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We present a declarative debugger for sequential Erlang programs. The tool is started when 
a program produces some unexpected result, and proceeds asking questions to the user 
about the correctness of some subcomputations until an erroneous program function is 
found. Then, the user can refine the granularity by zooming in the function, checking 
the values bound to variables and the if/case/try-catch branches taken during the 
execution. We show by means of an extensive benchmark that the result is a usable, 
scalable tool that complements already existing debugging tools such as the Erlang tracer 
and Dialyzer. Since the technique is based on a formal calculus, we are able to prove the 
soundness and completeness of the approach.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Erlang [12] is a programming language that combines the elegance and expressiveness of functional languages (higher-
order functions, lambda abstractions, single assignments), with features required in the development of scalable commercial 
applications (garbage collection, built-in concurrency, and even hot-swapping). The language is used as the base of many 
fault-tolerant, reliable software systems. The development of these systems is a complicated process where tools such as 
discrepancy analyzers [23], test-case generators [27], or debuggers play an important rôle. In the case of debuggers, Erlang 
provides a useful trace debugger including different types of breakpoints, stack tracing, and other features. However, debug-
ging a program is still a difficult, time-consuming task—according to a National Institute of Standards and Technology (NIST) 
study, software engineers spend 70–80% of their time testing and debugging [31]. Therefore alternative or complementary 
debugging tools are still needed.

Taking advantage of the declarative nature of the sequential subset of Erlang, in this paper we present a new debugger 
based on the general technique known as declarative debugging [33]. Also known as declarative diagnosis or algorithmic 
debugging, this technique abstracts the execution details, which may be difficult to follow in declarative languages, to focus 
on the validity of the results. This approach was first proposed in the logic paradigm [25,37], where debugging programs 
including features like backtracking using a traditional trace debugger can be really difficult. Soon, declarative debugging was 
applied to functional [26,29] and multi-paradigm [6,24] languages. Declarative debuggers of non-strict functional languages 
display the terms evaluated to the point required by the actual computation, something very useful in these languages 
which include the possibility of representing infinite data structures. More recently, the same principles have been applied 
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Fig. 1. Erlang code implementing Vigenère cipher.

to object-oriented [7,22] programming languages. The basic idea of this scheme consists of asking questions to the user 
about the validity of the subcomputations associated to a computation that has produced an error until an erroneous 
fragment of code is located.

Our tool provides features such as trusting, support for higher-order functions and built-ins, and “don’t know” answers. 
In fact, checking the comparison from [30], we can see that our debugger has most of the features in state-of-the-art tools, 
although we still lack some elements such as a graphical user interface, or more navigation strategies. Typical declarative 
debuggers in functional programming usually look for incorrect functions. However, in real-world programs, functions can 
be quite intricate. Thus, detecting that a function is erroneous, although helpful, still leaves to the user the problem of 
finding where is the error inside the body function. For this reason we allow the user to employ declarative debugging also 
inside an erroneous function in order to detect the precise piece of code that caused the bug. We call this feature zoom 
debugging and constitutes, to the best of our knowledge, the first work where such a feature is described. The present work 
extends and completes the results in [8], where we introduced the foundations of the debugger, and in [9], where a short 
explanation of the tool was presented, by:

• Comparing in detail the different debugging techniques that can be used in Erlang, focusing on their strengths and 
flaws.

• Giving a detailed description of zoom debugging, which was just succinctly presented in [9]. This feature is not present 
in any other declarative debugger.

• Compiling a study of the applicability of the system to real programs. We have applied our debugger to a wide range of 
small-medium applications developed by others and real-world projects in the Erlang community obtained from GitHub. 
In all these cases our tool has been able to find the errors using a small number of questions. This gives us confidence 
on the usability and potential of the tool.

The rest of the paper is organized as follows: Section 2 introduces Erlang by means of a motivating example. Section 3
describes different techniques to debug Erlang and the similarities with our approach. Section 4 describes the main features 
of our tool, while Section 5 focuses on zoom debugging. Section 6 recounts the main theoretical results. Section 7 presents 
the experimental results obtained when using our tool, while Section 8 concludes and presents the future and ongoing 
work.

2. Motivating example

We start introducing a running example taken from the Erlang community. It is important to remark that the bug was 
already in the program and has not been introduced by the authors.

Fig. 1 presents a Vigenère cipher [5] written in Erlang, extracted from the programming chrestomathy Rosetta Code.1

The program exports the functions encrypt/2 and decrypt/2 that, given a text and a key, encipher or decipher it, 
respectively. The Vigenère cipher is a simple and well-known method for encrypting alphabetic text by adding modulo 26

1 http://rosettacode.org/mw/index.php?title=Vigen%C3%A8re_cipher.

http://rosettacode.org/mw/index.php?title=Vigen%C3%A8re_cipher
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(or subtracting, in the case of decrypting) the letters of the text and key in the same position. For example, to cypher the 
text Attack tomorrow dawn using the key lemon we have:

Text ATTACKTOMORROWDAWN
Key LEMONLEMONLEMONLEM +26

Cryptogram LXFOPVXAABCVAKQLAZ

For instance, the T (19th letter of the alphabet A–Z) in second position is cyphered using E (4th letter of the alphabet), 
so the resulting cyphered letter is X, the 23rd letter of the vocabulary: (19 + 4) mod 26 = 23. The letter in third position 
is also T but now it is cyphered using M (12th letter), so the result is the letter F, the 5th letter of the vocabulary: 
(19 + 12) mod 26 = 5. As keys are usually shorter than the text to cypher, we need to repeat the key until it exactly 
matches the length of the text.

