
Model Metrication in MOVA: A

Metamodel-Based Approach using OCL

Manuel Clavel, Marina Egea, and Viviane Torres da Silva

Universidad Complutense de Madrid, Spain
clavel@sip.ucm.es

marina egea@fdi.ucm.es

viviane@fdi.ucm.es

Abstract. We present the metrication facility available in the MOVA
tool and discuss its metamodel-based design: metrics in MOVA are OCL
queries over the instances (automatically generated by the tool) of the
MOVA metamodel corresponding to the user-depicted models. Thanks
to this metamodel-based design, although the MOVA tool provides a
collection of predefined metrics, the users can also write and execute
their own metrics using the OCL editor included in the MOVA tool.

1 Introduction

Software metrics have been widely used to improve productivity and quality dur-
ing the software development life-cycle. Metrics have been applied to the software
design, to the software implementation, and also to the software development
process itself. The ability to measure the software provides a quantitative basis
for its development and validation [23]. In particular, the early use of metrics
in the software life-cycle can provide quantitative indicators and predictors of
structural problems [3].

Different approaches have been proposed for defining metrics which vary from
the use of natural language to the use of mathematical formalisms. Both extremes
present difficulties: the former may cause ambiguous definitions and the latter
may require a formal background to understand the definitions themselves [1].
The Object Constraint Language(OCL) [17] provides an interesting balance.
Although a formal language, OCL has been developed as a business modeling
language to be easy to read and write for those without a strong mathematical
background. In addition, OCL is part of the UML [18] standard and it can be
used to precise and query UML models: as a constraint language, OCL helps to
precise the models; as a query language, it helps to analyze them. The use of
OCL for defining metrics was first proposed by [11]: in this approach, metrics are
defined as OCL queries which are evaluated over the instances of the metamodel
that correspond to the models to be measured.

MOVA [24] is a modeling and validation tool: it allows the users to draw UML
class and object diagrams; write and check OCL constraints; write and evaluate
OCL queries; define OCL operations to be used in constraints and queries; and



write and evaluate OCL metrics. In this paper we present the metrication facili-
ties provided by MOVA, and discuss its metamodel-based design, which follows
the ideas proposed in [11]. To the best of our knowledge MOVA is the only avail-
able modeling tool that allows its users to write and execute their own metrics
directly over the user models. In fact, to help the users in writing and executing
their own metrics, MOVA provides an OCL editor and an internal translator
from MOVA user models to their corresponding MOVA metamodel instances.

The MOVA tool is still an experimental tool: it is being developed at the Uni-
versidad Complutense de Madrid by the MOVA group as part of a broader effort
for integrating rigorous modeling and validation into the industrial software en-
gineering process. The latest version of the tool, along with its user manual and
a collection of examples, is available at http://maude.sip.ucm.es/mova.

Organization The paper is organized as follows. In Section 2 we recall the MOF
architecture. Then, in Section 3, we discuss the uses of OCL and explain, in
particular, how it can be used to define metrics as query operation over the
metamodel; here we also discuss the features that are expected in a tool that
supports this metamodel-based approach for defining metrics. Next, in Section 4,
we introduce our MOVA tool and describe how its supports OCL metrics through
its OCL editor and its metamodel instance generator. Finally, in Sections 5 and 6
we discuss related work, and draw our conclusions and future work.

2 The MOF Architecture

The Meta-Object Facility (MOF) [16] defines an abstract language for specify-
ing metamodels. A metamodel is in effect an abstract language for some kind
of metadata. Examples include the metamodel for UML and the MOF itself.
UML and MOF are normally viewed in the context of the classical four-layered
metadata architecture:

– The meta-metamodel layer (M3) contains meta-metamodel elements with
which to define metamodels. MOF is an example of a meta-metamodel.

– The metamodel layer (M2) contains metamodel elements with which to de-
fine models. A metamodel is an instance of a meta-metamodel, meaning
that each element of the metamodel is an instance of an element in the
meta-metamodel. The UML metamodel, which is an instance of MOF, is an
example of a metamodel.

