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Abstract. We present in this paper an integration of CafeOBJ into
Full Maude. We have developed a grammar to parse any CafeOBJ spec-
ification, an intermediate language to store it, and a translation from
this representation into Maude specifications. This integration enhances
CafeOBJ functionality in many ways: our intermediate representation
has been developed mirroring Maude metalevel, and hence it allows
CafeOBJ users to analyze, modify, and execute them; CafeOBJ specifica-
tions can use Maude commands, including the LTL model checker; other
Full Maude tools can be straightforwardly combined with this extension;
and we provide an alternative implementation for CafeOBJ that can
be easily modified and extended. We present here the ideas for parsing
and translating CafeOBJ specifications, and illustrate with examples the
features listed above.
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1 Introduction

CafeOBJ [9] is a language for writing formal specifications of models for wide
varieties of software and systems, and verifying properties of them. CafeOBJ
implements equational logic by rewriting and can be used as a powerful inter-
active theorem proving system. Specifiers can write proof scores [10] also in
CafeOBJ and perform proofs by executing these proof scores. CafeOBJ provides
several features to ease the specification of systems. These features include a flex-
ible mix-fix syntax, powerful and clear typing system with ordered sorts, parame-
terized modules and views for instantiating the parameters, module expressions,
operators for defining terms, and equations for defining the (possibly conditional)
equalities between terms and (possibly conditional) transitions for specifying how
a system evolves, among others. However, only a subset of the CafeOBJ speci-
fications, the equational part, is executable, where the operational semantics is
given by a conditional order-sorted term rewriting system.

Maude modules are executable rewriting logic specifications. Maude func-
tional modules [1, Chap. 4] are executable membership equational specifications
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that allow the definition of sorts; subsort relations between sorts; operators for
building values of these sorts, giving the sorts of their arguments and result,
and which may have attributes such as being associative or commutative, for
example; memberships asserting that a term has a sort; and equations identify-
ing terms. Both memberships and equations can be conditional. Maude system
modules [1, Chap. 6] are executable rewrite theories. A system module can con-
tain all the declarations of a functional module and, in addition, declarations
for rules and conditional rules. An important feature of rewriting logic is that it
is reflective, that is, it can be faithfully interpreted in terms of itself. This fea-
ture is efficiently implemented in Maude by means of the META-LEVEL module
[1, Chapt. 14], which allows us to use Maude modules and terms as usual data.

Full Maude [1, Part II] is an extension of Maude written in Maude itself.
Full Maude provides an even more powerful module algebra than the one avail-
able in Core Maude, features for parsing and printing Maude modules, and an
explicit module database. This database, combined with the meta-level features
explained above, allows us to introduce, remove, modify, and analyze the mod-
ules introduced by the user. Moreover, it is also possible to change the syntax
of existing features and add new kinds of modules and commands. Full Maude
is built on top of the Loop Mode [1, Chapt. 17], which provides a mechanism to
read the modules and commands introduced by the user enclosed in parentheses,
and to show him the results generated by these commands. For these reasons,
Full Maude has been traditionally used as a basis for further extensions, either
for extra syntactic constructs, like the support for Real-Time modules [14], or
for new commands, like the narrowing search currently available for symbolic
execution [2, Chap. 16].

We present in this paper an extension of Full Maude to parse CafeOBJ mod-
ules. The advantages obtained by using this tool, publicly available at http://
maude.sip.ucm.es/cafe/, are:

– Maude modules can be imported by CafeOBJ modules, and vice versa. The
former is specially useful because Maude provides the predefined modules
SATISFACTION, LTL-SIMPLIFIER, and MODEL-CHECKER [1, Chapt. 12], which
allow the user to define and prove LTL properties on CafeOBJ specifications.
We can also use the Loop Mode [1, Chapt. 17] to develop interactive tools.
Moreover, we have defined an intermediate representation of CafeOBJ specifi-
cations that mirrors Maude metalevel, and have included functions to execute
terms using these modules. That is, CafeOBJ modules can use CafeOBJ mod-
ules and terms as standard data, just as several Maude applications have been
designed during the last years.

– Maude commands can be used on CafeOBJ specifications. This allows the user
to use, among others, the rew command to apply transitions (and normaliza-
tion via equations) to CafeOBJ terms (which cannot be done in the current
release of CafeOBJ) [1, Chapt. 6]; the search command to perform searches
to check invariants [1, Chapt. 12]; or the narrowing command for symbolic
execution [2, Chapt. 16].

http://maude.sip.ucm.es/cafe/
http://maude.sip.ucm.es/cafe/
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– It provides a new implementation of CafeOBJ. Our interface parses any
CafeOBJ module and accepts open-close environments, required to execute
proof scores. We also process behavioral specifications, although the current
version of the tool does not distinguish between behavioral and non-behavioral
statements in the translation.

