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Abstract
We present a declarative debugger for sequential Erlang programs. The tool is started by the

user when a program produces some unexpected result. It automatically builds a computation tree
representing the structure of the erroneous computation. The tree is then traversed asking questions
to the user about the validity of some nodes of the tree, which represent the results of intermediate
subcomputations, until a bug in the program is found. The navigation process first concentrates in
locating an erroneous function in the program. Then, the user can refine the granularity by zooming
out the function, checking the values bound to variables and the if/case/try-catch branches taken
during the execution. In order to represent the erroneous computation, a semantic calculus for
sequential Core Erlang programs is proposed. The debugger uses an abbreviation of the proof trees
in this calculus as debugging trees, which allows us to prove the soundness of the approach. The
technique has been implemented in a tool publicly available. An exhaustive analysis of the usability
of the tool is also presented.
Keywords: Declarative debugging, Erlang, Semantics, Zoom

1 Introduction
Erlang [12] is a programming language that combines the elegance and expressiveness of functional
languages (higher-order functions, lambda abstractions, single assignments), with features required in
the development of scalable commercial applications (garbage collection, built-in concurrency, and even
hot-swapping). The language is used as the base of many fault-tolerant, reliable software systems. The
development of this kind of systems is a complicated process where tools such as discrepancy analyzers [24],
test-case generators [32], or debuggers play an important rôle. In the case of debuggers, Erlang includes a
useful trace-debugger including different types of breakpoints, stack tracing, and other features. However,
debugging a program is still a difficult, time-consuming task, and for this reason we think that alternative
or complementary debugging tools are convenient.

Taking advantage of the declarative nature of the sequential subset of Erlang, we propose a new
debugger based on the general technique known as declarative debugging [37]. Also known as declarative
diagnosis or algorithmic debugging, this technique abstracts the execution details, which may be difficult
to follow in declarative languages, to focus on the validity of the results. This approach has been widely
employed in the logic [26, 41], functional [30, 33], multi-paradigm [6, 25], and object-oriented [23, 5]
programming languages. Declarative debugging is a two-step scheme: it first computes a debugging tree
representing a wrong computation, usually using a formal calculus that allows us to prove the soundness
and completeness of the approach, and then traverses this tree by asking questions to the user until the
bug is identified. Note that, since the process starts when an unexpected result is found, the technique
is usually restricted to terminating computations.
∗Research supported by MICINN Spanish project StrongSoft (TIN2012-39391-C04-04) and Comunidad de Madrid pro-

gram PROMETIDOS (S2009/TIC-1465).

1



In order to obtain the debugging trees we present a semantic calculus for sequential Core Erlang pro-
grams, the intermediate language that Erlang uses to codify all the programs in a uniform representation.
We selected this intermediate language because it is simpler than Erlang (i.e. with less and simpler syn-
tactical constructs), which is very convenient to simplify our analysis. The debugging trees are defined as
abbreviations of the proof trees obtained in this calculus. Each node in this tree corresponds to a function
call occurred during the computation, and it is considered valid if the function call produced the expected
result, and invalid otherwise. Then, the debugger navigates the tree by asking questions to the user about
the validity of some nodes until a buggy node—an invalid node with only valid children—is found, being
its associated function the source of the error. Once a buggy function has been found, the user can
proceed further by zoom debugging the function. One can picture this zoom as if each node of the tree
was itself another debugging tree representing the computation of the code defining the buggy function.
This second level of debugging is a new contribution to the general scheme of declarative debugging, since
it allows to vary the granularity of the detected error depending on the necessities and the knowledge of
the user. Note that the debugging trees for this stage are obtained from the same semantic calculus but
are completely different from the ones in the previous phase, hence requiring a separate approach. In this
phase the user is asked questions such as the particular function rule employed to obtain the erroneous
result, the local variable bindings, or the branch selected in if/case/try-catch statements. The result
is a particular fragment of code in the function previously pointed out as buggy by the tool.

The relation between the debugging trees and the proof trees in the semantic calculus allows us to
prove the soundness and completeness of the technique. Using these ideas we developed an Erlang tool
supporting the declarative debugging of sequential Erlang programs. The tool provides features such as
different navigation strategies [38, 39], trusting, higher-order functions, support for built-ins, and “don’t
know” answers. The present work extends and completes these results, that were presented in [8], by:

• Introducing zoom debugging, which allows the user to detect more specific errors in a function
previously detected as buggy.

• Improving the debugging trees to support erroneous lambda abstractions. This extension requires
a modification of the abbreviation function to include this kind of computation in the debugging
tree, as well as new proofs for taking it into account.

• Updating our debugger to support the features listed above. Moreover, the navigation of the
debugging tree has been eased by providing new answers that direct the current navigation strategy,
reducing the number of questions.

• Compiling a study of the applicability of the system to real programs. We have applied our debugger
to a wide range of applications developed by others, being able to detect non-documented errors.
This gives us confidence on the usability of the tool and on its implementation.

• Giving a detailed description of the calculus. Besides the extra explanations, this calculus has been
modified from the one in [8] by adding additional rules dealing with bound variables and with the
path taken during the execution, which are required by the zoom.

The rest of the report is organized as follows: Section 2 describes the related work and the similarities
with our approach. Section 3 introduces Erlang and the transformation to Core Erlang, illustrating it with
an example. Section 4 presents the calculus we have tailored for sequential Core Erlang programs. Section
5 describes the different errors detected by our approach. Section 6 presents the transformations applied
to the semantic calculus proof trees to apply declarative debugging, as well as the associated soundness
and completeness results. Section 7 outlines the main features of our tool and describes debugging sessions
for both standard and zoom debugging. Section 8 presents the experimental results obtained when using
our tool, while Section 9 concludes and presents the future work. A presents additional information
about Bit String, a particular feature of Erlang which is considered in a separated way to simplify the
presentation. Finally, B includes the proofs of the theoretical results presented in Section 6.

2 Related work
First, we need a calculus to be able to build our debugging trees. The semantics of Erlang is informally
described in [2], but there is no official formalized semantics. However, several authors have proposed
and used different formalizations in their works, most of them aiming to cover the concurrent behavior
of the language. In [21], Huch proposes, for a subset of Erlang, an operational small step semantics
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based on evaluation contexts to only perform reductions in certain points of the expression. It covers
single-node concurrency (spawning and communication by messages between processes in the same node)
and reductions that can yield runtime errors. However, it does not cover other sequential features of the
language like lambda abstractions or higher-order functions. Another important small-step semantics
for Erlang is proposed in Fredlund’s Ph.D. thesis [19]. This semantics is similar to [21] and also uses
evaluation contexts but covers a broader subset of the language including single-node concurrency, runtime
errors, and lambda abstractions. However, it also lacks support for higher-order features. To overcome
the limitations of Fredlund’s single-node semantics when dealing with distributed systems, [15] proposes
a semantics based on Fredlund’s but adding another top-level layer describing nodes. This distributed
multi-node semantics for Erlang was further refined and corrected in [40]. Besides standard operational
semantics, other approaches have been proposed to formalize Erlang semantics like the one based on
congruence in [14], which works with partial evaluation of Erlang programs.

Regarding Core Erlang [9, 10],1 there is no official semantics either. The only official document is the
language specification [10], which contains a detailed but informal explanation of the expected behavior
for the evaluation of expressions. Unlike Erlang, which has several formalizations by different authors,
the only formalization of Core Erlang appears in [29, 28], created mainly for model checking Core Erlang
programs using Maude [16]. That small-step operational semantics of Core Erlang follows the informal
explanation in [10] and covers many aspects of the language like concurrency (message passing, spawning
processes) and higher-order features. Though the semantics in [29, 28] fits nicely with the Rewriting
Logic used by Maude, a small-step operational semantic is difficult to use for declarative debugging, since
the conclusions of the inference rules contain values which are not fully evaluated, hence making the
associated questions difficult to answer. Therefore, we propose here a natural (big-step) semantics for
Core Erlang to complement the small-step semantics in [29, 28] and to base our declarative debugging
approach to Core Erlang programs. The semantics we propose for Core Erlang—inspired in the natural
semantics previously presented for Erlang, mainly [21, 19]—formalizes the behavior explained in [10] and
covers all the Core Erlang syntax except concurrency-related expressions (message sending and reception)
and bit string notation.2

Tools for testing and debugging programs are very popular in the Erlang community since long ago.
The OTP/Erlang system comes with a classical trace-debugger3 with both graphical and command line
interfaces. This debugger supports the whole Erlang language—including concurrency—, allowing pro-
grammers to establish conditional breakpoints in their code, watch the stack trace of function calls, and
inspect variables and other processes, among other features. Another tool included in the OTP/Erlang
system is the DIscrepancy AnaLYZer for ERlang programs (Dialyzer) [24], a completely automatic tool
that performs static analysis to identify software discrepancies and bugs such as definite type errors [36],
race conditions [13], unreachable code, redundant tests, unsatisfiable conditions, and more. Model check-
ing tools have also received much attention in the Erlang community [21, 3], being McErlang [4] one
of the most powerful nowadays due to its support for a very substantial part of the Erlang language.
Regarding testing tools, the most important ones are EUnit [11] and Quviq QuickCheck [22]. The EUnit
tool is included in the OTP/Erlang system, and allows users to write their own unit tests to check that
functions return the expected values. On the other hand, Quiviq QuickCheck is a commercial software
that automatically generates and checks thousands of unit tests from properties stated by programmers.

It is interesting to see the main advantages of the declarative debugging approach w.r.t. the trace-
debugger. We distinguish between the standard approach for debugging functions and the novel one
performing zoom on them. In the first case, our declarative debugger provides more clarity and simplicity
of usage for sequential programs. In the trace-debugger, programmers must compile their code with the
debug_info option, and set some breakpoints where they want to stop the execution. From those points
they can proceed step by step, checking whether the results of the functions or the arguments and bindings
are the expected ones. If they skip the evaluation of a function but they discover it returns a wrong
value, they have to restart the session to enter and debug its code. This is a burden even with conditional
breakpoints, since conditions in the trace-debugger must be coded as boolean functions in a module.
The advantage of the declarative debugger is that, starting only from an expression returning a wrong
value, it finds a buggy function by simply asking about the results of the functions in the computation,

1The official Core Erlang [9, 10] should not be confused with the subsets of Erlang that the previous papers covered,
although they usually refer them as some core Erlang.

2Although a very expressive feature, we have omitted bit syntax for two reasons: First, to keep the presentation as clear
as possible. Second, because it is not completely supported by the cerl_clauses library we use to evaluate Core Erlang
case expressions in the implementation of the debugger. However, in A we explain all the modifications and extensions
needed to incorporate bit syntax in the theoretical framework of our debugger.

3http://www.erlang.org/doc/apps/debugger/debugger_chapter.html
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avoiding low-level details. It focuses on the intended meaning of functions, which is something very clear
to programmers (or debuggers), and the built-in navigation strategies saves them from choosing what
functions check and in what order as with breakpoints in the trace-debugger.

Comparing the zoom declarative debugger and the trace-debugger, both provide tools to detect a
bug hidden in the code of a concrete sequential function. With a trace-debugger, programmers proceed
instruction by instruction checking whether the bindings, the branches selected in if/case/try-catch
expressions or inner function calls in the code of a suspicious function are correct. The zoom declarative
debugger fulfills a similar task, asking only about the correctness of bindings and if/case/try-catch
branch selections since it abstracts from inner function calls—they have been checked in the previous
phase. Moreover, the navigation strategy automatically guides the debugging session over the zoom
computation tree without the participation of the user by choosing breakpoints and steps, finally pointing
out the piece of code causing the bug. Therefore, it provides a simpler and clearer way of finding bugs in
concrete functions than the trace-debugger, although the complexity of the elements involved (meaning
of variables, selected if/case/try-catch branches, . . . ) is similar. Since our debugging setting does
not support concurrency (spawning processes, sending/receiving messages between processes) the trace-
debugger is the only possibility for those programs. It has several features like step by step execution
of processes in different nodes or the inspection of the message queues of processes that makes it a very
valuable tool for debugging concurrent programs. In the near future we plan to extend our debugging
setting so it can deal with concurrency, as it is a key feature of Erlang.

Declarative debugging is a well-known debugging technique. In [35] a comparison between different
debuggers is presented. From this comparison we can see that our debugger has most of the features
in state-of-the-art tools, although we still lack some elements such as a graphical user interface, or
more navigation strategies. An interesting contribution of our debugger is the debugging of exceptions.
Declarative debugging of programs throwing exceptions has already been studied from an operational
point of view for the Mercury debugger [25], for Haskell in its declarative debugger Buddha [34], and
for Java programs [23]. However, these approaches are operational and do not provide a calculus to
reason about exceptions: in Mercury exceptions are considered another potential value and thus functions
throwing exceptions are included as standard nodes in the debugging tree; Buddha uses a program
transformation to build the debugging tree while executing the program; finally, the approaches for Java
return and propagate exceptions without defining the inference rules. Similarly, several calculi handling
exceptions, like the ones in [18, 17], have been proposed for functional languages. We present, for the
best of our knowledge, the first tool that uses a calculus to perform declarative debugging, allowing us
to reason about exceptions as standard values.

Finally, other non-conventional approaches to debugging have been studied in the literature, like
abstract diagnosis [1] or symbolic execution [20], but these techniques are not closely related to declarative
debugging, so we do not provide a detailed comparison.

3 Erlang and Core Erlang
Erlang [2] is a concurrent language with a sequential subset that is a functional language with dynamic
typing and strict evaluation. It allows to model programs where different processes communicate through
asynchronous messages and gives support to fault-tolerant and soft real-time applications, and also to
non-stop applications thanks to the so-called hot swapping.

Example 3.1. Figure 1 presents a Vigenère cipher written in Erlang, extracted from the programming
chrestomathy Rosetta Code.4 The program exports functions encrypt/2 and decrypt/2 that, given a
text and a key, encipher or decipher it, respectively. The Vigenère cipher is a simple and well-known
method for encrypting alphabetic text by adding modulo 26 (or subtracting, in the case of decrypting) the
letters of the text and key in the same position. For example, to cypher the text Attack tomorrow dawn
using the key lemon we have:

Text ATTACKTOMORROWDAWN
Key LEMONLEMONLEMONLEM +26

Cryptogram LXFOPVXAABCVAKQLAZ

For instance, the second letter (T, letter #19) is cyphered with E (letter #4), so the resulting cyphered
letter is X: (19+ 4) mod 26 = 23. The third letter is also T but now it is cyphered with M (letter #12), so

4http://rosettacode.org/wiki/Vigen%C3%A8re_cipher#Erlang, accessed May 9th, 2013.
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1 mod(X,Y) -> (X rem Y + Y) rem Y.

2 to_pos(L) when L >= $A, L =< $Z -> L - $A.
3 from_pos(N) -> mod(N, 26) + $A.

4 encipher(P, K) -> from_pos(to_pos(P) + to_pos(K)).
5 decipher(C, K) -> from_pos(to_pos(C) - to_pos(K)).

6 cycle_to(N, List) when length(List) >= N -> List;
7 cycle_to(N, List) -> lists:append(List, cycle_to(N - length(List), List)).

8 normalize(Str) -> toupper(filter(fun isalpha/1, Str)).

9 crypt(RawText, RawKey, Func) ->
10 PlainText = normalize(RawText),
11 lists:zipwith(Func, PlainText,
12 cycle_to(length(PlainText), normalize(RawKey))).

13 encrypt(Text, Key) -> crypt(Text, Key, fun encipher/2).
14 decrypt(Text, Key) -> crypt(Text, Key, fun decipher/2).