– The model layer (M1) contains model elements with which to model different
problems domains. A user model is an instance of the UML metamodel, and
contains both model elements and snapshots of instances of these model
elements.

– The bottom layer (M0) contains the run-time instances of the model elements
defined in a model.

This structure can be applied recursively many times: what is a metamodel
in one case can be a model in another case, and this is what happens with UML

2



and MOF. UML is a metamodel from which users can define their own models.
Similarly, MOF is a metamodel from which users can define their own models.
However, from the perspective of MOF, UML is viewed as a user model that is
based on MOF as its metamodel. Figure 1 illustrates the four-layer metamodel
hierarchy and how these meta-layers relate to each other. As noted above, every
model is an instance of the metamodel on which it is based: that is, there is a
snapshot of the metamodel associated with each model, as it is indicated by the
mappedTo arrow in Figure 1.

Fig. 1. The MOF architecture

3 The OCL Language and its Use in Metrics Definition

Within UML, the Object Constraint Language (OCL) [17] is the standard for
specifying constraints and defining queries over user models. Every expressions
written in OCL relies on the types that are defined in the (meta) models. As
a constraint language, OCL helps to precise the user models. Consider, for ex-
ample, the user model shown in Figure 2. It describes a simple railway system:
a train may own wagons; wagons can be either smoking or non-smoking; there
are first-class wagons; and wagons may be connected to other wagons (their
predecessor and successor wagons).
To require that each train should contain at least one smoking wagon, we can
add to our model the following OCL invariant:

context Train inv: AtLeastOneSmokingWagon
self.wagon→exists(w|w.smoking)

3



Fig. 2. An example of user model: a railway system.

As a query language, OCL helps to analyze the snapshots of the user models:
for example, to obtain the number of smoking wagons linked to a train, we can
use the following OCL operation:

context Train::numSmokingWagons(): Integer
body: self.wagon→select(w|w.smoking)→size()

From the perspective of MOF, the UML metamodel is a user model, which
can be precised and analyzed using OCL. In fact, the UML metamodel specifica-
tion [18] defines the well-formedness rules of each metaclass as a (possibly empty)
set of OCL invariants for the metaclass, which must be satisfied by all instances
of that metaclass for the model to be meaningful. In many cases, additional op-
erations on the metaclasses are needed for the OCL expressions, which are also
defined in [18] using OCL. For example, the UML metamodel specifies with the
following OCL invariant that generalization hierarchies must be acyclical:

context Classifier
inv: not self.allParents()→includes(self).

This invariant uses the query allParents() that gives all direct and indirect an-
cestors of a generalized classifier:

context Classifier::allParents(): Set(Classifier)
body: self.parents()→union(self.parents()→collect(p| p.allParents())).

The definition of allParents() uses also the query parents() that gives all imme-
diate ancestors of a generalized classifier:

context Classifier::parents(): Set(Classifier)
body: self.generalization→collect(g|g.general).

The use of OCL to define design metrics was first proposed in [11]. In this
approach, metrics are OCL query operations defined in the UML metamodel
which are applied to the snapshots of this metamodel corresponding to the user
models under consideration. For example, the number of ancestors of a classifier
can be obtained using the following query operation:

context Classifier::numAllParents(): Integer
body: self.allParents()→size()

4



In principle, any tool implementing an OCL evaluator could be used to apply
metrics to UML models using this approach. However, in practice, the following
features are also desirable:

Modeling GUI The tool should have a graphical interface for building user
models or/and a facility for importing models built using other modeling
tools, since defining models using a textual description is an error-prone and
tedious task for the users.

Instance Generator The tool should automatically built the snapshots of the
UML metamodel which correspond to the models built by the user with
the graphical interface. Mapping models to their associated snapshots of the
UML metamodel is also an error-prone and tedious task for the users. Addi-
tionally, the formal definition of this mapping should be publically available,
since the users must understand it in order to define their own metrics and
to evaluate the results of their applications to models.