Moreover, this new implementation is more powerful in the sense that
any CafeOBJ programmer can add new syntax and commands. Although this
extension would require modifying the Maude code used by the interface, it
is so similar to CafeOBJ code that it can be easily understood. Actually, the
code has been designed with this feature in mind, so the syntax and parsing
modules are carefully distinguished and documented.

As an example of the syntax that can be added to CafeOBJ specifications,
our parser allows the user to use matching and rewrite conditions, as well
as using the nonexec and metadata attributes in equations and transitions.
Some of these features are available in the latest release of CafeOBJ, while
others are only supported by our implementation.

– It allows an easy integration of CafeOBJ specifications with any tool
implemented on top of Full Maude. We have currently integrated the Maude
Declarative Debugger and Test-case Generator [16] and the Constructor-based
Inductive Theorem Prover [11]. Our goal when integrating these tools was to
provide a minimum framework where CafeOBJ functions can be tested, fixed
when a wrong behavior is found, and proved correct with respect to some
properties, once we have confidence in the soundness of the implementation.
However, many other interesting tools can be integrated using our approach.

– Finally, we provide a script to connect CafeOBJ with Full Maude in a trans-
parent way. We have implemented a Java class that transforms the source
code to meet the format required by Full Maude, which includes enclosing
the modules in parentheses, adding the ‘ to escape characters such as [, ],
or ,, and removing CafeOBJ comments, among others. In this way, it is not
necessary to modify the original CafeOBJ specifications to use the interface.

The rest of the paper is organized as follows: Sect. 2 briefly introduces the
related work, while Sect. 3 presents the basic notions used throughout the paper.
Section 4 describes the parsing and translation process. Section 5 illustrates how
to use the tool. Finally, Sect. 6 presents the concluding remarks and outlines
some lines of future work.

2 Related Work

The most similar examples to the present work are Full Maude itself [1, Part II],
Real-Time Maude [14], and the Maude Strategy Language [7]. The former defines
a complete syntax for Maude, extends it with support for object-oriented mod-
ules, and provides commands to execute them. Similarly, Real-Time Maude
defines real-time modules and timed commands to execute them, while the Strat-
egy Language extends Maude modules with syntax for defining execution strate-
gies, as well as rewrite commands using these strategies. Our work follows the
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same steps: it requires to define the syntax of our modules and commands, parse
them, translate them into Maude (in Full Maude this is only the case for object-
oriented modules, since standard modules do not require translation), and exe-
cute the commands. Nonetheless, we take advantage of many features developed
for Full Maude and reused later [5], which greatly ease the parsing task.

Besides these tools, Maude has been used as a semantical framework to spec-
ify the semantics of several languages, such as LOTOS [17], CCS [17], or C [8].
These researches, as well as several other efforts to describe a methodology to
represent the semantics of programming languages in Maude, led to the rewrit-
ing logic semantics project [12], which presents a comprehensive compilation of
these works.

Another translation from CafeOBJ to Maude can be found in [18]. There,
the authors translate a subset of CafeOBJ specifications (more specifically, spec-
ifications of state machines standing for asynchronous distributed systems) into
Maude to perform model checking. Although they follow an approach similar to
the one in the current paper, it is focused in just one kind of specification, and
hence it lacks scalability.

3 Preliminaries

We present in this section some basic notions required throughout the rest of the
paper. First, we describe CafeOBJ and Maude by means of an example. Then,
we give some details about the Maude metalevel and Full Maude.

3.1 CafeOBJ and Maude

CafeOBJ (on the lefthand side) can define modules with loose semantics by using
the syntax mod*. For example, we can define a module ELT requiring the existence
of a sort Elt and an element of this sort, called mt, which is a constructor. This
kind of behavior is specified in Maude (on the righthand side) as a theory:

mod* ELT { fth ELT is
[Elt] sort Elt .
op mt : -> Elt {constr} op mt : -> Elt [ctor] .

