while
writing the specification, and thus we require that, given a test case j and the initial
model T of the specification, I |= j ⇐⇒ T |= j.

Covering Equations. In [10] some strategies for selecting a coverage in functional
languages are described: global branch coverage and function coverage. The former
selects a set of terms such that they cover all branches (both direct and indirect) of
the function being tested; the latter tries that, in addition to all branches of the original
call to the function, also all branches of all recursive calls to that function have to be
considered. Although function coverage is more difficult to apply, it detects more bugs
in general than global branch coverage.

In the Maude case, these strategies select a subset of the equations and membership
axioms in the specification and then looks for a set of test cases whose inference requires
the application of the statements previously selected:

http://maude.sip.ucm.es/testing/

294 A. Riesco

– Global branch coverage tries to find terms that use all the statements potentially
used by the function under test (which, of course, also includes the functions in
the conditions). That is, the coverage of a function symbol f using this strategy
includes all the equations whose lefthand side matches the term f (x1, . . . ,xn), where
x1, . . . ,xn are variables on the kinds specified by the program, and, for each equation
l = r if

∧n
i=1 ti = t ′i ∧

∧m
j=1 t ′′j : s j added to the coverage we must also add all the

membership axioms for each sort s j and the coverage for all the function symbols
in the equation, funs(r) ∪ ⋃n

i=1 funs(ti) ∪ funs(t ′i) ∪
⋃m

j=1 funs(t ′′j), where

funs(f (t1, . . . ,tn)) = { f} ∪ funs(t1) ∪ . . . ∪ funs(tn)
funs(a) = {a}
funs(X) = /0

For example, if we want to test the function revProp from our lists specifications,
we should cover the equations prop, rev1, and rev2. We can use the tool to test it
with the commands:

Maude> (global coverage .)
Global Branch Coverage selected

Maude> (test in REV_LIST : revProp .)
1 test cases have to be checked by the user:

1. The term revProp(nil,0) has been reduced to false

All the statements were covered.

Maude> (invoke debugger with user test case 1 .)
...

Actually, reducing this term we cover prop (it is the only equation that can be
initially used), and rev1 and rev2 (by reducing reverse(nil) and reverse(0)
once the first equation has been applied). Once again, we can invoke the debugger
to fix the specification by using this term.

– Function coverage checks that all the statements that can be applied for a given
function are applied by all the recursive calls (including all those calls in the con-
ditions) in the program. That is, if we try to compute the coverage of a function
symbol f with respect to the recursive calls to a function r, then we must find all
the appearances of r traversing the specification in the same way we explained for
global branch coverage. Once all the reachable calls to r from f have been found,
the coverage requires each of them to execute all the equations whose lefthand side
matches r(x1, . . . ,xn), with x1, . . . ,xn variables of the appropriate kind.

In our lists example, if we want to test revProp taking into account the calls to
reverse we have to distinguish between the four different calls to this function:
the first one in rev2 and three more in prop. Each one of these calls must execute
both rev1 and rev2. We can use our test-case generator to look for a coverage with
the commands:

Test-Case Generation for Maude Functional Modules 295

Maude> (function coverage .)
Function Coverage selected

Maude> (test in REV_LIST : revProp wrt reverse .)

2 test cases have to be checked by the user:
1. The term revProp(0,0) has been reduced to false
2. The term revProp(nil,nil) has been reduced to false

All calls were covered.

Maude> (invoke debugger with user test case 2 .)
...

In that case it is impossible to complete the coverage with only one term, because
the calls in prop can only execute one of the equations for reverse with each test
case: with the first test case all these calls execute rev2, while with the second one
they execute rev1. Regarding the recursive call in rev2, it executes both equations
when reducing reverse(0 0) from the first test case. Finally, note that both test
cases detect the error and can be used to debug the specification.

Testing memberships. Maude functional modules contain not only equations; as said
in the introduction, they also allow the user to define membership axioms and, although
initially one could think that the strategies described above can be straightforwardly
adapted to work in this case, we soon notice that to apply the axioms (and thus comput-
ing an erroneous sort) is as important as not to apply them (and thus obtaining a least
sort bigger than expected). This problem does not arise with equations, because when
a term is not reduced the test generator indicates it is not in normal form by using the
constructors, while in this case the system cannot state whether the inferred sort is the
least one or just one possible sort of the term.

