
Equational Specification of UML+OCL Static

Class Diagrams ?

Manuel Clavel and Marina Egea

Universidad Complutense de Madrid, Spain

Abstract. In this paper we propose an equational specification of UML+OCL
static class diagrams that provides a formal foundation for automati-
cally validating UML object diagrams with respect to OCL constraints.
Basically, class and object UML diagrams are specified as membership
equational theories, and OCL expressions are represented as terms over
extensions of those theories. Then, validating object diagrams with re-
spect to invariants is reduced to checking whether the corresponding
terms rewrite to true or false. Based on these ideas, we have developed
a tool, named ITP/OCL, that provides automatic validation of object
diagrams with respect to OCL constraints.

1 Summary

The Unified Modeling Language (UML) [11] is a general-purpose visual modeling
language that is used to specify, visualize, construct, and document the artifacts
of a software system. The UML notation is largely based on diagrams. However,
for certain aspects of a model, diagrams often do not provide the level of con-
ciseness and expressiveness that a textual language can offer. The Object Con-
straint Language (OCL) [10] is a textual constraint language with a notational
style similar to common object oriented languages. OCL comes to provide help
on precise information specification in UML models. Although designed to be a
formal language, experience with OCL has shown that the language definition
is not precise enough. In this regard, various authors have pointed out language
issues related to ambiguities, inconsistencies or open interpretations [14, 15, 7, 9].

Validation and testing in software development have been recognised of key
importance for long. There are many different approaches to validation: sim-
ulation, rapid prototyping, etc. We validate a model by checking whether its
instances (also called “snapshots”) fulfill the desired constraints. This can lead
to several consequences with respect to the design. First, if there are reasonable
snapshots that do not fulfill the constraints this may indicate that the con-
straints are too strong or the model is not adequate in general. On the other
hand, constraints may bee too weak, allowing undesirable system states.

A number of CASE tools exists which facilitate drawing and documenting
UML diagrams. However, there is little support for validating models during

? Research supported by Spanish MEC Projects TIC2003-01000 and TIN2005-09207-
C03-03.

the design stage and generally no substantial support for constraints written
in OCL. In this paper we propose an equational specification of UML+OCL
static class diagrams that provides a formal foundation for validating UML ob-
ject diagrams with respect to OCL constraints. This is our current contribution
to an effort demanded by many actors in the software modeling community:
“The number of modeling directions requesting the use of OCL increases sig-
nificantly by the day. In these circumstances, the first steps are identifying the
reasons of the unsatisfactory state of facts that persists in the OCL tool world
and proposing reasonable solutions. A clear, unequivocal and complete language
specification is among the preconditions for conceiving and implementing the
OCL tools required by real-world projects” [4]. When designing our specifica-
tion we did not look only for just another clear, unequivocal specification of the
basic UML graphical modeling elements and of the usual OCL textual constraint
constructors. Indeed, we set ourselves two additional goals:

1. To provide an executable specification that could be used for the automatic
validation of object diagrams with respect to the invariants constraining
their class diagrams.

2. To provide a practical specification that could serve as a firm, mathemati-
cal basis for industrial-strength software modeling tools, without requiring
from the part of the users additional knowledge beyond the UML and OCL
specification languages.

The results presented in this paper can be summarized as follows:

1. We provide three maps, QueryTheory , QueryTerm , and AsTerm, such that,
if e is an OCL expression whose value over an object diagram OD is v, then

QueryTheory(OD, e) ` QueryTerm(e) = AsTerm(v) ,

where QueryTheory(OD, e) is a membership equational theory, and QueryTerm(e)
and AsTerm(v) are terms that can be proved equal in that theory using stan-
dard term rewriting techniques.1 2

2. The three maps are implementable so that both the theory QueryTheory(OD, e)
and the terms QueryTerm(e) and AsTerm(v) can be automatically gener-
ated from an appropriate textual description of the object diagram OD and
from the OCL expressions e and v.

Although we do not cover yet all the standard UML modeling elements and
OCL constraint constructors, based on the current results we have developed a

1 Two comments about our claim. On the one hand, in order to prove it, we need
first an official, formal, and complete language specification for UML and OCL,
something that is still missing. On the other hand, we like to consider our equational
specification of UML+OCL static class diagrams as a first step to fill this gap.

2 By construction the module QueryTheory (OD, e) is Church-Rosser and terminating.
The proof of this property is out of the scope of this paper. However, we hope to
provide enough information about the construction of QueryTheory(OD, e) so as to
justify our claim.

tool, named ITP/OCL [6], that provides automatic validation of object diagrams
with respect to non-trivial OCL constraints. It is written entirely in Maude [5]
making extensive use of its reflective capabilities to implement the user interface,
thanks to which the tool’s underlying equational semantics remains hidden to the
user who only must be familiar with the standard notions of UML diagrams and
OCL invariants. The latest version of the tool, with the available documentation
and examples can be found at http://maude.sip.ucm.es/itp/ocl/. Finally,
in the Appendix we show a screenshot of the Visual ITP/OCL, a Java graphical
interface that is being developed as a front-end for the ITP/OCL tool.

