
What’s New in Maude 2.4

Manuel Clavel1, Francisco Duŕan2, Steven Eker3, Patrick Lincoln3,
Narciso Mart́ı-Oliet1, Jośe Meseguer4, Carolyn Talcott3, and Alberto Verdejo1

1 Universidad Complutense de Madrid, Spain
2 Universidad de Ḿalaga, Spain
3 SRI International, CA, USA

4 University of Illinois at Urbana-Champaign, IL, USA

Abstract. This paper describes the main features introduced in Maude since
Maude 2.0, which include: communication with external objects; a new imple-
mentation of its module algebra with operations for summation and renaming of
modules, as well as support for parameterized programming by means of theo-
ries and views; new predefined libraries of parameterized data types, supporting
efficient versions of lists, sets, maps, and arrays; a linear Diophantine equation
solver; a strategy language; and support for unification.

1 Introduction

Maude is a language and a system based on rewriting logic [4]. Maude modules are
rewrite theories, while computation with such modules corresponds to efficient deduc-
tion by rewriting. Because of its logical basis and its initial model semantics, a Maude
module defines a precise mathematical model. This means that Maude and its formal
tool environment can be used in three, mutually reinforcing ways: as a declarative pro-
gramming language, as an executable formal specification language, and as a formal
verification system. The Maude system, its documentation [7], and related papers and
applications are available from the Maude websitehttp://maude.cs.uiuc.edu.

The first version of Maude was publicly released at the beginning of 1999 and pre-
sented at RTA’99 [3]; four years later, Maude 2.0 was introduced at RTA’03 [5]. The
new and improved features of Maude 2.0 included: its generalized logical and opera-
tional semantics, the access to kinds, the use of frozen arguments, conditional rewrite
rules with rewrites in their conditions, thesearch command, new predefined modules
of integers, natural, rational and floating-point numbers, quoted identifiers, and strings,
an improved metalevel redesign, an LTL model checker, an implementation redesign,
and some formal tools.

Full Maudeis an extension of Maude, written in Maude itself by taking advantage
of the reflective capabilities made available in Maude’sMETA-LEVEL module [7]. Full
Maude has been used as a test bed for prototyping new features: parameterization [4],
strategies [16], unification [6], etc. This allows to experiment with such features before
implementing them at the core level of the C++ Maude implementation.

In this paper we briefly describe the main features introduced in Maude since Maude
2.0, including communication with external objects; a new implementation at the core
level of its module algebra with operations for summation and renaming of modules, as

well as support for parameterized programming by means of theories and views; new
predefined libraries of parameterized data types, supporting efficient versions of lists,
sets, maps, and arrays; a linear Diophantine equation solver; a strategy language to be
used at the object level; and support for unification. Each section of this paper is devoted
to one of these features. As already mentioned, some of these features have previously
been experimented with using Full Maude.

The releases of Maude since Maude 2.0 have indeed many other new features and
improvements that cannot be described here. We refer the reader to the Maude doc-
umentation [7] for more details. The forthcoming book on Maude [6] contains many
additional examples and explanations, as well as information on applications and tools.

2 Object-message fairness and external objects

Distributed systems can be naturally modeled in Maude as multisets of entities, loosely
coupled by some suitable communication mechanism. An important example is object-
based distributed systems in which the entities are objects, each with a unique identity,
and the communication mechanism is message passing. Maude supports the modeling
of object-based systems by providing a predefined moduleCONFIGURATION that de-
clares sorts representing the essential concepts of object, message, and configuration,
along with a notation for object syntax that serves as a common language for spec-
ifying object-based systems. To specify an object-based system, the user can import
CONFIGURATION and then define the particular objects, messages, and rules for inter-
action that are of interest. In addition to simple asynchronous message passing, Maude
also supports complex patterns of synchronous interaction that can be used to model
higher-level communication abstractions. A new feature in Maude 2.4 is the imple-
mentation of anobject-message fairrewriting strategy that is well suited for executing
object system configurations. This strategy ensures that any message sent to any object
will eventually be received and processed by the object.