OCL Editor The tool should provide an editor of OCL expressions with type-
checking and model-based syntax-guiding facilities, since writing metrics, i.e.
OCL expressions over the UML metamodel, can be again an error-prone and
tedious task for the users.

Metrics Library The tool should provide a collection of frequently-used query
operations (including metrics) over the UML metamodel, which the users
can directly use to measure their models and/or to write their own metrics.

4 The MOVA Tool

The MOVA tool is a Java IDE for the ITP/OCL tool [9], a text-input, experimen-
tal modeling and validation tool for UML+OCL user models. The ITP/OCL tool
relies on the equational specification of UML+OCL models summarized in [8].
The ITP/OCL is written entirely in Maude [7], a rewriting-based programming
language. The MOVA tool is freely available at http://maude.sip.ucm.es/

mova, along with its user manual and a collection of examples. Currently, the
MOVA tool allows the user to draw UML class and object diagrams, write and
check OCL invariants, write and evaluate OCL queries, define OCL operations
to be used in invariants and queries, and write and evaluate OCL metrics. The
MOVA tool is still an experimental tool. However, it features two applications
which, to the best of our knowledge, are unique among the available modeling
and validation tools: an OCL editor, with type-checking and model-based syntax-
guiding, and a metamodel-based metrics application, with automatic generation
of metamodel snapshots from user models.

4.1 The OCL editor

It assists the user in writing OCL expressions in three different contexts: adding
an invariant to a class diagram; writing a query about an object diagram; and
defining the body of an operation.

5



To write an expression the user selects patterns from lists that are built
at “run-time” when the buttons Start, Dot, Arrow, or Space are pressed. For
example, Figure 3 shows the sequence of patterns that are selected in order to
add the invariant AtLeastOneSmokingWagon (defined in Section 3) to the railway
model shown in Figure 2. The actual patterns shown in the lists depend on the
model under consideration, the current type of the expression, and the button
that has been pressed: the Start button is used to start writing an expression
(top-left screenshot in Figure 3); the Dot button is used to access a property of
a class (top-right and bottom-right screenshots in Figure 3); the Arrow button
is used to access a property of a collection (bottom-left screenshot in Figure 3);
and the Space button is used to introduce a logical or an arithmetic operator.
The current type of an expression is shown in the Current Type subwindow.

Fig. 3. A sequence of pattern selections.

Patterns can contain holes, which are types enclosed in angle brackets possibly
followed by an index. For example, the exists-pattern contains the hole 〈Boolean〉.
When a pattern with holes is selected the user has to fill its holes with expressions
of the appropriate type. Each of these expressions is written in a new editor
window, that is a child of the window in which the pattern has been selected.
The type of the hole to be filled in a child window is shown in its Target Type
subwindow, and the context in which this hole appears is shown in its Context
subwindow. For example, to write the invariant AtLeastOneSmokingWagon, the
hole 〈Boolean〉 in the exists-pattern is filled with the expression w:Wagon.smoking
of type Boolean, which is written in a child window with Boolean as its Target
Type and self:Train.wagon→exists(w:Wagon| 〈Boolean〉) as its context.

6



4.2 The metrics application

It allows the users to apply their own metrics to their user models. Metrics
are written using the OCL editor as query operations over the snapshots of the
MOVA metamodel corresponding to the user models. Here we introduce each of
the key components of this application.

The MOVA Metamodel It is a subset of the UML metamodel: basically, it only
specifies the metamodel elements which are required to define both user models
and snapshots of these models. The metamodel elements are named following
the UML metamodel: an exception to this rule is the Class element which, for
technical reasons, has been renamed to MovaClass. The MOVA metamodel is
described in [10].

The MOVA instance generator The tool internally generates the snapshots of
the metamodel corresponding to the user models, using the mapping defined in
Appendix A which basically follows the one described in [18]. To illustrate this
mapping, we show in Figure 4 the snapshot of the metamodel corresponding to
the railway model shown in Figure 2.