For this reason, a new coverage strategy that takes into account this information (that
we call negative) has been developed: some of the terms in the coverage have to apply
all reachable statements but also some other terms have to fail, in a special way we
will explain below, when trying to apply them. However, some constraints have to be
applied to this negative information in order to obtain a realistic coverage strategy:

– It should not consider as negative information trivial failures, which in fact usually
occurs when matching the current term with the lefthand side of a membership
axiom. For example, assume we are defining the sort OList for ordered lists8 and
we state the following axiom:

cmb E E’ L : OList if E <= E’ /\ E’ L : OList .

Of course, this membership cannot be applied to the test cases nil or 0, but this
information is probably unimportant to the user, since even the number of subterms
are different.

8 We prefer “ordered lists” over ”sorted lists” because “sort” is already used to refer to types in
this context.

296 A. Riesco

– However, asking the term to match the lefthand side of the axiom can also be too
restrictive, since the lefthand side can contain information about the sorts of the
terms. For example, we could replace the previous membership axiom for our or-
dered lists specification with the following one:

cmb E OL : OList if E’ OL’ := OL /\ E <= E’ .

where the variables OL and OL’ have sort OList. In that case, if we only consider
terms matching the lefthand side as negative information we are discarding im-
portant terms: those that cannot be applied because the membership for OList is
wrong and thus prevents the term from matching.

– To solve these problems we have decided to consider as valid test cases those that
match the lefthand side of the membership axiom at the kind level. That is, we
consider the variables in the lefthand side as declared in their corresponding kind
and then we add the matching at the sort level as the new first condition of the
membership axiom.

Besides this problem, another question arises when taking into account the negative
information: is it necessary to check that each condition fails? Although in general
this approach would detect more errors, with medium examples the computation of
the coverage takes too much time to be useful. For this reason we have decided to
consider that a membership axiom provides enough negative information when any of
its conditions (including the ad hoc condition indicating that the sorts of the terms are
correct) fails.

Following the ideas presented previously, assume that we specify ordered lists of
natural numbers with:

(fmod OLIST is
pr NAT .

sorts List OList .
subsort OList < List .

op nil : -> OList [ctor] .
op _:_ : Nat List -> List [ctor] .
cmb [ol1] : (N : N’ : L) : OList if N <= N’ /\ N’ : L : OList .
endfm)

That is, the membership axiom stating that singleton lists are ordered lists is missing.
We can look for test cases for this specification with the command:

Maude> (test sort in OLIST : OList .)

1 test cases have to be checked by the user:
1. The term 0 : 0 : nil has least sort List

The following statements were not checked with the given test cases:
ol1

Test-Case Generation for Maude Functional Modules 297

All the negative information was covered.

Maude> (invoke debugger with user test case 1 .)
...
The buggy node is:
The least sort of 0 : nil is List
Either the operator _:_ needs more membership axioms or the conditions
of the current axioms are not written in the intended way.

The tool is not able to apply ol1 (actually, it cannot be applied without the membership
axiom for singleton lists) but it informs the user that it has found a term that, although
it matches the lefthand side of one of the memberships, it cannot be finally applied. In
fact, the term should have as least sort OList instead of List, and thus it reveals the
failure in our specification.

4.3 Enhancing the Performance

While developing the Maude declarative debugger several buggy specifications, de-
scribing all possible errors, were developed. The tool has successfully generated test
cases for all the functional examples. However, the main drawback of the tool is its
poor performance when facing large specifications, specially when computing the code
coverage.

More specifically, although the term generator is able to build up to ten thousand test
cases, only the testing with respect to a correct module can use all these test cases, while
when computing the coverage it is recommended to select a lower bound for the number
of test cases to be checked. The coverage is computed quite slowly (it works with less
than one thousand cases), due both to the fact that it performs several operations at the
metalevel (see Section 5 for details) and that it computes the minimum coverage, which
has exponential complexity.