Maude 2.4 also supportsexternal objects, so that objects inside a Maude configura-
tion can interact with different kinds of objects outside it. The external objects directly
supported are internetsockets; but through them it is possible to interact with other
external objects. Configurations that want to communicate with external objects must
contain at least oneportal, which is the constant<> of sortConfiguration in the pre-
defined moduleCONFIGURATION. Rewriting with external objects that do not reside in
the configuration is started by the external rewrite commanderewrite, which follows
the object-message fair rewriting strategy.

Sockets are declared in theSOCKET module. The external object named by the con-
stantsocketManager is a factory for socket objects. To create a client socket, you
send it acreateClientTcpSocket message with the name of the object the reply
should be sent to, the name of the server you want to connect to, and the port you
want to connect to. The reply will contain the name of the newly created socket. You
can then send data to the server with asend message, and indicate readiness to ac-
cept data by sending areceive message. For example, to have communication be-
tween two Maude interpreter instances, one of them must take the server role and of-
fer a service on a given port. To create a server socket, you sendsocketManager a

createServerTcpSocket message. The only thing you can do with a server socket is
to accept clients. The socket you use to communicate with that client behaves just like
a client socket for sending and receiving. Communications with socket objects have the
form msgName(to, from, ...), i.e., the first argument is the intended receiver of the
message and the second is the sender.

The following rules illustrate a very naive two-way communication between two
Maude interpreter instances. First, the server waits for clients. If one client is accepted,
the server waits for messages from it. When the message arrives, the server converts
the received data to a natural number, computes its factorial, converts it into a string,
and finally sends this string to the client. Once the message is sent, the server closes the
socket with the client.

rl [created] : < O : Server | A > createdSocket(O, socketManager, LISTENER)
=> < O : Server | A > acceptClient(LISTENER, O) .

rl [accCli] : < O : Server | A > acceptedClient(O, LISTENER, IP, CLIENT)
=> < O : Server | A > receive(CLIENT, O) acceptClient(LISTENER, O) .

rl [rec] : < O : Server | A > received(O, CLIENT, DATA)
=> < O : Server | A > send(CLIENT, O, string(rat(DATA, 10)!, 10)) .

rl [sent] : < O : Server | A > sent(O, CLIENT)
=> < O : Server | A > closeSocket(CLIENT, O) .

The Maude command that initializes the server is as follows, where the configura-
tion includes the portal<>.

Maude> erewrite <> < aServer : Server | none >
createServerTcpSocket(socketManager, aServer, 8811, 5) .

Using the following rules, the client connects to the server (clients must be created
after the server), sends a message representing a number, and then waits for the re-
sponse. When the response arrives, rewriting ends, because there are no messages that
could block the computation.

rl [created] : < O : Client | A > createdSocket(O, socketManager, CLIENT)
=> < O : Client | A > send(CLIENT, O, "6") .

rl [sent] : < O : Client | A > sent(O, CLIENT)
=> < O : Client | A > receive(CLIENT, O) .

The initial configuration for the client will be as follows, again with portal<>.

Maude> erewrite <> < aClient : Client | none >
createClientTcpSocket(socketManager, aClient, "localhost", 8811) .

3 Module algebra

As in Clear [2], OBJ [14], CafeOBJ [13] and other specification languages in that tra-
dition, the abstract syntax for writing specifications in Maude can be seen as given
by module expressions, defining a new module out of previously defined modules by
combining and/or modifying them according to a specific set of operations. In fact,

structuring is essential in all specification languages, not only to facilitate the construc-
tion of specifications from already existing ones—with more or less flexible reusability
mechanisms—but also for managing the complexity of understanding and analyzing
large specifications. Maude 2.4 now supports module operations for summation, re-
naming, and instantiation of parameterized modules.

The summation module operation creates a new module that includes all the infor-
mation in its summands. For example,FLOAT+STRING is the union of the predefined
FLOAT andSTRING modules.