Besides the exported functions encrypt/2 and decrypt/2, the program in Fig. 1 contains some other functions that 
are used only internally. Function mod/2 computes X mod Y guaranteeing that the result is positive even when X is 
negative, which may happen when deciphering. Functions from_pos/1 and to_pos/1 convert between positions in the 
alphabet and letters in ASCII encoding to perform the calculations. Functions encipher/2 and decipher/2 encipher and 
decipher a letter of the text using a letter of the key, respectively. cycle_to/2 is used to repeat a list until it reaches 
exactly the given length. Function normalize/1 converts a string into uppercase and removes all the characters that are 
not letters. Function crypt/3 repeats the key until it reaches the length of the text and then applies a function Func 
passed as an argument to the letters in the text and the extended key. Finally, functions encrypt/2 and decrypt/2 
encrypt and decrypt a text using a key by simply calling crypt/3 with the functions encipher/2 and decipher/2. 
The complete program also contains other simple functions like isalpha/1 to check whether the argument is a lowercase 
or uppercase letter, or toupper/1, which returns a letter or string in uppercase, but we have omitted them because they 
do not play any relevant rôle. Observe that the code contains calls to built-ins and standard library functions, e.g. length/1 
(a built-in) in line 6 or append/2 in line 7 and zipwith/3 in line 11, both from module lists.

A user encrypts the text using the expression vigenere:encrypt("Attack tomorrow dawn", "lemon"). The 
system evaluates this expression but instead of the expected cryptogram it returns an exception indicating that the function 
responsible for the error is lists:zipwith/3:

This is an unexpected result, an initial symptom indicating that there is an erroneous function in the program. However, 
the message does not provide useful information to fix the bug, since the function lists:zipwith/3 is correct. Addi-
tionally, no line from the user’s code is shown in the message. In the next sections we show how different debuggers help 
in the task of finding the bug.

3. Debugging Erlang

We present in this section the different methodologies to debug Erlang programs, including our own debugger. Then, we 
present the related work and its relation with our approach.

3.1. Different debugging approaches

We show here how to debug the error in the code from Fig. 1 in several different ways:
Trace debugger. The trace debugger is the standard approach for many programming languages. The OTP/Erlang system 

comes with a classical trace debugger2 with both graphical and command line interfaces. This debugger supports the whole 
Erlang language—including concurrency—allowing programmers to establish (possibly conditional) breakpoints in their code 
to stop the execution and then inspect the trace step by step, watch the stack trace of function calls, and inspect variables 
and other processes, among other features.

A typical execution of the trace debugger starts with a breakpoint in the first function called, in our case
vigenere:encrypt/2; a snapshot of this debugging session is shown in Fig. 2. Then, the user runs the program and 
realizes that the second and the third argument of the call to lists:zipwith/3 differ in their sizes. Therefore the next 
step would be to establish two additional breakpoints, one in each rule of function cycle_to/2. After running again 

2 http://www.erlang.org/doc/apps/debugger/debugger_chapter.html.

http://www.erlang.org/doc/apps/debugger/debugger_chapter.html
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Fig. 2. Trace debugging session with the code of Fig. 1.

the program, the user would observe that the first clause is not returning what it was expected. In this case, two runs 
are required and three breakpoints (one first and two in the second run) are provided by the user. Of course, the trace 
debugger allows other possibilities instead of simply proceeding top-down in the execution. For instance the user could 
decide that the first step should be to put a breakpoint in the call to lists:zipwith/3 since the reported error is 
pointing to this function. As before the user would discover that the actual problem is that lists:zipwith/3 is in-
voked with lists of different lengths, but he would still need to set new breakpoints in cycle_to/2 in order to find out 
the bug.

There is an alternative to the graphical user interface, that is to build the whole trace. For this example, the whole trace, 
with calls and returns, has 572 items, which makes the debugging very complicated. An alternative would be to define the 
functions of interest, that in our case could be crypt/2 and cycle_to/2. This reduces considerably the size of the trace 
(from 572 to 10). However the user has to think which are the functions of interest and declare them to be traced, which 
is not always easy and quick.

Print debugger. Although placing print statements is not a formal debugging technique, it is a very common practice, 
and hence it is worth considering it here. It consists in placing a print command in the “suspicious” functions, so the user 
can inspect the values of some variables while following the control flow.

This case is similar to the previous technique, but the user has to build his own trace using calls to the output printer 
function io:format/2. The user would need to run his code twice and insert in his code three calls to io:format/2. 
First, one previous to the call to function lists:zipwith/3 and then, two inside cycle_to/2, which requires some 
restructuring of the code. Once the bug is found and fixed, the calls to the printing function must be removed and the code 
restructured again.

Dialyzer. Another tool included in the OTP/Erlang system is the DIscrepancy AnaLYZer for ERlang programs (Dialyzer) [23], 
a completely automatic tool that performs static analysis to identify software discrepancies and bugs such as definite type 
errors [32], race conditions [13], unreachable code, redundant tests, unsatisfiable conditions, and more. Although useful in 
many cases, in this example it cannot find any error in the code:

Our proposal, edd. Our debugger edd (Erlang Declarative Debugger) gets many ideas from the field of declarative de-
bugging [33]. This kind of debugger asks questions to the user about the results returned by function calls, although in our 
case it also includes the possibility of zooming inside the code of the functions. First, let us consider a debugging session
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in our tool which does not use the zoom feature. The answer y (yes) indicates that the result is correct, n (no) indicates 
that the result is wrong, while t (trust) can be understood as “consider that all the calls to this function are correct.” More 
information about possible answers will be presented in Section 4.

The first two questions about normalize are correct because this function is supposed to convert to uppercase and 
remove all non-letter characters. The next question about encipher is presented in terms of ASCII codes. The call is correct 
because encrypting R (ASCII 82, 17th letter of the alphabet A–Z) using E (ASCII 69, 4th letter) must return V (ASCII 86, 21st 
letter), i.e., (17 + 4) mod 26 = 21. The definition of this function is quite straightforward and the user indicates that it 
can be trusted for the rest of the session. The next question is a call to cycle_to that returns an unexpected result: it 
should produce a string of length 13 and not 15 as it happens. Analogously, in the next question the result should be LEM
(length 3) instead of LEMON (length 5), and thus the user marks this call as incorrect.

Only five questions have been asked in order to find the bug. Note that no additional configuration or information is 
provided by the user, only the initial call with the erroneous behavior.