} endfth

We can use this module to define a parameterized module with tight seman-
tics, with syntax mod!. The module LIST below indicates that it receives a para-
meter X fulfilling the requirements stated by ELT. This module first defines the
sort List for lists. Similarly, we define a parameterized system module LIST in
Maude with syntax mod:

mod! LIST(X :: ELT) { mod LIST{X :: ELT} is
[List] sort List .
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The constructors are defined, as shown above, with the keyword op and the
constr attribute. In this case the constructors are nil for empty lists and the
juxtaposition operator for placing an element of sort Elt in front of a list.
Note the different syntax for the sort Elt, qualified by the parameter X:

op nil : -> List {constr} op nil : -> List [ctor] .

op __ : Elt.X List -> List {constr} op __ : X$Elt List -> List [ctor] .

We can also define functions for lists. For example, composition of lists is
defined by distinguishing constructors on the first argument. Note that both
CafeOBJ and Maude follow the same syntax, although CafeOBJ allows some
extra syntactic sugar, including just-once on-the-fly declaration of variables:

var E : Elt.X var L : List var E : X$Elt . var L : List .

op _@_ : List List -> List op _@_ : List List -> List .

eq [c1] : nil @ L = L . eq [c1] : nil @ L = L .

eq [c2] : (E L) @ L’:List = eq [c2] : (E L) @ L’:List =

E (L @ L’) . E (L @ L’:List) .

Similarly, we can define the reverse function. This function uses the constant
mt from module ELT as the reverse of the empty list,1 while the reverse for bigger
lists is defined as usual by using the composition above:

op reverse : List -> List op reverse : List -> List .

eq [r1] : reverse(nil) = mt nil . eq [r1] : reverse(nil) = mt nil .

eq [r2] : reverse(E L) = eq [r2] : reverse(E L) =

reverse(L) @ (E nil) . reverse(L) @ (E nil) .

We can also define non-deterministic transitions. For example, we can com-
bine two lists by using the commutative operator mix and two transitions to
indicate that the next element is the first one of any of the lists (thanks to the
matching modulo commutativity):

op mix : List List -> List {comm} op mix : List List -> List [comm] .

trans [m1] : mix(nil, L) => L . rl [m1] : mix(nil, L) => L .

trans [m2] : mix(E L, L’) rl [m2] : mix(E L, L’)

=> E mix(L, L’) . => E mix(L, L’) .

} endm

Finally, in CafeOBJ we can use an on-the-fly view to instantiate LIST with
natural numbers:

mod! NAT-LIST {
pr(LIST(view to NAT {sort Elt -> Nat, op mt -> 0}))

}

On the other hand, we need to define an explicit view in Maude, and then
use this view to instantiate the module:
1 This is a wrong definition that will be detected and fixed in Sect. 5.3.
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view Nat from Elt to NAT is
sort Elt to Nat .
op mt to 0 .

endv

mod NAT-LIST is
pr LIST{Nat} .

endm

3.2 Maude Metalevel and Full Maude

Exploiting the fact that rewriting logic is reflective [3], an important feature
of Maude is its systematic and efficient use of reflection through its predefined
META-LEVEL module [1, Chapt. 14], a characteristic that allows many advanced
metaprogramming and metalanguage applications. In this work, we take advan-
tage of this feature to parse, store, transform, and execute CafeOBJ modules.

Full Maude [1, Part II] is an extension of Maude written in Maude itself.
Full Maude is built on top of the LOOP-MODE module [1, Chapt. 17]. This module
allows input/output interaction by means of the [ , , ] operator, which builds
terms of sort System and where the first argument corresponds to the input
introduced by the user, which must be enclosed in parentheses to be recognized;
the second one is a term of sort State that can be defined by the user for each
application; and the third one the output shown to the user.

In Full Maude this State is defined by using a class Database, which has
an attribute db standing for the Full Maude database. It also has attributes
for the current input, the output not processed yet, and the default mod-
ule. Essentially, the Loop Mode transforms the data introduced by the user
into a list of quoted identifiers; this list is then meta-parsed by Full Maude by
using the GRAMMAR module, which includes the syntax for modules and com-
mands. If this parsing is successful, then the term thus obtained is placed in the
input attribute. Different inputs are treated by using rules: modules and views
are processed to check whether they fulfill the semantic constraints required by
Maude, and then introduced into the database, while commands are executed
by using this database. The results must be placed in the output attribute; a
rule will move this data to the third component of the system.

Hence, our aims in this paper are to extend GRAMMAR to include CafeOBJ
syntax, process the new terms obtained from the parsing, and define commands
(and the appropriate rules) to deal with these new features.