To improve the performance, a trusting mechanism that hastens the computation of
the coverage has been developed: some statements can be pointed out as correct, and
thus the tool will omit them when computing the required coverage. The tool offers
several options to trust the statements: only labeled statements are taken into account
when generating the coverage, specific statements can be trusted, and even complete
modules can be selected as correct.

The previous examples are very simple and thus the trusting mechanisms cannot be
applied with all their power. We could trust the equation rev2 with the commands:

Maude> (set test select on .)
Debug select is on for test generation.

Maude> (test include REV_LIST .)
Labels prop rev1 rev2 have been added to the coverage.

Maude> (test deselect rev2 .)
Labels rev2 have been excluded from the coverage.

298 A. Riesco

The first command initializes the trusting mode, the second one introduces all the labels
in the (flattened) module REV_LIST as suspicious, and the third one trusts the equation
rev2. We can use now function coverage with our initial example:

Maude> (test in REV_LIST : revProp wrt reverse .)

1 test cases have to be checked by the user:
1. The term revProp(nil,nil) has been reduced to false

All calls were covered.

Note that now one test case is enough to cover all the (non-trusted) equations for
reverse.

Finally, the tool also allows to trust a specific kind of statement of different modules
with the command:

(test include/exclude eqs/mbs MODULES .)

where MODULES is a list of module names separated by spaces.

5 Implementation

We present in this section how the ideas shown in the previous sections have been im-
plemented. This implementation makes extensive use of Maude metalevel [6, Chapter
3], which allows metalevel entities such as terms and modules be used as usual data.
Moreover, the test-case generator, as well as the declarative debugger, is implemented
on top of Full Maude [6, Chap. 18], which improves the input/output loop provided by
the LOOP-MODE [6, Chapter 17] with several parsing features. In this way, we are
able to generate the term cases, compute the coverage, check the correctness of the test
cases against a correct module, and implement the user interface in Maude itself.

The first phase in the implementation of the tool is the term generator. To build the
terms the tool traverses all the operators in the specification looking for those with the
ctor attribute indicating that they are constructors of the given sort. As explained in
Section 3, it first selects the constant constructors (those whose arity is nil) and then
the rest of operators are used, using as arguments the terms obtained in the previous
steps. However, when creating these new terms we must be careful with the operator
attributes, that can identify terms that at first sight are different. To take into account
these attributes we use the predefined function metaNormalize, that computes the nor-
mal form of the term with respect to the equational theory consisting of these equational
attributes. Finally, after each step we use the predefined function leastSort to obtain
the least sort of the term and then add it to the set of all its supersorts.

Black-box testing is implemented in a straightforward way; we use the function
metaReduce in both the correct module and the module under test, and then we check
that both the term and the sort correspond. White-box testing is more complicated: start-
ing from the function to be tested, we check all the possible paths in order to keep the
reachable statements, in the case of global branch coverage, or the reachable recursive
calls, in the case of function coverage. Once the needed coverage has been computed

Test-Case Generation for Maude Functional Modules 299

we execute the test cases obtained in the previous step; however, the usual way of ex-
ecuting a term in a functional module is just obtaining the result, while in our case we
need to examine each term to keep the coverage thus far. To do this we use the function
metaMatch to check whether the current term matches the lefthand side of an equation
and fulfills the conditions and, in case the matching succeeds, we apply the obtained
substitution to the righthand side, which generates the next term to be examined.

Regarding the interaction with the user, we have extended the internal state of the
loop shown in [19] with attributes to keep the type of coverage selected, the trusting
information, the test cases, and the type of error detected by each test case (in case we
are using black-box testing). With these attributes and the new commands described in
this paper we are able to combine the declarative debugger with the test-case generator,
which shows the scalability of the system.

6 Concluding Remarks and Ongoing Work

This work is the first step toward developing a test-case generator for Maude specifi-
cations. Currently, the tool allows the user to debug functional modules following two
different strategies: black box and white box. While the former compares the results
obtained in the module under test with those obtained in a correct specification, the
latter selects a set of terms in such a way that they fulfill a so called code coverage.
In addition to known coverage strategies like global branch and function coverage, that
have been adapted to the Maude case, we have designed a membership coverage that
takes into account not only the statements applied, but also the memberships that were
not applied.