Figure 1: Erlang code implementing Vigenère cipher

the result is the letter F: (19 + 12) mod 26 = 5. As keys are usually shorter than the text to cypher, we
need to repeat the key until it matches the length of the text.

Besides the exported functions encrypt/2 and decrypt/2, the program in Figure 1 contains some
other functions that are used only internally. Function mod/2 computes X mod Y guaranteeing that the
result is positive even when X is negative, which may happen when deciphering. Functions from_pos/1
and to_pos/1 convert between positions in the alphabet and letters to perform the calculations. Functions
encipher/2 and decipher/2 encipher and decipher a letter of the text using a letter of the key, respec-
tively. cycle_to/2 repeats a list until it has a certain length. Function normalize/1 converts a string
into uppercase and removes all the characters that are not letters. Function crypt/3 repeats the key until
it has the same length as the text and applies a function Func passed as an argument to the letters in
the text and the extended key. Finally, functions encrypt/2 and decrypt/2 encrypt and decrypt a text
using a key by simply calling crypt/3 with the functions encipher/2 and decipher/2. The complete
program also contains other simple functions like isalpha/1 to check whether the argument is a lowercase
or uppercase letter, or toupper/1 that returns a letter or string in uppercase, but we have omitted them
because they do not play any relevant rôle.

Observe that the code contains calls to built-ins and standard library functions, e.g. length/1 (a built-
in) in line 6 or append/1 in line 7 and zipwith/1 in line 11, both of module lists. Users can encrypt the
previous message using the following Erlang expression: vigenere:encrypt("Attack tomorrow dawn",
"lemon"). The system evaluates this expression but instead of the expected cryptogram it returns an excep-
tion of type exception error: no function clause matching indicating that the function responsible
for the error is lists:zipwith(#Fun<vigenere.2.122144413>,[],"N"). This is an unexpected result,
an initial symptom indicating that there is some erroneous function in the program. However, the mes-
sage does not provide useful information to fix the bug, since the function zipwith is correct. In the next
sections we show how the debugger helps in the task of finding the bug.

The intermediate language Core Erlang [9, 10] can be considered as a simplified version of Erlang,
where the syntactic constructs have been reduced by removing syntactic sugar. It is used by the compiler
to create the final bytecode and it is very useful in our context, because it simplifies the analysis required
by the tool. Figure 2 presents its syntax after removing the parts corresponding to concurrent operations,
i.e. receive, and also the bit syntax support. The most significant element in the syntax is the expression
(expr). Besides variables, function names, lambda abstractions, lists, and tuples, expressions can be:

• let: its value is the one resulting from evaluating exprs2 where vars are bound to the value of
exprs1.

• letrec: similar to the previous expression but a sequence of function declarations (fname = fun) is
defined.

• apply: applies exprs to a number of arguments. exprs must be evaluated to a lambda-abstraction
or a function name in the current module.
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fname ::= Atom / Integer
lit ::= Atom | Integer | Float | Char | String | [ ]
fun ::= fun(var1 , . . . , varn) -> exprs
clause ::= pats when exprs1 -> exprs2
pat ::= var | lit | [ pats1 | pats2 ] | { pats1, . . . , patsn } | var = pats
pats ::= pat | < pat1, . . . , patn >
exprs ::= expr | < expr1, . . . , exprn >
expr ::= var | lit | ξ | fname | fun | [ exprs1 | exprs2 ] | { exprs1, . . . , exprsn }

| let vars = exprs1 in exprs2
| letrec fname1 = fun1 . . . fnamen = funn in exprs
| apply exprsn+1 ( exprs1 , . . . , exprsn )
| call exprsn+1:exprsn+2 ( exprs1 , . . . , exprsn )
| primop Atom ( exprs1 , . . . , exprsn )
| try exprs1 of <var1 , . . . , varn> -> exprs2
catch <var’1 , . . . , var’m> -> exprs3

| case exprs of clause1 . . . clausen end
| do exprs1 exprs2 | catch exprs

ξ ::= Exception(val1, . . . , valm)
val ::= lit | fname | fun | [ vals1 | vals2 ] | {vals1, . . . , valsn}
eval ::= lit | fname | fun | [ evals1 | evals2 ] | {evals1, . . . , evalsn} | ξ
vals ::= val | < val1, . . . , valn >
evals ::= eval | < eval1, . . . , evaln >
vars ::= var | < var1, . . . , varn >

Figure 2: Core Erlang’s Syntax

• call: similar to the previous expression but the function applied is the one defined by exprsn+2 in
the module defined by exprsn+1. Both expressions should be evaluated to an atom. For instance, the
expression vigenere:encrypt("Attack tomorrow dawn", "lemon") in Example 1 will be written
in Core Erlang as a call expression.

• primop: application of built-in functions mainly used to report errors. A typical example is the
report of a matching failure in a case expression: primop ’match fail’ (’case clause’, ...).

• try-catch: the expression exprs1 is evaluated. If the evaluation does not report any error, then
exprs2 is evaluated. Otherwise, the evaluated expression is exprs3. In both cases the appropriate
variables are bound to the value of exprs1. Note that m (in the catch branch) is the system-
dependent number of arguments that exceptions contain, usually the kind of exception and infor-
mation about the reason.

• case: a pattern-matching expression.

The case statement plays an important rôle in our presentation and its syntax deserves a more
detailed presentation:

Definition 3.1. The general form of a case expression is:

case exprs of pats1 when exprs ′1 ->r1 exprs ′′1
. . .
patsn when exprs ′n ->rn exprs ′′n end

The expression exprs is called the argument. Each clause, also called branch, consists of a pattern patsi ,
an optional guard exprs ′i and a result exprs ′′i . The value ri is not part of the code, it is added in our
presentation as a label indicating a reference to the ith clause. The evaluation of a case expression is
the evaluation of the result exprs ′′i corresponding to the first clause whose pattern patsi matches the value
of the argument exprs and whose guard exprs ′i evaluates to true. There is always at least one clause
fulfilling these conditions, as we explain below.

Core Erlang values represent the possible results of an expression evaluation. To make the semantic
rules dealing with exceptions clearer, we have considered two categories: val, representing values that
cannot contain an exception ξ at any position; and eval, representing values possibly with exceptions at
some positions. These exceptions must contain the same system-dependent number of values m as the
catch branch of the try expression. In contrast to Erlang, the evaluation of an expression in Core Erlang
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returns an ordered sequence < x1, . . . , xn > of zero or more values. Sequences, which were added in Core
Erlang to simplify the generation of efficient code and to allow certain optimizations to be performed
at the core level [9], are used intensively in the translation from Erlang to Core Erlang (for example
introducing case expressions that match several arguments at once, instead of nested chains of case
expressions matching the arguments in order). We use evals and vals to differentiate between sequences
of values possibly containing exceptions and sequences of values without exceptions, respectively. For
simplicity, in single-value sequences we usually omit the angular brackets, so < x > and x are considered
equal.

It is important to know some basis of how the translation from Erlang to Core Erlang is done. One
of the most relevant details is that the body of a Core Erlang function is always a case expression
representing the different clauses of the original Erlang function. Core Erlang case expressions, as shown
below, always contain an extra clause whose pattern matches with any value of the case argument and
whose body evaluates to an error (reported by a primop). This clause is introduced by the compiler and
placed last. Consider, for instance, the function to_pos/1 in Figure 1. The translation to Core Erlang
produces the following code (we have omitted some code unrelated to the translation for the sake of
readability):

’to_pos’/1 = fun (_cor0) ->
case _cor0 of

<L> when (... call ’erlang’:’>=’(L, 65) ...)
-> call ’erlang’:’-’(L, 65)

<_cor3> when ’true’
-> primop ’match_fail’(’function_clause’,_cor3)

end

This generated clause will handle the case expression when the guard L >= $A, L =< $Z fails. Note
that the compiler has introduced new variables in the translation with the form _cor followed by an
integer. Another important point is the introduction of let expressions. These expressions are not
present in Erlang, and in Core are introduced for different reasons. One usage of let expressions in the
translation is to ensure that function applications always receive simple expressions (values or variables)
as arguments. For instance, the call to from_pos(to_pos(P) + to_pos(K)) at line 4 in Figure 1 is
translated to Core as:

let <_cor3> = apply ’to_pos’/1(P)
in let <_cor2> = apply ’to_pos’/1(K)

in let <_cor4> = call ’erlang’:’+’(_cor3, _cor2)
in apply ’from_pos’/1(_cor4)

let expressions are also used to translate sequences of Erlang expressions. For instance, the sequence of
expressions going from line 10 to line 12 in Figure 1 is translated to the following Core Erlang code:

let <PlainText> = apply ’normalize’/1(RawText)
...

in call ’lists’:’zipwith’(Func, PlainText, _cor6)

There are different Erlang expressions that can be translated to a Core Erlang case expression.
Table 1 summarizes all the instances. For sake of simplicity, the translation of the inner expressions and
patterns has been assumed. Erlang case expressions translation is straightforward. The only addition
is the special clause to report a matching failure. This clause is present in all the Core Erlang case
expressions with a different behavior (i.e. body) for each Erlang expression. Erlang if expressions are
translated to Core Erlang case expressions without argument and patterns. An Erlang try expression
introduces two Core Erlang case expressions: one for the try cases and another one for the error handler
(i.e. catch section). While the last case is present in all the translated try expressions, the first one
is not always needed. Note that Erlang allows to write try expressions of the form try expr catch . . .
end which would not introduce any Core Erlang case expression. Finally, the Erlang pattern matching
operator uses the Core Erlang case expression to check whether the matching between the pattern and
the expression is feasible. An exception to this translation rule is when the pattern is an unbound variable.
In this case, a let expression is used.

Note that the translation from plain Erlang to Core Erlang enforces the function applications to
receive values or variables as arguments. In principle, we could simplify our language and semantics
taking into account these particularities, but our tool allows the more general grammar of Core Erlang
for two reasons. First, Core Erlang could be used as intermediate language produced by other languages.
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Erlang Core Erlang
case expr of

pat1 when expr ′
1 -> expr ′′

1
. . .
patn when expr ′

n -> expr ′′
n

end

case <expr> of
<pat1 > when <expr ′

1> -> <expr ′′
1 >

. . .
<patn> when <expr ′

n> -> <expr ′′
n>

<cor0> when ’true’ ->
primop ’match_fail’

({’case_clause’, cor0})
end

if
expr ′

1 -> expr ′′
1

. . .
expr ′

n -> expr ′′
n

end

case <> of
<> when <expr ′

1> -> <expr ′′
1 >

. . .
<> when <expr ′

n> -> <expr ′′
n>

<> when ’true’ ->
primop ’match_fail’ (’if_clause’)

end
try expr of

pat1 when expr ′
1 -> expr ′′

1
. . .
pati when expr ′

i -> expr ′′
i

catch
classi+1 : pati+1 when expr ′

i+1 -> expr ′′
i+1

. . .
classn : patn when expr ′

n -> expr ′′
n

end

try <expr> of
<cor0> ->

case <cor0> of
<pat1 > when <expr ′

1> -> <expr ′′
1 >

. . .
<pati> when <expr ′

i> -> <expr ′′
i >

<cor1> when ’true’ ->
primop ’match_fail’

({’try_clause’, cor1})
end

catch <cor2, cor3, cor4> ->
case {cor2, cor3, cor4} of

<{classi+1, pati+1, cor5}>
when <expr ′

i+1> -> <expr ′′
i+1>

. . .
<{classn, patn, cor6}>

when <expr ′
n> -> <expr ′′

n>
<{cor7, cor8, cor9}> when ’true’ ->

primop ’raise’
(cor8, cor9)

end
end

pat = expr case <expr> of
<pat> when ’true’ -> <expr>
<cor0> when ’true’ ->

primop ’match_fail’ ({’badmatch’, cor0})
end

Table 1: Erlang expressions and their corresponding Core Erlang case expressions

Second, the Core Erlang structure could be modified by optimization tools, and thus a particular structure
cannot be assumed.

4 A Calculus for Sequential Core Erlang
This section first introduces the basic notions used in the calculus and then presents the main rules of
our calculus for Sequential Core Erlang Programs (CESC in the following). The complete set of rules
can be found in [7].

4.1 Preliminaries
Throughout the rest of the paper we will use references to univocally identify some parts of the code.
These references, which are denoted by r and usually have a subindex establishing its origin, are unique
identifiers pointing to the source code (this can be described in general with the tuple (mod, line, column)
with line and column the starting position in the code of mod). This idea is used to refer to functions,
variables, case expressions, their argument and their branches, and reserved words.

The set of variables occurring in an expression expr is denoted by var(expr). The notation locvar(r),
with r a reference to either a function clause or to a lambda-expression, indicates the set of local variables
defined in the body of the function/lambda-expression. The notation ctx (rλ) with rλ a reference to a
lambda expression fun(var1, . . . , varn) -> expr represents the context variables of rλ, that is ctx (rλ) =
var(expr)r({var1, . . . , varn}∪locvar(rλ)). Observe that the set of context variables for a named function
is always empty, but the body of lambda-expressions defined inside named function can include local
variables/arguments of the function in their bodies.

Finally, when generating substitutions we will use in some cases the notation θ̂, which stands for
θ ∪ ⊥, being ⊥ the error substitution. In this way we indicate that the computation of the substitution

8



may fail, hence leading to ⊥. Using this notions we can present the evaluations used in the calculus:

〈guard(rb), θ〉 → val , which indicates that the guard of the branch referenced by rb has been evaluated
to val , given the context in θ.

〈pathbind(rb , vals), θ〉 → θ̂, which indicates that, given the context θ, the matching between the pattern
in the branch referenced by rb and the value vals is θ̂.

〈fails(vals, rb), θ〉, which indicates that the branch referenced by rb is not taken when the case argument
is evaluated to vals and the context is denoted by the substitution θ.

〈succeeds(vals, rb), θ〉 → θ′, which indicates that the branch referenced by rb is taken when the case argu-
ment is evaluated to vals and the context is denoted by the substitution θ, returning a substitution
θ′ binding the new variables in the pattern.

〈vars, exprs, θ〉 → θ′, which indicates that the variables in vars are bound to the values obtained when
evaluating the expression exprs, giving rise to the substitution θ′.

〈exprs, θ〉 → vals, which indicates that the value vals is obtained when evaluating the expression exprs
with the context θ.

〈r, θ〉 → vals, which indicates that the expression referenced by r is evaluated to the value vals when the
context θ is used.

〈c_arg(rc), θ〉 → evals, which computes the value evals obtained when evaluating the argument of a
case expression, where rc is the reference to the case expression and θ is the context.

〈c_result(rb), θ〉 → evals, which computes the value evals obtained when a branch of a case expression
is evaluated, where rb is the reference to the branch and θ is the current context.

We assume in all cases that all the variables appearing in the expressions or in the references are in
the domain of θ, and the existence of a global environment ρ which is initially empty and is extended by
adding the functions defined by the letrec expressions. The notation CESC |=(P,T ) E , where E is an
evaluation, is employed to indicate that E can be proven w.r.t. the program P with the proof tree T in
CESC , while CESC 2P E indicates that E cannot be proven in CESC with respect to the program P .
In our context, a program is an Erlang module. Nodes N in a proof tree T which are conclusions of a
inference rule (R) are called (R)-nodes in the rest of the paper. Finally, we introduce the match function
to reproduce the syntactic matching performed by Erlang.