4 Introducing CafeOBJ Modules into the Full Maude
Database

We present in this section the basic ideas to introduce CafeOBJ modules into
the Full Maude database. First, we describe how CafeOBJ modules are parsed.
Then we show how the obtained modules can be translated into Maude and used
by other tools implemented in Full Maude.



236 A. Riesco

4.1 Parsing CafeOBJ Modules and Commands

As explained in the previous section, in order to parse CafeOBJ modules we have
to define its syntax, which will be used by Full Maude to create a term that will
be processed to obtain the actual module. We use the metarepresentation of
this module to extend the GRAMMAR metamodule from Full Maude, providing the
metamodule CafeGRAMMAR. It can be used to parse both Maude and CafeOBJ
modules and commands.

Basically, the syntax follows the CafeOBJ grammar in [13], although we
have extended it with some features that will be available in the next release of
CafeOBJ, such as the nonexec attribute or matching conditions. Following the
standard approach, we define a sort for each syntactic category in the grammar,
and operator declarations for each production rule. In this way, we specify a mod-
ule CafeMETA-SIGN where this information is contained. For example, the sort
@CafeTransDecl@2 stands for the definition of transitions in CafeOBJ syntax:

op trans_=>_. : @CafeBubble@ @CafeBubble@ -> @CafeEqDecl@ [ctor] .

op ctrans_=>_if_. : @CafeBubble@ @CafeBubble@ @CafeBubble@

-> @CafeTransDecl@ [ctor] .

op ctrns_=>_if_. : @CafeBubble@ @CafeBubble@ @CafeBubble@

-> @CafeTransDecl@ [ctor] .

Note that we use a special sort @CafeBubble@ to encapsulate terms that can
take any form. Basically, a bubble is any list of quoted identifiers, which must
be later parsed to obtain a valid term in the current module.

These declarations, as well as the rest of declarations for the statements
available in a CafeOBJ module, are defined as a subsort of a @CafeDeclList@,
which are composed by means of a juxtaposition operator:

subsorts @CafeImportDecl@ ... @CafeTransDecl@ < @CafeDeclList@ .

op __ : @CafeDeclList@ @CafeDeclList@ -> @CafeDeclList@ [assoc] .

For example, the transition m1 from Sect. 3 would be parsed as:

’trans_=>_.[’CafeBubble[’__[’‘[.Qid, ’’m1.Qid, ’‘], ’:, ’’mix.Qid,

’‘(.Qid, ’’nil.Qid, ’‘,, ’’L.Qid, ’‘).Qid]], ’CafeBubble[’’L.Qid]]

Note that the label is included in the bubble for the lefthand side; it must be
extracted before processing this side (analogously, attributes might appear in
the bubble for the righthand side). This term must be now parsed again in order
to check whether it fulfills the semantics constraints, e.g., the terms only use
variables previously defined, they are bound either in the lefthand side or in a
matching condition, and terms are built using existing operators. This second
phase returns, when the module is correct, a term of sort CafeModule:

op mod*_{__[_]____} : CafeHeader CafeImportList HiddenSortDecl SortSet

CafeSubsortDeclSet CafeOpDeclSet CafeEqSet

CafeTransSet -> CafeModule [ctor] .

2 We follow the Full Maude convention and enclose sorts for parsing in @.
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Our definition of CafeOBJ modules uses the sorts Qid, Term, and Condition
from Maude metalevel to define the sorts used here. For example, transitions are
declared as follows:

op trans_=>_{_}. : Term Term CafeAttrSet -> CafeTrans [ctor] .

op ctrans_=>_if_{_}. : Term Term Condition CafeAttrSet -> CafeTrans [ctor] .

In this way, the transition m1 is represented as:

trans ’mix[’nil.List, ’L:List] => ’L:List {label:(’m1)} .

Once the final module has been obtained, it is stored in a database, which is
just a partial function from quoted identifiers (of sort Qid) to CafeModule. This
modules can be retrieved, modified, executed, and stored again, as we will see in
Sect. 5. Note that the current version of the tool does not support metasyntax
for views; they are just introduced as Maude views.

Regarding commands, we provide the syntax for open...close environ-
ments, which combine operator declarations (mainly constants) and equation
definitions with red commands to define proof scores [10], and specific com-
mands for dealing with CafeOBJ modules. In this case we create an on-the-fly
module where the reductions take place.

