
The Maude Formal Tool Environment

Manuel Clavel1, Francisco Durán2, Joe Hendrix3, Salvador Lucas4, José Meseguer3,
and Peter Ölveczky5

1 Universidad Complutense de Madrid, Spain
2 Universidad de Málaga, Spain

3 University of Illinois at Urbana-Champaign, IL, USA
4 Universidad Politécnica de Valencia, Spain

5 University of Oslo, Norway

Abstract. This paper describes the main features of several tools concerned with
the analysis of either Maude specifications, or of extensions of such specifi-
cations: the ITP, MTT, CRC, ChC, and SCC tools, and Real-Time Maude for
real-time systems. These tools, together with Maude itself and its searching and
model-checking capabilities constitute Maude’s formal environment.

1 Introduction

Maude is a language and a system based on rewriting logic [1, 2]. Maude modules are
rewrite theories, while computation with such modules corresponds to efficient deduc-
tion by rewriting. Because of its logical basis and its initial model semantics, a Maude
module defines a precise mathematical model. This means that Maude and its formal
tool environment can be used in three, mutually reinforcing ways: as a declarative pro-
gramming language, as an executable formal specification language, and as a formal
verification system. The Maude system, its documentation, and related papers and ap-
plications are available from the Maude website http://maude.cs.uiuc.edu.

Besides being able to use Maude’s inductive theorem prover (ITP) to verify induc-
tive properties of functional modules, and the built-in support for verifying invariants
and LTL formulas, we can use the following Maude tools to formally verify other prop-
erties: (1) the Maude Termination Tool (MTT) [8] can be used to prove termination of
functional modules (§3); (2) the Maude Church-Rosser Checker (CRC) [3] can be used
to check the Church-Rosser property of functional modules (§4); (3) the Maude Coher-
ence Checker (ChC) can be used to check the coherence (or ground coherence) of un-
conditional system modules (§5); and (4) the Maude Sufficient Completeness Checker
(SCC) [11] can be used to check that defined functions have been fully defined in terms
of constructors (§6). Furthermore, if we are dealing with rewriting logic specifications
of real-time systems, we can use the Real-Time Maude tool (§7) to both simulate such
specifications and to perform search and model-checking analysis of their LTL proper-
ties. Full Maude, an extension of Maude, written in Maude itself, has played a key role
in the construction of some of these tools. Full Maude has become a common infras-
tructure on top of which tools like these can be built, but also environments for other
languages, such as, e.g., the Real-Time Maude tool.

In the following sections we summarize the main features of these tools. For further
details on them please check the given references or visit the indicated web sites.



2 The ITP: an Inductive Theorem Prover

The ITP tool [4] is a theorem-proving assistant. It can be used to interactively verify
properties of membership equational specifications. An important feature of the ITP is
that it supports proofs by structural induction and complete induction. Another inter-
esting feature is that incompletely specified operations can be reasoned about so as to
support incrementality. That is, operations do not have to be completely specified before
inductive properties about them can be verified mechanically. The ITP tool is a Maude
program. It comprises over 8000 lines of Maude code that make extensive use of the re-
flective capabilities of the system. In fact, rewriting-based proof simplification steps are
directly executed by the powerful underlying Maude rewriting engine. The ITP tool is
currently available as a web-based application that includes a module editor, a formula
editor, and a command editor. These editors allow users to create and modify their spec-
ifications, to formalize properties about them, and to guide the proofs by filling in and
submitting web forms. The web application also offers a goal viewer, a script viewer,
and a log viewer. They generate web pages that allow the user to check, print, and save
the current state of a proof, the commands that have guided it, and the logs generated
in the process by the Maude system. The ITP web-based application can be accessed
at http://maude.sip.ucm.es:8080/webitp/. The ITP is still an experimental tool,
but the results obtained so far are quite encouraging. It is the only theorem prover at
present that supports reasoning about membership equational logic specifications. The
powerful integration of term rewriting with a decision procedure for linear arithmetic
with uninterpreted function symbols [5], while also available in other rewriting-based
theorem provers like RRL [14], has been easily and efficiently implemented in the ITP
by exploiting the reflective design of the tool and the reflective capabilities of the Maude
system. This fact has encouraged us to plan to add other decision procedures to our tool
in the near future. Another interesting extension of the tool is the implementation of the
cover set induction method, a feature already available in RRL [15].