Definition 4.1. The match function is defined as follows:
match(< pat1 , . . . , patn >, < val1 , . . . , valn >) = θ1 ] . . . ] θn

where θi = synMatch(pati , vali)
match(pat , val) = synMatch(pat , val)

synMatch(var , val) = [var 7→ val ]
synMatch(lit1 , lit2 ) = id , if lit1 ≡ lit2
synMatch([pat1 |pat2 ], [val1 |val2 ]) = θ1 ] θ2, where θi ≡ synMatch(pati , vali)
synMatch({pat1 , . . . , patn}, {val1 , . . . , valn}) = θ1 ] . . . ] θn,

where θi ≡ synMatch(pati , vali)
synMatch(var = pat , val) = θ[var 7→ val ], where θ ≡ synMatch(pat , val)
synMatch(pat , val) = ⊥ otherwise

We will present in the following the inference rules for the calculus, distinguishing between the rules
for references, the rules generating values, and the rules generating and propagating exceptions.

4.2 Rules for references
We present here the rules dealing with references. As explained above, references are just a way to point
to specific fragments of the code. However, we will shown in Section 6 that the distinction between
references and the actual code is important, because it allows us to ask to the user whether the results
obtained by executing the program are the ones expected.

The (PATBIND) axiom binds the variables in the pattern of the branch referenced by rb to the values
vals. This matching generates the substitution θ̂, which will be ⊥ when the matching is not possible:
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(PATBIND)
〈patbind(rb , vals), θ〉 → θ̂

with rb a reference to pats when exprs1 -> exprs2 and θ̂ ≡ match(patsθ, vals).
The (GUARD) rule evaluates the guard of the branch referenced by rb :

(GUARD)
〈exprsθ, θ〉 → val

〈guard(rb), θ〉 → val

where rb is a reference to pats when exprs1 -> exprs2.

The (FAIL1) rule indicates that a branch cannot be executed when the pattern fails:

(FAIL1)
〈patbind(rb , vals), θ〉 → ⊥
〈fails(vals, rb), θ〉

where rb is a reference to pats when exprs1 -> exprs2.

The (FAIL2) rule is used when the matching succeeds but the when condition evaluated with the new
substitution fails:

(FAIL2)
〈patbind(rb , vals), θ〉 → θ′ 〈guard(rb), θ

′′〉 → ’false’
〈fails(vals, rb), θ〉

with θ′′ ≡ θ ] θ′ and rb a reference to pats when exprs1 -> exprs2.

The (SUCC) rule computes a new substitution when a branch is taken. This substitution consists of
the new variables obtained from the matching with the pattern:

(SUCC)
〈patbind(rb , vals), θ〉 → θ′ 〈guard(rb), θ

′′〉 → ’true’
〈succeeds(vals, rb), θ〉 → θ′

with θ′′ ≡ θ ] θ′, and where rb is a reference to pats when exprs1 -> exprs2.

The (BIND) rule evaluates the given expression and binds the variables in the sequence to the values
thus obtained:

(BIND)
〈exprs, θ〉 → < val1 , . . . , valn >

〈< r1 , . . . , rn >, exprs, θ〉 → {var1 7→ val1, . . . , varn 7→ valn}
with r1, . . . , rn references to variables var1 , . . . , varn .

The (BFUN) rule evaluates a reference to a lambda-expression or a function, given a substitution
binding all its parameters. This is accomplished by applying the substitution to the body (with notation
exprsθ) and then evaluating it:

(BFUN)
〈exprθ, θ〉 → evals

〈rf , θ〉 → evals

where rf references either to a function f/n = fun(var1, . . . , varn) -> expr ,
or to a lambda expression defined as fun(var1, . . . , varn) -> expr .

4.3 Rules for expressions
We present here the rules for evaluating expressions to values. The basic rule is (VAL), which states that
values are evaluated to themselves:

(VAL)
〈vals, θ〉 → vals

The rule (SEQ) is in charge of evaluating a sequence of expressions, obtaining the final value for each
expression:

(SEQ)
〈expr1, θ〉 → val1 . . . 〈exprn, θ〉 → valn

〈< expr1, . . . , exprn >, θ〉 → < val1, . . . , valn >
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Similarly, the rules (TUP) and (LIST) evaluate tuples and lists, respectively:

(TUP)
〈exprs1, θ〉 → vals1 . . . 〈exprsn, θ〉 → valsn

〈{exprs1, . . . , exprsn}, θ〉 → {vals1, . . . , valsn}

(LIST)
〈exprs1, θ〉 → vals1 〈exprs2, θ〉 → vals2

〈[exprs1|exprs2], θ〉 → [vals1|vals2]

The (CASE) rule is in charge of evaluating case expressions. It first evaluates the expression used
to select the branch. Once this evaluation has been performed, it checks that the values thus obtained
match the pattern on the ith branch and verify the guard, being this the first branch where this happens.
Finally, the evaluation continues to compute the final result:

(CASE) 〈c_arg(rc), θ〉 → vals

〈fails(vals, r1), θ〉
〈fails(vals, ri−1), θ〉
. . .
〈succeeds(vals, ri), θ〉 → θ′ 〈c_result(ri ), θ

′′〉 → evals
〈caserc exprs of clause1 . . . clausen end, θ〉 → evals

where θ′′ ≡ θ ] θ′ and rc is a reference to a case statement where each clause clausei is defined as
patsi when exprs ′i ->

ri exprs ′′i and the labels r1, . . . , rn are references to the different branches that can
be selected by the statement.

The (C_ARG) rule evaluates the argument of a case expression, represented by its reference, given a
context:

(C_ARG)
〈exprs, θ〉 → evals

〈c_arg(rc), θ〉 → evals
with exprs the argument expression of the case referenced by rc.

The (C_RESULT) rule evaluates the body of the branch referenced by ri with the context θ:

(C_RESULT)
〈exprsiθ, θ〉 → evals

〈c_result(ri), θ〉 → evals
with exprsi the result expression of the case branch referenced by ri.

The (LET) rule first binds the variables and then the computation continues by applying the substi-
tution thus obtained to the body:

(LET)
〈<r1 , . . . , rn>, exprs1, θ〉 → θ′ 〈exprs2θ

′′, θ′′〉 → evals

〈let <var r1
1 , . . . , var rn

n > = exprs1 in exprs2, θ〉 → evals

with θ′′ ≡ θ ] θ′.

The rule (CALL) evaluates a function defined generally in another module:

(CALL)

〈exprsn+1, θ〉 → Atom1 〈exprsn+2, θ〉 → Atom2

〈exprs1, θ〉 → vals1 . . . 〈exprsn, θ〉 → valsn
〈rf , θ′〉 → evals

〈call exprsn+1:exprsn+2(exprs1, . . . , exprsn), θ〉 → evals

where Atom2/n is a function defined as Atom2/n = fun (var1, . . . , varn) -> expr in the Atom1

module (Atom1 must be different from the built-in module erlang), rf its reference, and θ′ ≡ {var1 7→
vals1, . . . , varn 7→ valsn}.

Analogously, the (CALL_EXEC) rule is in charge of evaluating built-in functions in the erlangmodule.
To abstract the concrete system, we use an auxiliary function exec that returns the value the Erlang system
would compute:

(CALL_EXEC)

〈exprsn+1, θ〉 → ’erlang’ 〈exprsn+2, θ〉 → Atom2

〈exprs1, θ〉 → val1 . . . 〈exprsn, θ〉 → valn
exec(Atom2, val1, . . . , valn) = vals

〈call exprsn+1:exprsn+2(exprs1, . . . , exprsn), θ〉 → vals
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where Atom2/n is a built-in function included in the erlang module.

The rule (APPLY1) evaluates a function defined be means of a lambda-expression. It evaluates the
function and the arguments and then uses them to obtain the value:

(APPLY1)

〈exprs, θ〉 → rλ
〈exprs1, θ〉 → vals1 . . . 〈exprsn, θ〉 → valsn

〈rλ, θ′〉 → eval

〈apply exprs(exprs1, . . . , exprsn), θ〉 → eval

with rλ a reference to fun(var1, . . . ,varn) -> exprs ′, and θ′ ≡ θ ] {var1 7→ vals1, . . . , varn 7→ valsn}.

Analogously, the rule (APPLY2) evaluates a function defined in a letrec expression, thus contained
in ρ. The rule first evaluates the arguments and then uses the definition of the function to reach the final
result:

(APPLY2)

〈exprs, θ〉 → Atom/n
〈exprs1, θ〉 → vals1 . . . 〈exprsn, θ〉 → valsn

〈exprs ′θ′, θ′〉 → evals ′

〈apply exprs(exprs1, . . . , exprsn), θ〉 → evals ′

if ρ(Atom/n) = fun( var1 , . . . , varn ) -> exprs’ and θ′ ≡ θ ] {var1 7→ vals1, . . . , varn 7→ valsn}.

The rule (APPLY3) indicates that first we need to obtain the name of the function, which must be
defined in the current module (extracted from the reference to the reserved word apply) and then compute
the arguments of the function. Finally the function, described by its reference, is evaluated using the
substitution obtained by binding the variables in the function definition to the values for the arguments:

(APPLY3)

〈exprs, θ〉 → Atom/n
〈exprs1, θ〉 → vals1 . . . 〈exprsn, θ〉 → valsn

〈rf , θ′〉 → evals

〈applyr exprs(exprs1, . . . , exprsn), θ〉 → evals

where Atom/n is a function defined in the module r.mod as Atom/n = fun (var1 , . . . , var n) -> expr,
rf its reference, and θ′ ≡ {var1 7→ vals1, . . . , varn 7→ valsn}.

The rule (PRIMOP) evaluates Erlang predefined functions by using the auxiliary function eval :

(PRIMOP)

〈exprs1, θ〉 → val1 . . . 〈exprsn, θ〉 → valn
eval(Atom, val1, . . . , valn) = vals ′

〈primop Atom(exprs1, . . . , exprsn), θ〉 → vals ′

The rule (TRY1) evaluates a try expression when no exceptions are thrown. It just evaluates the
argument expressions and continues with the expression in the body:

(TRY1)
〈exprs1, θ〉 → vals ′ 〈exprs2θ

′′, θ′′〉 → evals

〈try exprs1 of <var1 , . . . , varn> -> exprs2 catch <var ′1 , . . . , var ′m> -> exprs3, θ〉 → evals
with θ′ ≡ match(< var1 , . . . , varn >, vals′) and θ′′ ≡ θ ] θ′.

The rule (TRY2) is in charge of evaluating try expressions throwing exceptions. It finds the pattern
matching the exception and the evaluates the expression in the catch branch:

(TRY2)
〈exprs1, θ〉 → Except(val1 , . . . , valm) 〈expr3 θ

′′, θ′′〉 → evals

〈try exprs1 of <var1 , . . . , varn> -> exprs2 catch <var ′1 , . . . , var ′m> -> exprs3, θ〉 → evals
with θ′ ≡ match(<var ′1 , . . . , var

′
m>, <val1 , . . . , valm>) and θ′′ ≡ θ ] θ′

4.4 Rules for exceptions
The rules for exceptions are in charge of generating exceptions in specific cases and propagating them.
Since all of them are very similar, we only present here one rule for generating exceptions and another
one for propagating them, while the rest of them are presented in [7]. The rule (SEQ_E) propagates the
first exception thrown inside a sequence:

(SEQ_E)
〈expr1, θ〉 → val1 . . . 〈expr i, θ〉 → val i 〈expr i+1, θ〉 → ξ

〈< expr1, . . . , exprn >, θ〉 → ξ
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The rule (CALL_E4) throws a bad_argument exception when the module is not an atom:

(CALL_E4)

〈exprs ′1, θ〉 → vals ′1 〈exprs ′2, θ〉 → vals ′2
〈exprs1, θ〉 → vals1 . . . 〈exprsn, θ〉 → valsn

〈call exprs ′1:exprs ′2(exprs1, . . . , exprsn), θ〉 → Exception(error, bad_argument, . . .)
if vals ′1 is not an atom.

We can use this calculus to build the proof tree for any evaluation leading to a value. For example, we
can build the tree for the buggy computation shown in Section 3. Figure 3 depicts part of this tree, where
txt stands for "Attack tomorrow dawn", key for "lemon", fun for fun ’encipher’/2, vals for <txt, key>,
vals’ for <txt,key,fun ’encipher’/2>, the conditions when true and the arity of the functions have
been removed, θ0 ≡ {_cor1 7→ txt ; _cor0 7→ key}, θ1 ≡ θ0 ]{Text 7→ txt ; Key 7→ key}, θ2 ≡ {_cor2 7→
txt ; _cor1 7→ txt ; _cor0 7→ fun} and θ3 ≡ θ2 ] {RawText 7→ txt ; RawKey 7→ key ; fun 7→ fun}.
The root of the tree is shown on the top of the figure; it uses the (CALL) rule to evaluate the initial
expression to an error message. The 5’s in the premises of the root stand for the reflexive evaluation of
the arguments of the function to themselves, while the leftmost subtree indicates that we must evaluate
the reference to the function being evaluated, encrypt/2, using the substitution θ0, which has bound
the values to the dummy variables introduced by the transformation to Core Erlang. This is proven by
evaluating the argument of the case expression to itself, checking that the first branch succeeds, and
then evaluating the body of this branch with the new substitution, θ1. This latter evaluation is proven
in 51.

Figure 3(middle) describes 51. It shows that the function crypt/3 is evaluated by reducing the
function name and the arguments to themselves (in the 5’s) and then the reference to the function is
evaluated with the substitution θ2, obtained by matching the parameters of the function. The proof for
53 is shown in Figure 3(bottom). As shown above, a case expression is computed by evaluating its
argument, checking that the first branch succeeds, and using the extended substitution to continue with
the evaluation of the body of the selected branch. The evaluation continues with 53, which has a similar
form to the ones shown here and will not be further explained.

5 Buggy Erlang Programs
In this section we define the errors that our proposal can detect. This is done by defining first the concept
of intended interpretation, represented as I, which corresponds to the behavior expected by the user for
the basic pieces of the program. This behavior is extrapolated to complete programs by suitable calculi
ICESCf (during the first phase when the debugging concentrates only on user functions) and ICESCZ

(inside a function code). The discrepancies between the results produced by the program, represented by
CESC and the results expected by the user, represented by ICESCf , ICESCZ define the buggy parts of
the program.

5.1 Intended Interpretations
The intended interpretation of a program P is defined as the union of four sets:

I = Ifun ∪ Iλ ∪ Ivar ∪ Icase
The first two sets are used by the phase without zoom, and contain the intended interpretation of

functions and lambda expressions, respectively:

• Ifun = {. . . , 〈rf , θ〉 → evals, . . .} where

– rf is a reference to a function f/n defined as
f/n = fun ( var1 , . . . , varn ) -> exprs

– The domain of the substitution θ must be {var1, . . . , varn}.

• Iλ = {. . . , 〈rλ, θ〉 → val , . . .} where

– rλ is a reference to a lambda abstraction defined as
fun(var1, . . . , varn) -> exprs

– θ is a substitution such that ctx (rλ) ∪ {var1, . . . , varn} ⊆ dom(θ).
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Thus, Ifun contains the results expected for any possible function call to program functions. In the
case of lambda we must take into account the context, that is the variables defined outside but employed
in the body of the lambda. Thus, Iλ contains the results for any parameters and possible contexts.

The two other sets conforming I are used for zoom debugging. They are described as follows:

• Ivar = {. . . , 〈< r1 , . . . , rn >, θ〉 → < val1, . . . , valn >, . . .}, with r1, . . ., rn references to variables
var1 , . . . , varn .