4.2 Translating the Modules

Taking advantage of the similarities between the syntax and the semantics of
CafeOBJ and Maude, most of the transformations performed by our tool are
straightforward. Both languages have modules with loose semantics (called the-
ories in Maude), modules with tight semantics, parameterized modules, views to
instantiate these modules, equations, and transitions (rules in Maude) as main
features. From the Maude point of view there are some features that cannot
be translated into CafeOBJ, being the main one the membership axioms stat-
ing the members of a sort, because Maude implements membership equational
logic while the CafeOBJ type system is based on order sorted algebra. However,
the differences in this case are not important because we are interested in the
translation from CafeOBJ to Maude.

There are two important features in CafeOBJ that cannot be translated into
Maude. Both of them are related to the importation of modules with loose seman-
tics: (i) these modules can be imported by any module, while in Maude they can
only be imported by other theories, and (ii) these modules can be imported in
any mode (being the modes protecting, indicating that no junk and no confu-
sion is added to the sorts; extending, denoting that no confusion is allowed; and
including, indicating that there are no restrictions, see [1, Chapt. 8] for details),
while Maude theories can only be imported in including mode. We have dealt
with these restrictions in a conservative way. First, we translate these modules,
that should be Maude theories, as modules (i.e., they have tight semantics), and
a warning message is shown. This change is harmless if our aim is to execute
them or to use any of the tools currently integrated (the declarative debugger
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and the CITP), but has two disadvantages: (a) it might fail later, if this module
is used as the target of a view, and (b) other tools, not integrated yet, might
distinguish between the different kinds of modules. Similarly, we always trans-
late the importation modes for these modules as including, which is also fine in
our case (the tools integrated thus far use flattened modules) but might produce
problems with other tools. The user can force the tool to translate the modules
without modifications with the (strict translation on.) command.

There are also some other complex features that require a non-straightforward
translation. More specifically, the CafeOBJ syntax for views is much more flexible
than the one used by Maude: they can be defined on-the-fly and can be used in an
order different from the one specified in the parameterized module by using the
parameter name. The former is solved by creating explicit views with fresh view
identifiers, while the latter requires to manipulate the parameterized module from
the database to reorder the views.

Basically, our implementation defines a function cafe2maude, which takes a
CafeModule and returns a Maude Module:

op cafe2maude : CafeModule -> Module .

It uses auxiliary functions to translate each element in a CafeOBJ module. For
instance, transitions are translated into rules as follows:

op cafe2maude : CafeTrans -> Rule .
eq cafe2maude(trans T => T’ {AtS} .) = rl T => T’ [cafe2maude*(AtS)] . .
eq cafe2maude(ctrans T => T’ if C {AtS} .) = crl T => T’

if C [cafe2maude*(AtS)] . .

where cafe2maude* is an auxiliary function that translates the attributes.
As explained in Sect. 3.2, the connection between the Loop Mode and the

behavior of the tool is implemented by rules. We have defined a new class
CafeDatabase, subclass of Database, to take care of the translation and the new
commands:

sort CafeDatabaseClass .
subsort CafeDatabaseClass < DatabaseClass .
op CafeDatabase : -> CafeDatabaseClass [ctor] .

This class defines two new attributes: strict, which indicates whether the
translation is strict or not, and cafeDB, which contains the CafeOBJ database:

op strict :_ : Bool -> Attribute [ctor] .
op cafeDB :_ : CafeDB -> Attribute [ctor] .

4.3 Combining CafeOBJ and Other Full Maude Tools

Using the modules described in the previous sections, it is easy to modify any
tool built in Full Maude for Maude specifications and make it work with CafeOBJ
modules, given that they follow two standard principles:3

3 Note that these changes will allow us to execute the tools. However, some theoretical
considerations may be required to prove that this execution is correct.
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– They use a module extending GRAMMAR to parse their modules/commands. In
this case, it is enough to extend CafeGRAMMAR instead, and CafeOBJ modules
will be parsed.

– They define a subclass of Database to process their modules/commands. We
have to modify this definition to extend CafeDatabase. It is also required to
initialize the attributes strict and cafeDB, so they can be used later.

To test the benefits of this approach we have already worked with the Maude
declarative debugger and test-case generator [16] and the Constructor-based
Inductive Theorem Prover (CITP) [11]. Note that a potential problem of any inte-
gration is that the output provided by the tool refers to the transformed Maude
code. Although this might be fine in some cases (e.g. the debugger refers to the
label of the wrong statement, so it is safe to use it, see Sect. 5.3 for details), in some
others it is interesting to refer to the original CafeOBJ module or just use com-
mands which are specifically defined for CafeOBJ users. In this case, some extra
changes are required, as shown in the next section for the CITP.