It is interesting to see the main advantages of the declarative debugging approach w.r.t. the trace debugger. In the first 
case, our declarative debugger provides more clarity and simplicity of usage for sequential programs. In the trace debugger, 
programmers must compile their code with the debug_info option, and set some breakpoints where they want to stop 
the execution. From those points they can proceed step by step, checking whether the results of the functions or the 
arguments and bindings are the expected ones. If they skip the evaluation of a function but they discover it returns a 
wrong value, they have to restart the session to enter and debug the function body. This is a burden even with conditional 
breakpoints, since conditions in the trace debugger must be coded as boolean functions in a module. The advantage of the 
declarative debugger is that, starting only from an expression returning a wrong value, it finds a buggy function by simply 
asking about the results of the functions in the computation, avoiding low-level details. It focuses on the intended meaning 
of functions, which is something very clear to programmers (or debuggers). Observe that the same or very similar questions 
are also implicitly considered by the user using trace debugging, when the result after each method call is examined. 
However, there are some points that favor the questions asked by our debugger:

1. Questions are simplified because every nested call has been replaced by its result in advance. Observe for instance 
that the questions for cycle_to contain no reference to append or length, which are used in its definition. More 
important, the questions also avoid references to the nested recursive call, which simplifies the task of the user.

2. The built-in navigation strategies abstracts away the execution order from the debugging phase, and the number of 
questions are reduced in order to find the error with the minimum number of questions.

3. If one question is still too complicated the user can answer d, meaning don’t know. In this case the debugger tries to 
look for new questions that can lead to the bug. Only if the question is really needed will it be asked again. In the trace 
debugger skipping a difficult method call means possibly missing the error, with no possibility of coming back without 
restarting the session.

Another important advantage of declarative debugging is that it is stateless: each debugging question can be answered 
independently, without any reference to the previous ones. On the other hand, when debugging using breakpoints every 
choice is affected by the previous ones, which can make them hard to use.

Moreover, we present in Section 5 an improved declarative debugger that allows the user to inspect inside functions 
to find a more specific source of error. Comparing this zoom declarative debugger and the trace debugger, both provide 
tools to detect a bug hidden in the code of a concrete sequential function. With a trace debugger, programmers proceed 
instruction by instruction checking whether the bindings, the branches selected in if/case/try-catch expressions or 
inner function calls in the code of a suspicious function are correct. The zoom declarative debugger fulfills a similar task, 
asking only about the correctness of bindings and if/case/try-catch branch selections since it abstracts from inner 
function calls—they have been checked in the previous phase. Furthermore, the navigation strategy automatically guides the 
debugging session over the zoom computation without the participation of the user to choose breakpoints and steps, finally 
pointing out a very concrete expression causing the error. Therefore, it provides a simpler and clearer way of finding bugs 
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in concrete functions than the trace debugger, although the complexity of the elements involved (meaning of variables, 
selected if/case/try-catch branches, . . . ) is similar.

The main limitation of our proposal is that it cannot provide help for finding errors due to concurrency issues. In these 
cases, the trace debugger, which includes several features in this context, is the only possibility. In the near future we plan 
to extend our debugging setting so it can deal with concurrency, as it is a key feature of Erlang. However, we consider 
that edd is useful even for concurrent programs, since often the concurrent features are described in a specific module, 
while the basic behavior of the application is defined in a sequential module that can be debugged with edd. Concretely, in 
Section 7 we successfully apply our edd debugger to real Erlang projects from the GitHub repository, some of them using 
concurrency. Therefore we are confident about the applicability of our tool in concurrent programs.

3.2. Related work

Although not directly related to our proposal, it is worth mentioning the existence of other tools that can be useful for 
testing and detecting errors in Erlang programs. In particular, model checking tools have also received much attention in 
the Erlang community [20,3]. McErlang [4] is one of the most powerful model checkers nowadays due to its support for 
a very substantial part of the Erlang language. In this tool, a bug corresponds to a property that is not fulfilled by the 
implementation. McErlang includes its own trace debugger which can be used after a bug is reported to find its origin 
in the source code. Therefore, using McErlang, a user can easily find some unexpected behavior. However, the user has 
not direct information of where it should go in the source code in order to fix the bug. Regarding testing tools, the most 
important ones are EUnit [11] and Quviq QuickCheck [21]. The EUnit tool is included in the OTP/Erlang system, and allows 
users to write their own unit tests to check whether functions return the expected values. On the other hand, Quviq 
QuickCheck is a commercial software that automatically generates and checks thousands of unit tests from properties stated 
by programmers. Thus, testing tools allow users to detect function calls leading to an unexpected result. These buggy 
function calls can be a starting point for our declarative debugger, which will find the bug origin in the source code.

Finally, other non-conventional approaches to debugging have been studied in the literature, like abstract diagnosis [1]
or symbolic execution [19], but these techniques are not closely related to declarative debugging, so we do not provide a 
detailed comparison.

4. Introducing EDD

The technique described in the previous section has been implemented in Erlang. The tool, called edd (Erlang Declarative
Debugger), is publicly available at https://github.com/tamarit/edd.

The user starts the debugger when an unexpected result is obtained during an expression evaluation. Then, edd proceeds 
by asking questions about the correctness of some calls occurred during the evaluation. These questions are simply of the 
form call = value?, asking whether the function or lambda abstraction application call should evaluate to value. 
As mentioned in the previous section, the arguments of call are always values since nested calls are previously evaluated 
in order to simplify the questions.

Internally, the debugger structures the calls in the form of a computation tree, with the root corresponding to the initial 
expression, and the children of each call representing those calls occurring in the body of the corresponding code (function 
or lambda abstraction) that have been evaluated during the computation. Building the computation tree is the first step 
before starting with the debugging process. The goal of the debugging process is to locate a call pointed out as incorrect 
but such that all its children correspond to correct calls.3 This is called a buggy call, and corresponds to a function that is 
causing an error [33].