• Icase = Irc1 ∪ . . . ∪ Ircn with rc1 . . . rcn references to all the case expressions occurring in the
program and Irc1 . . . Ircn their intended interpretations (defined below).

The intended representation of variables Ivar use the form of tuples because this is the format allowed
in Core Erlang, although in most of the cases it corresponds to a single variable. For simplicity we can
consider the (usual) case of only one variable, representing it by:

Ivar = {. . . , 〈rv, θ〉 → val , . . . , }

with rv a reference to a variable v .
The associated value val is the value expected by the user for this variable, introduced by assignment

statements in the code and represented in the semantic calculus by the (BIND) inference rule. Observe
that the same variable with the same reference r can occur more than once in Ivar but associated to
different contexts. For instance if we have defined in the code a variable x with the intended meaning of
containing the double of another variable y, we will have

Ivar = {. . . , 〈rx , {y 7→ 2}〉 → 4, 〈rx , {y 7→ 3}〉 → 6, . . .}

The Icase set contains the intended interpretations of the all the case expressions occurring in the
code. They are particularly important because Core Erlang represents by case expressions not only the
case expressions in the source code, but also the if expressions and the choice of the clause by a function
call (see Section 3).

The values associated to the case expression depend on the context θ. Therefore each set Irc , with rc
a reference to a case expression, is defined as the union of the intended interpretations for the different
possible contexts:

Irc = 〈Irc , θ1〉 ∪ 〈Irc , θ2〉 ∪ . . .

Assuming that rc is a reference to a case expression following the syntax of Definition 3.1, with the
labels r1, . . . , rn referencing the different clauses (branches) that can be selected by the statement. Let
i be the textual position of the clause that the user expects that will be selected for the case expression
in the context θ. Then 〈Irc , θ〉 is a set with the form:

〈Irc , θ〉={〈c_arg(rc), θ〉 → evals,

〈patbind(r1 , evals), θ〉 → θ̂1, 〈guard(r1 ), θ
′
1〉 → ’false’, 〈fails(r1 ), θ〉

〈patbind(r2 , evals), θ〉 → θ̂2, 〈guard(r2 ), θ
′
2〉 → ’false’, 〈fails(r2 ), θ〉

. . . ,
〈patbind(ri , evals), θ〉 → θ′, 〈guard(ri), θ

′′〉 → ’true’,
〈succeeds(ri), θ〉, 〈c_result(ri), θ

′′〉 → evals ′ }

where:

• 〈c_arg(rc), θ〉 → vals represents the expected value (vals) obtained when evaluating the case
argument in the context θ. Each set 〈Irc , θ〉 contains only one evaluation containing c_arg(rc).

• For every failing branch j, j < i, 〈Irc , θ〉 includes 〈patbind(rj , evals), θ〉 → θ̂j , 〈guard(rj ), θ〉 → valj ,
and 〈fails(rj ), θ〉, with:

– 〈patbind(rj , evals), θ〉 → θ̂j represents the matching of evals, the value obtained after evaluat-
ing the case argument, and the pattern of the clause j, patsj , in the context θ. The expected
substitution θ̂j can be ⊥ if the matching is not feasible.

– 〈guard(rj ), θ
′
j〉 → valj only occurs when θ̂j is not⊥, and in this case corresponds to the expected

evaluation of the guard exprs ′j in the context θ′j which must be of the form θ′j ≡ θ ] θ̂j .
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– 〈fails(rj ), θ〉 indicates that the jth branch is expected to fail in this context.

Since j < i the clause j has not been selected and therefore we require that either θ̂j ≡⊥ or
valj ≡ ’false’.

• The evaluations 〈patbind(ri , evals), θ〉 → θ′, 〈guard(ri), θ
′′〉 represent respectively the pattern match-

ing and the evaluation of the guard of the successful clause, with θ′′ ≡ θ ] θ′.

• 〈succeeds(ri), θ〉 indicates that the ith branch is the successful one in this context.

• 〈c_result(ri), θ
′′〉 → evals ′ represents the evaluation of the expression associated to the ith clause,

that is the expected value returned by the case statement.

Intended interpretations must fulfill the following property, which relates the results obtained when
evaluating case expressions defining the body of functions.

Property 5.1. Let rc be a reference to a case expression constituting the body of a user function f
(respectively, of a lambda abstraction).

Then, 〈rf , θ〉 → evals ′ ∈ Ifun (respectively 〈rλ, θ〉 → evals ′ ∈ Iλ) iff 〈c_result(ri), θ
′〉 → evals ′ ∈ Irc ,

with ri a reference the success branch of the case expression referenced by rc and θ′ a substitution
extending θ.

5.2 Intended Semantic Calculus
The validity of the nodes in a CESC -proof tree is obtained defining two intended interpretation calculus.
The first one, called ICESCf , contains the same inference rules as CESC , except by the replacement of
(BFUN) by a new rule

(BFUNI) 〈rf , θ〉 → evals

where either rf references to a function and 〈rf , θ〉 → vals ∈ Ifun , or rf references to a lambda expression
and 〈rf , θ〉 → vals ∈ Iλ.

The second calculus is called ICESCZ (intended CESC calculus with zoom). This calculus, in addition
to replacing (BFUN) by (BFUNI), replaces the inferences (BIND), (FAIL1), (FAIL2), (SUCC), (C_ARG),
(C_RESULT), (PATBIND) and (GUARD) by new rules with the same name subscripted by I. In the
following rb is a reference to a branch of a case expression with reference rc.

(BINDI) 〈< r1 , . . . , rn >, exprs, θ〉 → {var1 7→ val1, . . . , varn 7→ valn}
with r1 , . . . , rn references to variables var1 , . . . , varn , and (〈< r1 , . . . , rn >, θ〉 → < val1, . . . , valn >) ∈ Ivar

(FAILI) 〈fails(vals, rb), θ〉
with (〈fail(rb), θ〉) ∈ 〈Irc , θ〉

(SUCCI) 〈succeeds(vals, rb), θ〉 → θ′
with (〈succeeds(rb), θ〉) ∈ 〈Irc , θ〉

(C_ARGI) 〈c_arg(rc), θ〉 → vals
with (〈c_arg(rc), θ〉 → vals) ∈ 〈Irc , θ〉

(C_RESULTI) 〈c_result(rc), θ
′〉 → vals

with (〈c_result(rc), θ′〉 → vals) ∈ 〈Irc , θ〉

(PATBINDI)
〈patbind(rb , vals), θ〉 → θ̂

with (〈patbind(rb , vals), θ〉 → θ̂) ∈ 〈Irc , θ〉

(GUARDI) 〈guard(rb), θ
′〉 → val

with (〈guard(rb), θ′〉 → val) ∈ 〈Irc , θ〉

That is, ICESCf and ICESCZ replace the computed results by their intended values, in the first case
concentrating in functions, and in the second case considering the code inside functions. In the following
when it is interesting to establish some statement that can be applied to any of the two calculus we
write ICESC�. Analogously to the case of CESC , the notation ICESC� |=(P,I,T ) E indicates that the
evaluation E can be proven w.r.t. the program P and the intended interpretation I with proof tree T in
ICESC�, while ICESC� 2(P,I) E indicates that E cannot be proven in ICESC�. The tree T , the program
P , and the intended interpretation I are omitted when they are not needed.
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CESC is used by our tool in order to represent actual Erlang computations, while ICESC� represents
the knowledge that the tool obtains from the user and is used as an oracle to determine the validity of
the evaluations:

Definition 5.1. Let P be a Core Erlang Program, let T be a CESC proof tree with respect to P , and let
N be a node in T containing an evaluation E.

1. N is valid with respect to ICESC� when ICESC� |=(P,I) E, and invalid when ICESC� 2(P,I) E.

2. N is called buggy with respect to ICESC� if E is invalid with all its children valid (in both cases
w.r.t. ICESC�).

Instead of valid/buggy w.r.t. ICESC� we often use in the rest of the paper the notation ICESC�-
valid/ICESC�-buggy. The idea behind these definitions is that a buggy node represents an erroneous
computation based on correct subcomputations. Thus, the piece of code associated to a buggy node
represents an error in the program. This informal idea will be formalized in the rest of the section. The
rôle of the two calculi is further clarified by the next two assumptions:

Assumption 5.1. Let P be an Erlang program and | · | the transformation that converts an Erlang
expression into a Core expression. Then:

1. An evaluation eθ → eval is computed by some Erlang system with respect to P iff CESC |=P
〈|e|, θ〉 → |eval |.

2. A reduction eθ → eval computed by some Erlang system is considered unexpected with respect to
ICESC� by the user iff ICESC� 2P,I 〈|e|, θ〉 → |eval |.

The next definition introduce terminology useful for the rest of the paper:

Definition 5.2.

1. The term zoom inference refers to either the (C_ARG), (SUCC), (BIND), (PATBIND), (GUARD),
(FAIL1), (FAIL2), or (C_RESULT) CESC inference rule.

2. Let T be a tree with nodes labeled by inference rules. We say that a node M is an immediate
(R)-descendant of another node N if:

(a) Either M is a descendant of N or M ≡ N .

(b) M is the conclusion of a inference labeled by (R).

(c) In the path from N to M (excluding both nodes) there are no nodes labeled by (R).

Now we are ready to define the errors detected by our tool.

5.3 Errors in Core Erlang Programs
The errors are detected as discrepancies between the actual computations represented by CESC and the
‘ideal’ computations expected by the user, represented by ICESC�. The two following mutually recursive
definitions detail the different errors found in Core Erlang programs. We start defining the errors due to
the choice of the erroneous branch in a case expression.

Definition 5.3. Let P be a Core Erlang program with intended interpretation I. Let rc a reference
to a case expression in P and ri a reference to the ith branch in rc, which must be of the form:
pats i when exprs ′i -> exprs ′′i . We say that the ith branch of the case rc is a wrong branch when there
exists a value evals and a context θ such that some of the followings items hold:

1. Suppose that
ICESCZ |=(P,I) 〈succeeds(evals, ri), θ〉 → θ′

ICESCZ |=(P,I) 〈patbind(ri , evals), θ〉 → θ′′

θ′ = θ ] θ′′ and at least one of the following items hold:

(a) match(patsiθ, evals) 6= θ′′. In this case we say also that 〈ri, θ〉 contains a wrong fail pattern
instance.
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(b)
match(patsiθ, evals) = θ′′

ICESCZ |=(P,I) 〈guard(ri), θ
′〉 → ’true’

ICESCZ |=(P,I) 〈exprs ′i, θ
′〉 → ’false’

then, we also say that 〈ri, θ〉 contains a wrong fail guard instance.

2. Suppose that
ICESCZ |=(P,I) 〈fail(evals, ri), θ〉
ICESCZ |=(P,I) 〈patbind(ri , evals), θ〉 → θ̂′′

and at least one of the following items hold:

(a) match(patsiθ, evals) 6= θ̂′′ In this case we say also that 〈ri, θ〉 contains a wrong success pattern
instance.

(b)
match(patsiθ, evals) ≡ θ̂, θ̂ 6=⊥, θ′ ≡ θ ] θ̂′′

ICESCZ |=(P,I) 〈guard(ri), θ
′〉 → ’false’

ICESCZ |=(P,I) 〈exprs ′i, θ
′〉 → ’true’

Then, we also say that 〈ri, θ〉 contains a wrong success guard instance.

For instance if we expect the branch i to succeed and the patter matching to give some substitution as
result, but we obtain a different substitution after performing the matching we have found an error in the
pattern definition. Analogously, if we expect the branch i to succeed, the pattern matching is expected
to provide some binding that it actually obtains, but the guard expression returns ’false’ instead of
’true’ we have found an error in the guard definition. In particular we are interested in errors associated
to the first erroneous branch:

Definition 5.4. We say that the ith branch of the case expression rc is the first wrong branch of rc if:

1. rc contains no wrong case argument instance (see next definition).

2. for j = 1 . . . i− 1, rj is not a wrong branch for rc.

Now we are ready to define wrong program:

Definition 5.5. Let P be a Core Erlang program with intended interpretation I. Then we say that P is
a wrong program in any of the following cases:

1. Let rf be a reference to a either a function f/n = fun(var1, . . ., varn) -> B, or to a lambda
function fun(var1, . . . , varn) -> B and θ a substitution. Then 〈rf , θ〉 is a wrong function instance
iff there exists a value evals such that:

(a) ICESCf |=(P,I) 〈Bθ, θ〉 → evals.

(b) ICESCf 2(P,I) 〈rf , θ〉 → evals.

2. Let 〈< r1 , . . . , rn >, exprs, θ〉 be such that r1 , . . . , rn are references to the variables var1 , . . . , varn
and θ is a context.

Then, 〈< r1 , . . . , rn >, exprs, θ〉 is a wrong binding instance iff there exists a substitution θ′ defined
as var1 7→ val1 ] . . . ] varn 7→ valn verifying:

(a) ICESCZ |=(P,I) 〈expr, θ〉 → θ′ and

(b) ICESCZ 2(P,I) 〈< r1 , . . . , rn >, exprs, θ〉 → θ′.

3. Let rc be a reference to a case expression (with the structure of Definition 3.1). Then 〈rc, θ〉 is a
wrong case expression instance if it contains any of the following errors:

(a) 〈c_arg(rc), θ〉 is a wrong case argument instance iff there exists a value evals such that

i. ICESCZ |=(P,I) 〈exprs, θ〉 → evals.
ii. ICESCZ 2(P,I) 〈c_arg(rc), θ〉 → evals.

(b) rc contains a first wrong branch (Definition 5.4)

(c) 〈c_result(rc), θ
′〉 is a wrong case result instance iff exists values evals, evals ′ such that:
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Wrong argument | (C_ARG)

Wrong pattern (PATBIND)

failure (FAIL1,2)

Wrong guard (GUARD)

failure (FAIL2)

Wrong pattern (PATBIND)

success (SUCC)

Wrong guard (GUARD)

success (SUCC)

Wrong result | (C_RESULT)

Figure 4: Errors in Core Erlang programs and their corresponding buggy nodes

i. The case expression does not contain a first wrong branch.
ii. ICESCZ |=(P,I) 〈succeeds(evals, ri), θ〉 → θ′

iii. ICESCZ 2(P,I) 〈c_result(ri), θ
′〉 → evals ′ and ICESCZ |=(P,I) 〈exprs ′′i , θ〉 → evals ′

The diagram in Figure 4 summarizes the different errors that can be found in a Core Erlang program
(the labels after the symbol | are explained later). The point here is that for example we cannot say that a
function is wrong simply because it computes an unexpected result, since this can be due to the presence
of wrong functions in its body. Instead, a wrong function instance (item 1 in Definition 5.5) corresponds
to a function whose body B produces an erroneous result even assuming that all the functions in its body
are correct. Analogously a wrong binding instance is obtained when the expression that generates the
value produces an unexpected result (the substitution θ′ in Definition 5.5.2). The definition of wrong
case expression instance (item 3 in Definition 5.5) is more complicated, because a case expression can
be erroneous due to four different bugs. Moreover, two of these bugs can be further divided in two (see
Figure 4).

The first bug in a case expression is that the argument of the statement is erroneous. This happens
when the result produced by its evaluation in ICESCZ is not an expected value in the context (expected
values represented by c_arg facts in the intended interpretation).

The purpose of the following definition is to introduce the expression producing the initial symptom
as part of the program.

Definition 5.6. Let P be a Core Erlang program and e an Erlang expression using functions defined
in P . Then, P〈e,θ〉 denotes the (Core Erlang) program P ∪ { main/0 = fun() -> case <> of <> when
’true’ -> |eθ| end }, with | · | the operator converting Erlang code into Core Erlang code, and main a
new identifier in P .

