
A Metamodel-Based Approach for Analyzing
Security-Design Models

David Basin Jürgen Doser
Information Security Group

ETH Zürich
{basin,doserj}@inf.ethz.ch

Manuel Clavel Marina Egea
Computer Science Department

U. Complutense, Madrid

clavel@sip.ucm.es
marina egea@fdi.ucm.es

ABSTRACT
Security-design models are models that combine design spec-
ifications for distributed systems with specifications of their
security policies. We have previously proposed an expres-
sive UML-based language for constructing and transforming
security-design models. Here we show how the same frame-
work can be used to analyze these models: queries about
properties of the security policy modeled are expressed as
formulas in UML’s Object Constraint Language and eval-
uated over the metamodel of the security-design language.
We show how this can be done in a semantically precise
and meaningful way and demonstrate, through examples,
that this approach can be used to formalize and check non-
trivial security properties of security-design models. The ap-
proach and examples presented have all been implemented
and checked in the SecureMOVA tool.

1. INTRODUCTION
Model driven development [10] holds the promise of re-

ducing system development time and improving the quality
of the resulting products. Recent investigations [2, 7, 8, 9]
have shown that security can be integrated into system de-
sign models and that the resulting security-design models
can be used as a basis for generating systems along with
their security infrastructures. Moreover, when the models
have a formal semantics, they can be reasoned about: one
can query properties of models and understand potentially
subtle consequences of the policies they define.

In our previous work [2], we showed how to systematically
combine different design models with a security modeling
language closely related to that of Role Based Access Con-
trol (RBAC). The design models were used to formalize dif-
ferent system views using UML notation. The security mod-
eling language, called SecureUML, was used to formalize au-
thorization restrictions in a UML-based language related to
RBAC. Moreover, we gave SecureUML and its combination
with different design languages a formal semantics and de-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

scribed translators that automatically generate distributed,
middleware-based systems with complete, configured, access
control infrastructure from security-design models.

Our focus in this paper is on formalizing and automati-
cally analyzing security properties of security-design models
formalized using SecureUML. In our setting, security-design
models constitute formal objects with both a notation (or
concrete syntax) and an abstract syntax. Security models
themselves are described by a metamodel that formalize the
structure of well-formed models. We show that in this set-
ting, security properties of security-design models can be
expressed as formulas in OCL [11], the Object Constraint
Language of UML, and evaluated over instances of the meta-
model. The result is an expressive language for formaliz-
ing queries, which utilizes the entire vocabulary present in
the UML metamodel defining security-design models. We
may formalize queries in this language that ask questions
about the relationships between users, roles, permissions,
actions, and even system states. An example of a typical
query (taken from Section 6) is: are there two roles such
that one includes the set of actions of the others, but the
roles are not related in the role hierarchy? Such queries can
be answered by evaluating OCL expressions over the UML
metamodel. This approach has been implemented, and the
examples checked, in the MOVA tool [5], a UML modeling
tool built on top of the Maude system [4].

The idea of formulating OCL queries over role-based ac-
cess control policies is not new. Our work is inspired by [1,
13], who first explored the use of OCL for querying RBAC
policies, and we make comparisons in Section 8. Moreover,
OCL is the natural choice for querying UML models. It
is part of the UML standard [12] and expressions written
in OCL can be used to constrain and query UML models.
Given this previous work, we see our contributions as fol-
lows. First, we clarify the metatheory required to make
query evaluation formally well-defined. This requires, in
particular, precise definitions of both the metamodel of the
modeling language and the mapping from object models to
the corresponding instances of this metamodel. Second, we
show the feasibility of this approach and illustrate some of
its key aspects on a nontrivial example: a security-design
modeling language from [2] that combines SecureUML and a
component modeling language named ComponentUML. Fi-
nally, we provide evidence that OCL expressions, evaluated
in the context of such a metamodel, can be used to formalize
and check non-trivial security properties of security-design
models. The approach presented here has been implemented
and tested in the SecureMOVA tool and we give examples

of its use.

Outline. In Section 2, we describe the methodology under-
lying our general approach and, in Section 3, we provide
background material on OCL. In Section 4, we describe
SecureUML and ComponentUML, the security and design
modeling languages we use. Afterwards, in Section 5, we
describe the semantics of the security modeling language
using OCL constraints on the metamodel. In Section 6, we
give a number of examples, which illustrate how one can for-
malize and analyze different kinds of authorization decisions
using OCL. Then, in Section 7, we present SecureMOVA, a
security-design modeling tool whose implementation is di-
rectly based on our metamodel-based approach for analyz-
ing security-design models. We conclude in Section 8 with
a discussion of related and future work.

2. GENERAL APPROACH

Background: models, metamodels, and meaning. A
modeling language provides a vocabulary (concepts and re-
lations) for building models, as well as a notation to graph-
ically depict the models as diagrams. Diagrams have to
conform with the metamodel of the modeling language. A
metamodel is a diagram whose graphical elements formalize
the concepts and relations provided by the (object) modeling
languages, and whose invariants, usually written in OCL,
specify additional well-formedness constraints on models.
The precise definition of well-formed diagrams is based on
the underlying mapping from diagrams (or graphical models)
to instances of the metamodel (or abstract models): well-
formed diagrams are those that are mapped to instances of
the metamodel that satisfy the metamodel’s invariants.

Some modeling languages explain the meaning of the di-
agrams using natural language. In this situation, analyzing
the models represented by the diagrams can only be done
informally and no rigorous tool support can be expected.
Other modeling languages explain the meaning of the di-
agrams using a formal semantics: that is, they define an
interpretation function that associates mathematical struc-
tures to the well-formed diagrams, or, more precisely, to the
instances of the metamodel that correspond to well-formed
diagrams. In this case, properties of the models represented
by the diagrams can be formally proven, possibly with the
assistance of automated tools. In the following, let M be
a graphical model (for a modeling language M), M be the
corresponding abstract model, and [M] be the mathematical
structure associated to the abstract model by the interpre-
tation function [.].

Problem statement: rigorously analyzing security mod-
els. Given a language with a formal semantics, one can rea-
son about models by reasoning about their semantics. That
is, a security model M has a property P (where P is ex-
pressed in some logical language) if and only if [M] |= P .
While this approach is standard, it either requires deductive
machinery for reasoning about the semantics of models (i.e.,
a semantic embedding [3] and deduction within the relevant
semantic domains) or an appropriate programming logic for
reasoning at the level of the models. These are strong re-
quirements and a hurdle for many practical applications.
Hence, the question we address is whether there are other

ways of formally analyzing security policies modeled by M ,
but in a more familiar setting.

Approach taken. Our approach for analyzing properties
of (security-design) models M reduces deduction to evalua-
tion: we formalize the desired properties as OCL queries and
evaluate these queries over instances M of the metamodel.
Observe that these queries are formulated over the abstract
models, not the (graphical) models that the modeler sees
and works with. Hence, for the results to be meaningful,
we require that the mapping relating graphical models to
abstract models, along with the interpretation function [.],
correctly interacts with evaluation of OCL expressions. The
precise requirements are defined below. If this mapping is
not explicitly given, or the requirements are not satisfied,
the validity of the results returned may be open, or even
wrong (for examples, see the related work section).