Renaming a module allows renamings of sorts and operators, and also changing the
attributes of the operator being renamed. For example, the renaming

fmod RENAMED-INT is
protecting INT * (sort Zero to MachineZero,

sort Int to MachineInt,
op s_ : Nat -> NzNat to $succ,
op _divides_ : NzInt Int -> Bool to $divides) .

endfm

is part of the construction of machine integers out of arbitrary size integers described
later in Section 4.

Theories, parameterized modules, and views are the basic building blocks ofpa-
rameterizedprogramming. Atheorydefines the interface of a parameterized module,
that is, the structure and properties required of an actual parameter. Theories have a
loosesemantics, in the sense that any algebra satisfying the equations and membership
axioms in the theory is an acceptable model, as opposed to the initial model semantics
of modules. Aparameterized moduleis a module with one or moreparameters, each
of which is expressed by means of one theory. For lists and sets we do not need any
requirement on the data elements, and therefore we may use the trivial theoryTRIV,
with just a sortElt, as parameter of such modules; but in other cases, say search trees
or sorted lists, we may require a particular operator or an order relation by means of the
appropriate (either predefined or user-defined) theories describing the specific require-
ments (see Section 4).

The instantiation of the formal parameters of a parameterized module with actual
parameter modules or theories requires aviewmapping entities from the formal inter-
face theory to the corresponding entities in the actual parameter module. In general,
there may be several ways in which the source theory requirements might be satisfied,
if at all, by the target module or theory; that is, there can be many different views, each
specifying a particular interpretation of the source theory in the target. For example,
the following viewRingToRat is a view from a theoryRING of rings to the predefined
functional moduleRAT of rational numbers, where the mapping omits the operators_+_
and_*_ for addition and product in the ring, because they have the same syntax in both
the source and the target of the view.

view RingToRat from RING to RAT is
sort Ring to Rat .
op e to term 1 .
op z to 0 .

endv

Each view declaration has an associated set ofproof obligations, namely, for each
axiom in the source theory it should be the case that the axiom’s translation by the view
holds true in the target. Since the target can be a module interpreted initially, verifying
such proof obligations may in general require inductive proof techniques of the style
supported for Maude’s logic in [8].

For example, the following declaration is the beginning of a parameterized module
POLYNOMIAL specifying polynomials on a ring and a set of variables (see [7, 6] for full
details). Notice that there are two theories:RING, for the coefficients, andTRIV, for the
variables.

fmod POLYNOMIAL{R :: RING, X :: TRIV} is endfm

We can then define the polynomials with rational coefficients and quoted identifiers
as variables by instantiating the module above with the previous viewRingToRat and
another viewQid from TRIV to QID, as follows:

fmod QID-RAT-POLY is protecting POLYNOMIAL{RingToRat, Qid} . endfm

Parameterized modules cannot be summed, even if all the parameters are bound.
Parameterized modules may be renamed, but the renaming must not affect any sorts or
operators coming from a parameter theory.

4 New predefined libraries

Maude has a standard library of predefined modules that, by default, are entered into
the system at the beginning of each session, so that any of these predefined modules
can be imported by any other module defined by the user. We describe here the new
modules that are part of the Maude prelude, in addition to predefined modules providing
commonly used data types, such as Booleans, numbers, strings, and quoted identifiers,
that were already available in Maude 2.0.

Random numbers and counters.The functional moduleRANDOM adds toNAT a pseudo-
random number generator. The functionrandom is the mapping fromNat into the range
of natural numbers[0,232−1] computed by successive calls to the Mersenne Twister
Random Number Generator. The system moduleCOUNTER adds a “counter” that can
be used to generate new names and new random numbers in Maude programs that do
not want to explicitly maintain this state. These modules can be used together to sample
various probability distributions, which can then be used to specifyprobabilistic models
in Maude [6].