In order to choose the next question, that is, in order to select the next call from the computation tree, the system can 
internally employ two different navigation strategies [34,35] to present the questions, Top Down Heaviest First and Divide & 
Query. In both cases each selection step starts with a computation tree with incorrect root (initially this root corresponds to 
the initial symptom detected by the user):

Top Down Heaviest First selects among the root children the call that corresponds to the biggest subtree (hence heaviest).
Divide & Query selects the node rooting a subtree that contains half the number of the total nodes in the computation tree. 

If such a node does not exist it selects the best approximation.

If the chosen call is incorrect then its associated subtree (which already has an incorrect root) is used to recursively 
continue the process. Otherwise, the selected node and its subtree are removed from the computation tree, and another call 
is selected following the same selection criterium. Top Down Heaviest First sessions usually present more questions to the 
user, but they are presented in a logical order, while Divide & Query leads to shorter sessions of unrelated questions. The 
user can choose their preferred strategy when the debugger is started.

3 A correct call is either a call returning the expected value for some expected arguments or a call receiving unexpected arguments. The latter is called 
inadmissible, as we explain below.

https://github.com/tamarit/edd
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In response to the debugger questions, the possible answers are:

• yes (y): the evaluation is correct.
• no (n): the evaluation is not correct.
• trusted (t): the user knows that the function or lambda abstraction used in the evaluation is correct, so further questions 

about it are not necessary. Note that a list of trusted functions can be indicated before starting the debugging process.
• inadmissible (i): the question does not apply because the arguments should not take these values. The behavior of the 

tool is the same as the one for yes.
• don’t know (d): the answer is unknown. The question is skipped, but might be asked again if it is required for finding 

the error.
• switch strategy (s): changes the navigation strategy.
• undo (u): reverts to the previous question.
• abort (a): finishes the debugging session.

The tool includes a memoization feature that stores the answers yes, no, trusted, and inadmissible, preventing the system 
from asking the same question twice. It is worth noting that although don’t know is used to ease the interaction with the 
debugger it may introduce incompleteness, so we have not considered it in our proofs. If there are questions marked as 
unknown at the end of a debugging session and the bug has not been identified, these questions will be asked again to 
the user. If they still refuse to answer, the debugger will show a list of candidates to be erroneous based on the provided 
answers.

The result of a complete debugging session (without don’t know answers) is either an incorrect user-defined function 
or an incorrect lambda abstraction. Although in both cases the tool points out the clause that produced the bug, the error 
might be in another clause. We will show in the following section how to find more specific errors.

5. Zoom debugging

This section first presents zoom debugging by means of an example. Then, we list all the possible errors detected by the 
tool in this mode.

5.1. An example using zoom

When debugging the Vigenère cypher from Fig. 1, edd found that the buggy function was cycle_to. This function is 
very simple because it has only two clauses consisting of one statement each. Therefore, in this case it is easy to find the 
bug in the code and fix it. However, in many cases the exact location inside a buggy function that is causing the error may 
still be difficult to find. The existence of different paths that the execution can follow inside the function body due to the 
existence of nested case expressions, or the possible values taken by the variables, that depend in general on the values of 
several previous variables, complicate the situation. For example, consider the following program for managing stocks:

Example 5.1. Fig. 3 presents an Erlang program defining a module stock. It only exports the function check_orders/2 
which, given a list of orders and a stock of items, returns the list of items the company has to buy to supply all the 
orders. Both orders and stocks are represented as lists of tuples {item, Name, Quantity}, where Name is the name 
of the item and Quantity the number of items of that kind. We assume that a valid order cannot contain two tuples 
for the same Name, and analogous for any valid stock. For handling a list of orders, we simply unify the orders (add all 
the entries with the same Name in different orders into one item tuple), and call check_order/2, which behaves the 
same as check_orders/2 but considering only one order. check_order/2 uses the predefined lists:zf/2 function, 
that performs a filter and a mapping at the same time.4 lists:zf/2 takes a unary function F and a list L, and for each 
element E of L:

• If F(E) = true, the element remains in the list.
• If F(E) = false, the element is discarded.
• If F(E) = {true, Value}, the element is replaced by Value.

The program uses check_item/2 to filter and map the order into the list of items to buy. Given an item tuple 
and a stock, check_item/2 looks for a tuple with the same name in the stock using lists:keyfind/3 func-
tion. If there is not such a tuple in the stock, all the elements must be bought. If the tuple exists in the stock but 
its quantity is less than the required quantity, we must buy the difference. If the tuple appears in the stock and 
there are enough items, the item tuple can be discarded because we do not need to buy anything. Finally, test/0 

4 zf/2 is currently an undocumented and obscure function of the lists module, but there is a proposal for renaming and documenting it 
http://erlang.org/pipermail/erlang-patches/2013-April/003907.html.

http://erlang.org/pipermail/erlang-patches/2013-April/003907.html
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Fig. 3. Erlang program for managing stocks.

is a function to check that the program is working. It calls check_orders/2 with two orders of ingredients for 
a paella dish ([{item, water, 3},{item, rice, 3}] and [{item, rice, 4}]), considering that the current 
available stock consists of [{item, rice, 5},{item, bajoqueta, 8}].5 Observe that the orders need a total 
of 7 packs of rice and 3 bottles of water, while the stock only contains 5 packs of rice and no water. Thus, the ex-
pected result should be [{item, water, 3},{item, rice, 2}]. However, the program returns the erroneous value 
[{item,water,3},{item,rice,7}].

The edd tool will find that check_item is the buggy function, but as it has 9 lines, one case expression and a nested
if statement it is still not easy to fix the bug. In situations like this one, edd can help programmers by zooming in the 
buggy function and asking more questions in order to locate the concrete statement causing the bug. For zoom debugging 
the tool uses four kinds of questions:

• Questions about case expressions. It shows several options and the user must select the first wrong item (otherwise, 
the last option indicates that everything is correct):
1. The context of the expression, that is, the values of the variables used to evaluate the argument and all the branches 

until the successful one.
2. The argument value, that is, the value used to select the suitable case branch and to continue the evaluation.
3. The successful branch, that is, the actual branch selected to continue with the evaluation. When this value is wrong 

the tool asks to the user for the index of the expected branch. It also asks about the correctness of some clause 
guards as explained below.