Overall, our approach has a number of advantages over
more traditional deductive approaches. First, OCL is a for-
mal language defined as a standard add-on to UML. Hence,
as noted in [15], “it should be easily read and written by all
practitioners of object technology and by their customers,
i.e., people who are not mathematicians or computer scien-
tist”. Second, many tools support the language in different
ways. In particular, there are tools that can automatically
evaluate OCL expressions. The limitations are also clear:
there may be interesting properties that cannot be naturally
expressed using OCL or that cannot be proved by simply
evaluating OCL expression over the metamodel.

Correctness. Here we expand on the requirements of our
approach, in particular how OCL query evaluation must re-
lated to the semantics of the modeling language. Let f be
a function on the semantic domain and let expf be an ex-
pression intended to formalize f in OCL. We require the
following diagram to commute:

graphical abstract semantic
Model Model Domain

M 7→ M 7→ [M]
↓ ↓

ev(expf , M) 7→ f([M])

In this diagram, the downwards arrow on the left side de-
notes the evaluation of the OCL expression expf (the result
of which, denoted by the function ev(·, ·), constitutes an-
other abstract model). The downwards arrow on the right
side corresponds to the evaluation of the function f in the
semantic domain. The requirement says that the OCL ex-
pression expf can be used to analyze the behavior of f if
and only if [ev(expf , M)] = f([M]). Roughly speaking, this
means that an OCL expression can be correctly used for
checking a property P if and only if, for arbitrary models
M , the result of evaluating this expression over M corre-
sponds to the value of the property P in [M].

Rigorously proving this correspondence requires detailed
metareasoning that involves both the semantics of the un-
derlying formal system, the (formal) semantics of OCL, and
the translation scheme from terms in the semantic domain
to OCL expressions. This is a large undertaking and outside
the scope of this paper. In many practical cases however,
one may settle for the next best thing: it may be sufficient

to have a careful understanding of the metamodel of the
modeling languages and, in particular, its invariants, and of
the underlying mapping from models to the corresponding
instances of the metamodel. Note that, as explained above,
this is already a necessary condition for stating meaningful
OCL expressions on models in the first place.

3. OCL
As we have just explained, our general approach for an-

alyzing security-design models is to formalize their prop-
erties as OCL expressions and to evaluate these expressions
over instances of the metamodel. Before illustrating this ap-
proach with the security-design language that results from
combining SecureUML and ComponentUML, we first briefly
summarize relevant aspects of OCL.

The Object Constraint Language (OCL) [11] is a textual,
typed language, with an object-oriented notation, for writ-
ing constraints within (or queries on) UML models. The
language includes predefined types like Boolean, Integer and
String, with standard operations like not and or, + and ∗,
and substr and concat. For example, 2 + 5 and not(2 + 5 = 6)

are OCL expressions of type Integer and Boolean, respec-
tively. The language also provides mechanisms for gener-
ating collection types from more basic types, with a rich
set of operations like union, includes, or size, with the ex-
pected meaning. For example, Set(Integer) is the type for
the sets of integers; Set{1, 4, 6}−>union(Set{3}) is an expres-
sion of type Set(Integer) that denotes the union of the sets
{1, 4, 6} and {3}. Iterator operators like forAll, select, or
collect, are operations on collection types. Each takes an
OCL expression as an argument and specifies an operation
computed over the elements of a collection. For example,
Set{1, 4, 6}−>forAll(i|i > 7) is an expression of type Boolean

that tests the property of being greater than 7 on each ele-
ment of the set {1, 4, 6}.

The expressiveness of the language comes from the fact
that OCL is really an open (parametric) language. Expres-
sions are written with reference to a UML model, using the
types and vocabulary provided by the model. The new types
correspond to the classes in the model, and the new vocab-
ulary correspond to the properties (attributes, roles, and
operations) declared for these classes. For example, con-
sider a class diagram M containing a class A. Suppose too
that the class A has an attribute x of type String. Now, x
can appear in OCL expressions, using dot notation: for an
object o of the class A, the expression o.x denotes the value
of its attribute x. OCL also provides access to the value
of some properties of the classes themselves using the dot
notation: E.g., the expression A.allInstances() denotes the set
of all instantiated objects of the class A.

4. THE SECUREUML + COMPONENTUML
LANGUAGE

4.1 The SecureUML + ComponentUML Meta-
model

SecureUML. SecureUML is a modeling language for for-
malizing access control requirements that is based on RBAC [6].
In RBAC one specifies access control policies in terms of
static role assignments, however, it is not easily possible to
specify policies that depend on dynamic properties of the

system state. SecureUML extends RBAC with authoriza-
tion constraints to overcome this limitation. It formalizes
access control decisions that depend on two kinds of infor-
mation:

• Declarative access control decisions that depend on
static information, namely the assignments of users
and permissions to roles, which we designate as a RBAC
configuration.

• Programmatic access control decisions that depend on
dynamic information, namely the satisfaction of au-
thorization constraints in the current system state.

SecureUML provides a language for specifying access con-
trol policies for actions on protected resources. However,
it leaves open what the protected resources are and which
actions they offer to clients. These depend on the primi-
tives for constructing models in the system design modeling
language.

A SecureUML dialect specifies how the modeling primi-
tives of SecureUML are integrated with the primitives of the
design modeling language in a way that allows the direct an-
notation of model elements with access control information.
Hence it provides the missing vocabulary to formulate secu-
rity policies involving these resources by defining:

• the model element types of the system design modeling
language that represent protected resources;

• the actions these resources types offer and hierarchies
classifying these actions; and

• the default access control policy for actions where no
explicit permissions is defined (i.e., whether access is
allowed or denied by default),

ComponentUML. The ComponentUML language that we
consider in this paper, is a simple language for modeling
component-based systems. Essentially, it provides a subset
of UML class models: Entities can be related by Associa-
tions and have Attributes and/or Methods.

The dialect definition then specifies the following.

• Entities, as well as their Attributes, Methods, and As-
sociationEnds (but not Associations as such) are pro-
tected resources.

• the actions offered by these resources are:

Resource Actions
Entity create, read, update, delete,

full access
Attribute read, update, full access
Method execute
Association end read, update, full access

The dialect definition also specifies the following action
hierarchy.

EntityFullAccess: create, read, update, and delete
of the entity.

EntityRead: read for all attributes and association
ends of the entity, and execute for all side-effect
free methods of the entity.

EntityUpdate: update for all attributes of the entity,
update for all association ends of the entity, and
execute for all non-side-effect free methods of the
entity.

AttributeFullAccess: read and update of the attribute.

AssociationEndFullAccess: read and update of the
association end.

• The default access control policy is allow.

Abstract Syntax and Metamodel. We define the abstract
syntax of this modeling language following the standard ap-
proach taken in MDA, namely by giving a metamodel for
it. Figures 4.1 and 4.2 present the abstract syntax of Se-
cureUML and the ComponentUML dialect, respectively. We
also need to add constraints to this metamodel in order
to precisely define the well-formed models of SecureUML
+ ComponentUML. These constraints are presented in Ap-
pendix A.

4.2 The SecureUML + ComponentUML Mod-
els

SecureUML. SecureUML’s concrete syntax is defined in [2]
by a UML profile that formalizes the modeling notation of
SecureUML using stereotypes and tagged values. This pro-
file does not define an encoding for all SecureUML elements.
For example, the notation for defining resources is left open
and must be defined by the dialect. A role is represented by
a UML class with the stereotype “Role” and an inheritance
relationship between two roles is defined using a UML gener-
alization relationship. The role referenced by the arrowhead
of the generalization relationship is considered to be the su-
perrole of the role referenced by the tail. A permission,
along with its relations to roles and actions, is defined in a
single UML model element, namely an association class with
the stereotype “Permission”. The association class connects
a role with a UML class representing a protected resource,
which is designated as the root resource of the permission.
The actions that such a permission refers to may be ac-
tions on the root resource or on subresources of the root
resource. Each attribute of the association class represents
the assignment of an action to the permission, where the ac-
tion is identified by the name and the type of the attribute.
Stereotypes for these permission attributes specify how the
attribute is mapped to an action, and are defined as part
of the dialect. The authorization constraint expressions are
attached to the permissions’ association classes.