Regarding scalability, we distinguish between the scalability with respect to the com-
plexity of the constructors and with respect to the number of statements. In the first case
the tool only scales well for medium-sized specifications, because the number of terms
generated for a given sort in each step of the term-generation process depends on the
number of terms built for the sorts used as arguments and thus, if several levels are
needed to build the sort (i.e., if the sort is complex) then each step is very expensive
and only a few can be taken before the system collapses. In the second case, the tool
works even for large specifications, since the complexity does not depend on the size
of the specification but on the complexity of the function being tested (number of state-
ments/recursive calls); moreover, the trusting mechanisms work better for large (and
structured) specifications, since we expect the user to test the imported modules before
using them, and thus they can be trusted.

For the reasons sketched above, most of the ongoing work is devoted to improve the
performance of the tool. We are now working on the term generator. The narrowing
command working on the Maude metalevel is being enhanced to allow consecutive
searches in an efficient way (currently, it recomputes the previous results). Using this
command we can generate terms, check whether these terms fulfill the conditions of
any of the statements under test, and then continue generating terms until the required
number of terms have been generated. It will also be required an extension of narrowing
to more theories than the currently supported, especially taking membership axioms
into account.

300 A. Riesco

The prototype can be improved, first, with new strategies (both new coverage strate-
gies and black-box testing) and, second, by enhancing its performance by providing
new trusting mechanisms. We also intend to improve the current coverage strategies:
currently, the smallest set of terms fulfilling the selected strategy are presented; how-
ever, it could be easier for the user to check a big set of simple terms than a small set
of very complex terms. Thus, we are developing different strategies to allow the user to
select the most appropriate set of test cases depending on his expertise. We also plan to
allow the user to fix some complex values (e.g. tables and arrays which do not change
the behavior of the function) in the functions to be tested, so the test-case generator can
focus on the rest of parameters. We intend to improve the performance of all these tasks
by using a distributed architecture, where each processor is in charge of a specific task
while another processor gathers and handles all the information.

Since Maude is a specification language, it would be interesting to use Maude to
specify a system and another language to implement it. Currently, this approach is been
followed to teach data structures at the Universidad Complutense: the data structures
are first specified in Maude and then implemented in C++. To test them a translation
from Maude to C++, written by hand for each data structure, is required. The results
obtained from this experience will be used to develop translations to other languages.

An extension to system modules is also outlined; since these modules are not re-
quired to be either terminating or confluent, the test cases must take into account dif-
ferent information. Probably, a coverage strategy that checks which terms cannot be
further rewritten (i.e., provides negative information) will be useful. Finally, the graph-
ical user interface is being updated to connect the test-case generator with the Maude
declarative debugger.

Acknowledgments. I thank Sebastian Fischer for his kind explanations of his coverage
strategies, Fernando Orejas for his help in preliminary versions of the paper, Ricardo
Peña for his useful comments on previous versions of the tool, and Markus Roggenbach
for his help with the final version of the paper.

References

1. Bernot, G.: Testing Against Formal Specifications: A Theoretical View. In: Abramsky,
S., Maibaum, T.S.E. (eds.) TAPSOFT 1991, CCPSD 1991, and ADC-Talks 1991. LNCS,
vol. 494, pp. 99–119. Springer, Heidelberg (1991)

2. Borba, P., Cavalcanti, A., Sampaio, A., Woodcook, J. (eds.): PSSE 2007. LNCS, vol. 6153.
Springer, Heidelberg (2010)

3. Bouhoula, A., Jouannaud, J.-P., Meseguer, J.: Specification and proof in membership equa-
tional logic. Theoretical Computer Science 236, 35–132 (2000)

4. Claessen, K., Hughes, J.: Quickcheck: A lightweight tool for random testing of Haskell pro-
grams. In: ACM SIGPLAN Notices, pp. 268–279. ACM Press (2000)