3 The Maude Termination Tool

The Maude Termination Tool (MTT) checks the termination of Maude specifications.
Maude, as other equational and rule-based programming languages, has expressive fea-
tures such as: advanced typing constructs including sorts, subsorts, kinds, and mem-
berships; matching modulo axioms; evaluation strategies; and very general conditional
rules. Proving termination of programs having such features is nontrivial, since some of
these features are not supported by standard termination methods and tools. Yet, the use
of such features may be essential to ensure termination. MTT uses several theory trans-
formations, some of which are described in [7, 8], to bridge the gap between expressive
equational programs and conventional termination tools for (variants of) term rewrit-
ing systems, which are used as backends. Currently, MU-TERM [16] and AProVE [9]
provide the most accurate termination proofs for MTT and they can be used as back-
ends. Tools which implement less specific (but still valid) proofs like CiME [6] can be
used as well. The transformed termination problems are given to the back-end tools in
TPDB syntax. This makes MTT extensible, so that new tools supporting TPDB syntax



can be added as back-ends. The tool implementation distinguishes two parts: a reflec-
tive Maude specification implements the theory transformations described in [7, 8], and
a Java application connects Maude to the back-end termination tools and provides a
graphical user interface. The Java application is in charge of sending the Maude spec-
ification provided by the user to Maude to perform transformations. Depending on the
selections, one transformation or another will be accomplished. The resulting unsorted
unconditional (context-sensitive) rewriting system obtained from such transformations
is proved terminating by using the above-mentioned tools as backends. To alleviate the
installation requirements on external tools, the application includes support for connect-
ing to the external tools remotely via different alternatives, including sockets, RMI, and
web services. This feature is particularly attractive for those platforms for which there
is no version available of some of the tools. The tool and all the related information is
available from http://www.lcc.uma.es/∼duran/MTT.

4 The Church-Rosser Checker

For order-sorted specifications, being Church-Rosser and terminating means not only
confluence—so that a unique normal form will be reached—but also a sort decreasing-
ness property, namely that the normal form will have the least possible sort among those
of all other equivalent terms. The Church-Rosser Checker (CRC) [3] is a tool to help
checking whether a Maude order-sorted conditional equational specification satisfies
the Church-Rosser property.

A specification with an initial algebra semantics can often be ground Church-Rosser
even though some of its critical pairs may not be joinable. That is, the specification
can often be ground Church-Rosser without being Church-Rosser for arbitrary terms
with variables. The CRC can be used to check specifications with an initial algebra
semantics that have already been proved terminating and now need to be checked to
be ground Church-Rosser. If the specification cannot be shown to be ground Church-
Rosser by the tool, proof obligations consisting of a set of critical pairs and a set of
membership assertions that must be shown, respectively, ground-joinable, and ground-
rewritable to a term with the required sort are generated and are given back to the
user as a useful guide in the attempt to establish the ground Church-Rosser property.
Since this property is in fact inductive, in some cases the ITP (§2) can be enlisted to
prove some of these proof obligations. In other cases, the user may in fact have to
modify the original specification by carefully considering the information conveyed by
the proof obligations. The tool is written entirely in Maude, and is in fact an executable
specification of the formal inference system that it implements. A complete execution
environment for the tool has been built in Maude, and it has been integrated within Full
Maude. The tool, together with its documentation and some examples, is available from
http://www.lcc.uma.es/∼duran/CRC.

5 The Maude Coherence Checker

Coherence is a key executability requirement for rewrite theories. It allows reducing the,
in general undecidable, problem of computing rewrites of the form [t]E∪A −→ [t ′]E∪A,