ComponentUML. ComponentUML uses a UML-based no-
tation, where entities are represented by UML classes with
the stereotype “Entity”. Every method, attribute, or associ-
ation end owned by such a class is automatically considered
to be a method, attribute, or association end of the entity,
so no further stereotypes are necessary.

Dialect Definition. The stereotypes “entityaction”, “at-
tributeaction”, “methodaction”, “associationendaction” re-
spectively specify that a permission attribute refers to an
action on an entity, attribute, method, or association end.
The name of the permission attribute specifies the name of
the attribute, method, or association end targeted by this

permission. The type of the permission attribute specifies
the action (e.g., read, update, or full access) that is permit-
ted by this permission.

Example. As a running example, [2] considers a simpli-
fied system for administrating meetings. In Section 7 we
will use this example to illustrate how one can mechanize
the analysis of security policies using a tool implementing
our metamodel-based approach for analyzing security-design
models. In this example, the system should maintain a list
of users and records of meetings. A meeting has an owner,
a list of participants, a time, and a place. Users may carry
out standard operations on meetings, such as creating, read-
ing, editing, and deleting them. A user may also cancel a
meeting, which deletes the meeting and notifies all partici-
pants by email. The system should obey the following (here
informally given) security policy:

• All users of the system are allowed to create new meet-
ings and read all meeting entries.

• Only the owner of a meeting is allowed to change meet-
ing data and cancel or delete the meeting.

• A supervisor is allowed to cancel any meeting.

• A system administrator is allowed to read meeting
data.

Figure 4.2 formalizes the above security policy using the
concrete syntax for SecureUML + ComponentUML.

Mapping From Models to Metamodel Instances. Ta-
bles 1 and 2 in Appendix B present the mapping between Se-
cureUML + ComponentUML models and their correspond-
ing instances of the metamodel. Recall that, in our ap-
proach, the specification of security properties using OCL
directly depends on this mapping since the expressions for-
malizing the properties will not be evaluated over the mod-
els, but over the corresponding instances of the metamodel.

To a large extent, this mapping is straightforward: UML
model elements with appropriate stereotypes are mapped
to instances of the corresponding metamodel elements and
links between these metamodel instances are directly given
by corresponding associations between the UML model ele-
ments. Importantly, however, in some cases this mapping is
less straightforward. In particular, in cases where the con-
crete syntax provides convenient “syntactic sugar” to the
modeler. We list below some examples of such subtleties.
Let M be a model, then M contains (among others) the
following elements:

• “Default” objects of type Role, AuthorizationConstraint,
and Permission, which do not correspond to roles, au-
thorization constraints, or permissions depicted in M .

• Objects of subtypes of Action which correspond to the
actions offered by the resources, even if they are not
mentioned in the attributes of the permissions depicted
in M .

• Links between the “default” objects of type Permission,
Role, and AuthorizationConstraint, and between the “de-
fault” object of type Permission and the objects of sub-
types of Action. These links formalize the default ac-
cess control policy defined in SecureUML + Compo-
nentUML.

Role
default: Boolean

Permission
default: Boolean

Action Resource

User AuthorizationConstraint
body: String
language: String

CompositeAction AtomicAction

+hasrole

+includes

UserAssignment

+superrole

+subrole

RoleHierarchy

+givesaccess
+haspermission

PermissionAssignment

+isconstraintby

+constrains

ConstraintAssignment

+isassigned +accesses
ActionAssignment

+resource+action
ResourceAssignment

+subordinatedactions

+compositeaction

ActionHierarchy

Figure 1: SecureUML Metamodel.

CompositeAction AtomicAction

Action

CompositeAction AtomicAction

Resource+resource+action ResourceAssignment

EntityMethod

isQuery(): Boolean

Attribute

AssociationEnd

+hasmethod

EntityMethod

+hasattribute

EntityAttribute

+hasassociationend
EntityAssociationEnd

EntityFullAccess EntityUpdate EntityRead

AttributeFullAccess AssociationEndFullAccess

AtomicUpdate AtomicRead

AtomicCreate AtomicDelete AtomicExecute

Figure 2: ComponentUML Dialect Metamodel.

• Links between the objects of subtypes of Action. These
links formalize the hierarchy of actions defined in Se-
cureUML + ComponentUML.

5. ANALYZING SECUREUML + COMPO-
NENTUML MODELS

In this section, we define OCL operators over the meta-
model of SecureUML + ComponentUML that formalize dif-
ferent aspects of the access control information contained
in the models. We will use these as part of an OCL-based
language for analyzing access control decisions that depend
on static information, namely the assignment of users and
permissions to roles.1 The approach we take not only allows
us to formalize desired properties of models, but also to au-
tomatically analyze models by evaluating the corresponding
OCL expressions over the instances of the metamodel that
corresponds to the models.

5.1 Semantics
We recall here the semantics of SecureUML + Compo-

nentUML models [2], with respect to which we claim that
our OCL-operations correctly capture access control infor-
mation. Let ΣRBAC = (SRBAC ,≤RBAC ,FRBAC ,PRBAC) be
an order-sorted signature that defines the type of structures
specifying role-based access control configurations. Here
SRBAC is a set of sorts, ≤RBAC is a partial order on SRBAC ,
FRBAC is a sorted set of function symbols, and PRBAC is a
sorted set of predicate symbols. In detail, let

SRBAC = {Users,Roles,Permissions,AtomicActions,Actions},

where AtomicActions ≤ Actions,

FRBAC = ∅ ,
1Programmatic access control decisions that depend on dy-
namic information, namely the satisfaction of OCL autho-
rization constraints in concrete system states, can be then
analyzed using standard OCL evaluators.

PRBAC =

8>>><>>>:
≤Roles : Roles × Roles ,
≤Actions : Actions ×Actions ,
UA : Users × Roles ,
PA : Roles × Permissions
AA : Permissions ×Actions

9>>>=>>>;
Given a SecureUML + ComponentUML model M , one de-

fines a ΣRBAC -structure =RBAC in the obvious way: the sets
Users, Roles, Permissions, AtomicActions, and Actions each
contain entries for every model element in M of the corre-
sponding metamodel types User, Role, Permission, AtomicAction,
and Action. Also, the relations UA, PA, and AA contain
tuples for each instance of the associations UserAsssignment,
PermissionAssignment, ActionAssignment.

Remark: Let =RBAC be the ΣRBAC structure defined by a
model M . Then, for any u in Users and r in Roles, =RBAC |=
UA(u, r) if and only if

u.hasrole−>includes(r)

evaluates to true in M .
Remark: Let =RBAC be the ΣRBAC structure defined by a

model in M . Then, for any r in Roles and p in Permissions,
=RBAC |= PA(r, p) if and only if

r.haspermission−>includes(p)

evaluates to true in M .
Remark: Let =RBAC be the ΣRBAC structure defined by a

model M . Then, for any p in Permissions and a in Actions,
=RBAC |= AA(p, a) if and only if

p.accesses−>includes(a)

evaluates to true in M .