4. The generated bindings, that is, the bindings generated by matching the argument value with the pattern in the 
successful branch. They are only asked when they exist.

5. The final value, that is, the value reached by evaluating the whole case expression.
• Questions about if and try/catch statements and about function clauses. They are treated as specific cases of case 

expressions.
• Questions about the correctness of guards in the function clauses. In this case the possible answers are the usual ones 

explained in Section 4.
• Question about variable bindings. The tool shows a list of variable bindings performed in a pattern-matching expression, 

and the user answers using the standard options (Section 4).

Using edd to debug the stock program from Fig. 3, the user finds that the buggy function is check_item (this part 
of the session is omitted for simplicity). Then the user zooms in looking for a more precise bug:

5 Bajoqueta is the word used in the Spanish region of Valencia for a kind of green bean essential in the paella valenciana.
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Note that we have drawn squares to distinguish user answers, and circled numbers are not part of the debugging session 
but they have been inserted because they will be used in Section 7. In the first question, when Needed is {item,rice,7} 
and ItemStock is false the case expression must enter in the second branch and return {true,{item,rice,7}}. 
Therefore, we select the option 5 to say that everything is correct. In the second question, when Name is rice and the
Stock is [{item,rice,5}, {item, bajoqueta,8}] we expect the value of ItemStock to be {item,rice,5}. 
In the evaluation ItemStock is bound to false, so we mark the step as incorrect pressing the key n. After 2 answers,6

the debugger marks the assignment of the variable ItemStock as the source of the error, showing the whole instruction 
and the line in the source program. With this information, it is easy to discover where the error really is: in the index 1 we 
pass to the function lists:keyfind/3. We want ItemStock to be the item in the Stock with Name in the second 
element of the tuple. As usual in programming, we thought that the first element had index 0, so lists:keyfind/3 
should look for Name in the element index 1. However, Erlang does not follow that convention but starts indices from 1. 
Therefore, to fix the problem we have to write the assignment as ItemStock = lists:keyfind(Name, 2, Stock).

5.2. Errors detected by edd

Once the zoom features of the tool have been described, we can list all the errors detected by edd. When the first step 
of the debugging session finishes, a wrong function (either a defined function or a lambda abstraction) is detected. When 
using zoom debugging the following errors can be found:

• A variable is not correctly assigned.
• The argument expression of a case or try expression is not correctly defined.
• The expression in charge of returning the final value does not compute the appropriate value.
• The pattern or the guard, only one of them, of a clause in a case, if, or try expression or in a function or lambda 

abstraction definition is not correctly defined.

6 Note that the first question involved 4 smaller questions; we will consider, in our measurements in the next section, that we answered 5 questions.
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6. Theoretical basis

We start this section explaining in more detail the basis of declarative debugging and their relation to the language 
semantics. Then, we outline the ideas behind the proofs for soundness and completeness of our tool, which can be found 
in the extended version of the article [10].

6.1. Semantic basis of declarative debugging

As mentioned above, declarative debugging is a well-known debugging technique. It consists of two steps: first, a tree 
representing the computation is built; then, this tree is traversed by asking questions to the user. As we have shown in 
the previous sections, the tree construction phase remains hidden to the user, who is only concerned with the questions. 
However, in our theoretical setting the tree allows us to prove the completeness and soundness of our tool, because it is 
built following a formal calculus.

More specifically, it follows a calculus we have defined for Core Erlang, an intermediate language that represents Erlang 
programs internally without syntactic sugar. Although we do not present the details here (see [10] for more information), we 
can deal with simplified Erlang programs while keeping track of all the errors in the original Erlang program as described 
in Section 5.2. The semantics of Erlang is informally described in [2], but there is no official formalized semantics. However, 
several authors have proposed and used different formalizations in their works, most of them aiming to cover the concur-
rent behavior of the language. In [20], Huch proposes, for a subset of Erlang, an operational small step semantics based on 
evaluation contexts to only perform reductions in certain points of the expression. It covers single-node concurrency (spawn-
ing and communication by messages between processes in the same node) and reductions that can yield runtime errors. 
However, it does not cover other sequential features of the language like lambda abstractions or higher-order functions. An-
other important small-step semantics for Erlang is proposed in Fredlund’s Ph.D. thesis [18]. This semantics is similar to [20]
and also uses evaluation contexts but covers a broader subset of the language including single-node concurrency, runtime 
errors, and lambda abstractions. However, it also lacks support for higher-order features. To overcome the limitations of 
Fredlund’s single-node semantics when dealing with distributed systems, [15] proposes a semantics based on Fredlund’s 
but adding another top-level layer describing nodes. This distributed multi-node semantics for Erlang was further refined 
and corrected in [36]. Besides standard operational semantics, other approaches have been proposed to formalize Erlang 
semantics like the one based on congruence in [14], which works with partial evaluation of Erlang programs.

Hence, the existing semantic calculi for Erlang are usually small-step semantics that do not cover all the sequential 
features but focus on concurrency. If we use these small-step semantics for declarative debugging, the questions shown 
to the user would be slight transitions between expressions like “V = f(3*2,2+1) -> V = f(6,2+1)?.” In order to 
provide more meaningful questions, it is convenient to use a big-step semantics leading to questions that contain complete 
evaluations from expressions to values like “f(6,3) = 43?,” which are simpler and closer to the expected behavior of 
the program that users have in mind. This is the main reason why we have devised our own Erlang big-step semantic 
calculus, as well as including important sequential features like lambda abstractions and higher-order functions. Moreover, 
an interesting contribution of our calculus is the debugging of exceptions. Declarative debugging of programs throwing 
exceptions has already been studied from an operational point of view for the Mercury debugger [24], for Haskell in its 
declarative debugger Buddha [28], and for Java programs [22]. However, these approaches are operational and do not provide 
a calculus to reason about exceptions: in Mercury, exceptions are considered another potential value and thus functions 
throwing exceptions are included as standard calls; Buddha uses a program transformation to build the appropriate data 
structures while executing the program; finally, the approaches for Java return and propagate exceptions without defining 
the inference rules. Similarly, several calculi handling exceptions, like the ones in [17,16], have been proposed for functional 
languages. edd is, for the best of our knowledge, the first tool that uses a calculus to perform declarative debugging of 
exceptions, allowing us to reason about exceptions as standard values.