5 Connecting CafeOBJ andMaude

We present in this section how to use the most important features of our imple-
mentation. We first show how to use the metalevel representation of CafeOBJ.
Then, we describe the basic commands provided in the interface and how to use
the Maude Declarative Debugger and the Constructor-based Inductive Theorem
Prover. All the modules, scripts, and examples shown here are available at http://
maude.sip.ucm.es/cafe/.

5.1 Metaprogramming in CafeOBJ

We provide in the META-CAFE-SYNTAXmodule the syntax for CafeOBJ modules. It
follows the syntax in the predefined module META-LEVEL for Maude modules, but
uses specific syntax to follow CafeOBJ conventions. These modules are retrieved
from and inserted into the database with the functions getTopModule and
setTopModule. Note that, since these modules are stored in a specific attribute
of the CafeDatabase class, specifications using the database are not completely
transparent from Maude syntax:

op getTopModule : CafeDB Qid ~> CafeModule .
op setTopModule : CafeDB Qid CafeModule -> CafeDB .

Finally, these modules can be modified and executed by using the functions in
CAFE-META-LEVEL. It includes functions for accessing the different components of
a module, update them, and for executing terms in a given module. The current
version of the tool provides the functions metaReduce, for applying equations until
a normal form is reached; metaRewrite, for applying transitions given a bound
in the number of transitions applied; and metaFrewrite, for fair application of
transitions given a bound in the number of transitions applied and the maximum
number of rewrites at each entitled position on each traversal of a subject term
(see [1, Chapt. 14] for details):

http://maude.sip.ucm.es/cafe/
http://maude.sip.ucm.es/cafe/
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op metaReduce : Qid Term CafeDB Database -> ResultPair .
op metaRewrite : Qid Term Bound CafeDB Database -> ResultPair .
op metaFrewrite : Qid Term Bound Nat CafeDB Database -> ResultPair .

Note that these functions require the Maude database, since they might import
some Maude modules. They are implemented by building the corresponding flat
Maude module and then using the appropriate built-in Maude functions.

For example, we could define a function getCommOps extracting the commuta-
tive operators from a CafeOBJ module by using an auxiliary function
filterCommOps that keeps the commutative operators from a set:

op getCommOps : CafeModule -> CafeOpDeclSet
eq getCommOps(CM) = filterCommOps(getOps(CM)) .
op filterCommOps : CafeOpDeclSet -> CafeOpDeclSet
eq filterCommOps(none) = none .
eq filterCommOps(COD CODS) = if isComm?(COD) then COD

else none fi filterCommOps(CODS) .

where isComm? is an auxiliary function that checks whether an operator is com-
mutative. Note that we allow operators with both the op definition and the pred
keyword. This function uses another auxiliary function containsComm?which just
traverses the attributes looking for comm:

pred isComm? : CafeOpDecl
eq isComm?(op Q : TyL -> Ty {AtS}) = containsComm?(AtS) .
eq isComm?(pred Q : TyL {AtS}) = containsComm?(AtS) .
pred containsComm? : CafeAttrSet
eq containsComm?(none) = false .
eq containsComm?(A AtS) = A == comm or containsComm?(AtS) .

5.2 Basic Commands

Once the files in the webpage have been downloaded and the paths have been con-
figured, and assuming the modules above are saved in a file called wrla.cafe, we
can start the tool by typing:

$ ./cafe2maude wrla.cafe

The cafe2maude script creates a temporary file generated by a Java appli-
cation. This file contains the original CafeOBJ modules modified in order to be
accepted by Full Maude (e.g. adding the parentheses enclosing modules and views,
removing CafeOBJ comments, and adding the ‘ character to the escape characters
such as { or }). Once the script is executed, the modules are introduced into the
Full Maude database and we can use any Maude command on them. For example,
the rew command uses transitions to evaluate terms. Note that this command, as
well as the one below, is not available in CafeOBJ:
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Maude> (rew mix(1 3 nil, 2 4 nil) .)
result List : 1 2 3 4 nil

We can also use symbolic search to start with terms with variables and look
for substitutions that fulfill the conditions imposed by the search. For example,
we can look for the term required in the mix operator to obtain the result from
the rew command:

Maude> (search [1] mix(L:List, 2 4 nil) ~>! 1 2 3 4 nil .)
Solution 1
L:List --> 1 3 nil
No more solutions.

where the ! option indicates that we are looking for final terms and >! distin-
guishes the symbolic search from the standard one, performed with =>!. In this
case we obtain the substitution L:List --> 1 3 nil, indicating that we needed
this list to obtain the result.