5.2 Analysis Operations
In this section, we introduce a collection of OCL query

operations that are useful for analyzing security properties
of security-design models formalized using SecureUML +

«Role»

UserRole

«Role»

SuperVisorRole

«Role»

SystemAdministratorRole

«Permission»

UserMeeting
«entityaction» Meeting:create
«entityaction» Meeting:read

«Permission»

OwnerMeeting
«entityaction» Meeting:update
«entityaction» Meeting:delete

«Permission»

SupervisorCancel
«methodaction» Meeting.cancel: execute
«methodaction» Meeting.notify: execute

«Permission»

ReadMeeting
«entityaction» Meeting: read

caller = self.owner.name

«Entity»

Meeting
start: Date
duration: Time
notify()
cancel()

Figure 3: Example Security Policy.

ComponentUML. The correctness of these operations, with
respect to the formal semantics of the language, is stated in
the associated remarks.

The relation ≥Roles in the ΣRBAC -structure =RBAC de-
fined by a model M is given by the reflexive closure of the
association RoleHierarchy on Role in M ; we write subroles
(role with additional privileges) on the left (larger) side of
the ≥-symbol.

superrolePlus. This returns the collection of roles (directly
or indirectly) above a given role in the role hierarchy.

context Role::superrolePlus():Set(Role) body:
self.superrolePlusOnSet(self.superrole)

context Role::superrolePlusOnSet(rs:Set(Role)):Set(Role)
body: if rs−>collect(r1|r1.superrole)

−>exists(r|rs−>excludes(r))
then self.superrolePlusOnSet(

rs−>union(rs−>collect(r1|r1.superrole)−>asSet()))
else rs−>including(self)
endif

Remark: Let =RBAC be the ΣRBAC structure defined by a
model M . Then, for any r1, r2 in Roles, =RBAC |= r1 ≥ r2

if and only if

r2.superrolePlus()−>includes(r1)

evaluates to true in M .

subrolePlus. This returns the collection of roles (directly
or indirectly) below a given role in the role hierarchy.

context Role::subrolePlus():Set(Role) body:
self.subrolePlusOnSet(self.subrole)

context Role::subrolePlusOnSet(rs:Set(Role)):Set(Role)
body: if rs−>collect(r1|r1.subrole)

−>exists(r|rs−>excludes(r))
then self.subrolePlusOnSet(

rs−>union(rs−>collect(r1|r1.subrole)−>asSet()))
else rs−>including(self)
endif

Remark: Let =RBAC be the ΣRBAC structure defined by a
model M . Then, for any r1, r2 in Roles, =RBAC |= r1 ≥ r2

if and only if

r1.subrolePlus()−>includes(r2)

evaluates to true in M .

allPermissions. This returns the collection of permissions
(directly or indirectly) assigned to a role.

context Role::allPermissions():Set(Permission) body:
self.superrolePlus().haspermission−>asSet()

Remark: Let =RBAC be the ΣRBAC structure defined by
a model M . Let φPermission(r1, p) be the following formula:

φPermission(r1, p) = ∃r2 ∈ Roles. r2 ≥Roles r1 ∧ PA(r2, p) ,

with variables r1 and r2 of sort Roles and p of sort Per-
mission. Then, for any r in Roles and p in Permissions,
=RBAC |= φPermission(r, p) if and only if

r.allPermissions()−>includes(p)

evaluates to true in M .

allRoles. This returns the collection of roles that are (di-
rectly or indirectly) assigned a permission.

context Permission::allRoles():Set(Role) body:
self.givesaccess.subrolePlus()−>asSet()

Remark: Let =RBAC be the ΣRBAC structure defined by
a model M . Then, for any p in Permissions and r in Roles,
=RBAC |= φPermission(r, p) if and only if

p.allRoles()−>includes(r)

evaluates to true in M .
The relation ≥Actions in the ΣRBAC -structure =RBAC de-

fined by a model M is given by the reflexive closure of the
composition hierarchy on actions, defined by the associa-
tion ActionHierarchy in M . We write a1 ≥Actions a2, if a2 is a
subordinated action of a1.

subactionPlus. This returns the collection of actions (di-
rectly or indirectly) subordinated to an action.

context Action::subactionPlus():Set(Action) body:
if self.oclIsKindOf(AtomicAction)
then Set{self}
else self.oclAsType(CompositeAction)

.subordinatedactions.subactionPlus()
endif

Remark: Let =RBAC be the ΣRBAC structure defined by a
model M . Then, for any a1, a2 in Actions, =RBAC |= a1 ≥ a2

if and only if

a1.subactionPlus()−>includes(a2)

evaluates to true in M .

compactionPlus. This returns the collection of actions to
which an action is (directly or indirectly) subordinated.

context Action::compactionPlus():Set(Action) body:
if self.compositeaction−>isEmpty()
then Set{self}
else self.compositeaction.compactionPlus()

−>including(self)
endif

Remark: Let =RBAC be the ΣRBAC structure defined by a
model M . Then, for any a1, a2 in Actions, =RBAC |= a1 ≥ a2

if and only if

a2.compactionPlus()−>includes(a1)

evaluates to true in M .

allActions. This returns the collection of actions whose ac-
cess is (directly or indirectly) granted by a permission.

context Permission::allActions():Set(Action) body:
self.accesses.subactionPlus()−>asSet()

Remark: Let =RBAC be the ΣRBAC structure defined by
a model M . Let φActions(p, a1) be the following formula:

φActions(p, a) = ∃a2 ∈ Actions. a2 ≥Actions a1 ∧AA(p, a2) ,

with variables a1 and a2 of sort Actions and p of sort Permis-
sion. Then, for any p in Permissions and any a in Actions,
=RBAC |= φAction(p, a) if and only if

p.allActions−>includes(a)

evaluates to true in M .

allAssignedPermissions. This returns the collection of per-
missions that (directly or indirectly) grant access to an ac-
tion.

context Action::allAssignedPermissions():Set(Permission)
body: self.compactionPlus().isassigned−>asSet()

Remark: Let =RBAC be the ΣRBAC structure defined by
a model M . Then, for any p in Permissions and any a in
Actions, =RBAC |= φAction(p, a) if and only if

a.allAssignedPermisssions()−>includes(p)

evaluates to true in M .

allAllowedActions. This returns the collection of actions
that are permitted to a user, subject to the satisfaction of
the associated constraints in each concrete scenario.

context User::allAllowedActions():Set(Action) body:
self.hasrole.allPermissions().allActions()−>asSet()

Remark: Let =RBAC be the ΣRBAC structure defined by
a model M . Let φRBAC (u, a) be the following formula:

φRBAC (u, a) = ∃r1, r2 ∈ Roles.

∃p ∈ Permissions. ∃a′ ∈ Actions.

UA(u, r1) ∧ r1 ≥Roles r2 ∧ PA(r2, p)

∧AA(p, a′) ∧ a′ ≥Actions a ,

with variables u of sort Users and a of sort Actions. Then,
for any u in Users and any a in Actions, =RBAC |= φRBAC (u, a)
if and only if

u.allAllowedActions()−>includes(a)

evaluates to true in M .

6. ANALYSIS EXAMPLES
In this section we give a collection of examples that illus-

trates how one can formalize and analyze different kinds of
authorization questions about SecureUML+ComponentUML
models M using the OCL operations defined in Section 5.
The questions are formalized as query operations over ob-
jects in M , possibly with additional arguments also gathered
from the objects of M .