This technical construction is useful for the theoretical results in the rest of the paper.

5.4 Errors in Erlang
So far we have described intended interpretations and errors in Core Erlang programs. But the user is
writing Erlang programs, and the intended interpretations include also the expected results if, try or
matching expressions, among other. Fortunately the relation between Erlang and Core Erlang is quite
close and it is possible for the debugger to relate the original Erlang expressions to their translations and
thus adapt the questions performed to the user to Erlang intended interpretations.
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For instance, we can see in Table 1 that if expressions are converted into case expressions. Then
the debugger will avoid questions about the case argument and about the clause patterns (which are
trivially valid), and instead of asking about the ‘case branches’ will take about ‘if conditions’.

5.5 Inadmissible evaluations
Since we are dealing with buggy programs, sometimes the user must consider surprising unexpected
evaluations. For instance imagine that fib(n) is intended to represent the nth Fibonacci number, and we
get a question about the validity of fib(’a’)→ 4. Or suppose we have a local variable part of a context of
a lambda-expression which is supposed to contain an integer but it is a list. Are the evaluations obtained
in such cases part of Ifun or Iλ? The answer is yes.

From the logic point of view both the parameters and the context in a function or the context in
a lambda expression must be considered premises of an implication. That is, the user must wonder:
‘If I assume these values as parameters (or this context), then the expected result is...?’. And given
false premises (like that ’a’ is a possible parameter for function fib) any conclusion is valid. Of course,
answering that fib(’a’) → 4 is valid can be counterintuitive and, for this reason, the implementation
includes the answer i standing for inadmissible in these cases, although internally inadmissible is simply
another word representing yes. Indeed, inadmissible means that something is going wrong, but the error
is elsewhere: in the function call with erroneous arguments, or in the binding of the variable that produces
an inadmissible context. Therefore, in the case of inadmissible contexts the debugger enquiries which
variable has an unexpected value in order to direct the search for the buggy node.

6 Debugging with Abbreviated Proof Trees
In this section we present the debugging technique in two phases. During the first phase we should
only consider function calls and their results, disregarding the code inside functions. The second phase
considers a buggy function found in the first phase and locates a more detailed error in the function code.
However, the CESC tree contains information about the two phases together in a single tree. In order to
overcome this difficulty, we abbreviate the CESC proof trees keeping only the relevant information for
detecting buggy nodes during each phase.

The following subsection shows how to find erroneous functions (both “named” defined functions and
lambda-abstractions). Then, we show in Section 6.2 how to locate more detailed errors inside the function
previously reported as buggy.

6.1 First Phase: debugging wrong functions
The first goal is to locate a wrong function asking questions only about the expected behavior of functions.
This is done by defining the following abbreviated tree:

Definition 6.1. Let P be a program and 〈e, θ〉 → eval an evaluation. A tree T is an Abbreviated
Proof Tree (APT in short) for the evaluation with respect to P , iff there is a proof tree T ′ such that
CESC |=(P〈e,θ〉,T ′) 〈rmain, id〉 → eval , and T = APT (T ′) with the transformation APT defined as
follows:

APT

(
(BFUN)

T

E

)
=

APT (T )

E

APT

(
(R)

T1 . . . Tn

E

)
= APT (T1) . . .APT (Tn), with (R) 6= (BFUN)

The transformation keeps only the conclusion of (BFUN) inferences, removing the rest of the nodes.
Observe that the result is a single tree because the root of T ′ always corresponds to the application of
(BFUN) to an evaluation over main/0. The structure of the APTs is similar to the evaluation dependence
tree employed in functional languages [31]. The main difference, apart from the particularities of each
language, is that in our case the APTs are obtained from a semantic calculus, which allows us to prove
their adequacy as debugging trees:

Theorem 6.1. Let P be a Core Erlang program, I its intended interpretation, and eθ → eval an evalua-
tion unexpected with respect to ICESCf . Then, exists at least one proof tree T ′ such that CESC |=(P〈e,θ〉,T ′)

〈rmain, id〉 → |eval |, and every tree T ′ in these conditions verifies that T ≡ APT (T ′) contains at least
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(BFUN)

(BFUN)

(BFUN)
5 . . . 5

〈rcrypt/3, θ1〉 → ξ

〈rencrypt/2, id〉 → ξ

〈rmain, id〉 → ξ

Figure 5: APT for encrypt("Attack tomorrow dawn", "lemon")

one buggy node N , and every buggy node in T corresponds to a wrong instance of a user function different
from main/0.

Therefore, during the first step of the debugging process the user only needs to answer questions about
the validity of nodes in the APT, which corresponds exactly to the evaluations produced by functions.
For example, Figure 5 shows the APT corresponding to the proof tree in Figure 3. As explained above,
it only keeps the inferences corresponding to (BFUN) rules. The 5’s on top of the tree correspond to
applications of the functions used directly by crypt/3.

6.2 Second phase: zooming in for errors
Once a function has being pointed out as buggy, the exact location of the error may still be difficult
to find. The existence of different paths that the execution can follow inside the body function due to
the existence of nested case expressions, or the possible values taken by the variables, that depend in
general on the values of several previous variables, complicate the situation. Therefore, we introduce a
new abbreviation of the proof trees presented in Section 4 that allows us to find the rest of errors included
in Definition 5.5. These trees are rooted by the node corresponding to the buggy function applications
in the first step, and hence we say that we “zoom in” this node to refine the bug location.

Definition 6.2. Let P be a program and 〈e, θ〉 → eval an unexpected evaluation w.r.t. P . Let T ′ be
a proof tree such that CESC |=(P〈e,θ〉,T ′) 〈rmain, id〉 → eval , and T a subtree of T ′ whose root is the
conclusion of a (BFUN) inference rule. Then the Abbreviated Proof Tree with zoom of T , APTZ (T ) is
defined as follows:

(APTZ 1) APTZ

(
(R)

T1 . . . Tn

E

)
= (R)

APTZ (T1) . . . APTZ(Tn)

E
with (R) either any zoom inference or a (CASE) inference.

(APTZ 2) APTZ

(
(BFUN)

T1 . . . Tn

E

)
= ∅,

if E is not the root of T .

(APTZ 3) APTZ

(
(R)

T1 . . . Tn

E

)
= APTZ (T1) . . .APTZ (Tn),

if neither of the previous rules is applicable.

The occurrence of ∅ in the second rule indicates that (BFUN) inferences not at the root of T are
simply eliminated, including their subtrees. Also note that the (BFUN) function in the root is dealt with
the third APTZ rule. The APTZ is used in our framework to find buggy nodes, which correspond to
errors in the body of function definitions.

In the case of (PATBIND) and (GUARD) buggy nodes we are interested only in those that correspond
to incorrect branches of case expressions.

Definition 6.3. Let N be a (PATBIND)/(GUARD) ICESCZ -buggy node in some APTZ T . Then we say
that N is a wrong case branch witness for the ith branch of a case expression rc iff:

1. N is the premise a ICESCZ -invalid (SUCC), (FAIL1), or (FAIL2) node M , and M contains the
reference to some branch i of a case expression referenced by rc.

2. T does not contain a (C_ARG) buggy node for the same case expression.

3. T does not contain another node verifying the first item for some branch j < i of the same case
expression.
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Now we can establish the correctness and completeness of APTZ trees as declarative debugging trees.

Theorem 6.2. Let P be a Core Erlang program, I its intended interpretation, and eθ → eval an
unexpected evaluation. Let T ′ be a proof tree such that CESC |=(P〈e,θ〉,T ′) 〈rmain, id〉 → |eval |. Let T ′′ be
defined as T ′′ ≡ APT (T ′), M be an ICESCf buggy node in T ′′, and T ′M the subtree of T ′ rooted by M .
Finally, define a new tree T as T ≡ APTZ (T ′M ). Then T contains at least one ICESCZ -buggy node N
that verifies one of the following items:

1. N is a (BIND) node of the form

〈< r1 , . . . , rn >, exprs, θ〉 → {var1 7→ val1, . . . , varn 7→ valn}

Then, 〈< r1 , . . . , rn >, exprs, θ〉 is a wrong binding instance.

2. N a (C_ARG) node, N ≡ 〈c_arg(rc), θ〉 → evals. Then, 〈c_argc(rc), θ〉 is a wrong case argument
instance.

3. N is a (PATBIND)/(GUARD) premise of a (FAIL1)/(FAIL2) node P , P ≡ 〈fails(vals, ri), θ〉, with
ri a reference to the ith branch of a case expression rc, and such that N is a wrong case branch
witness. Then 〈ri , θ〉 is an unexpected case failure instance, and in particular:

(a) If N is (PATBIND) node then 〈ri , θ〉 is a wrong failure pattern instance.

(b) If N is a (GUARD) node, then 〈ri , θ〉 is a wrong failure guard instance.

4. N is a (PATBIND)/(GUARD) premise of a (SUCC) node P , with P ≡ 〈succeeds(vals, ri), θ〉, ri a
reference to the ith branch of a case expression rc, and such that N is an wrong case branch
witness. Then 〈ri , θ〉 is an unexpected case success instance, and in particular:

(a) If N is a (PATBIND) node, then 〈ri , θ〉 is a wrong success pattern instance.

(b) If N is a (GUARD) node, then 〈ri , θ〉 is a wrong success guard instance.

5. N is a (C_RESULT) node of the form 〈c_result(ri), θ〉 → evals, and there is neither a (C_ARG)
buggy node nor a wrong case branch witness for the same case expression. Then, 〈c_result(rc), θ〉 →
evals is a wrong case result instance.

Theorem 6.2 indicates that the zooming phase concludes pointing out a more detailed error inside
the buggy function. The inference rules labeling the different errors in Figure 4 summarize the relation
between buggy nodes and bugs in the program. It is worth observing that the criterium used to select
the buggy node N is used explicitly by the tool debugger (asking first about the validity of the argument,
then about the branches, finally about the result). Actually, the tool focuses on first wrong branches by
asking explicitly to the user about the position of the expected branch i (after ensuring that the argument
evaluation is correct). If there is a (SUCC) node for j < i then j is chosen as first wrong branch. If on
the contrary i is a (FAIL1) or (FAIL2) then i is chosen as first wrong branch. This correctly implements
the ideas of Definition 5.4. The next section explains more details about the implementation.

7 System Description
The technique described in the previous sections—both the detection of wrong functions and the zoom
version—has been implemented in Erlang. The tool, called edd (Erlang Declarative Debugger), is pub-
licly available at https://github.com/tamarit/edd.

When the user detects an unexpected result in an expression evaluation, it calls the debugger passing
that expression. The system edd proceeds by asking questions about the validity of some parts of the
evaluation until it locates a buggy node, i.e., a function that is causing an error. From that point the
user can choose to stop the debugging session and inspect manually the function code to locate the bug,
or continue with a zoom debugging session that will help to find the concrete error inside the buggy
function.

When debugging wrong functions (Section 6.1), the debugger questions are simply of the form call
= value?, asking whether the function or λ-abstraction application call should evaluate to value. In
response to the debugger questions, the possible answers are:

• yes (y): the evaluation is correct. In this case the node is marked as valid.
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• no (n): the evaluation is not correct. In this case the node is marked as invalid.

• trusted (t): the user knows that the function or λ-abstraction used in the evaluation is correct, so
further questions about it are not necessary. In this case all the nodes related to this function are
marked as valid.

• inadmissible (i): the question does not apply because the arguments should not take these values.
The node is marked as valid.

• don’t know (d): the answer is unknown. The node is marked as unknown, and might be asked again
if it is required for finding the buggy node.

• switch strategy (s): changes the navigation strategy. The navigation strategies provided by the tool
are explained below.

• undo (u): reverts to the previous question.

• abort (a): finishes the debugging session.

In the case of the zoom approach (Section 6.2), the debugger asks more complicated questions, and
hence the answers yes, no and inadmissible cannot be used in some cases (the rest of answers are always
available). The answer trusted has not any sense in this approach, therefore it is never available. More
specifically, the questions are of the form:

• When asking about a case node, the debugger distinguishes the different sources of error to ease
the process. Each item presented in this catalog assumes that the previous ones are correct, so the
user must select the first wrong item; otherwise, the last option indicates that everything is correct.
The options, which are displayed after the case expression to allow the user to identify the code
being debugged, are:

The context of the expression, that is, the variables used to evaluate the argument and all the
branches until the successful one. When this option is chosen as invalid the evaluation of the
argument is marked as valid (since it is equivalent to indicating inadmissible in the previous
case) and the tool presents the different variables in the context to allow the user to select
the erroneous one. Once this has been pointed out, the tool selects as current node the one in
charge of the evaluation of that variable.

The argument value, that is, the value used to select the branch and continue the evaluation.
If this value is erroneous then the case node is marked as valid and the node in charge of
evaluating the argument (the evaluation of c_arg(rb)) is set as current one.

The successful branch, that is, the branch selected to continue with the evaluation. When this
value is wrong the tool marks the current node as invalid and asks for the index of the expected
branch. Once this index is given, we distinguish whether it is lower or greater than the current
one.5 If it is lower than the current one it means that the program should take a branch that
was skipped, so the tool marks the ith node as erroneous and all the previous ones as valid.
If it is greater than the current one it means that the successful branch should fail, and hence
the debugger marks all the failure nodes as valid and the success one as invalid. In both cases,
the debugging continues by asking about the correctness of the guard of the branch marked
as invalid (if it has no guard then it is directly pointed out as buggy).

The generated bindings, that is, the bindings generated by matching the argument value with
the pattern in the successful branch. When this binding is wrong both the case node and the
one standing for the successful branch are marked as invalid, and an error in the pattern is
reported.

The final value, that is, the value reached by evaluating the whole expression. When this value
is wrong the case expression is marked as invalid, all the nodes related to branches are marked
as valid, and the node in charge of continuing the evaluation (that is, c_result(rb)) is marked
as invalid.

• Since if and try/catch expressions are specific instances of case expressions a customized version
of the questions above is presented.

5Note that they cannot be equal, because in that case it would not be wrong.
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• The debugger checks that the function in the root of the tree is being executed using the appropriate
clause. Hence, it will present the context (which is just the values bound to the parameters in this
case) and ask whether it is correct to discard the clauses previous to the one being used and to
select the current one. All the answers available for wrong answers can be used here, presenting
the same effects in the tree.

• The debugger can ask about the guards in the branches of case expressions or clause. All the
answers are also available here.

• Finally, the tool presents the value assigned to a variable or a group of variables. In this case the
context consists in the value of all the variables directly involved in the evaluation of the expression
assigned to the variables. All the answers presented for functions are allowed for this question.

The tool includes a memoization feature that stores the answers yes, no, trusted, and inadmissible,
preventing the system from asking the same question twice. It is worth noting that don’t know is used to
ease the interaction with the debugger but it may introduce incompleteness, so we have not considered it
in our proofs; if the debugger reaches a deadlock due to these answers it presents two alternatives to the
user: either answering some of the discarded questions to find the buggy node or showing the possible
buggy code, depending on the answers to the nodes marked as unknown.

The system can internally utilize two different navigation strategies [38, 39], Divide & Query and Top
Down Heaviest First, in order to choose the next node and therefore the next question presented to the
user. Top Down selects as next node the largest child of the current node, while Divide & Query selects
the node whose subtree is closer to half the size of the whole tree. In this way, Top Down sessions usually
presents more questions to the user, but they are presented in asked in a logical order, while Divide &
Query leads to shorter sessions of unrelated questions.