Machine integers. Versions of Maude prior to 2.0 supported machine integers in place
of the arbitrary size integers of Maude 2.0. For certain applications, such as specify-
ing programming languages that support machine integers as a built-in data type, it is
convenient to have a predefined specification for machine integers. Machine integers
are efficiently emulated in terms of arbitrary size integers. The parameterized module
MACHINE-INT takes a bit-width parametern≥ 2, which must be a power of 2, and de-
fines those operations that have a new semantics when applied to machine integers. In

many cases this means applying the operation$wrap to the results to correctly simulate
the wrap-around effect over an overflow on signed fixed bit width integers by, in effect,
extending the sign bit infinitely to the left.

Predefined theories.The simplest non-empty theory is calledTRIV and consists of a
single sort. A model of this theory is just a set. The intuition behind this simple theory
is that the minimum requirement possible on a parameterized data type construction is
having a data type as a set of basic elements to build more data on top of it. For example,
in the parameterized moduleLIST{X :: TRIV}, we require a set of elements satisfying
TRIV to then build lists of such elements. The theoryDEFAULT is slightly more complex
thanTRIV, in that in addition to a sort it also requires that there be a distinguished
“default” element in such a sort.

TheSTRICT-WEAK-ORDER theory specifies the notion ofstrict weak order, that is,
a strict partial order with the additional requirement that the incomparability relation is
transitive. TheTOTAL-PREORDER theory specifies the concept oftotal preorder, that is,
a total binary relation which is reflexive and transitive. The notions of strict weak order
and of total preorder relax in different ways the requirements of a total order—specified
in TOTAL-ORDER—in such a way that they are complementary: the set-theoretic com-
plement of a strict weak order is a total preorder and vice versa. Both kinds of relations
capture the notion that the set of elements is split into partitions which are linearly or-
dered. This situation naturally arises when records are compared on a given field. These
theories are used as requirements for the specification of sorting algorithms.

Lists and sets. The Maude prelude includes modulesLIST andSET, both parameter-
ized byTRIV, defining lists andsets, respectively. Lists over a given sort of elements
are constructed from the constantnil (representing the empty list) and singleton lists
(identified with the corresponding elements using a subsort declaration) by means of
anassociativeconcatenation operator, with identitynil, written as juxtaposition with
empty syntax__. Sets over a given sort of elements are built from the constantempty
and singleton sets (identified with the corresponding elements using a subsort decla-
ration) with anassociative, commutative, andidempotentunion operator, with identity
empty, written _,_. Furthermore, theLIST* andSET* modules specify, respectively,
generalizedor nestablelists and sets.

The parameterized moduleWEAKLY-SORTABLE-LIST specifies astableversion of
themergesortalgorithm on lists, so that incomparable elements remain in the same rel-
ative order as in the list provided as argument. For this notion to be well defined, the
corresponding parameter theory isSTRICT-WEAK-ORDER. The parameterized module
WEAKLY-SORTABLE-LIST’ specifies the same sorting algorithm, but parameterized in-
stead with respect to theTOTAL-PREORDER theory. Finally, there is also a parameterized
moduleSORTABLE-LIST for sorting lists with respect to the theoryTOTAL-ORDER.

Maps and arrays. Both mapsandarrays represent a functionf between two sets as
a set of pairs of the form{(a1, f (a1)),(a2, f (a2)), . . . ,(an, f (an))} in the graph of the
function; each pair(ai , f (ai)) is called anentry. The difference between maps and ar-
rays is that the former leave undefined the result off over those values not present in the
set of entries, while the latter assign a “default” value result in that case. This is made

explicit in the respective parameter theories: while maps are parameterized with respect
to the theoryTRIV, arrays are parameterized with respect toDEFAULT that, in addition
to a set of data, provides a default value (see above). More specifically, the domain and
codomain values of a map come from the parameters of the parameterized data type
specified in the moduleMAP, both of them satisfying the theoryTRIV and thus provid-
ing sets of elements. The operatorinsert adds a new entry to a map, but when the
first argument already appears in the domain of definition of the map, the second argu-
ment is used toupdatethe map. There is also a look-up operator. As explained above,
arrays work like maps, with the difference that an attempt to look up an unmapped
value always returns the default value, i.e., arrays have asparse arraybehavior. In the
same spirit, mappings to the default value are never inserted. The parameterizedARRAY
module also contains definitions of appropriate operators for insertion and lookup.