with A a set of equational attributes (associativity, commutativity, identity) for which
matching algorithms exist and E a set of equations, to the much simpler and decid-
able problem of computing rewrites of the form [t]A −→ [t ′]A. The Maude Coherence
Checker (ChC), which is written in Maude using a reflective design as an extension
of Full Maude, provides a decision procedure for order-sorted system modules whose
equations and rules are unconditional. The tool generates a set of critical pairs, whose
coherence guarantees that of the entire system module. It then checks whether each of
these pairs is coherent. The system module given as input to the tool is always assumed
to be ground Church-Rosser and terminating. The CRC (§4) and the MTT (§3) can be
used to try to prove such properties. For Maude system modules, which have an ini-
tial model semantics, the weaker requirement of ground coherence, that is, coherence
for ground terms, is enough. When the ChC tool cannot prove coherence—either be-
cause this fails, or because the input specification falls outside the class of decidable
theories—it outputs a set of proof obligations associated with the critical pairs that it
could not prove coherent. The user can then interact with the ChC tool to try to prove the
ground coherence of the input system module by a constructor-based process of reason-
ing by cases. In the end, either: (1) all proof obligations are discharged and the module
is shown to be ground coherent; or (2) proving ground coherence can be reduced to
proving that the inductive validity of a set of equations follows from the equational part
of the input system module, for which the ITP can be used (§2); or (3) it is not possible
to reduce some of the proof obligations to inductively proving some equations. Case
(3) may be a clear indication that the specification is not ground coherent, so that a new
specification should be developed. The tool, together with its documentation and some
examples, is available from http://www.lcc.uma.es/∼duran/ChC.

6 The Sufficient Completeness Checker

The Maude Sufficient Completeness Checker (SCC) [11] is a tool for checking that
each operation in a equational Maude specification is defined on all valid inputs. The
SCC verifies that the constructor operator declarations are annotated with the ctor at-
tribute, and that enough equations have been given so that the remaining operations
reduce to constructor terms. Specifications may import any of the built-in Maude mod-
ules. The tool uses the characterization of sufficient completeness given in [12] which
allows for operations to be intentionally partial by declaring these operations at the
kind level rather than the sort level. This allows the SCC to successfully analyze such
specifications without raising false warnings. The tool is designed for unparameter-
ized, order-sorted, left-linear, and unconditional Maude specifications that are ground
terminating and Church-Rosser. It is a decision procedure for this class when every as-
sociative symbol is commutative, but for associative symbols that are not commutative
it uses an algorithm from [13] based on machine learning techniques that works well in
practice. If the specification is not sufficiently-complete, the SCC returns a counterex-
ample to aid the user in identifying errors. The tool is not complete for specifications
with non-linear or conditional axioms, but nevertheless has proven useful in identifying
errors. The SCC accepts interactive commands to check the sufficient completeness of
a Maude module, and internally constructs a Propositional Tree Automaton [13] whose



language is empty iff the Maude module is sufficiently complete. The emptiness check
is performed by a C++ tree automata library named CETA. Recently, the tool has been
extended to check several important completeness problems of context-sensitive spec-
ifications [10]. It requires an extended version of Maude 2.3 linked to CETA, and may
be downloaded from the SCC website at http://maude.cs.uiuc.edu/tools/scc.

7 The Real-Time Maude Tool

The Real-Time Maude tool [18] extends Maude to support the formal specification and
analysis of real-time systems. The system’s state space and its instantaneous transi-
tions are defined, as in Maude, by, respectively, a membership equational logic theory
and a set of rewrite rules. Time elapse is modeled by tick rewrite rules of the form
{t} => {t ′} in time u if cond, where {_} is an operator that encloses the state. Real-
Time Maude extends Maude’s efficient rewriting, search, and LTL model checking ca-
pabilities to the timed setting by: (i) analyzing behaviors up to a given time duration;
and (ii) by having a time sampling treatment of dense time, in which only some mo-
ments in time are visited. Real-Time Maude is implemented in Maude, and achieves
high performance by simultaneously transforming a real-time module and a query into
a semantically equivalent Maude rewrite theory and a Maude query.

Real-Time Maude has proved useful to model real-time systems in an object-oriented
way. In particular, the ease and flexibility with which an appropriate form of commu-
nication can be defined has been exploited in state-of-the-art applications including: (i)
The AER/NCA protocol suite for multicast in active networks [19]—we were able to
find all known bugs in AER/NCA, as well as some previously unknown bugs not discov-
ered by traditional testing and simulation—; (ii) the OGDC wireless sensor network al-
gorithm [20]—we have shown that Real-Time Maude simulations provide more reliable
estimates of the performance of OGDC than the simulation tool used by the OGDC de-
velopers. On the theoretical level, we have given simple and easily checkable conditions
for object-oriented specifications that ensure that Real-Time Maude analyses are sound
and complete also for dense time [17]. The useful class of systems satisfying these cri-
teria include AER/NCA and OGDC, that are clearly beyond the pale of timed automata.
The Real-Time Maude tool is a mature tool, which is available, together with its docu-
mentation and several case studies, from http://www.ifi.uio.no/RealTimeMaude.