The tool can identify different kind of errors. When the first step of the debugging session finishes,
the error is shown with the following scheme:

Call to a function that contains an error:
module_name:function_name(Args) = Val

or
fun Clause_1 ... Clause_n end(Args) = Val
fun location: (File, line Line)

and
Please, revise the ith clause:

function_name(Pars) -> Body. (ith clause definition)
or

fun Clause_i end
or

There is no clause matching.

If there are nodes marked as unknown at the end of the debugging session and the user chooses to not
give an answer for them, the debugger will show the candidates to be erroneous in two different groups.
First, those nodes whose children are correct and at least one of them is unknown. The error messages
for this group follow the previous scheme, except that the sentence “Call to a function that could contain
an error” is used instead of “Call to a function that contains an error.” The second group is formed by
the unknown descendants of the previous group. In this case the first sentence is “This call has not been
answered and could contain an error.” This last group of nodes is the one used for asking questions when
the user selects to answer the missing information.

The errors shown after the second step of the debugging session, the zoom debugger, follow the scheme:
This is the reason for the error

Variable Var is badly assigned Val in the expression:
Expr (line Line).

or
The following variables are badly asigned:

Var_1 = Val_1
...
Var_n = Val_n

in the expression:
Expr (line Line).

or
Argument value Val of the case/if/catch of try/try expression:
Expr
is not correct.

or
Value Val for the final expression Expr (line Line) is not correct.
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or
The pattern/guard of the ith clause of case/if/catch of try/try
expression:
Expr

or
The pattern/guard of the ith clause of function definition:
function_name(Pars) -> Body. (ith clause definition)

In case that there is not enough information to determine the reason of the error, the debugger will
proceed in the same way as described above. The difference is that the message shown for the candidates
are “This could be a reasons for an error” for the first group, and “This could be a reason for an error if
an unanswered question were answered with no” for the second one. Now we will explain two different
debugging sessions using the tool.

7.1 Sample session debugging wrong functions
We first use the edd tool to find the bug in the Vigenère cipher program of Figure 1 (page 5). As have
we seen in Example 3.1 (page 4), the evaluation returns an unexpected exception:

> vigenere:encrypt("Attack tomorrow dawn", "lemon").
** exception error: no function clause matching
lists:zipwith(#Fun<vigenere.2.122144413>,[],"ON") (lists.erl,line 436)

in function lists:zipwith/3 (lists.erl, line 436)
in call from lists:zipwith/3 (lists.erl, line 436)

To start a debugging session using the default Divide & Query navigation strategy we have to call
edd with the starting expression:

> edd:dd("vigenere:encrypt(\"Attack tomorrow dawn\", \"lemon\")").
Please, insert a list of trusted functions [m1:f1/a1, m2:f2/a2 ...]:
vigenere:normalize("Attack tomorrow dawn") = "ATTACKTOMORROWDAWN"?

[y/n/t/d/i/s/u/a]: y
vigenere:normalize("lemon") = "LEMON"?

[y/n/t/d/i/s/u/a]: y

Notice that we have to escape the quotations marks that appear in the string representation of the
expression to debug. The first thing we can do is inserting a list of trusted functions for the debugger, but
we do not add anything and simply press Enter. Then the debugger asks the first two questions about
the computation, which are related to applications of vigenere:normalize. In both cases the results
of the normalization are the expected ones, so we answer yes. The next question is about the encipher
function:

vigenere:encipher(82, 69) = 86?
[y/n/t/d/i/s/u/a]: t

In this case the result is correct—encipher 82 (R) using 69 (E) results in 86 (V)—but, since we consider
the function simple enough, we also tell the debugger to trust the vigenere:encipher, so it will not ask
future questions about this function because it will treat them as correct automatically. Finally, the last
two questions of the debugger are related to the vigenere:cycle_to function:

vigenere:cycle_to(13, "LEMON") = "LEMONLEMONLEMON"?
[y/n/t/d/i/s/u/a]: n

vigenere:cycle_to(3, "LEMON") = "LEMON"?
[y/n/t/d/i/s/u/a]: n

The call to vigenere:cycle_to(13, "LEMON") should return the string of length 13 that results from
the concatenation of the string "LEMON". In this case we expect "LEMONLEMONLEM", so the result in the
first question is not correct and we answer no. For the same reason the result in the second question is
not correct (we expect "LEM"), so we answer again no. After this question the debugger finds a buggy
node and shows the following message:

Call to a function that contains an error:
vigenere:cycle_to(3, "LEMON") = "LEMON"
Please, revise the first clause:
cycle_to(N, List) when length(List) >= N -> List.

The debugger marks vigenere:cycle_to as the buggy function, and in this case it is easy to see
where the problem is: it does not trim the list when N is less than the length of the list but returns
the whole list. Thanks to the simplicity of the cycle_to function we have spotted easily the bug from
the information of the wrong function, so we do not need to continue with a zoom debugging session to
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1 test() -> stock:check_orders(
2 [[{item, water, 3},{item, rice, 3}], [{item, rice, 4}]],
3 [{item, rice, 5}, {item, bajoqueta, 8}]
4 ).

5 check_order( Order, Stock ) ->
6 lists:zf( fun(X) -> check_item(X,Stock) end, Order ).

7 check_item( Needed = {item, Name, Q1}, Stock ) ->
8 ItemStock = lists:keyfind(Name, 1 , Stock),
9 case ItemStock of

10 {item, Name, Q2} ->
11 if Q1 > Q2 -> {true, {item, Name, Q1 - Q2}};
12 true -> false
13 end;
14 false -> {true, Needed}
15 end.

16 check_orders( List_of_orders, Stock ) ->
17 Flat_orders = lists:flatten( List_of_orders ),
18 Unique_orders = unify_orders( Flat_orders ),
19 check_order( Unique_orders, Stock ).

20 unify_orders( [] ) -> [];
21 unify_orders( [{item,Name,Quantity}|R] ) ->
22 (...)

Figure 6: Erlang program for managing stocks

locate more precisely the bug. To solve this erroneous behavior, we have to replace the first clause of the
vigenere:cycle_to (line 6 of Figure 1, page 5) by this one, which simply returns the first N elements of
the List:

cycle_to(N, List) when length(List) >= N -> lists:sublist(List,N);

Note that the abbreviated proof tree has 197 nodes, but after 5 questions the debugger is able to point
the error. Notice that the program in Figure 1 is a program directly downloaded from Rosetta Code, and
edd has helped to detect the bug involving unexpected exceptions with very few questions.

7.2 Sample debugging session with zoom
To show a zoom debugging session we will use an Erlang program for managing stocks, so that a company
knows what items has to buy to supply a list of orders. The program, explained in Example 7.1, fits
better with zoom debugging because functions have a more complex structure, so detecting the bug from
the wrong function is not as easy as in the Vigenère program.

Example 7.1. Figure 6 presents an Erlang program defining a module stock to manage stocks of items.
It only exports the function check_orders/2 which, given a list of orders and a stock of items, returns
the list of items the company has to buy to supply all the orders. Both orders and stocks are represented as
lists of tuples {item, Name, Quantity}, where Name is the name of the item and Quantity the number
of items of that kind (it is supposed that there are not two tuples for the same Name in the lists). For
handling a list of orders, we simply unify the orders (add all the entries with the same name in one item
tuple), and call check_order/2, which behaves the same as check_orders/2 but considering only one
order. check_order/2 uses the predefined lists:zf/2 function, that performs a filter and a mapping at
the same time.6 lists:zf/2 takes a unary function F and a list L, and for each element E of L:

• If F(E) = true, the element remains in the list.

• If F(E) = false, the element is discarded.

• If F(E) = {true, Value}, the element is replaced by Value.
6zf/2 is currently an undocumented and obscure function of the lists module, but there is a proposal for renaming and

documenting it http://erlang.org/pipermail/erlang-patches/2013-April/003907.html.
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The program uses check_item/2 to filter and map the order into the list of items to buy. Given an item
tuple and a stock, check_item/2 looks for a tuple with the same name in the stock using lists:keyfind/3
function. If there is not such a tuple in the stock, all the elements must be bought. If the tuple exists in the
stock but its quantity is less than the required quantity, we must buy the difference. If the tuple appears in
the stock and there is enough items, the item tuple can be discarded because we do not need to buy anything.
Finally, test/0 is a function to check that the program is working. It calls check_orders/2 with some
orders of ingredients for a paella ([{item, water, 3},{item, rice, 3}] and [{item, rice, 4}]),
considering that the stock is [{item, rice, 5},{item, bajoqueta, 8}].7 Since the orders need 7
packs of rice and 3 bottles of water but the stock only contains 5 packs of rice and no water, the expected
result should be [{item, water, 3},{item, rice, 2}]. However, the program returns the buggy value
[{item,water,3},{item,rice,7}].

To debug the program, we will first use edd—this time using the Top Down Heaviest First strategy—to
locate the wrong function. The debugging session is:

> edd:dd( "stock:test()", top_down ).
Please, insert a list of trusted functions [m1:f1/a1, m2:f2/a2 ...]:
stock:check_orders([[{item,water,3}, {item,rice,3}], [{item,rice,4}]],
[{item,rice,5}, {item,bajoqueta,8}]) = [{item,water,3}, {item,rice,7}]?

[y/n/t/d/i/s/u/a]: n
stock:unify_orders([{item,water,3}, {item,rice,3},
{item,rice,4}]) = [{item,water,3}, {item,rice,7}]?

[y/n/t/d/i/s/u/a]: y
stock:check_order([{item,water,3}, {item,rice,7}], [{item,rice,5},
{item,bajoqueta,8}]) = [{item,water,3}, {item,rice,7}]?

[y/n/t/d/i/s/u/a]: n
fun (X) -> check_item(X, [{item,rice,5}, {item,bajoqueta,8}]) end
({item,rice,7}) = {true, {item,rice,7}}
fun location: (stock.erl, line 6)?

[y/n/t/d/i/s/u/a]: n
stock:check_item({item,rice,7}, [{item,rice,5},
{item,bajoqueta,8}]) = {true, {item,rice,7}}?

[y/n/t/d/i/s/u/a]: n

Call to a function that contains an error:
stock:check_item({item, rice, 7}, [{item, rice, 5},
{item, bajoqueta, 8}]) = {true, {item, rice, 7}}

Please, revise the first clause:
check_item(Needed = {item, Name, Q1}, Stock) ->

ItemStock = lists:keyfind(Name, 1, Stock),
case ItemStock of

{item, Name, Q2} ->
if Q1 > Q2 -> {true, {item, Name, Q1 - Q2}};

true -> false
end;

false -> {true, Needed}
end.

In this case the abbreviated proof tree has 14 nodes, and the debugger finds the buggy function with
5 questions using the Top Down Heaviest First (the Divide & Query strategy also needs 5 questions for
this expression). More specifically, Figure 7 partially depicts the debugging tree for this evaluation, where
all the labels are (BFUN), cos is the subindex for the function check_orders, co for check_order, uo
for unify_orders, ci for check_item, res stands for [{item, water, 3}, {item, rice, 7}], and res’
for {true, {item, water, 3}}, the substitutions θ0 and θ1 basically transmit the initial requirements
explained above, θ2 takes the result of the unification and the initial stock, and θ3 and θ4 carry the values
for checking the required amounts of water. The numbers in the nodes indicate the order of the questions
made by the debugger. Note that the strategy traverses the tree asking questions about the children of
the current node, discarding the valid ones (2) until node (5) is pointed out as invalid. Since it is a leaf,
it is the buggy node and the session finishes.

The spotted function check_item/2 is moderately complex (it has nested case expressions) so it is a
good situation to use the help of the zoom version to find the origin of the bug. Therefore we press the
key y to continue with the zoom debugging session inside the function:

Do you want to continue the debugging session inside this function?
[y/n]: y

7Bajoqueta is the Valencian word for a kind of green bean essential in the paella valenciana.
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5 5 5
(2) 〈ruo , θ1〉 → res

(5) 〈rci , θ4〉 → res ′

(4) 〈rλ, θ3〉 → res ′ 5
(3) 〈rco , θ2〉 → res

(1) 〈rcos , θ0〉 → res

〈rtest, id〉 → res

〈rmain, id〉 → res

Figure 7: Abbreviated tree for the zoom debugging session

For the case expression:
case ItemStock of

{item, Name, Q2} ->
if Q1 > Q2 -> {true, {item, Name, Q1 - Q2}};

true -> false
end;

false -> {true, Needed}
end
Is there anything incorrect?
1.- The context:

ItemStock = false
Needed = {item,rice,7}

2.- The argument value: false.
3.- Enter in the second clause.
4.- The final value: {true,{item,rice,7}}.
5.- Nothing.
[1/2/3/4/5/d/s/u/a]? 5
Given the context:

Name = rice
Stock = [{item,rice,5},{item,bajoqueta,8}],

the following variable is asigned:
ItemStock = false? [y/n/d/i/s/u/a]: n

This is the reason for the error:
Variable ItemStock is badly assigned false in the expression:
ItemStock = lists:keyfind(Name, 1, Stock) (Line 8).

In the first question, when Needed is {item,rice,7} and ItemStock is false the case expres-
sion must enter in the second branch and return {item,rice,7}. Therefore, we select the option
5 to say that everything is correct. In the second question, when Name is rice and the Stock is
[{item,rice,5},{item,bajoqueta,8}] we expect the value of ItemStock to be {item,rice,5}. In
the evaluation ItemStock is bound to false, so we mark the step as incorrect pressing the key n. After 2
questions, the debugger marks the assignment of the variable ItemStock as the source of the error, show-
ing the whole instruction and the line in the source program. With this information, it is easy to discover
where the error really is: in the index 1 we pass to the function lists:keyfind/3. We want ItemStock
to be the item in the Stock with Name in the second element of the tuple. As usual in programming,
we thought that the first element had index 0, so lists:keyfind/3 should look for Name in the element
index 1. However, Erlang does not follow that convention but starts indices from 1. Therefore, to fix the
problem we have to write the assignment as ItemStock = lists:keyfind(Name, 2, Stock).

The tree for this debugging session is partially depicted in Figure 8. The root of the tree is the buggy
node detected in the previous session, which has the substitution θ4 ≡ {Needed 7→ {item,rice,7} ; Stock 7→
[{item,rice,5},{item,bajoqueta,8}]}. The first children of the root is in charge of proving that the
selected clause is the correct one, the second one binds the variable ItemStock (identified by its reference,
rIS ) to false when looking for rice in the stock, and the third one evaluates the case expression. As
explained above, the first node selected by the tool is the one marked as (1) in the tree, since the Top
Down strategy is implemented with the heaviest-first strategy, which selects first the biggest sibling. The
answer yes discards this node, and then the strategy selects the node marked with (2). It is pointed out
as buggy node because it is a leaf and the user indicated that it is invalid.