Example: Given a role, what are the atomic actions a user
in this role can perform?

context Role::allAtomics():Set(Action) body:
self.allPermissions().allAction()−>asSet()

−>select(a|a.oclIsKindOf(AtomicAction))

Example: Given an atomic action, which roles can per-
form this action?

context AtomicAction::allAssignedRoles():Set(Roles) body:
self.compactionPlus().isassigned.allRoles()−>asSet()

Example: Given a role and an atomic action, under which
circumstances can a user in this role perform this action?

context Role::allAuthConst(a:Action):Set(String) body:
self.permissionPlus(a).isconstraintby.body−>asSet()

context Role::permissionPlus(a:Action):Set(Permission) body:
self.allPermissions()

−>select(p|p.allActions()−>includes(a))

Example: Are there two roles with the same set of atomic
actions?

context Role::duplicateRoles():Boolean body:
Role.allInstances()

−>exists(r1, r2| r1.allAtomics = r2.allAtomics)

Example: Are there two roles such that one includes the set
of actions of the other, but the roles are not related in the
role hierarchy?

context Role::virtualSubroles():Boolean body:
Role.allInstances()−>exists(r1, r2|

r1.allActions()−>includesAll(r2.allActions())
and not(r1.superrolePlus()−>includes(r2)))

Example: Given an atomic action, which roles allows the
least set of actions including the atomic action? This re-
quires a suitable definition of “least” and we use here the
smallest number of atomic actions.

context AtomicAction::minimumRole():Set(Role) body:
self.allAssignedRoles()−>select(r1|self.allAssignedRoles()
−>forAll(r2| r1.allAtomics()−>size()

<= r2.allAtomics()−>size()))

Example: Give the list of “virtual” roles (i.e., roles which
have no explicit permissions on their own, but only inherit
permissions from other roles).

context Role::virtualRoles():Set(Role) body:
Role.allInstances()−>select(r|r.haspermission
−>isEmpty())

Example: Given two atomic actions, are they “distin-
guishable” (i.e., is there a role that has permission for one,
but not the other)?.

context AtomicAction::distinguishable(a:AtomicAction):Boolean
body: self.allAssignedRoles() <> a.allAssignedRoles()

Example: Given two atomic actions, does the permission
for one imply the permission for the other?

context AtomicAction::impliedBy(a:AtomicAction):Boolean
body: self.allAssignedPermissions()

−>forAll(p|p.allActions−>includes(a))

Example: Do two permissions overlap?

context Permission::overlapsWith(p:Permission):Boolean
body: self.allActions()

−>intersection(p.allActions())−>notEmpty()

Example: Given a role, are there overlapping permis-
sions?

context Role::overlaps():Boolean body:
self.allPermissions()−>exists(p1,p2|

p1 <> p2 and p1.overlapsWith(p2))

Example: Are there overlapping permissions for different
roles?

context Permission::existOverlapping():Boolean body:
Permission.allInstances()−>exists(p1,p2|

p1 <> p2 and p1.overlapsWith(p2)
and not(p1.allRoles−>includesAll(p2.allRoles)))

Example: Are there duplicate permissions (the same sets
of actions, sets of roles, and constraints)?

context Permission::duplicate():Boolean body:
Permission.allInstances()−>exists(p1,p2|p1 <> p2 and

p1.allActions() = p2.allActions() and
p1.allRoles() = p2.allRoles() and
p1.isconstraintby = p2.isconstraintby)

Example: Are there atomic actions which every role, ex-
cept the default role, may perform?

context AtomicAction::accessAll():Boolean body:
AtomicAction.allInstances()−>exists(a|

Role.allInstances−>forAll(r|
not(r.default) implies

r.allAtomics()−>includes(a)))

The above examples provide evidence that OCL expres-
sions can be used to formalize and check non-trivial security
properties. This expressiveness is due to the fact that, in our
applications, the OCL language is enriched with the types
provided by the metamodel of SecureUML+ComponentUML,
(e.g, Role, Permission, Set(Action)) and vocabulary (e.g., hasrole,
givesaccess, isassigned).

7. THE SECUREMOVA TOOL
As [13] observed, although there are several proposals

for specifying role-based authorization constraints, “there
is a lack of appropriate tool support for the validation, en-
forcement, and testing of role-based access control policies.
Specifically, tools are needed which can be applied quite eas-
ily by a policy designer without too much deeper training.”
In response to this need, [13] shows how to employ the USE
system to validate and test access control policies formulated
in UML and OCL. We comment on this work in Section 8.

As part of our work, we have implemented a prototype
tool called SecureMOVA, for analyzing SecureUML + Com-
ponentUML model, which is directly based on the map-
ping from models to metamodel instances defined in Ap-
pendix B. SecureMOVA is an extension of the MOVA tool,
which is a Java IDE for the ITP/OCL tool, a text-input
mode validation and analysis tool for UML diagrams with
OCL constraints. The ITP/OCL tool in turn provides com-
mands for building class and object diagrams, validating
OCL constraints, and evaluating OCL queries. The IT-
P/OCL tool is written in Maude [4], a rewriting-based pro-
gramming language that implements (membership) equa-
tional logic. Events on the MOVA’s worksheets and toolbars
are transformed into ITP/OCL’s text-input commands and
are interpreted and executed in a Maude process running
the ITP/OCL tool.

The SecureMOVA tool is a Java IDE for an extension of
the ITP/OCL tool that includes commands for building Se-
cureUML + ComponentUML diagrams and for evaluating
OCL queries using, among others, the analysis operations in-
troduced in Sections 5.2 and 6 (the users may, of course, add
their own analysis operations to the system). The Secure-
MOVA tool is still under construction, but the SecureUML
+ ComponentUML extension of the ITP/OCL tool is al-
ready available at http://maude.sip.ucm.es/securemova,
along with a short tutorial and a collection of examples.

Here we list the ITP/OCL commands used to build the
security policy modeled in Figure 4.2:

• (create-security-diagram SCHEDULER) creates the blank
security-design diagram SCHEDULER.

• (insert-role SCHEDULER : SupervisorRole) adds the role
SupervisorRole to the diagram SCHEDULER; similar com-
mands are used to add the roles SystemAdministratorRole

and UserRole.

• (insert-role-hierarchy SCHEDULER | SupervisorRole ↔
UserRole) makes the role UserRole a super-role of the
role SupervisorRole in the diagram SCHEDULER.

• (insert-entity SCHEDULER : Meeting) adds the entity
Meeting to the diagram SCHEDULER.

• (insert-attribute SCHEDULER : Meeting : Start) adds
the attribute Start to the entity Meeting in the diagram
SCHEDULER; similar commands are used to add the
attribute duration, and the methods Cancel and Notify.

• (insert-permission SCHEDULER : UserMeeting) adds the
permission UserMeeting to the diagram SCHEDULER;
similar commands are used to add the permissions
OwnerMeeting, SupervisorCancel, and ReadMeeting.

• (insert-permission-assignment SCHEDULER : UserMeet-
ing : UserRole) assigns the permission UserMeeting to
the role UserRole in the diagram SCHEDULER; similar
commands are used to assign the rest of permissions
to the appropriate roles.

• (insert-entity-update SCHEDULER : OwnerMeeting : Meet-
ing) assigns update access to all the attributes of the
entity Meeting in the diagram SCHEDULER; similar com-
mands are used to assign the different types of access
to the entity Meeting to the appropriate permissions.