Besides using Maude commands, we can also work with CafeOBJ specifica-
tions. For example, we can see the original module and execute proof scores. Basi-
cally, proof scores are scripts defining an inductive proof, where constants can be
declared by means of operators and hypothesis by using equations. The base and
the inductive steps are proved by using the red command. For example, we can
prove the associativity of the + function as follows:

open NAT + BOOL
ops i j k : -> Nat
red (0 + j) + k == 0 + (j + k) . -- base step
eq (i + j) + k = i + (j + k) . -- induction hypothesis
red (s(i) + j) + k == s(i) + (j + k) . -- inductive step
close

Once we load the file with this open-close environment, Maude executes the
red commands and provides the following result:

Processing open-close environment:
reduce(0 + j)+ k == 0 + j + k .
Result: true : Bool
reduce(s i + j)+ k == s i + j + k .
Result: true : Bool

5.3 Using the Declarative Debugger and Test-Case Generator

To start this tool it is enough to download the script cdd, configure the paths,
and execute it with the files we want to test and debug. Then, we can use all the
commands described in http://maude.sip.ucm.es/debugging/ to test and debug
our CafeOBJ modules. For example, we can test the reverse function by using
the so called function coverage criterium, which generates ground test cases that
must use all the equations defined for reverse (r1 and r2) in all the calls (the
single call to this function is located in r2). This is done by using:

http://maude.sip.ucm.es/debugging/
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Maude> (function coverage .)
Function Coverage selected
Maude> (test in NAT-LIST : reverse .)
1 test cases have to be checked by the user:

1. The term reverse(0 0 nil) has been reduced to 0 0 0 nil
All calls were covered.

That is, the call reverse(0 0 nil) uses both r1 and r2 for the recursive call
(r2 for the first call and r1 for the second one). Note that the result of this call is
unexpected, because it should also be 0 0 nil. Hence, this function is buggy and
must be debugged. We can do it by typing:

Maude> (invoke debugger with user test case 1 .)
Declarative debugging of wrong answers started.

This command starts the declarative debugger. Declarative debuggers find
bugs in programs by asking questions to the user, that must answer yes or no
(check the webpage above for more possible answers) until the bug is found. Hence,
the debugger presents the following question:

Is this reduction (associated with the equation r2) correct?
reverse(0 nil) -> 0 0 nil
Maude> (no .)

This result is erroneous for the same reasons explained above, so the user
answers no and the debugging session continues with the following questions:

Is this reduction (associated with the equation com2) correct?
(0 nil) @ 0 nil -> 0 0 nil
Maude> (yes .)
Is this reduction (associated with the equation r1) correct?
reverse(nil) -> 0 nil
Maude> (no .)

We answer yes for a correct composition but no for another application of
reverse. With this information the debugger is able to find the bug:

The buggy node is: reverse(nil) -> 0 nil
with the associated equation: r1

In fact, the equation r1 should return just nil. The questions asked during the
session correspond to the nodes of a tree representing the wrong computation.
This tree, which might be useful to the user to check the relations between the
calls, can also be shown.

Finally, it is also possible to use a property and a correct module to test
the functions. For example, we can define in the module PROP-LIST the property
prop stating that applying reverse twice returns the same list, while in
CORRECT-PROP-LIST we state that this property must be always true:
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mod! PROP-LIST { mod!CORRECT-PROP-LIST {
pr(NAT-LIST) pr(NAT-LIST)
op prop : List -> Bool op prop : List -> Bool .
eq [p1] : prop(L:List) = eq prop(L) = true .

reverse(reverse(L:List)) == L:List .
} }

Now we can set the correct module and generate test cases:

Maude> (correct test module CORRECT-PROP-LIST .)
CORRECT-PROP-LIST selected as correct module for testing.
Maude> (test in PROP-LIST : prop .)
10 test cases are incorrect with respect to the correct module.

Once the test cases have been generated, they can be displayed and debugged
as shown above.

5.4 Using the Constructor-Based Inductive Theorem Prover

We have extended the CITP to work with CafeOBJ-like commands, hence obtain-
ing a tool fully customized for CafeOBJ. This has been done by adding an extra
attribute language to the tool, which allows us to distinguish between interfaces,
while the underlying modules dealing with proofs are left unmodified.