6.2. Soundness and completeness

Formally, a debugging session can be seen as the process of comparing the expected behavior of the program, also known 
as intended interpretation (I in the rest of the section), and the actual computation represented by a suitable computation 
tree T . An oracle, the user in our case, must determine whether a subcomputation result is correct (that is, it is valid with 
respect to I).

In the first phase of our debugger the set I can be seen as the union of two parts Ifun ∪ Iλ , containing respectively the 
expected results produced by function calls and lambda abstractions occurring in the program for each different tuple of 
input values. If the zoom feature is employed then I must be enriched adding new sets describing the expected variable 
bindings inside the selected function, the if/case/try-catch branches that should occur in a given context, as well as 
the selected function rule for the given arguments.

In order to obtain the computation tree our debugger proceeds as follows:

1. The initial expression e that produced the initial erroneous result e′ is (implicitly) introduced as part of the program as 
body of a function main/0, with main a new function name.
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2. Then, the debugger builds a tree T representing the computation main/0 → e′ . This tree is obtained from the proof 
calculus.

The nodes in the tree T are called correct if they are entailed from the information in I , and incorrect otherwise. A buggy 
node (which generalizes the idea of buggy call presented before) is thus an incorrect node with only correct children. The 
goal of the debugger is to find a buggy node; the fragment of code associated to the buggy node is then pointed out as the 
cause of the error. The overall idea of our theoretical foundations is common to many declarative debuggers:

• The root of T is assumed incorrect (it represents the initial symptom).
• It is straightforward to ensure that any tree with incorrect root contains a buggy node, which corresponds to the 

completeness result.
• Moreover, the relation with the proof calculus ensures that a buggy node corresponds to a proof inference with correct 

premises and incorrect conclusion, which can only happen when an incorrect fragment of code has been applied. This 
establishes the soundness of the proposal.

Those interested in the proof calculi supporting the theory or in the detailed explanation of the theoretical results and 
their proofs can consult [10].

7. Experimental results

In this section we measure the effectiveness of the Erlang Declarative Debugger. We have used, first, a set of small 
and medium-size sequential Erlang programs that solve classical problems, listed in Table 1: Miller–Rabin primality test, 
Sieve of Eratosthenes, Caesar cipher, Run-length encoding, etc. These programs have been extracted from the Rosetta Code
website (http://rosettacode.org) and modified to have a bug.7 The inserted bugs are small mistakes that developers can easily 
make and are usually hard to locate: use the wrong arithmetic operation (e.g. +/−), use an incorrect guard (e.g. ≤/<), use 
incorrect constant values, select the incorrect field of a register, mix the values returned by consecutive branches in a case 
expression, etc. We have completed this first set of examples with our stock program from Section 5.

Additionally, we have looked for real-world errors by (i) asking the Erlang community to provide bugs found in their 
projects, and (ii) traversing the GitHub repository looking for fixed bugs in purely sequential but also concurrent projects—
see Table 2. For each error found in the GitHub repository (actually, only the io_lib_format has been provided from our “call 
for bugs” to the Erlang community) we have written an initial term that reveals the error,8 making sure that the function 
call was exported in the module. Note that when measuring the lines of codes in Table 2 we have considered only the 
minimum number of files involved in the problem, although the projects are in general much bigger (some of them more 
than 30,000 lines of code).

Then, we have used edd to find the wrong function in these problems, and also the zoom feature to spot the bug more 
precisely. In some examples of the first set (ackermann, dutch, rfib, and vigenère) the zoom debugger was not applicable 
because the wrong function was very simple, so the bug was easily found by inspecting the code of the buggy function 
once our tool had pointed it out. For all the tests, edd has spotted the bug added to the programs, and the time consumed 
to generate the computation trees has been reasonable—no more than 10 seconds in a computer with an Intel® CoreTM

2 Quad CPU at 2.83 GHz and 4 GB of physical memory under Erlang/OTP version 17. The source code of all the programs 
(or a link to the GitHub repository where the example can be found), as well as the debugging sessions can be found in the 
folder examples at https://github.com/tamarit/edd.

Tables 1 and 2 show the results of the debugger for the programs of the two sets. For each one, the table shows the lines 
of source code (LOC), the number of nodes of the computation tree (Nodes), the complexity of the debugging session using 
the Divide & Query (D&Q) and Top Down Heaviest First (TD) strategies for each step of the debugger (wrong functions and 
zoom), the memory consumption in kilobytes (Size), and whether Dialyzer found an error. The complexity of the session 
is illustrated by the number of questions (Q), the value of the most complex question in the session (X), and the total 
complexity (T), obtained by adding up the single complexity of all the questions. In order to measure the complexity of a 
question, we sum up the size of the data structures and the number of bindings, clauses, and lambda abstractions involved 
in the question (plus a base complexity of 1). Note that questions related to case expressions contain several questions that 
must be answered in order (the last option just indicates that the answer to all of them is correct); from the complexity 
point of view, we consider each one of these questions as a different one. That is, if the user indicates that the ith question 
is wrong we consider i answers were required; if the user answers that everything is correct we consider that all the 
questions were answered.

Example 7.1. We present the complexity of the zoom session in Section 5.1. The first question, preceded by 1©, forced the 
user to answer 4 questions. The first one involved (i) a data structure with 3 elements, so the complexity due to data 

7 Note that the Vigenère program from Section 2 was not modified because the bug was already present in the original code.
8 In fact, in most of the cases this initial term has been obtained from a test suite in the same project or from the issue messages that pointed out the 

symptom of an erroneous function.

http://rosettacode.org
https://github.com/tamarit/edd
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Table 1
Results of edd and Dialyzer with small/medium programs.