Fig. 4. The snapshot of the metamodel for the railway model.

Notice that, in this snapshot, for example,

– The class Wagon is mapped to the object Wagon of the class MovaClass.
– The class FirstClassWagon is mapped to the object FirstClassWagon of the

class MovaClass.
– The generalization between Wagon and FirstClassWagon is mapped to the

Generalization-object FirstClassWagonToWagon, which is linked to the object
FirstClassWagon with the association generalization↔specific, and to the ob-
ject Wagon with the association nonNavigable↔general.

7



The MOVA editor for metrics The OCL editor assists the users in writing their
metrics as query operations. The patterns, of course, will correspond to the
classes, attributes, roles, generalizations, and associations included in the meta-
model, and to the objects and links included in the snapshots of the metamodel
corresponding to the user models under consideration. For example, Figure 5
shows the sequence of patterns that can be selected in order to query about the
number of attributes owned by the class Wagon in the railway model shown in
Figure 2, along with the result of this query.

Fig. 5. A sequence of (meta) pattern selections and the result of the query.

The MOVA metrics library To ease the task of writing queries, the editor for
metrics offers additional patterns that correspond to query operations (includ-
ing basic metrics) which are frequently-used in defining complex metrics. For
example, the query operations allParents() [18] is included in the MOVA met-
rics library, although renamed to parentClassAll. Using this operation is easy to
write, for example, the metric inherAttrClassAll(c: MovaClass) that returns the
total number of inherited attributes of a class c, namely,
parentClassAll(c)→collect(c1|c1.ownedAttribute)→size.
The complete list of these operations, with their OCL definitions, is shown in Ap-
pendix B. They are inspired by the metrics defined in [3, 21, 26]: the differences
are mostly due to the fact that they are defined over different metamodels.

8



5 Related Work

There are many issues, both theoretical and pragmatical, about software and
design metrics open to discussion: how to translate (if possible) software met-
rics from/to models [4, 3, 2]; how they should be correlated [20]; how to use
them as indicators of the quality of systems [22]; how good is to measure design
models and the metrics to use [3, 14, 21, 15]; how to avoid ambiguity in met-
rics definition [6, 3]; how to empirically validate metrics for design models [19,
13, 5]; and how to build/use tools for applying metrics to design models [27,
12, 22]. Although centered around different concerns, the discussions frequently
run intermingled, which, in some cases, handicap their progress to find proper
solutions.

The use of OCL for defining design metrics was first proposed in [11], and
further explored in [3, 14, 22, 21, 20]: in this approach, metrics are defined as OCL
queries which are evaluated over the instances of the metamodel that correspond
to the models to be measured.

The library FLAME [3] consists of a collection of metrics defined in OCL
over the UML 1.3 metamodel. The library has not yet been ported to the UML
2.0 metamodel and, at the moment, it is only used through the USE tool [25].1

In our view, this situation is not ideal. First, the USE tool does not provide a
graphical interface for defining user models; instead they must be introduced
using a textual description. This is an issue when the models to be measured
are based on a metamodel different from UML metamodel 1.3 (whose textual
description is included as an example in the USE release). Second, the USE tool
does not provide editing facilities for introducing OCL expressions: they must
be manually typed within the textual description of their contextual classes.
Finally, the USE tool does not generate, from the textual descriptions of the
user models, the corresponding instances of the UML 1.3 metamodel: they must
be manually drawn using the USE graphical interface for building snapshots of
user models (in this case, the UML 1.3 metamodel).

The dMML (Defining Metrics at the Meta Level) tool [22] extends the UML
metamodel with a separate package containing a single abstract class Metrics, so
that metrics are defined as (possibly parameterized) query operations of concrete
classes of this abstract class. Although a prototype of dMML was described
in [22], at the moment of this writing, we have not been able to access the tool.
Fortunately, a new release of the tool is expected in the near future, which is
announced to work with Octopus 2.2.0 and Eclipse 3.1.2

6 Conclusions and Future Work

In this paper we have presented the metrics application available in the MOVA
tool. MOVA [24] is a UML modeling and validation tool. It provides a modeling
GUI that helps the users to draw both models and snapshots of these models. It

1 Personal communication with F. Brito e Abreu, March 2007.
2 Personal communication with Jacqueline McQuillan, March 2007.