References

1. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and J. Quesada. Maude:
specification and programming in rewriting logic. Th. Comp. Sci., 285(2):187–243, 2002.

2. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and C. L. Talcott. All
About Maude, A High-Performance Logical Framework, vol. 4350 of LNCS.

3. M. Clavel, F. Durán, S. Eker, and J. Meseguer. Building equational proving tools by reflection
in rewriting logic. In CAFE: An Industrial-Strength Algebraic Formal Method. Elsevier,
2000.

4. M. Clavel, M. Palomino, and A. Riesco. Introducing the ITP tool: a tutorial. J. of Universal
Computer Science, 2007. To appear.



5. M. Clavel, M. Palomino, and J. Santa-Cruz. Integrating decision procedures in reflective
rewriting-based theorem provers. In S. Antoy and Y. Toyama, eds., Procs. WRS’04.

6. E. Contejean, C. Marché, B. Monate, and X. Urbain. Proving termination of rewriting with
CiME. In A. Rubio, ed., Procs. of WST’03, pp. 71–73, 2003.

7. F. Durán, S. Lucas, J. Meseguer, C. Marché, and X. Urbain. Proving termination of mem-
bership equational programs. In P. Sestoft and N. Heintze, eds., Procs. of PEPM’04, pp.
147–158, 2004.

8. F. Durán, S. Lucas, J. Meseguer, C. Marché, and X. Urbain. Proving operational termination
of membership equational programs. Higher-Order and Symb. Comp., 2007. To appear.

9. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termination proofs
in the dependency pair framework. In U. Furbach and N. Shankar, eds., Procs. of IJCAR’06,
vol. 4130 of LNAI, pp. 281–286, 2006.

10. J. Hendrix and J. Meseguer. On the completeness of context-sensitive order-sorted specifi-
cations. Tech. Report UIUCDCS-R-2007-2812, U. of Illinois, 2007.

11. J. Hendrix, J. Meseguer, and H. Ohsaki. A sufficient completeness checker for linear order-
sorted specifications modulo axioms. In U. Furbach and N. Shankar, eds., Procs. of IJ-
CAR’06, vol. 4130 of LNAI, pages 151–155, 2006.

12. J. Hendrix, H. Ohsaki, and J. Meseguer. Sufficient completeness checking with propositional
tree automata. Tech. Report UIUCDCS-R-2005-2635, U. of Illinois, 2005.

13. J. Hendrix, H. Ohsaki, and M. Viswanathan. Propositional tree automata. In F. Pfenning,
ed., Procs. of RTA’06, vol. 4098 of LNCS, pp, 50–65, 2006.

14. D. Kapur and M. Subramaniam. New uses of linear arithmetic in automated theorem proving
by induction. J. of Automated Reasoning, 16(1-2):39–78, 1996.

15. D. Kapur and H. Zhang. An overview of rewrite rule laboratory (RRL). J. Computer and
Mathematics with Applications, 29(2):91–114, 1995.

16. S. Lucas. MU-TERM: A tool for proving termination of context-sensitive rewriting. In
V. van Oostrom, ed., Procs. of RTA’04, vol. 3091 of LNCS, pp. 200–209, 2004.

17. P. C. Ölveczky and J. Meseguer. Abstraction and completeness for Real-Time Maude. In
Procs. WRLA’06, 2006.

18. P. C. Ölveczky and J. Meseguer. Semantics and pragmatics of Real-Time Maude. Higher-
Order and Symb. Comp., 20(1/2), 2007. To appear.

19. P. C. Ölveczky, J. Meseguer, and C. L. Talcott. Specification and analysis of the AER/NCA
active network protocol suite in Real-Time Maude. Formal Methods in System Design,
29:253–293, 2006.

20. P. C. Ölveczky and S. Thorvaldsen. Formal modeling and analysis of the OGDC wireless
sensor network algorithm in Real-Time Maude. Submitted for publication.