• (insert-authorization-constraint SCHEDULER : Auth1 :
”caller.name=self.owner.name”) adds the authorization
constraint caller.name=self.owner.name, named Auth1, to
the diagram SCHEDULER.

• (insert-authorization-constraint-assignment SCHEDULER
: OwnerMeeting : Auth1) assigns the authorization con-
straint Auth1 tlo the permission OwnerMeeting in the
diagram SCHEDULER.

Next, we list different queries that can be formulated to di-
agram SCHEDULER using the ITP/OCL command query-in.
This command takes as an argument the OCL expressions
formalizing the query.2

• (query-in SEC+COMP-META : SCHEDULER : (default-
Role.existOverlapping)) asks whether there are overlap-
ping permissions for different roles SCHEDULER. IT-
P/OCL automatically returns the answer true.

• (query-in SEC+COMP-META : SCHEDULER : (Meet-
ingStartAtomicUpdate.allAssignedRoles)) asks which are
the roles in the diagram SCHEDULER that are allowed
to update the attribute Start of the entity Meeting. IT-
P/OCL returns the set formed by the roles SupervisorRole

and UserRole.

• (query-in SEC+COMP-META : SCHEDULER : (Meet-
ingCancelAtomicExecute.allAssignedPermissions)) asks which
are the permissions that allow the execution of the
method Cancel of the entity Meeting. ITP/OCL returns
the set formed by the permissions SupervisorCancel and
OwnerMeeting.

2The ITP/OCL tool requires OCL expressions to be writ-
ten using a notation slightly different from the standard (see
http://maude.sip.ucm.es/securemova). However, for the
sake of the example, we have used here standard OCL no-
tation.

8. CONCLUSION

Related Work. As mentioned in the introduction, our work
is inspired by [1], who first explored the use of OCL for
querying RBAC policies (see also [14, 13]). A distinct char-
acteristic of our work is that we spell out and follow a precise
methodology, which guarantees that query evaluation is for-
mally meaningful. This methodology requires, in particular,
precise definitions of both the metamodel of the modeling
language and the mapping from models to the correspond-
ing instances of this metamodel. These definitions make it
possible to rigorously reason about the meaning of the OCL
expressions used in specifying analyzing security policies.

To underscore the importance of such a methodology, con-
sider a simple example: specifying two mutually exclusive
roles such as “accounts payable manager” and “purchasing
manager”. Mutual exclusion means that one individual can-
not have both roles. In [1, 14, 13] this constraint is specified
using OCL as follows:

context User inv:
let M : Set = {{accounts payable manager,

purchasing manager}, ...} in
M−>select(m | self.role−>
intersection(m)−>size > 1)−>isEmpty()

This constraint correctly specifies mutual exclusion only if
the association-end role returns all the roles assigned to a
user. This should include role assignments explicitly de-
picted as well as those implicitly assigned to users under the
role hierarchy. The actual meaning of the association-end
role depends, of course, on the mapping between models and
the corresponding instances of the metamodel. Since the
precise definition of this mapping is not given in [1, 14, 13],
readers (and tool users) must speculate on the meaning of
such expressions and thereby the correctness of their OCL
specifications. (Notice that, if the mapping used in [1, 14,
13] is the “ straightforward” one, the association-end role

will only return the roles explicitly assigned to a user.)
In our setting, mutual exclusion can be specified using

OCL as follows:

context User inv:
let M : Set = {{accounts payable manager,

purchasing manager}, ...}
in M−>select(m | self.hasrole.superrolePlus()
−>intersection(m)−>size > 1)−>isEmpty()

From our definition of superrolePlus in Section 5.2, it is clear
that this expression denotes all the roles assigned to a user,
including those implicitly assigned to the user under the
specified role hierarchy.

Future Work. One direction for future work is tool sup-
port for handling queries involving system state. Recall that
SecureUML includes the possibility of constraining permis-
sions with authorization constraints (OCL formulas), which
restrict the permissions to those system states satisfying
the constraints. An example of a stateful query for a de-
sign metamodel that includes access to the system date is
“which operations are possible on week days that are impos-
sible on weekends?” Alternatively, in a banking model, we
might ask “which actions are possible on overdrawn bank
accounts?” Such queries cannot currently be evaluated as

they require reasoning about consequences of OCL formu-
las and this involves theorem proving as opposed to model
checking, i.e., determining the satisfiability of formulas in a
concrete model.

Another interesting direction would be to use our ap-
proach to analyze the consistency of different system views.
In [2] we showed how one can combine SecureUML with dif-
ferent modeling languages (i.e., ComponentUML and Con-
trollerUML) to formalize different views of multi-tier archi-
tectures. In this setting, access control might be imple-
mented at both the middle tier (implementing a controller
for, say, a web-based application) and a back-end persistence
tier. If the policies for both of these tiers are formally mod-
eled, we can potentially answer question like “will the con-
troller ever enter a state in which the persistence tier throws
a security exception?” Again, carrying out such analysis
would require support for theorem proving.

9. REFERENCES
[1] Gail-Joon Ahn and Michael E. Shin. Role-based

authorization constraints specification using object
constraint language. In WETICE ’01: Proceedings of
the 10th IEEE International Workshops on Enabling
Technologies, pages 157–162, Washington, DC, USA,
2001. IEEE Computer Society.

[2] David A. Basin, Jürgen Doser, and Torsten
Lodderstedt. Model driven security: From uml models
to access control infrastructures. ACM Trans. Softw.
Eng. Methodol., 15(1):39–91, 2006.

[3] Richard J. Boulton, Andrew Gordon, Michael J. C.
Gordon, John Harrison, John Herbert, and John Van
Tassel. Experience with embedding hardware
description languages in HOL. In Proceedings of the
IFIP TC10/WG 10.2 International Conference on
Theorem Provers in Circuit Design, pages 129–156.
North-Holland, 1992.

[4] M. Clavel, F. Durán, S. Eker, P. Lincoln,
N. Mart́ı-Oliet, J. Meseguer, and J. F. Quesada.
Maude: Specification and programming in rewriting
logic. Theoretical Computer Science, 285:187–243,
2002.

[5] Manuel Clavel, Marina Egea, Rafael Mart́ınez, and
Viviane Torres da Silva. The MOVA Tool, 2006.
http://maude.sip.ucm.es/~mova.

[6] David F. Ferraiolo, Ravi S. Sandhu, Serban Gavrila,
D. Richard Kuhn, and Ramaswamy Chandramouli.
Proposed NIST standard for role-based access control.
ACM Transactions on Information and System
Security, 4(3):224–274, August 2001.

[7] Geri Georg, Indrakshi Ray, and Robert France. Using
aspects to design a secure system. In ICECCS ’02:
Proceedings of the Eighth International Conference on
Engineering of Complex Computer Systems, page 117,
Washington, DC, USA, 2002. IEEE Computer Society.

[8] Jan Jürjens. Towards development of secure systems
using UMLsec. In Heinrich Hussmann, editor,
Fundamental Approaches to Software Engineering
(FASE/ETAPS 2001), number 2029 in LNCS, pages
187–200. Springer-Verlag, 2001.

[9] Jan Jürjens. UMLsec: Extending UML for secure
systems development. In Jean-Marc Jézéquel, Heinrich
Hussmann, and Stephen Cook, editors, UML 2002 —

The Unified Modeling Language, volume 2460 of
LNCS, pages 412–425. Springer-Verlag, 2002.