9



also provides a rewriting-based OCL evaluator that helps the users to validate
their models. Finally, it provides an editor that helps the users in writing OCL
expressions in three different contexts: adding an invariant to a user model;
formulating a query about a snapshot of a user model; and defining the body of
query operations. This editor comes with type-checking and model-based syntax-
guiding facilities.

Following the ideas proposed in [11], metrics in MOVA are OCL queries over
snapshots of the MOVA metamodel. Inside the metrics application, MOVA sup-
ports this metamodel-based approach in two ways: first, by internally generating
the snapshots of the metamodel corresponding to the models which are built us-
ing the modeling GUI; second, by automatically selecting these snapshots as the
context of the expressions which are written using the OCL editor. To the best
of our knowledge, MOVA is the only available modeling tool that provides this
kind of support for writing and executing user-defined OCL metrics. In addi-
tion, MOVA provides a collection of frequently-used query operations (including
metrics) over the metamodel, which are available to the users in the OCL edi-
tor inside the metrics application. The MOVA metrics library is inspired by the
metrics defined in [3, 21, 26].

Currently, the MOVA metrics application suffers of two main shortcomings.
Firstly, the MOVA metamodel is only a subset of the UML metamodel: in par-
ticular, packages and non-query operations are not specified and, consequently,
metrics associated with these elements can not yet be defined. Secondly, the
MOVA editor does not support the full OCL syntax; in particular, let expressions
and Sequence types are not yet supported. In addition, the metrics application
interface does not provide yet saving and loading facilities for user-defined met-
rics. To overcome these shortcomings, we plan to extend in the near future the
MOVA metamodel, the MOVA OCL editor, and the MOVA metrics application
interface.

References

1. A. Baroni, S. Braz, and F. Abreu. Using OCL to formalize object-oriented design
metrics. In 6th ECOOP Workshop on Quantitative Approaches in Object-Oriented
Software Engineering (QAOOSE 2002), June 11th, 2002, Lecture Notes in Com-
puter Science. Springer-Verlag, 2002.

2. A. Baroni and F. Brito e Abreu. Measuring OO design metrics from UML. In
International Conference on the Unified Modeling Language, Dresden, Germany,
October 2002.

3. A. L. Baroni and F. Brito e Abreu. A Formal Library for Aiding Metrics Extraction.
In International Workshop on Object-Oriented Re-Engineering at ECOOP’2003,
Darmstadt, Germany, July 2003.

4. V. Basili, L. C. Briand, and W. L. Melo. A validation of object-oriented design
metrics as quality indicators. Software Engineering, IEEE Transactions, 22:751–
761, October 1996.

5. B. Bernardez, M. Genero, A. Duran, and M. Toro. A controlled experiment for
evaluating a metric-based reading technique for requirements inspection. Metrics,
00:257–268, 2004.

10



6. L.C. Briand, J.W. Daly, and J.K. Wüst. A unified framework for coupling mea-
surement in object-oriented systems. IEEE Transactions on Software Engineering,
25(1):91–121, January/February 1999.

7. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. Que-
sada. Maude: Specification and programming in rewriting logic. Theoretical Com-
puter Science, 285:187–243, 2002.

8. M. Clavel and M. Egea. Equational specification of UML+OCL static class dia-
grams, 2006. http://maude.sip.ucm.es/~clavel/pubs/.

9. M. Clavel and M. Egea. ITP/OCL: A rewriting-based validation tool for
UML+OCL static class diagrams. In 11th International Conference on Algebraic
Methodology and Software Technology AMAST’06, Kuressaare, Estonia, July 5–8,
2006, volume 4019 of Lecture Notes in Computer Science. Springer-Verlag, 2006.