The CITP allows the user to prove properties on CafeOBJ specifications. It is
started by the citp script. Since we want to prove properties on CafeOBJ specifi-
cations, we have to indicate it with a specific command, which sets the language
attribute explained above to cafeOBJ, hence modifying the syntax and the display
options to work with CafeOBJ specifications:

Maude> (cafeOBJ language .)
CafeOBJ selected as current specification language.

Now we can introduce goals, which are depicted as equations or transitions.
For example, we can prove the associativity of list composition, using on-the-fly
declaration of variables from CafeOBJ, by typing:

Maude> (goal NAT-LIST |- eq L1:List @ (L2:List @ L3:List) =
(L1 @ L2) @ L3 ;)

============================ GOAL 1-1 ============================
< Module NAT-LIST is concealed ... end,
eq L1:List @(L2:List @ L3:List) = (L1:List @ L2:List)@ L3:List . >

unproved
INFO: an initial goal generated!

This goal can be easily proved by using induction on L1 and then applying the
default tactic with the auto command:
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Maude> (set ind on L1:List .)
INFO: Induction will be conducted on L1:List
Maude> (auto .)
INFO: Goal 1-1 was successfully proved by applying tactic: SI CA CS TC IP
INFO: PROOF COMPLETED

It is also possible to state goals involving transitions. For example, we can
define the following trivial goal, which just uses the commutativity attribute:

Maude> (goal NAT-LIST |- trans mix(L:List, nil) => L ;)
============================ GOAL 1-1 ============================
< Module NAT-LIST is concealed ... end,
trans mix(L:List,nil) => L:List . >

unproved
INFO: an initial goal generated!

Note that CafeOBJ syntax is used for both the goal and the displayed infor-
mation. This simple goal can be discarded by just using auto:

Maude> (auto .)
INFO: Goal 1-1 was successfully proved by applying tactic: SI CA CS TC IP
INFO: PROOF COMPLETED

Much more information on the CITP, including several other commands, all
of them now customized for CafeOBJ specifications, is described at http://www.
jaist.ac.jp/∼danielmg/citp.html.

6 Concluding Remarks and OngoingWork

We have presented in this paper a tool to introduce CafeOBJ specifications into
the Full Maude database. This tool allows us to use Maude modules and com-
mands with CafeOBJ specifications, provides an implementation of a CafeOBJ
metalevel, and eases the task of connecting CafeOBJ specifications with tools
implemented on top of Full Maude. Using this feature we provide an environ-
ment where CafeOBJ specifications can be tested, debugged, and proved correct
by integrating the Maude Declarative Debugger and Test-case Generator and the
Constructor-based Inductive Theorem Prover.

We want to improve the implementation of the metalevel in two different ways:
first, we want to define the syntax for representing views, in such a way that they
can also be analyzed and modified. On the other hand, we are interested in defin-
ing more execution commands: currently only metaReduce, metaRewrite, and
metaFrewrite are available, but several others can be implemented using our
translation for CafeOBJ specifications and the built-in commands in Maude met-
alevel. Another interesting topic would be distinguish between behavioral and
non-behavioral specifications when translating and executing the modules.

http://www.jaist.ac.jp/~danielmg/citp.html
http://www.jaist.ac.jp/~danielmg/citp.html
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We are currently working to extend our framework with the Maude Formal
Environment (MFE) [6]. This environment allows to check properties such as ter-
mination, confluence, and coherence on Maude specifications. It also includes the
Inductive Theorem Prover [4], a tool to prove inductive properties on equational
Maude specifications. Integrating this environment with CafeOBJ specifications
would allow us to check that the executability requirements hold.

We are also interested in integrating Real-Time Maude [14] in our framework.
This integration would be specially interesting for CafeOBJ users, since several
protocols, such as [15], has already been specified in CafeOBJ. However, this inte-
gration is not straightforward, since it requires to extend the syntax of CafeOBJ
specifications with timed transitions, as originally implemented for Maude.

Besides connecting more tools, we are also interested in extending the com-
mands for CafeOBJ. More specifically, we are interested in the t1 =(m,n)=> t2
predicate, which indicates that the term t2 is reachable from t1, with m the num-
ber of searched terms and n the depth of the search (both numbers can be set to
* to indicate that it is unbounded). This predicate, that is not documented and
allows several extra conditions to constrain the states, is similar to the search
command in Maude. It is interesting to implement this predicate, since it would
increment the amount of CafeOBJ commands supported by our interface while
providing a documented version in terms of Maude.
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