5 Linear Diophantine equation solver

The Maude system includes now a built-in linear Diophantine equation solver. The
interface to the solver is defined in the filelinear.maude which contains the functional
moduleDIOPHANTINE. The current solver finds non-negative solutions of a systemSof
n simultaneous linear equations inm variables having the formMv = c, whereM is an
n×m integer coefficient matrix,v is a column vector ofm variables, andc is a column
vector ofn integer constants. Both matrices and vectors are represented as sparse arrays
with their dimensions implicit and their indices starting from 0; for this we make heavy
use of the parameterized moduleARRAY, described above.

The solver is invoked with the built-in operatornatSystemSolve, which takes as
arguments the coefficient matrix, the constant vector, and a string naming the algorithm
to be used (see below), and returns the complete set of solutions encoded as a pair of sets
of vectors[A | B]. The non-negative solutions of the linear Diophantine system
correspond exactly to those vectors that can be formed as the sum of a vector fromA
and a non-negative linear combination of vectors fromB. In particular, if the systemS
is homogeneous (i.e.,c = zeroVector) thenA contains just the constantzeroVector
andB is the Diophantine basis ofS, which will be empty ifS only admits the trivial
solution. IfS is inhomogeneous (i.e.,c 6= zeroVector) then, ifShas no solution, both
A andB will be empty; otherwise,B will consist of the Diophantine basis ofS′, the
system formed by settingc = zeroVector, while A contains all solutions ofS that are
not strictly larger than any element ofB.

Deciding whether a linear Diophantine system admits a non-negative, nontrivial
solution is NP-complete [19]. Furthermore the size of the Diophantine basis of a homo-
geneous system can be very large. For example the equation:x+y−kz= 0, for constant
k > 0, has a Diophantine basis (i.e., set of minimal, nontrivial solutions) of sizek+1.

There are currently two algorithms implemented in Maude. The string"cd" spec-
ifies a version of the classical Contejean-Devie algorithm [11] with various improve-
ments. The algorithm is based on incrementing a vector of counters, one for each vari-
able, and so it can only solve systems where the answers involve fairly small numbers.
The string"gcd" specifies an original algorithm based on integer Gaussian elimination
followed by a sequence of extended greatest common divisor (gcd) computations. Ter-

mination depends on the bound on the sum of minimal solutions established in [17],
which can cause a huge amount of fruitless search after the last minimal solution has
been found. It performs well on the “sailors and monkey” problem from [11].

6 Strategy language

An interesting feature of rewriting logic is that, thanks to its reflective capabilities [10],
strategies themselves can also be specified in a declarative way by means of rewrite
rulesat the metalevel, that is, by rewrite rules that guide one level up how the rules of
the system we are interested in are applied at the object level. Thus, in Maude strategies
can be defined by rules at the metalevel in an extension of itsMETA-LEVEL module [7].
There is great freedom to define in this way differentstrategy languages[9], which can
then be used to specify and execute strategies for any object theory of interest. How-
ever, pragmatic considerations are important to guide strategy language designs that can
deal well with relevant applications. Therefore, to make the language easier to use, we
have made a basic strategy language for Maude availableat the object level[16, 12],
rather than at the metalevel. In general, the same rewrite theory describing a system
may be executed with different strategies, which may each have specific advantages de-
pending on the purpose at hand. Our strategy language allows the definition of strategy
expressions that control the way a term is rewritten. We have benefitted from our own
previous experience designing strategy languages in Maude, and also from the experi-
ence of other languages like ELAN [1] and Stratego [21]. Nevertheless, our design is
based on a strict separation between the rewrite rules insystem modulesand the strat-
egy expressions, that are specified in separatestrategy modules. Thus, in our strategy
language design it is not possible to use strategy expressions in the rewrite rules of a
system module: they can only be specified in a separate strategy module. In fact, this
separation makes possible defining different strategy modules to control in different
ways the rewrites of a single system module.