10. M. Clavel, M. Egea, and V. Torres da Silva. MOVA user manual (version
0.3.1). Facultad de Informática, Universidad Complutense de Madrid, http:

//maude.sip.ucm.es/mova.
11. F. Brito e Abreu. Using OCL to formalize object oriented metrics definitions.

Technical Report ES007/2001, FCT/UNL and INESC, Portugal, June 2001. http:
//ctp.di.fct.unl.pt/QUASAR/Resources/Papers/others/MOOD_OCL.pdf.

12. M. El-Wakil, A. El-Bastawisi, M. Riad, and A. Fahmy. A novel approach for
formalize object oriented design metics. In EASE’05: Proceedings of the Evaluation
and Assessment in Software Engineering, Keele, UK, April 2005.

13. M. Genero, M. Piattini, and C. Calero. Early measures for UML class diagrams.
L’OBJET, 6(4), 2000.

14. M. Goulao and F. Brito e Abreu. Formalizing metrics for COTS. In ICSE Workshop
on Models and Processes for the Evaluation of COTS Components, Edimburgh,
Scottland, May 2004.

15. H. Kim and C. Boldyreff. Developing software metrics applicable to UML models.
In 6th ECOOP Workshop on Quantitative approaches in Object-oriented engineer-
ing, Malaga, Spain, June 2002.

16. Object Management Group. MetaObject Facility specification v.1.4. Technical
report, Object Management Group, Frammingam, Mass, April 2002. http://www.
omg.org/docs/formal/02-04-03.pdf.

17. Object Management Group. Object Constraint Language specification. Technical
report, Object Management Group, Frammingam, Mass, 2004. http://www.omg.

org.
18. Object Management Group. Unified Modeling Language specification, v.2.1.1.

Technical report, Object Management Group, Frammingam, Mass, 2007. http:

//www.uml.org.
19. M. Marchesi. OOA metrics for the Unified Modeling Language. In Second Eu-

romicro Conference on Software Maintenance and Reengineering, Florence, Italy,
March 1998.

20. J.A. McQuillan and J. F. Power. On the application of software metrics to UML
models. In Models in Software Engineering - Workshops and Symposia at MoDELS
2006, volume 4364 of Lecture Notes in Computer Science. Springer, 2007.

21. J.A. McQuillan and J.F. Power. A definition of the Chidamber and Kemerer
metrics suite for the Unified Modeling Language. Technical Report NUIM-CS-TR-
2006-03, Department of Computer Science, NUI Maynooth, Co. Kildare, Ireland,
October 2006.

22. J.A. McQuillan and J.F. Power. Towards the re-usability of software metric defi-
nitions at the meta level. In Dave Thomas, editor, Proceedings of the ECOOP’06

11



Doctoral Symposium and PhD Students Workshop, volume 4067 of Lecture Notes
in Computer Science. Springer, 2006.

23. E.E. Mills. Software metrics. Technical Report SEI-CM-12-1.1, Seattle University,
1988.

24. The Modeling and Validation (MOVA) Group. The MOVA tool, 2006. http:

//maude.sip.ucm.es/mova/.
25. Database Systems Group. The USE tool, 2006. http://www.db.informatik.

uni-bremen.de/projects/USE/.
26. http://www.sdmetrics.com/. SDMetrics: The software design metrics tool for the

UML.
27. F. Wilkie. Tool support for measuring complexity in heterogeneous object-oriented

software. In ICSM ’02: Proceedings of the International Conference on Software
Maintenance (ICSM’02), page 152, Washington, DC, USA, 2002. IEEE Computer
Society.

A The MOVA Instance Generator

We introduce in this appendix the mapping that defines the correspondence
between MOVA user models and instances of the MOVA metamodel. In what
follows, (X + Y ) denotes the identifier that results from concatenating the iden-
tifiers X and Y .

Given a class diagram D, we create a MOVAMetamodel-object diagram (Meta
+ D), in which we insert:

– a PrimitiveType-object IntegerType,
– a PrimitiveType-object StringType, and
– a PrimitiveType-object BooleanType.