8 Experimental results
In this section we measure the effectiveness of the Erlang Declarative Debugger. We use a set of small
and medium-size sequential Erlang programs that solve standard problems: Miller-Rabin primality test,
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(BFUN)
5

(BIND)
(2) 〈rIS , expr , θ5〉 → θ′

(CASE)

5 (FAIL1)
5 5

〈fails(b1), θ6〉
(SUCC)

5 5
〈succeeds(b2), θ6〉 → θ7

5

(1) 〈case . . . , θ6〉 → res ′

〈rcheck_item, θ4〉 → res ′

Figure 8: Abbreviated zoom tree for the debugging session

Program LOC Wrong functions Zoom
Nodes D&Q TD Nodes D&Q TD

24_game 73 19 4 3 9 2 2
ackermann 13 91 7 8 - - -
align cols 40 32 3 3 4 2 2
caesar 38 147 3 2 5 3 3
complex 60 7 2 2 6 2 3
dutch 41 81 12 11 - - -
miller_rabin 80 152 6 10 7 1 1
rfib 6 288 11 12 - - -
rle 44 69 5 19 8 1 1
roman 24 9 3 6 9 8 8
sieve 37 56 6 13 7 1 1
sum_digits 16 8 2 6 4 2 2
ternary 91 64 7 10 7 5 4
turing 72 49 7 9 10 2 4

Figure 9: Results of edd with different programs.

Sieve of Eratosthenes, Caesar cipher, Run-length encoding. . . These programs have been extracted from
the Rosetta Code website (http://rosettacode.org) and modified to have a bug.8 Then, we have used
edd to find the wrong function and also the zoom debugger to spot the bug more precisely. In some cases
(ackermann, dutch, and rfib) the zoom debugger was not applicable because the wrong function was very
simple, so the bug was easily found by inspecting the code. For all the tests, edd has spotted the bug added
to the programs, and the time consumed to generate the abbreviated proof trees has been reasonable—no
more than 10 seconds in a standard desktop computer. The source code of the programs as well as the
abbreviated proof trees can be found in the folder examples at https://github.com/tamarit/edd.

Figure 9 shows the results of the debugger for the test programs. For each one it shows the lines of
code (LOC), the number of nodes of the abbreviated proof tree (Nodes), and the number of questions
using the Divide & Query (D&Q) and Top Down Heaviest First (TD) strategies for each step of the
debugger (wrong functions and zoom). Regarding the detection of wrong functions, the debugger finds
them using a very small number of questions compared to the number of nodes in the abbreviated proof
tree, i.e., the number of function and lambda-abstractions applications in the computation. Although
for some programs (24_game, caesar, dutch) TD performs slightly better than the D&Q strategy, the
results show that D&Q is in general a better option for debugging wrong functions because it needs less
questions for finding the bug, being the extreme cases the programs rle (5 vs. 19) and sieve (6 vs. 13).
Regarding bug detection using zoom inside functions, the number of questions is also small compared to
the number of nodes in the abbreviated proof tree with the exception of roman, where the debugger asks
almost all the questions to find the bug. However, the number of asked questions is proportionally bigger
than the number ask in the first step. This is due to that each question is actually several questions
put together. For zoom debugging, the performance of both strategies is almost equal, with only a ±1
difference in complex and ternary and ±2 difference in turing.

Considering the good results of edd for the set of standard programs, we think it can be an interesting
tool for programmers when debugging the sequential part of Erlang programs, supplementing the standard
trace-debugger of the OTP/Erlang system. The results also support our choice of standard strategies:
D&Q for finding wrong functions, as it usually asks less questions than TD, and TD for finding bugs
inside functions, since it is as good as D&Q and it shows the questions in an order closer to the evaluation
one, which users might find clearer.

8The bug shown in Section 3 was already present in the original code.
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9 Concluding Remarks and Ongoing Work
Debugging is usually the most time-consuming phase of the software life cycle, yet it remains a basically
unformalized task. This is unfortunate, because formalizing a task introduces the possibility of improving
it. With this idea in mind we propose a formal debugging technique that analyzes proof trees of erroneous
computations in order to find bugs in sequential Erlang programs using Core Erlang to perform the
analysis. A straightforward benefit is that it allows us to prove the soundness and completeness of
the scheme. Another benefit is that, since the debugger only requires knowing the intended meaning
of the program functions, the team in charge of the debugging phase do not need to include the actual
programmers of the code. This separation of rôles is an advantage during the development of any software
project.

Although most of the applications based on Erlang employ the concurrent features of the language the
concurrency is usually located in specific modules, and thus specific tools for debugging the sequential
part are also interesting. Our debugger locates the error based only on the intended meaning of the
program code, and thus abstracts away the implementation details. The main limitation of the proposal
is that an initial unexpected result must be detected by the user, which implies in particular that it cannot
be used to debug non-terminating computations. From the point of view of declarative debugging, this
paper presents presents a new idea allowing the user to vary the granularity of the bug detected by the
tool by asking more specific questions. This is achieved by building a new tree from the buggy node
discovered in the first phase, but using the same calculus.

We have used these ideas to implement a tool that supports different navigation strategies, trusting,
and built-in functions, among other features. It has been used to debug several buggy medium-size
programs, presenting an encouraging performance. More information can be found at https://github.
com/tamarit/edd.

An natural line of future work consists in extending the current framework to debug concurrent Erlang
programs. This extension will require new rules in the calculus to deal with functions for creating new
processes and sending and receiving messages, as well as the identification of new kinds of errors that the
debugger can detect.
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1 decode(Segment) ->
2 case Segment of
3 « SourcePort:16, DestinationPort:16,
4 SequenceNumber:32, AckNumber:32,
5 DataOffset:4, _Reserved:4, Flags:8, WindowSize:16,
6 Checksum:16, UrgentPointer:16,
7 Payload/binary» when DataOffset>4 ->
8 OptSize = (DataOffset - 5)*32,
9 « Options:OptSize, Message/binary » = Payload,

10 «CWR:1, ECE:1, URG:1, ACK:1, PSH:1, RST:1,
11 SYN:1, FIN:1» = «Flags:8»,
12 % Can now process the Message according to the
13 % Options (if any) and the flags CWR, ..., FIN.
14 _ ->
15 {error, bad_segment}
16 end.

Figure 10: Bit Syntax Example: Decoding TCP Segments [12]

lit ::= . . . | BitString
pat ::= . . . | #{ bitpat1, . . . , bitpatn }#
bitpat ::= #< pat_b >( opts )
pat_b ::= var | Integer | Float
expr ::= . . . | #{ bitexpr1, . . . , bitexprn }#
bitexpr ::= #< expr >( opts )

Figure 11: Extension of Core Erlang’s Syntax to consider bit syntax.

A Bit String syntax
As mentioned in Section 3, we have omitted the bit syntax from the presentation of the paper to keep
clear the main ideas and because this feature is not supported in the metaprogramming library for Core
Erlang we use in the implementation of the debugger. However, it can be included in the debugging
setting by adding slight modification in the syntax level and the matching process. It is important to
remark that the modifications at the semantic level (further than the matching definition), the debugging
tree or the proofs are not necessary. In this appendix we will show the expressive power of bit syntax and
the modifications needed to include it into our debugging setting.

Erlang supports a data type representing chunks of raw and untyped data called binaries. This
data type is mainly used in socked-based communication applications, where segments—a.k.a. packets
or datagrams—are represented as binaries that are sent through the network. These chunks of bits are
usually cumbersome to parse, but Erlang provides the bit syntax to easily parse the different fields by
matching. Figure 10 shows an example (extracted from [12]) of decoding a TCP segment using bit syntax.

The decode/1 function matches the binary Segment against a binary pattern, where each field has a
size option that controls the number of bits to take. In this case the binary patterns takes the first 16 bits
as an integer in SourcePort, the second 16 bits in DestinationPort, the next 32 bits in SequenceNumber,
and so on. In this way, the parsing is done at once and the subsequent code can use the integer variables
that appear in the pattern. Although not used in this example, bit syntax supports also type options that
specify the way that binary matching must be done: destination type (integer, float, byte), sign (signed
or unsigned), endian value (big-endian or little-endian), etc.

To include bit syntax in our debugging setting, we need to first extend the syntax of Core Erlang
considered. Figure 11 shows the modifications needed. First, we extend the literals lit with BitStrings,
which are lists of bits to represent binaries. We also have to add the new categories to represent patterns
over binaries (bitpat and pat_b) and expressions that will evaluate to binaries (bitexpr). Finally, we have
to extend patterns and expressions to include these new categories.

The opts argument in bit patterns and expressions is a tuple of encoding options that is system depen-
dent. It is important to notice that opts can contain variables to be bound during evaluation. This can be
seen in the line 9 of Figure 10, where the size option OptSize is bound in the previous instruction. Unlike
the rest of patterns, bit patterns are not linear, so this variable size options can also be bound previously
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in the same pattern. For example, <<Origin:8, Destination:8, Length:8, Message:Length>> is a
valid bit pattern. The non-linearity of bit patterns must be handled carefully when matching, as we will
see shortly.

Since encoding options are system dependent, we will assume two functions to convert values to bit
strings and vice versa that will be used when matching:

• to_bits(val, opts), which given an integer or float value val and some encoding options opts re-
turns the bit string that represents val. For example, to_bits(127, {8,1,integer,unsigned,big})
will be evaluated to the bit string "011111111", the binary value of the unsigned integer 127 using
8 bits and big-endian.

• from_bits(bits, opts), which given a bit string bits and some encoding options opts, re-
turns a pair (val, bits’) where val is the value represented in the first bits of bits (ac-
cording to the encoding options opts) and bits’ is the rest of the bit string. For example,
from_bits("0111111100000011", {8,1,integer,unsigned,big}) is (127,"00000011"), where
127 is the result of interpreting the first 8 bits of the bit string as an unsigned integer with big-
endian, and "00000011" is the rest of the input bit string.

Using the previously introduced converting function, we need to add a new rule to the syntactic
matching function synMatch to match bit patterns and bit strings and also a new bit-matching function
synMatchb:

synMatch(#{bitpat1 , . . . , bitpatn}#,BitString) = θ1 ] . . . ] θn, where
(θ1,BitString1) ≡ synMatchb(bitpat1 ,BitString)
(θ2,BitString2) ≡ synMatchb(bitpat2 θ1 ,BitString1 )
. . .
(θn, ε) ≡ synMatchb(bitpatnθ1 . . . θn−1 ,BitStringn−1 )

synMatchb(#< var >( opts ),BitString) = ([var 7→ val ],BitString ′), if
from_bits(BitString , opts) = (val ,BitString ′)

synMatchb(#< val >( opts ), BitString) = (id ,BitString ′), if
from_bits(BitString , opts) = (val ,BitString ′) and
val is an integer or float value

The new rule for synMatch simply composes the matching substitutions computed for the bitpats.
Since bit patterns are not linear, it is important to apply the matching substitution obtained so far
(θ1θ2 . . . θi) to the next bitpat i+1, as some encoding options in bitpat i+1 can be bound to a value in the
previous matchings. The last call to synMatchb returns the empty bit string ε to express that after
the complete matching all the bit string must be “consumed”. On the other hand, synMatchb uses the
from_bits function to find the bindings for variables in bit patterns (first rule) and to check that values in
bit patterns are the same as the ones represented in the bit strings (second rule). In both cases synMatchb
returns a pair with the value parsed and the remaining bit string.

Finally, we need to add a new semantic rule in the calculus for sequential Erlang presented in Section 4
to evaluate bit expressions to values. This rule is pretty straightforward, since it only evaluates the inner
expressions to values and then concatenates all their bit representations, obtained using the function
to_bits:

(VAL_BITS)
〈expr1 , θ〉 → vals1 . . . 〈exprn , θ〉 → valsn

〈#{bitexpr1, . . . , bitexprn}#, θ〉 → B1++B2++ . . . ++Bn

where bitexpr i = #< expr i >( optsi ), to_bits( valsi , optsi ) = Bi and valsi are integer or float
values. Notice that the (VAL_BITS) rule does not depend on the user code, so any proof tree obtained
with the CESC calculus will be also obtained using the ICESC� calculus. Therefore, this new rule does
not affect the soundness results of the declarative debugger.
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B Proofs of the main results
This Appendix includes the proofs of the theoretical results contained in the report.

B.1 Properties of ICESC�
The following lemmas are basic and straightforward properties of the calculi ICESC� which are used in
the main theorems.

Lemma B.1. Let P be a Core Erlang program and E an evaluation. Let T be a proof tree verifying
CESC |=P,T E. Suppose also that the root of T (that is, E) is ICESCf -invalid.

Then T contains an ICESCf -invalid node N ≡ 〈rf , θ〉 → evals immediate (BFUN)-descendant of the
root of T .

Proof Idea
By reductio ad absurdum. Consider the set of nodes:

S = {N ∈ T | N is consequence of a (BFUN) inference and
there is no (BFUN) in the path from N to the root }

Suppose that every node N ∈ S is ICESCf -valid. Consider the tree T ′ obtained after replacing for each
N ∈ S the inference label (BFUN) by (BFUNI) and removing the premises. Then ICESCf |=P,T ′ E and
thus E is ICESCf -valid, in contradiction with the hypotheses. �

An analogous Lemma can be applied to ICESCZ :

Lemma B.2. Let P be a Core Erlang program and E an evaluation. Let T be a proof tree verifying
CESC |=P,T E. Suppose also that the root of T (that is, E) is ICESCZ -invalid. Suppose also that all the
immediate (BFUN)-descendants of the root of T are ICESCZ -valid.9

Then, T contains an immediate (R)-descendant N of the root T , such that (R) is a zoom inference
label and N is ICESCZ -invalid.

The proof idea is analogous to the one for Lemma B.1.

B.2 Correctness and Completeness of APT ’s
This result is established in Theorem 6.1.

Theorem 6.1
Let P be a Core Erlang program, I its intended interpretation, and eθ → eval an evaluation unexpected
with respect to ICESCf . Then, exists at least one proof tree T ′ such that CESC |=(P〈e,θ〉,T ′) 〈rmain, id〉 →
|eval |, and every tree T ′ in these conditions verifies that T ≡ APT (T ′) contains at least one buggy node
N , and every buggy node in T corresponds to a wrong instance of a user function different from main/0.

Proof.
In this proof all the references to valid, invalid, and buggy are assumed implicitly as with respect to

ICESCf .
By Assumption 5.1, there is a proof tree T ′′ such that CESC |=P,T ′′ 〈|e|, θ〉 → |eval |. From T ′′ it is

easy to construct a proof tree T ′′′ for 〈|e|θ, id〉 → |eval |. Then, a tree T ′ such that CESC |=(P〈e,θ〉,T ′)

〈rmain, id〉 → |eval | can be constructed starting by an application of the (BFUN) inference rule for main/0
at the root, followed by a (CASE) inference with the body of main/0. The c_result premise of the (CASE)
has as premise the proof of 〈|e|θ, id〉 → |eval |, which is T ′′′. Moreover, any other proof will have the same
structure.

Observing the case expression defining main/0 (Definition 5.6) and the form of the (CASE) inference
we have that the rest of the premises of this inference cannot contain function calls. Therefore, T ≡
APT (T ′) will be of the form:

APT (T ′′′)
〈rmain, id〉 → |eval |

Again by Assumption 5.1 (now by item 2), since eθ → eval is unexpected then ICESCf 2P,I 〈|e|, θ〉 →
|eval |, and consequently ICESCf 2P,I 〈|e|θ, id〉 → |eval |. Thus, the root of T ′′′ is invalid. Applying the

9In the case of (BFUN) nodes ICESCZ -validity corresponds to ICESCf -validity
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Lemma B.1, there is a node N ∈ T ′′′ of the form N ≡ 〈rf , θ〉 → evals, consequence of a (BFUN) inference,
such that N invalid and that verifies that there is no other (BFUN) inference in the path from the root
to N . This implies that N will be the root of one of the subtrees returned by APT (T ′′′), that is that
N is an invalid child of the root of T , 〈rmain, id〉 → |eval |, and thus the only reference to main cannot
be buggy. Since every proof tree with an invalid root contains a buggy node [27], this means that there
is a buggy node M ∈ T with a reference to some function different from main, M ≡ 〈rf , θ〉 → eval . To
complete the theorem we must prove that M corresponds to a wrong function instance. This is done by
considering M again in the CESC proof tree T ′. There, the only child of M corresponds to Bθ with B
the case expression defining the body of function f . Then we have:

1. ICESCf |=(P,I) 〈Bθ, θ〉 → evals holds by Lemma B.1, because all its (BFUN) immediate descendants
are valid, since they are children of M in T ≡ APT (T ′), and M is buggy in T .