[10] Anneke Kleppe, Wim Bast, Jos B. Warmer, and
Andrew Watson. MDA Explained: The Model Driven
Architecture–Practice and Promise. Addison-Wesley,
2003.

[11] Object Management Group. Object Constraint
Language specification, 2004. http://www.omg.org.

[12] Object Management Group. Unified Modeling
Language specification, 2004. http://www.uml.org.

[13] Karsten Sohr, Gail-Joon Ahn, Martin Gogolla, and
Lars Migge. Specification and validation of
authorisation constraints using UML and OCL. In
ESORICS, volume 3679 of Lecture Notes in Computer
Science, pages 64–79. Springer-Verlag, 2005.

[14] Hua Wang, Yanchun Zhang, Jinli Cao, and Jian Yang.
Specifying role-based access constraints with object
constraint language. In Advanced Web Technologies
and Applications, volume 3007 of Lecture Notes in
Computer Science, pages 687–696. Springer
Berlin-Heidelberg, 2004.

[15] Jos Warmer and Anneke Kleppe. The Object
Constraint Language: Getting Your Models Ready for
MDA. Addison-Wesley, 2st edition, 2003.

APPENDIX
A. THE SECUREUML + COMPONENTUML

METAMODEL CONSTRAINTS

Default role. The following invariants guarantee that mod-
els contain a default role with the desired semantics; in par-
ticular, any user is assigned, at least, the default role.

context Role
inv existsADefaultRole:

self.allInstances()−>select(r|r.default)−>size() = 1
inv allRolesInheritFromDefaultRole:

self.superrolePlus()−>exists(r|r.default)

context User
inv allUsersAssignedDefaultRole:

self.hasrole−>exists(r|r.default)

Role hierarchy. The following invariant guarantee that there
are no cycles in the role hierarchy.

context Role inv noCyclesinRoleHierarchy:
self.superrole−>forAll(r|r.superrolePlus()−>excludes(self))

Default permission. The following invariants guarantee
that models contain a default permission with the desired
semantics. In particular, the default permission may only
be given to the default role, and may contain only atomic
actions. Also, atomic actions are assigned at least one per-
mission and, if they are assigned more than one, then none
of them can be the default permission.

context Permission
inv existsADefaultPermission:

self.allInstances()−>select(p|p.default)−>size() = 1

inv defaultPermissionAssignedToDefaultRole:
self.default implies self.givesaccess−>forAll(r|r.default)

context CompositeAction inv nonDefaultPermission:
self.allAssignedPermission−>forAll(p|not(p.default))

context AtomicAction
inv existsAPermission:

self.allAssignedPermission()−>notEmpty()
inv overridingDefaultPermission:

self.allAssignedPermission()
−>forAll(p1, p2| p1<>p2 implies not(p1.default))

Resource action association. The following invariants guar-
antees that actions refer to the correct resource.

context AtomicCreate inv targetsAnEntity:
self.resource.oclIsTypeOf(Entity)

context AtomicDelete inv targetsAnEntity:
self.resource.oclIsTypeOf(Entity)

context AtomicUpdate inv targets:
self.resource.oclIsTypeOf(Attribute)
or self.resource.oclIsTypeOf(AssociationEnd)

context AtomicRead inv targets:
self.resource.oclIsTypeOf(Attribute)
or self.resource.oclIsTypeOf(AssociationEnd)

context AtomicExecute inv targetsAMethod:
self.resource.oclIsTypeOf(Method)

context EntityFullAccess inv targetsAnEntity:
self.resource.oclIsTypeOf(Entity)

context EntityRead inv targetsAnEntity:
self.resource.oclIsTypeOf(Entity)

context EntityUpdate inv targetsAnEntity:
self.resource.oclIsTypeOf(Entity)

context AttributeFullAccess inv targetsAnAttribute:
self.resource.oclIsTypeOf(Attribute)

context AssociationEndFullAccess
inv targetsAnAssociationEnd:

self.resource.oclIsTypeOf(AssociationEnd)

The following constraints ensure that resources have the
correct actions defined on them.

context Entity inv areAccessedBy:
self.action−>size() = 5 and
self.action−>exists(a|a.oclIsTypeOf(EntityFullAccess)) and
self.action−>exists(a|a.oclIsTypeOf(EntityUpdate)) and
self.action−>exists(a|a.oclIsTypeOf(EntityRead)) and
self.action−>exists(a|a.oclIsTypeOf(AtomicCreate)) and
self.action−>exists(a|a.oclIsTypeOf(AtomicDelete))

context Attribute inv areAccessedBy:
self.action−>size() = 3 and
self.action−>exists(a|

a.oclIsTypeOf(AttributeFullAccess)) and
self.action−>exists(a|a.oclIsTypeOf(AtomicRead)) and
self.action−>exists(a|a.oclIsTypeOf(AtomicUpdate))

context Method inv areAccessedBy:
self.action−>size() = 1 and
self.action−>exists(a|a.oclIsTypeOf(AtomicExecute))

context Association−end inv areAccessedBy:

self.action−>size() = 3 and
self.action−>exists(a|

a.oclIsTypeOf(AssociationEndFullAccess)) and
self.action−>exists(a|a.oclIsTypeOf(AtomicRead)) and
self.action−>exists(a|a.oclIsTypeOf(AtomicUpdate))

Action Hierarchy. The following invariants guarantee that
composite actions are composed of the correct subordinated
actions.

context EntityFullAccess inv containsSubactions:
self.subordinatedactions = self.resource.action
−>select(a|a.oclIsTypeOf(EntityUpdate))
−>union(self.resource.action

−>select(a|a.oclIsTypeOf(EntityRead)))
−>union(self.resource.action

−>select(a|a.oclIsTypeOf(AtomicCreate)))
−>union(self.resource.action

−>select(a|a.oclIsTypeOf(AtomicDelete)))

context EntityRead inv containsSubactions:
self.subordinatedactions =
self.resource.oclAsType(Entity).hasattribute.action
−>select(a|a.oclIsTypeOf(AtomicRead))
−>union(self.resource.oclAsType(Entity)

.hasassociationend.action
−>select(a|a.oclIsTypeOf(AtomicRead)))

−>union(self.resource.oclAsType(Entity).hasmethod
−>select(me|me.isQuery).action
−>select(a|a.oclIsTypeOf(AtomicExecute)))

context EntityUpdate inv containsSubactions:
self.subordinatedactions =
self.resource.oclAsType(Entity).hasattribute.action
−>select(a|a.oclIsTypeOf(AtomicUpdate))
−>union(self.resource.oclAsType(Entity)

.hasassociationend.action
−>select(a|a.oclIsTypeOf(AtomicUpdate)))

−>union(self.resource.oclAsType(Entity).hasmethod
−>select(me|not(me.isQuery)).action
−>select(a|a.oclIsTypeOf(AtomicExecute)))

context AttributeFullAccess inv containsSubactions:
self.subordinatedactions = self.resource.action
−>select(a|a.oclIsTypeOf(AtomicUpdate))
−>union(self.resource.action

−>select(a|a.oclIsTypeOf(AtomicRead)))

context AssociationEndFullAccess inv containsSubactions:
self.subordinatedactions = self.resource.action
−>select(a|a.oclIsTypeOf(AtomicUpdate))
−>union(self.resource.action

−>select(a|a.oclIsTypeOf(AtomicRead)))

B. MAPPING TABLES
We here give an informal, but nevertheless complete, def-

inition of the mapping from SecureUML + componentUML
concrete syntax to the corresponding instance of the ab-
stract syntax metamodel.