Then,

– For each class c in D, we insert in (Meta + D):
• a MovaClass-object c; and
• for each of its attributes at of type t, we insert

∗ a Property-object (c+at),
∗ an ownedAttribute↔class-link between (c+at) and c,
∗ if t is a primitive type, an ownedAttribute↔dataType-link between

(c+at) and (t + Type), and
∗ if t is an enumeration type, an ownedAttribute↔dataType-link be-

tween (c+at) and t.
– For each enumeration class e in D, we insert in (Meta + D):

• an Enumeration-object e; and
• for each of its literals el ,

∗ an EnumerationLiteral-object (e+el), and
∗ an enumeration↔enumerationLiteral-link between e and (e+el).

– For each generalization between a subclass c1 and a superclass c2 in D, we
insert in (Meta + D):
• a Generalization-object (c1 + To + c2),

12



• a generalization↔specific-link between (c1 + To + c2) and (c1), and
• a nonNavigable↔general-link between (c1 + To + c2) and (c2).

– For each association between a class c1 (with role r1) and a class c2 (with
role r2) in D, we insert in (Meta + D):
• an Association-object (c1 + r1 + r2 + c2),
• a Property-object (c1 + r1 + r2),
• a Property-object (c2 + r2 + r1),
• an inAssociation↔endType-link between (c1 + r1 + r2 + c2) and (c1),
• an inAssociation↔endType-link between (c1 + r1 + r2 + c2) and (c2),
• an association↔memberEnd-link between (c1 + r1 + r2 + c2) and (c1 + r1 + r2),
• an association↔memberEnd-link between (c1 + r1 + r2 + c2) and (c2 + r2 + r1),
• a typedElement↔type-link between (c1 + r1 + r2) and c1, and
• a typedElement↔type-link between (c2 + r2 + r1) and c2

– For each association class c3 between a class c1 (with role r1) and a class c2

(with role r2) in D, we insert in (Meta + D):
• an AssociationClass-object c3,
• a Property-object (c1 + r1 + r2),
• a Property-object (c2 + r2 + r1),
• an inAssociation↔endType-link between c3 and c1,
• an inAssociation↔endType-link between c3 and c2,
• an association↔memberEnd-link between c3 and (c1 + r1 + r2),
• an association↔memberEnd-link between c3 and (c2 + r2 + r1),
• a typedElement↔type-link between (c1 + r1 + r2) and c1, and
• a typedElement↔type-link between (c2 + r2 + r1) and c2

B The MOVA Metrics Library

We introduce in this appendix the metrics/queries included in the MOVA met-
rics library. Each metric/query is first informally explained and then formally
defined/implemented as an OCL query over the MOVA metamodel. When a
metric/query is inspired by a metric defined in another library, we indicate so.

Class Metrics/Meta Queries

– The number of proper attributes of the class c. [3, NumAttr]
context numAttrClass(c: MovaClass): Integer
body: c.ownedAttribute→size()

– The set of the immediate successors of the class c [3, children].
context childClass(c: MovaClass): Set(Classifier)
body: c.nonNavigable→collect(g:Generalization|g.specific)

– The number of the immediate successors of the class c [3, NOC].
context numChildClass(c: MovaClass): Integer
body: childClass(c)→size()

– The number of proper connectors of the class c [3, NConnectors].
context numConnClass(c: MovaClass): Integer
body: c.inAssociation→size() + c.generalization→size() + c.nonNavigable→size()

13



– The set of the immediate ancestors of the class c [3, parents].
context parentClass(c: MovaClass): Set(MovaClass)
body: c.generalization→collect(g|g.general.oclAsType(MovaClass))

– The set of all the ancestors of the class c [3, allParents].
context parentClassAll(c: MovaClass): Set(MovaClass)
body: parentClass(c)→union(parentClass(c)→collect(p|parentClassAll(p)))