A strategy is described as an expression that, when applied to a given term, pro-
duces asetof terms as a result, given that the process is nondeterministic in general.
The basic strategies consist of the application of a rule (identified by the corresponding
rule label) to a given term, and allowing variables in a rule to be instantiated before
its application by means of a substitution. For conditional rules—which may contain
rewrite conditions—such rewrite conditions can also be controlled by means of strate-
gies. Basic strategies are combined by means of several combinators, including: regular
expression constructions (concatenation, union, and iteration), if-then-else, combinators
to control the way subterms of a given term are rewritten, and recursion [16]. We have
also developed the notion ofgeneric strategies(e.g., backtracking, map, etc.), which
are applicable not to a single rewrite theory, but to a wide range of rewrite theories
satisfying some parametric requirements.

In order to validate our strategy language design, we have mainly focused on auto-
mated deduction and programming language semantics applications. Besides the short
examples presented in [16], the language has been successfully used in the implementa-
tion of the operational semantics of the ambient calculus [18], the two-level operational
semantics of the parallel functional programming language Eden [15], basic completion

algorithms [20], and congruence closure algorithms [12]. Our first prototype implemen-
tation defined the language at the metalevel in the usual reflective way, while keeping
the user interface at the object level for ease and convenience. After validating our
language design experimentally and reaching a mature language design, the strategy
language has been implemented at the C++ level, at which the Maude system itself is
implemented, to make the language a stable new feature of Maude 2.4.

7 Unification

Maude now includes support for order-sorted unification in a subset of the theories sup-
ported for matching. At the object level the unify command takes a pair of terms and
computes a complete set of unifiers. If only free theory operators are involved, this set
is guaranteed to be minimal. This is achieved using a novel BDD-based algorithm for
computing the possible sorts of free variables that avoids introducing redundant solu-
tions. In the metalevel this capability is reflected by the descent functionmetaUnify.

Because, even in the free theory, order-sorted unification may require the intro-
duction of fresh variables, all unifiers are presented as substitutions from the variables
occurring in the problem to fresh variables; in the following example#i:(Nz)Nat are
fresh variables of sort(Nz)Nat.

fmod NAT is
sorts NzNat Nat . subsort NzNat < Nat .
op _+_ : Nat Nat -> Nat . op _+_ : NzNat Nat -> NzNat .
op _+_ : Nat NzNat -> NzNat . op 0 : -> Nat .
op s : Nat -> NzNat . op f : Nat Nat -> Nat .

endfm

Maude> unify f(A:NzNat, B:NzNat) =? f(X:Nat + Y:Nat, Y:Nat + Z:Nat) .
Decision time: 1ms cpu (0ms real)
Solution 1 Solution 2
A:NzNat --> #1:NzNat + #2:Nat A:NzNat --> #1:Nat + #2:NzNat
B:NzNat --> #2:Nat + #3:NzNat B:NzNat --> #2:NzNat + #3:Nat
X:Nat --> #1:NzNat X:Nat --> #1:Nat
Y:Nat --> #2:Nat Y:Nat --> #2:NzNat
Z:Nat --> #3:NzNat Z:Nat --> #3:Nat

Note: We expect to release Maude 2.4 at RTA. However, many of the features described
above are already available in the current version of Maude 2.3. At the time of writing,
the features that are partly available are the strategy language and unification, which are
being implemented for Maude 2.4.

References

1. P. Borovansḱy, C. Kirchner, H. Kirchner, and C. Ringeissen. Rewriting with strategies in
ELAN: A functional semantics.International Journal of Foundations of Computer Science,
12:69–95, 2001.

2. R. Burstall and J. A. Goguen. The semantics of Clear, a specification language. In D. Bjørner,
ed., Abstract Software Specifications, 1979 Copenhagen Winter School, LNCS 86, pages
292–332. Springer, 1980.

3. M. Clavel, F. Duŕan, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and J. Quesada. The
Maude system. In N. Narendran and M. Rusinovitch, eds.,Rewriting Techniques and Appli-
cations, RTA’99, Trento, Italy, LNCS 1631, pages 240–243. Springer, 1999.