2. ICESCf 2(P,I) 〈rf , θ〉 → evals because M ≡ 〈rf , θ〉 → evals is buggy.

Thus, according to Definition 5.5.1, 〈rf , θ〉 is a wrong function instance.

B.3 Correctness and Completeness of APTZ ’s
The following Lemma shows the basic form of an APTZ .

Lemma B.3. Let P , T , T ′ be as in Definition 6.2. Then the APTZ (T ) verifies:

1. It is a single tree rooted by the conclusion of a (CASE) inference.

2. If the root of T corresponds to a wrong function instance then the root of APTZ (T ) is ICESCZ -
invalid.

3. It contains only nodes corresponding to Erlang expressions occurring in the body of the function
found at the root of T .

Proof.

Observe that T must be of the form:

(BFUN)

(CASE)
. . .

(C_RESULT)
. . .

〈c_result(ri), θ
′′〉 → evals

〈caserc . . . , θ〉 → evals

〈rf , θ〉 → evals

The root is the conclusion of (BFUN) inference by hypothesis. This inference only has one premise
that corresponds to the conclusion of a (CASE) inference (Section 3 indicates that the body of a function
is always a case expression). Among the premises of the (CASE) inference we make explicit the last one,
which corresponds to the result returned by the successful branch ri. Then, applying the rules of APTZ :

APTZ (T ) =

APTZ

(BFUN)

(CASE)
. . .

(C_RESULT) . . .

〈c_result(ri ), θ
′′〉 → evals

〈caserc . . . , θ〉 → evals

〈rf , θ〉 → evals

 =

(using APTZ 3)

APTZ

(CASE)
. . .

(C_RESULT) . . .

〈c_result(ri ), θ
′′〉 → evals

〈caserc . . . , θ〉 → evals

 = (using APTZ 1)

(CASE)

. . .APTZ

(C_RESULT) . . .

〈c_result(ri ), θ
′′〉 → evals


〈caserc . . . , θ〉 → evals

= (using APTZ 1)

(CASE)
. . .

(C_RESULT) . . .

〈c_result(ri ), θ
′′〉 → evals)

〈caserc . . . , θ〉 → evals

Then:
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1. Obviously APTZ (T ) is rooted by the conclusion of a (CASE) inference.

2. If root of T corresponds to a wrong function instance of a user function f (analogous for a lambda
function), then by Definition 5.5.1

ICESCf 2(P,I) 〈rf , θ〉 → v

In particular, since (BFUNI) is the only ICESCf inference that can be applied it means that
(〈rf , θ〉 → v) /∈ Ifun (condition of the (BFUNI) inference). Then, applying Property 5.1, there is
not substitution θ′′ extending θ such that 〈c_result(ri), θ

′′〉 → v with ri a reference to some branch
of the case expression defining the body of f . By the (C_RESULTI) inference rule this means that

ICESCZ 2(P,I) 〈c_result(ri), θ
′′〉 → v

Thus, at least one of the premises of the (CASEI) inference cannot be proven in ICESCZ . Conse-
quently, the conclusion of this inference, which corresponds to the root of APTZ (T ), is invalid.

3. This is straightforward from the definition of the APTZ (T ), since all the calls to other functions
are removed including their subtrees using the second rule.

The following two Lemmas indicate that the validity of certain nodes is related to the validity of their
children:

Lemma B.4. Let T be an APTZ obtained from a CESC proof tree T ′ as explained in Definition 6.2.
Then, the nodes (CASE)-nodes are ICESCZ -valid iff all their children in T are ICESCZ -valid.

Proof. The provability of a node with respect to some calculus depends on the validity of its premises in
the same calculus, as well as in fulfilling the associated side-conditions. In the case of the nodes of this
lemma, observe that:

1. By the definition of APTZ (CASE) nodes have in T the same children (premises) as in T ′.

2. The definition of the (CASE) inference rule is the same in CESC and in ICESCZ .

Thus the conclusions of (CASE) inferences are ICESCZ -valid iff all their children in T are ICESCZ -
valid.

Lemma B.5. Let T be an APTZ obtained from a CESC proof tree T ′ as explained in Definition 6.2.
Let N be either a (FAIL1), (FAIL2), or (SUCC)-node, and suppose that N is ICESCZ -invalid. Then N
has an ICESCZ -invalid child in T ′.

Proof.
We prove the result for (SUCC), it is analogous for (FAIL1), (FAIL2). Since N is a (SUCC)-node, it

must be of the form N ≡ 〈succeeds(vals, ri), θ〉 → θ′. First observe that in the APTZ each (SUCC)-node
contains the same premises as in T ′, which must be of the form: 〈patbind(ri , vals), θ〉 → θ′ (with θ′ 6=⊥),
and 〈guard(ri), θ

′′〉 → ’true’. The validity of this premises depend on its membership to 〈Irc , θ〉 due to
the definition of (PATBINDI) and (GUARDI).

N is ICESCZ -invalid, that is ICESCZ 2P,I 〈succeeds(vals, ri), θ〉 → θ′, and by the definition of
(SUCCI) in Section 5.2 it means (〈succeeds(ri), θ〉) /∈ 〈Irc , θ〉. The construction of 〈Irc , θ〉 indicates that
the premises are not associated to the only succeeds evaluation in 〈Irc , θ〉, that is, i is not the expected
successful branch of the case expression in the context θ. There are two possibilities:

1. The successful branch is some j < i. Then 〈Irc , θ〉 does not contain information about i (we do
not require 〈Irc , θ〉 to include information about the branches after the successful branch because
this leads to very difficult questions to the user and can be avoided). Then, both premises are
ICESCZ -invalid.

2. The successful branch is some j > i. Then i is a failing branch, and then 〈Irc , θ〉 includes evaluations
〈patbind(ri , vals), θ〉 → θ̂′, 〈guard(ri), θ

′′〉 → val , with θ′′ ≡ θ ] θ̂′. But the conditions of failing
branches require that θ̂j ≡⊥ or val ≡ ’false’, and therefore at least one of the premises cannot
be proven in ICESCZ .
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Now we can establish the correctness and completeness of APTZ trees as declarative debugging trees.
Theorem 6.2.
Let P be a Core Erlang program, I its intended interpretation, and eθ → eval an unexpected evaluation.
Let T ′ be a proof tree such that CESC |=(P〈e,θ〉,T ′) 〈rmain, id〉 → |eval |. Let T ′′ be defined as T ′′ ≡
APT (T ′), M be an ICESCf buggy node in T ′′, and T ′M the subtree of T ′ rooted by M . Finally, define a
new tree T as T ≡ APTZ (T ′M ). Then T contains at least one ICESCZ -buggy node N that verifies one
of the following items:

1. N is a (BIND) node of the form

〈< r1 , . . . , rn >, exprs, θ〉 → {var1 7→ val1, . . . , varn 7→ valn}

Then, 〈< r1 , . . . , rn >, exprs, θ〉 is a wrong binding instance.

2. N a (C_ARG) node, N ≡ 〈c_arg(rc), θ〉 → evals. Then, 〈c_argc(rc), θ〉 is a wrong case argument
instance.

3. N is a (PATBIND)/(GUARD) premise of a (FAIL1)/(FAIL2) node P , P ≡ 〈fails(vals, ri), θ〉, with
ri a reference to the ith branch of a case expression rc, and such that N is a wrong case branch
witness. Then 〈ri , θ〉 is an unexpected case failure instance, and in particular:

(a) If N is (PATBIND) node then 〈ri , θ〉 is a wrong failure pattern instance.
(b) If N is a (GUARD) node, then 〈ri , θ〉 is a wrong failure guard instance.

4. N is a (PATBIND)/(GUARD) premise of a (SUCC) node P , with P ≡ 〈succeeds(vals, ri), θ〉, ri a
reference to the ith branch of a case expression rc, and such that N is an wrong case branch
witness. Then 〈ri , θ〉 is an unexpected case success instance, and in particular:

(a) If N is a (PATBIND) node, then 〈ri , θ〉 is a wrong success pattern instance.
(b) If N is a (GUARD) node, then 〈ri , θ〉 is a wrong success guard instance.

5. N is a (C_RESULT) node of the form 〈c_result(ri), θ〉 → evals, and there is neither a (C_ARG)
buggy node nor a wrong case branch witness for the same case expression. Then, 〈c_result(rc), θ〉 →
evals is a wrong case result instance.

Proof. In this proof the concepts of valid, invalid and buggy are assumed to be with respect ICESCZ

unless the contrary is mentioned explicitly.
First observe that:

1. M , the root of T ′M , is ICESCf invalid (in fact it is ICESCf buggy by hypothesis).

2. M is (BFUN) node because M ∈ T ′′, T ′′ is an APT , and APT s only contain (BFUN) nodes.

Then by Lemma B.3 T ≡ APTZ (T ′M ) has an invalid root, which means that T contains at least one
buggy node such that the path from the root of T to the buggy node only contains invalid nodes [27].
Let S be the set of all buggy nodes, S 6= ∅.

In principle N ∈ S could be either a conclusion of any zoom inference (Definition 5.2), or a (CASE)
node. However, as a consequence of Lemmas B.4 and B.5, the (CASE), (FAIL1), (FAIL2), and (SUCC)
nodes in T cannot be buggy. Hence, S only contains (BIND), (PATBIND), (GUARD), (C_ARG), or
(C_RESULT) nodes. Now we can select N from S with the following criterium: choose any (BIND),
(C_ARG), or (PATBIND)/(GUARD) node that it is an wrong case branch witness. If there are both
a (PATBIND) and a (GUARD) buggy nodes in these conditions choose the (PATBIND) node as N . A
(C_RESULT) node is only chosen if there is neither a (C_ARG) buggy node for the same case expression
nor a (PATBIND)/(GUARD) node that it is a wrong case branch witness for the same case expression.

It is easy to check that S always contains at least one node of this form. Then, we proceed distin-
guishing cases depending on the type of node of N :

1. (BIND). Then, N ≡ 〈< r1 , . . . , rn >, exprs, θ〉 → θ′, with the substitution θ′ defined as {var1 7→
val1, . . . , varn 7→ valn}. By the form of (BIND), in T ′ its only premise is of the form M ′ ≡
〈exprs, θ〉 → < val1 , . . . , valn >. Since M is buggy, all its immediate descendants that are zoom
inferences are valid. Considering this fact and the tree rooted by M ′ in T ′ we can apply Lemma
B.2 to deduce that M ′ is valid. Therefore we have:
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(a) ICESCZ |=(P,I) 〈expr, θ〉 → θ′ (M ′ valid)

(b) ICESCZ 2(P,I) 〈< r1 , . . . , rn >, exprs, θ〉 → θ′ (since M is buggy, it is invalid)

Then by Definition 5.5.2, 〈< r1 , . . . , rn >, exprs, θ〉 is a wrong binding instance, which proves the
item 1 of the theorem.

2. (C_ARG), that is N ≡ 〈c_arg(rc), θ〉 → evals.

N is buggy, that is invalid with valid children. N invalid means: ICESCZ 2(P,I) 〈c_arg(rc), θ〉 →
evals.

The only child of (C_ARG) in CESC is 〈exprs, θ〉 → evals with exprs the expression defining the
case expression argument. Since it is valid: ICESCZ |=(P,I) 〈exprs, θ〉 → evals.

Then, according to Definition 5.5.3a, 〈c_arg(rc), θ〉 is a wrong case argument instance.

3. (PATBIND)/(GUARD) premise of a (FAIL1)/(FAIL2) node P , with P ≡ 〈fails(vals, ri), θ〉 and ri a
reference to the ith branch of a case expression rc. P is invalid (the path from N to the root
contains only invalid nodes) and hence ICESCZ 2(P,I) 〈fails(vals, ri), θ〉. Since N is an wrong case
branch witness, ICESCZ |=(P,I) 〈suceeds(vals, ri), θ〉 → θ′ for some θ′. Then:

(a) If N ≡ 〈patbind(ri , evals), θ〉 → θ̂′′ then

• By the definition of (PATBIND) in CESC ,

θ̂′′ ≡ match(patsθ, vals)

with pats the pattern of the ith branch.
• From the definition of ICESCZ ,

ICESCZ |=(P,I) 〈suceeds(vals, ri), θ〉 → θ′

implies (〈patbind(ri , evals), θ〉 → θ′′′) ∈ 〈Irc , θ〉 with θ′ ≡ θ ] θ′′′.
• N is buggy, and hence it is invalid. This means that θ̂′′ 6= θ′′′ and match(patsθ, vals) 6= θ′′′.

Then 〈ri , θ〉 is a wrong fail pattern instance because it satisfies all the conditions required by
Definition 5.3.1a. Moreover, as an easy consequence of the hypothesis that requires N to be a
wrong case branch witness it is straightforward that ri is the first wrong branch (Definition
5.4), as required by Definition 5.5.3b.

(b) N ≡ 〈guard(ri), θ〉 → eval . In this case N must be a (FAIL2) node. Then:

• ICESCZ |=(P,I) 〈patbind(ri , evals), θ〉 → θ′′ and θ′′ such that match(patsθ, evals) = θ′′,
pats the pattern of the ith rule. This is a consequence of the criterium to choose N : if the
chosen node N is a (GUARD) node this means that its (PATBIND) sibling is not buggy.
But the inference for (PATBIND) has no premises, and not buggy means in this case valid.
Then the computed substitution match(patsθ, evals) (required by the side condition of
(PATBIND)) is the same as the expected substitution. Moreover, θ′ ≡ θ ] θ′′.

• ICESCZ |=(P,I) 〈guard(ri), θ
′〉 → ’true’ as a consequence of ICESCZ |=(P,I) 〈suceeds(vals, ri), θ〉 →

θ′ (by the definition of 〈Irc , θ〉).
• ICESCZ |=(P,I) 〈guard(ri), θ

′〉 → ’false’ because N is invalid.

Then N satisfies all the conditions to prove that 〈ri , θ〉 is a wrong fail guard instance (Definition
5.3.1b) and analogously to the previous item is a first wrong branch (Definition 5.4), as required
by Definition 5.5.3b.

4. The case of N a (PATBIND)/(GUARD) premise of a (SUCC) node P is similar to the previous case
and we skip the details.

5. (C_RESULT). Then N ≡ 〈c_result(ri), θ
′〉 → evals, By the criterium used to choose N there is

neither a (C_ARG) buggy node nor a an wrong case branch witness for the same case expression.

Observe that we only select this buggy node if there are no other buggy node for this case in the
conditions of the hypothesis. This means in particular that the succeeds node previous to N is
valid, that is: ICESCZ |=(P,I) 〈succeeds(evals, ri), θ〉 → θ′.
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Then, analogously to the (C_ARG) nodes: N buggy means

ICESCZ 2(P,I) 〈c_result(ri), θ
′〉 → evals (N invalid)

ICESCZ |=(P,I) 〈exprsiθ
′, θ′〉 → evals (valid child)

which corresponds to the definition of 〈c_result(rc), θ〉 → evals is a wrong case result instance
(Definition 5.5.3c).
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