Insert an object “default” of the class Role, with value true for its default-attribute.
For each role r, insert (i) an object r of the class Role, with value false for its default-attribute, and (ii) a RoleHierarchy-link
between r (subrole) and “default”.
For each inheritance relationship between two roles r1 (subrole) and r2, insert a RoleHierarchy-link between r1 (subrole)
and r2.
For each user u, insert (i) an object u of the class User, and (ii) a UserAssignment-link between u and the object “default”
of the class Role.
For each assignment of a user u to a role r, insert a UserAssignment-link between u and r.
For each entity e, insert (i) an object e of the class Entity; (ii) an object efa(e) of the class EntityFullAccess; (iii) an
object eu(e) of the class EntityUpdate; (iii) an object er(e) of the class EntityRead; (iii) an object ac(e) of the class
AtomicCreate; (iv) an object ad(e) of the class AtomicDelete; (v) ResourceAssignment-links between e and efa(e), e and
eu(e), e and er(e), e and ac(e), and e and ad(e); (vi) ActionHierarchy-links between eu(e) (subordinatedAction) and efa(e),
er(e) (subordinatedAction) and efa(e), ac(e) (subordinatedAction) and efa(e), and ad(e) (subordinatedAction) and efa(e);
and (vii) ActionAssignment-links between ac(e) and ad(e) and the object “default” of the class Permission.
For each attribute a of an entity e, insert (i) an object a of the class Attribute; (ii) an object afa(a) of the class
AttributeFullAccess; (iii) an object au(a) of the class AtomicUpdate; (iii) an object ar(a) of the class AtomicRead; (vi)
ResourceAssignment-links between a and afa(a), a and au(a), and a and ar(a); (iv) ActionHierarchy-links between au(a)
(subordinatedAction) and afa(e), ar(a) (subordinatedAction) and afa(e), au(a) (subordinatedAction) and eu(e), and ar(a)
(subordinatedAction) and er(e); (v) an EntityAttibute-link between e and a; and (vi) ActionAssignment-links between au(a)
and ar(a) and the object “default” of the class Permission.
For each query method m of an entity e, insert (i) an object m of the class Method, with value true for its isQuery-
attribute; (ii) an object ae(m) of the class AtomicExecute; (iii)a ResourceAssignment-link between m and ae(m); (iv)
anActionHierarchy-link between ae(m) (subordinatedAction) and er(e); (v) an EntityMethod-link between e and m; and (vi)
an ActionAssignment-link between ae(m) and the object “default” of the class Permission.

For each non-query method m of an entity e, insert (i) an object m of the class Method, with value false for its isQuery-
attribute; (ii) an object ae(m) of the class AtomicExecute; (iii) a ResourceAssignment-link between m and ae(m); (iv) an
ActionHierarchy-link between ae(m) (subordinatedAction) and eu(e); (v) an EntityMethod-link between e and m; and (vi)
an ActionAssignment-link between ae(m) and the object “default” of the class Permission.

For each association-end d of an entity e, insert (i) an object d of the class AssociationEnd; (ii) an object dfa(d) of the
class AssociationEndFullAccess; (iii) an object au(d) of the class AtomicUpdate, (iii) an object ar(d) of the class AtomicRead;
(v) ResourceAssignment-links between d and dfa(d), d and au(d), and d and ar(d); (iv) ActionHierarchy-links between au(d)
(subordinatedAction) and dfa(d), ar(a) (subordinatedAction) and dfa(d), au(d) (subordinatedAction) and eu(e), and ar(d)
(subordinatedAction) and er(e); (v) an EntityAssociationEnd-link between e and d; and (vi) ActionAssignment-links between
au(d) and ar(d) and the object “default” of the class Permission.

Table 1: Mapping from models to metamodel instances (I).

Insert an object “default” of the class AuthorizationConstraint, with values ‘‘OCL’’ and ‘‘true’’, respectively, for its language

and body attributes.

For each authorization constraint ath, insert an object ath, with values ‘‘OCL’’ and ‘‘ath’’ for its language and body

attributes, respectively.
Insert an object “default” of the class Permission, with value true for its default-attribute.
Insert a ConstraintAssignment-link between the “default” object of the class Permission and the “default” object of the
class AuthorizationConstraint.
Insert a PermissionAssignment-link between the “default” object of the class Permission and the “default” object of the
class Role.
For each permission p, insert an object p of the class Permission, with value false for its default-attribute.
For each assignment of a permission p to a role r, insert a PermissionAssignment-link between r and p.

For each assignment of a constraint ath to a permission p, insert a ConstraintAssignment-linke between p and ath.
For each entity e, and each permission p that grants “entity full access” to e, insert an ActionAssignment-link between
efa(e) and p. Delete any ActionAssignment-link between the “default” object of the class Permission and ac(e) or ad(e).
For each attribute a, method m, and association-end d of e, delete any ActionAssignment-link between the “default”
object of the class Permission and au(a), ar(a), au(d), ar(d), or ae(m).
For each entity e, and each permission p that grants “entity read access” to e, insert an ActionAssignment-link between
er(e) and p. For each attribute a, query method m, and association-end d of e, delete any ActionAssignment-link between
the “default” object of the class Permission and ar(a), ar(d), or ae(m).
For each entity e, and each permission p that grants “entity update access” to e, insert an ActionAssignment-link between
eu(e) and p. For each attribute a, non-query method m, and association-end d of e, delete any ActionAssignment-link
between the “default” object of the class Permission and au(a), au(d), or ae(m).
For each entity e, and each permission p that grants “atomic create access” to e, insert an ActionAssignment-link between
ac(e) and p. Delete any ActionAssignment-link between the “default” object of the class Permission and ac(e).
For each entity e, and each permission p that grants “atomic delete access” to e, insert an ActionAssignment-link between
ad(e) and p. Delete any ActionAssignment-link between the “default” object of the class Permission and ad(e).
For each attribute a, and each permission p that grants “attribute full access” to a, insert an ActionAssignment-link
between afa(a) and p. Delete any ActionAssignment-link between the “default” object of the class Permission and au(a)
or ar(a).
For each attribute a, and each permission p that grants “atomic update access” to a, insert an ActionAssignment-link
between au(a) and p. Delete any ActionAssignment-link between the “default” object of the class Permission and au(a).
For each attribute a, and each permission p that grants “atomic read access” to a, insert an ActionAssignment-link
between ar(a) and p. Delete any ActionAssignment-link between the “default” object of the class Permission and ar(a).
For each association-end d, and each permission p that grants “association-end full access” to d, insert an
ActionAssignment-link between dfa(d) and p. Delete any ActionAssignment-link between the “default” object of the class
Permission and au(d) or ar(d).
For each association-end d, and each permission p that grants “atomic update access” to d, insert an ActionAssignment-
link between au(d) and p. Delete any ActionAssignment-link between the “default” object of the class Permission and
au(d).
For each association-end d, and each permission p that grants “atomic read access” to d, insert and ActionAssignment-link
between ar(d) and p. Delete any ActionAssignment-link between the “default” object of the class Permission and ar(d).
For each method m, and each permission p that grants “atomic execute access” to m, insert an ActionAssignment-link
between ae(m) and p. Delete any ActionAssignment-link between the “default” object of the class Permission and ae(m).

Table 2: Mapping from models to metamodel instances (II).