Program LOC Wrong functions Zoom Dialyzer

Nodes D&Q TD Size 
(KB)

Nodes D&Q TD Size 
(KB)Q X T Q X T Q X T Q X T

24_game 73 19 4 6 15 3 9 16 30.0 9 9 17 59 9 17 59 32.6 �
ackermann 13 91 7 1 7 8 1 8 74.7 – – – –
align_cols 40 32 3 40 108 3 40 108 340.4 4 3 67 112 3 67 112 25.9
caesar 38 147 2 2 3 3 4 7 152.4 5 3 4 9 3 4 9 14.2
complex 60 7 2 9 18 2 9 18 18.6 6 2 11 18 3 8 22 13.9
dutch 41 123 12 46 522 11 46 476 272.2 – – – –
miller_rabin 80 152 6 6 12 10 6 24 174.4 7 4 4 9 4 4 9 27.1
rfib 6 288 11 1 11 12 1 12 190.3 – – – –
rle 44 69 5 2 6 19 2 22 225.0 8 3 6 9 3 6 9 29.9
roman 24 9 3 1 3 6 1 6 17.1 9 8 14 70 8 14 75 44.9 �
sieve 37 31 6 46 161 13 46 303 63.1 7 4 15 19 4 15 19 28.8
stock 61 14 5 28 113 5 34 127 33.3 7 5 13 31 5 13 31 20.9
sum_digits 16 7 2 1 2 6 1 6 13.8 4 2 3 5 2 3 5 13.1
ternary 91 64 7 18 106 10 18 127 76.7 7 5 8 30 4 8 23 25.4
turing 72 49 7 12 58 9 13 83 77.2 10 5 14 37 7 14 56 29.8
vigenère 55 197 5 1 5 8 5 12 181.3 – – – –

Table 2
Results of edd and Dialyzer with real-world programs.

Program LOC Wrong functions Zoom Dialyzer

Nodes D&Q TD Size 
(KB)

Nodes D&Q TD Size 
(KB)Q X T Q X T Q X T Q X T

dns 1710 1 – – 8.1 2 1 40 40 1 40 40 13.9
erlson1 1158 8 3 21 34 3 17 30 25.2 8 5 8 21 3 8 17 28.5
erlson2 377 2 1 11 11 1 11 11 10.4 4 2 4 2 2 4 2 15.9
etorrent 1160 4 2 9 13 2 9 13 12.4 4 2 6 12 2 6 12 14.1 �
io_lib_format 720 25 5 23 78 5 22 69 49.0 15 6 4 15 3 4 15 39.3
luerl1 1335 3 1 16 16 1 16 16 11.4 5 5 8 28 5 8 28 16.4
luerl2 682 6 3 6 17 1 5 5 14.6 5 5 5 17 5 5 17 17.4
luerl3 1880 20 5 10 33 1 6 6 33.6 5 5 6 18 5 6 18 17.7
queue 487 3 2 38 65 2 38 65 12.8 5 4 1 4 4 1 4 18.9 ∼
random 115 2 2 5 6 2 5 6 9.8 11 8 9 42 2 5 9 20.9
redbug_msc 368 42 5 49 135 5 43 194 283.0 6 4 10 33 2 9 17 34.5 ∼

structures is 4 (the 3 elements plus the tuple constructor); (ii) we have 2 variables to check, but (iii) we have no clauses 
involved and (iv) no lambda abstractions; hence, the total complexity is 7. The next question is much simpler: it involves 
no data structures, no matching, no clauses, and no lambda abstractions, so the total complexity is 1. The third one just 
involves 2 clauses, so its final complexity is 3. Finally, the fourth question just involves two tuples with 4 elements, so the 
complexity due to data structures is 6, while the total complexity is 7.

The next question, preceded by 2©, involved 1 list, 2 tuples, and 6 elements, so the complexity due to constructors is 
9, and 3 bindings are involved. Hence, the total complexity is 13. Wrapping up this zoom-debugging session, we had 5
questions, a complexity of 31, and the maximum complexity was 13.

Note that the debugger finds the wrong functions using a very small number of questions compared to the number of 
nodes in the computation tree, i.e., the number of function and lambda abstraction applications in the computation. Consid-
ering the total complexity of the debugging sessions, we observe that D&Q is usually a better option for debugging wrong 
functions than TD: in 14 programs out of 27 D&Q produces smaller complexities, whereas TD obtains smaller complexities 
than D&Q in only 5 cases. The most extreme examples of both situations are sieve in (161 vs. 303), redbug_msc (135 vs. 
194), luerl2 (17 vs. 5) and luerl3 (33 vs. 6).

Regarding bug detection using zoom inside functions, the performance of both strategies is almost equal: D&Q obtains 
debugging sessions with a smaller total complexity in 3 programs, whereas TD is better in 4 programs. However, when TD 
performs better the difference is larger, namely in random (42 vs. 9) and redbug_msc (33 vs. 17). In the majority of the 
programs (16 out of 23 in which zoom debugging is applicable) both D&Q and TD performs the same from the point of 
view of total complexity. In these cases the number is mainly the same, with TD using slightly less questions (the most 
extreme case is random, where D&Q asks 8 questions and TD only 2). Finally, observe that the maximum complexity is 49
(in redbug_msc) in the wrong functions phase and 67 (align_cols) in the zoom phase. In both cases the complexity is due to 
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the size of the data structures, involving several lists. We could answer to these questions in approximately 1 minute even 
though we did not know how they were implemented, just understanding what the functions were supposed to do, so we 
consider that the complexity of the questions should not prevent the users from using declarative debugging.