– The set of the immediate inherited attributes of the class c.
context inherAttrClass(c: MovaClass): Set(Property)
parentClass(c)→collect(c1|c1.ownedAttribute)

– The set of all inherited attributes of the class c [3, allInheritedAttributes].
context inherAttrClassAll(c: MovaClass): Set(Property)
body: parentClassAll(c)→collect(c1|c1.ownedAttribute)

– The number of all inherited attributes of the class c [3, IAN].
context numInherAttrClassAll(c: MovaClass): Integer
body: inherAttrClassAll(c)→size

– The set of all (proper and inherited) attributes of the class c [21, allAt-
tributes,allAccessibleAttributes].
context attrClassAll(c: MovaClass): Set(Property)
body: inherAttrClassAll(c)→union(c.ownedAttribute)

– The set of data types of all the (proper and inherited) attributes of the class
c [21, typesOfAllAccessibleAttributes].
context typeAttrClassAll(c: MovaClass): Set(Type)
body: attrClassAll(c)→collect(p|p.dataType)

– The value of checking whether the class c has an attribute of end type t [21,
hasAttribute].
context hasAttrClass(c: MovaClass, t: Type): Boolean
body: typeAttrClassAll(c)→includes(t)

– The set of the immediate inherited associations of the class c.
context inherAssocClass(c: MovaClass): Set(Association)
body: parentClass(c)→collect(c1|c1.inAssociation)

– The set of all inherited associations of the class c.
context inherAssocClassAll(c: MovaClass): Set(Association)
body: parentClassAll(c)→collect(c1|c1.inAssociation)

– The number of all inherited associations of the class c.
context numInherAssocClassAll(c: MovaClass): Integer
body: inherAssocClassAll(c)→size

– The set of all (proper and inherited) associations of the class c [21, associa-
tions].
context assocClassAll(c: MovaClass): Set(Association)
body: inherAssocClassAll(c)→union(c.inAssociation)

– The set of data types of all the (proper and inherited) attributes of the class
c [21, typeOfAssociations].
context typeAssocClassAll(c: MovaClass): Set(Type)
body: assocClassAll(c)→collect(p|p.endType)

– The value of checking whether the class c has an association with end type
t [21, hasAssociation].

14



context hasAssocClass(c: MovaClass, t: Type): Boolean
body: typeAssocClassAll(c)→includes(t)

– The value of checking whether the class c1 is coupled with the class c2 [21,
avgCoupledTo].
context avgCoupledTo(c1: MovaClass, c2: MovaClass): Boolean
body: hasAttrClass(c1, c2) or hasAssocClass(c1, c2)

– The set of classes that are coupled with the class c [21, avgCouplings].
context avgCouplings(c: MovaClass): Set(MovaClass)
body: MovaClass.allInstances→excluding(c)
→select(c1|avgCoupledTo(c1,c) or avgCoupledTo(c,c1))

– The number of classes that are coupled with the class c.
context numAvgCouplings(c: MovaClass): Integer
body: avgCouplings(c)→size()

Diagram Metrics

– The number of classes in the diagram [26, NumCls].
context numClass(): Integer
body: MovaClass.allInstances→size()

– The number of associations in the diagram [26, Assoc].
context numAssoc(): Integer
body: Association.allInstances→size()

– The number of generalizations in the diagram [26, Genrs].
context numGenr(): Integer
body: Generalization.allInstances→size()

– The number of classifiers in the diagram [3, Genrs].
context numClasf(): Integer
body: Classifier.allInstances→size()

– The number of connectors in the diagram [26, Connectors].
context numConn(): Integer
body: Relationship.allInstances→size()

– The number of attributes in the diagram [3, PAAN].
context numAttr(): Integer
body: (MovaClass.allInstances→collect(c|attrClassAll(c)))→asSet()→size()

– The number of all inherited attributes in the diagram [3, PIAN].
context numInherAttr(): Integer
body: (MovaClass.allInstances→collect(c|inherAttrClassAll(c)))→asSet()→size()

15