5. Claessen, K., Smallbone, N., Hughes, J.: QUICKSPEC: Guessing Formal Specifications Us-
ing Testing. In: Fraser, G., Gargantini, A. (eds.) TAP 2010. LNCS, vol. 6143, pp. 6–21.
Springer, Heidelberg (2010)

6. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet, N., Bevilacqua, V., Talcott, C.: All
About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Hei-
delberg (2007)

Test-Case Generation for Maude Functional Modules 301

7. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet, N., Meseguer, J., Talcott, C.: Maude
Manual (Version 2.5) (June 2010), http://maude.cs.uiuc.edu/maude2-manual

8. Clavel, M., Meseguer, J., Palomino, M.: Reflection in membership equational logic, many-
sorted equational logic, Horn logic with equality, and rewriting logic. Theoretical Computer
Science 373(1-2), 70–91 (2007)

9. Degrave, F., Schrijvers, T., Vanhoof, W.: Automatic generation of test inputs for Mercury.
In: 18th International Symposium on Logic-Based Program Synthesis and Transformation
(LOPSTR 2008), Valencia, Spain, July 17-18, 2008, Revised Selected Papers, pp. 71–86.
Springer, Heidelberg (2009)

10. Fischer, S., Kuchen, H.: Systematic generation of glass-box test cases for functional logic
programs. In: Proceedings of the 9th ACM SIGPLAN International Conference on Principles
and Practice of Declarative Programming, PPDP 2007, pp. 63–74. ACM Press, New York
(2007)

11. Gaudel, M.-C., Le Gall, P.: Testing Data Types Implementations from Algebraic Specifica-
tions. In: Hierons, R.M., Bowen, J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949, pp.
209–239. Springer, Heidelberg (2008)

12. Hierons, R.M., Bogdanov, K., Bowen, J.P., Rance Cleaveland, J.D., Dick, J., Gheorghe,
M., Harman, M., Kapoor, K., Krause, P., Lüttgen, G., Simons, A.J.H., Vilkomir, S., Wood-
ward, M.R., Zedan, H.: Using formal specifications to support testing. ACM Computing
Surveys 41(2), 1–76 (2009)

13. Koopman, P., Alimarine, A., Tretmans, J., Plasmeijer, R.: GAST: Generic Automated Soft-
ware Testing. In: Peña, R., Arts, T. (eds.) IFL 2002. LNCS, vol. 2670, pp. 84–100. Springer,
Heidelberg (2003)

14. Lembeck, C., Caballero, R., Müller, R.A., Kuchen, H.: Constraint solving for generating
glass-box test cases. In: Kuchen, H. (ed.) Proceedings of International Workshop on Func-
tional and (Constraint) Logic Programming (WFLP 2004), pp. 19–32 (2004)

15. Machado, P.D.L.: On Oracles for Interpreting Test Results against Algebraic Specifications.
In: Haeberer, A.M. (ed.) AMAST 1998. LNCS, vol. 1548, pp. 502–518. Springer, Heidelberg
(1998)

16. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoretical
Computer Science 96(1), 73–155 (1992)

17. Müller, R.A., Lembeck, C., Kuchen, H.: A symbolic Java virtual machine for test case gen-
eration. In: IASTED Conf. on Software Engineering, pp. 365–371 (2004)

18. Riesco, A., Verdejo, A., Martı́-Oliet, N.: Enhancing the Debugging of Maude Specifications.
In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 226–242. Springer, Heidelberg
(2010)

19. Riesco, A., Verdejo, A., Martı́-Oliet, N., Caballero, R.: Declarative debugging of rewrit-
ing logic specifications. Technical Report SIC-02-10, Dpto. Sistemas Informáticos y Com-
putación, Universidad Complutense de Madrid (2010),
http://maude.sip.ucm.es/debugging

http://maude.cs.uiuc.edu/maude2-manual
http://maude.sip.ucm.es/debugging

	Test-Case Generation for Maude Functional Modules
	Introduction
	Maude
	Maude Functional Modules

	Term Generation
	Testing Maude Functional Modules
	Black-Box Testing
	White-Box Testing
	Enhancing the Performance

	Implementation
	Concluding Remarks and Ongoing Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