4. M. Clavel, F. Duŕan, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and J. Quesada. Maude:
specification and programming in rewriting logic.Theoretical Computer Science, 285:187–
243, 2002.

5. M. Clavel, F. Duŕan, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and J. Talcott. The
Maude 2.0 System. In R. Nieuwenhuis, ed.,Rewriting Techniques and Applications, RTA
2003, Valencia, Spain, LNCS 2706, pages 14–29. Springer, 2003.

6. M. Clavel, F. Duŕan, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and C. L. Talcott.All
About Maude, A High-Performance Logical Framework, LNCS 4350. Springer, 2007.

7. M. Clavel, F. Duŕan, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and J. Talcott.Maude
Manual (Version 2.3), SRI International & University of Illinois at Urbana-Champaign, Jan-
uary 2007. Available athttp://maude.cs.uiuc.edu.

8. M. Clavel, F. Duŕan, S. Eker, and J. Meseguer. Building equational proving tools by reflec-
tion in rewriting logic. InCAFE: An Industrial-Strength Algebraic Formal Method. Elsevier,
2000.

9. M. Clavel and J. Meseguer. Internal strategies in a reflective logic. InCADE-14 Workshop
on Strategies in Automated Deduction, Townsville, Australia, pages 1–12, 1997.

10. M. Clavel and J. Meseguer. Reflection in conditional rewriting logic.Theoretical Computer
Science, 285(2):245–288, 2002.

11. E. Contejean and H. Devie. An efficient incremental algorithm for solving systems of linear
diophantine equations.Information and Computation, 113(1):143–172, 1994.

12. S. Eker, N. Martı́-Oliet, J. Meseguer, and A. Verdejo. Deduction, strategies, and rewriting.
In M. Archer, T. Boy de la Tour y C. A. Mũnoz, eds.,Strategies in Automated Deduction,
STRATEGIES 2006, Seattle, Washington, ENTCS. Elsevier, 2007.

13. K. Futatsugi and R. Diaconescu.CafeOBJ Report. World Scientific, AMAST Series, 1998.
14. J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. Introducing OBJ. In

J. A. Goguen and G. Malcolm, eds.,Software Engineering with OBJ: Algebraic Specification
in Action, pages 3–167. Kluwer, 2000.

15. M. Hidalgo-Herrero, A. Verdejo, and Y. Ortega-Mallén. Looking for Eden through Maude
and its strategies. In F. López-Fraguas, ed.,V Jornadas sobre Programación y Lenguajes,
PROLE 2005, pages 13–23. Thomson, 2005.

16. N. Mart́ı-Oliet, J. Meseguer, and A. Verdejo. Towards a strategy language for Maude. In
N. Mart́ı-Oliet, ed.,Rewriting Logic and its Applications, WRLA 2004, Barcelona, Spain,
ENTCS 117, pages 417–441. Elsevier, 2005.

17. L. Pottier. Minimal solutions of linear diophantine systems: bounds and algorithms. In R. V.
Book, ed.,Rewriting Techniques and Applications, RTA-91, Como, Italy, LNCS 488, pages
162–173. Springer, 1991.

18. F. Rosa-Velardo, C. Segura, and A. Verdejo. Typed mobile ambients in Maude. In H. Cirstea
and N. Mart́ı-Oliet, eds.,Rule-Based Programming, RULE 2005, Nara, Japan, ENTCS 147,
pages 135–161. Elsevier, 2006.

19. A. P. Toḿas.On Solving Linear Diophantine Constraints. PhD thesis, Univ. do Porto, 1997.
20. A. Verdejo and N. Martı́-Oliet. Basic completion by means of Maude strategies. Paper in

preparation, 2007.
21. E. Visser. Program transformation with Stratego/XT: Rules, strategies, tools, and systems

in StrategoXT-0.9. In C. Lengauer, ed.,Domain-Specific Program Generation, LNCS 3016,
pages 216–238. Springer, 2004.