In order to have a better comparison, the last column of Tables 1 and 2 contains the results of applying the automatic 
tool Dialyzer to the buggy programs. In the programs 24_game, roman, and etorrent Dialyzer finds type inconsistencies in 
the code that are related to the bugs, and that information helps to point out the erroneous code (marked as �). For the 
programs queue and redbug_msc Dialyzer shows warning messages about incorrect type specifications and improper lists, 
but they are not related to the bug and cannot be used to find the erroneous code (marked as ∼). However in the rest of 
programs Dialyzer cannot find any inconsistency and returns a “done (passed successfully)” message.

An important limitation of declarative debugging is the growth of the computation tree, which can need a great amount 
of memory for long running programs or programs involving big data structures. In order to evaluate the memory consump-
tion of our tool we include a column Size for Wrong functions and Zoom in Tables 1 and 2, which contains the size in KB 
of the computation trees. The first conclusion we extract is that edd uses a small amount of memory, less than 350 KB in 
the tested programs. The explanation is that the programs do not run for long time, and therefore their debugging trees 
do not have a large number of nodes (the maximum is 288 nodes). However, for some bugs and programs the tree could 
contain millions of nodes, and if the involved data structures are big then some nodes could require megabytes of mem-
ory. For these situations where the memory consumed by the tree is greater than the available RAM in the computer, our 
tool could integrate some of the techniques proposed in [22]. Namely, the computation tree could be stored in an exter-
nal database, therefore supporting trees of arbitrary size, or the debugging session could use a partially constructed tree 
generated on-the-fly. Another conclusion we extract from the Size columns is that there is no relation between the total 
debugging session complexity and the size of the computation tree. The reason is that the total complexity of a debugging 
session takes into account only those nodes visited by the strategy, whereas the size considers all the nodes in the tree, 
even those not involved in any question. Finally, it becomes clear that the computation trees for zoom debugging have more 
complex nodes than the computation trees for finding wrong functions: for a similar number of nodes, computation trees 
for zoom debugging need more memory (see for example in Table 1 the Wrong functions column for complex and sum_digits
and the Zoom column for miller_rabin, sieve, stock and ternary; all of them with 7 nodes). This fact was expected, as nodes 
in computation trees for zoom debugging need to store more information than their wrong function counterparts.

Considering the good results of edd for the two sets of programs, we think it can be an interesting tool for programmers 
when debugging the sequential part of real Erlang programs, supplementing the standard trace debugger of the OTP/Erlang 
system and tools like Dialyzer. The results in Tables 1 and 2 also sustain our choice of standard strategies: D&Q for finding 
wrong functions, as it usually asks less questions than TD, and TD for finding bugs inside functions, since it is slightly better 
than D&Q and moreover it shows the questions in an order closer to the evaluation one, which users might find clearer.

8. Concluding remarks and ongoing work

Debugging is usually the most time-consuming phase of the software life cycle [31], yet it remains a basically unfor-
malized task. This is unfortunate, because formalizing a task introduces the possibility of improving it, since it provides 
information about the details that usually are left as trivial and allows us to prove properties of our tools. With this idea in 
mind we propose a formal debugging technique that structures Erlang executions and asks questions to the user in order to 
find bugs in sequential Erlang programs. Since the debugger only requires knowing the intended meaning of the program 
functions, the team in charge of the debugging phase does not need to include the actual programmers of the code. This 
separation of rôles is an advantage during the development of any software project.

Although most of the applications based on Erlang employ the concurrent features of the language, the concurrency is 
usually located in specific modules, and thus specific tools for debugging the sequential part are also interesting. Our debug-
ger locates the error based only on the intended meaning of the program code, and thus abstracts away the implementation 
details. The main limitation of the proposal is that an initial unexpected result must be detected by the user, which implies 
in particular that it cannot be used to debug non-terminating computations unless a timeout is defined, losing in this way 
the completeness of the result.

We have used these ideas to implement a tool that supports different navigation strategies, trusting, built-in and li-
brary functions, and zoom debugging among other features. Zoom debugging is specially interesting since, to the best 
of our knowledge, this is the first declarative debugger that finds bugs with different levels of granularity. It has been 
used to debug several buggy medium-size and real-world programs, presenting an encouraging performance. Moreover, 
we have introduced it in our Master’s degree course to collect feedback on usability. More information can be found at 
https://github.com/tamarit/edd.

Currently we are extending the current framework to debug concurrent Erlang programs. This extension will require new 
rules in the calculus to deal with functions for creating new processes and sending and receiving messages, as well as the 
identification of new kinds of errors that the debugger can detect. However, it is worth noticing that the debugger presented 
in this paper can be used as well in the sequential part of concurrent programs. Thus, we think that the debugger presented 
here will still be useful when the concurrent debugger has been completed.

https://github.com/tamarit/edd
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A different line of future work is to take advantage of the information provided by the user during the debugging session 
in order to derive tests or properties. A first and straightforward approach could be to generate EUnit test-cases [11] from 
the user answers to questions regarding the validity of methods calls:

1. If the user answers that the result r is valid, then EDD can generate automatically an EUnit test-case indicating that for 
the given parameters the result must be equal to r.

2. Otherwise, if the user indicates result r is unexpected, we can generate a EUnit test-case that indicates that for the 
given parameters the result must be different from r.

In this way, after the debugging session the user obtains a set of test-cases that can be applied for checking the application. 
Moreover, this idea can also be used the other way round: the debugger could take a set of EUnit test-cases as input, and 
employ the information contained in the tests for answering automatically some user questions. Apart from tests generated 
by the user, the set of test-cases could include as well the tests generated by the debugger itself in previous debugging 
sessions, thus employing EUnit as a kind of answer database that can partially substitute the user as oracle during the 
debugging process.

A natural generalization of this idea would be to allow the user to introduce properties that can determine the validity 
of a method call as part of the debugging process. These properties could be saved and used both in the current and in 
future debugging sessions. Moreover, if such properties are introduced in the format required by some testing tool like Quviq 
QuickCheck [21], then the tester could be used afterwards for trying to locate new bugs. Once more, an interesting future 
line of research could be to reverse this process, allowing EDD to employ properties defined in a Quviq QuickCheck file for 
answering automatically some questions during the debugging process.
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