Organization First, in Sections 2 and 3 we provide background material on
UML+OCL static class and object diagrams and on membership equational
logic. Then, in Sections 4, 5, and 6, we propose an equational specification of
UML class and object diagrams as theories, and a representation of OCL queries
(and invariants) as terms in extensions of those theories. The maps QueryTheory

and QueryTerm are incrementally defined throughout Sections 4, 5, and 6. Fi-
nally, we report on related work and draw conclusions.

2 UML+OCL Static Class and Object Diagrams

The UML static view models concepts in the application domain as well as
internal concepts invented as part of the implementation of an application. It
does not describe the time-dependent behaviour of the system, which is described
in other views. Key elements in the static view are classes and their relationships,
which can be of different kinds, including association and generalization. The
static view is displayed in class diagrams. A class diagram has the following
components: a set of classes, a set of attributes for each class, a set of operations
for each class, and a set of relationships between classes.

Example 1. Consider the class diagram TRAINWAGON shown in Figure 1. It
models an example from a railway context. A train may own wagons, and wagons
may be connected to other wagons (their predecessor and successor wagons).
Wagons can be either smoking or non-smoking.

Train
Wagon

smoking:Boolean
train wagon

1 *Ownership

[0..1]pred

Order

[0..1] succ

Fig. 1. The class diagram TRAINWAGON.

A system may be in different states as it changes over time. An object diagram

models the objects and links that represent the state of a system at a particular
moment. An object is an instance of a class. A link is an instance of an asso-
ciation. An object diagram is primarily a tool for research and testing. It can

be used to understand a problem by documenting examples from the problem
domain. It can also be used during analysis and design to verify the accuracy of
class diagrams.

Example 2. Consider now the object diagram TRAINWAGON-1 shown in Fig-
ure 2. It describes a snapshot of the railway system modeled by the class diagram
TRAINWAGON, although possibly an “undesired” one since it describes a train
with two wagons linked in a cyclic way!.

Train1:Train

Wagon1:Wagon

smoking:true

Wagon2:Wagon

smoking:false

Ownership

Ownership

Order Order

Fig. 2. The object diagram TRAINWAGON-1.

The language OCL is a pure specification language on top of UML. It is
a textual language with a notational style similar to common object oriented
languages. OCL defines a number of operations on the UML predefined types.
For example, for the type Boolean, it includes the operations and and not. Each
OCL expression is written in the context of a UML class diagram. Classes from
the UML class diagram are also types in the OCL expressions that are attached
to the model. The value of a property for an object is accessed by a dot (.)
followed by the name of the property. Starting from a specific object, we can
also navigate an association to refer to other objects and their properties, by
using the opposite role. In OCL it is possible to use features defined on the
classes themselves. A predefined feature on classes is allInstances which results
in the collection of all instances of the class. Collections, like sets, ordered sets,
bags, and sequences are predefined types in OCL. They have a large number of
predefined operations on them. For example, the operation includes which checks
whether an element belongs to a collection. The iterator exists is just another
example. Many times one needs to know whether there is at least one element
in a collection for which a constraint holds. The exists iterator in OCL allows
you to specify a Boolean expression which must hold for at least one object in a
collection.

collection →exists(x :z | boolean-expression-with-x :z)

The result is true if and only if boolean-expression-with-x : z is true for at least
one element of collection .

Example 3. Consider the following constraint over the class diagram TRAIN-
WAGON: There do not exist two different wagons linked to each other in a cyclic

way. This constraint can be expressed using OCL as the following invariant
notInCyclicWay over the class diagram TRAINWAGON:

not ((Wagon.allInstances)
→exists(w1:Wagon | (Wagon.allInstances) →exists(w2:Wagon |

w1:Wagon <> w2:Wagon
and (w1:Wagon.succ) → includes(w2:Wagon)
and (w2:Wagon.succ) → includes(w1:Wagon)))) .

The object diagram TRAINWAGON-1 does not satisfy this constraint, since
there exists two wagons, namely Wagon1 and Wagon2, such that the successors
of Wagon1 include Wagon2, and the successors of Wagon2 include Wagon1.

3 Membership Equational Logic

Membership equational logic (MEL) is an expressive version of equational logic;
a full account of its syntax and semantics can be found in [3]. A signature in MEL
is a triple Ω = (K, Σ, S), with K a set of kinds, Σ a many-kinded signature, and
S a pairwise disjoint K-kinded family of sets of sorts. The basic intuition is that
correct or well-behaved terms are those that can be proved to have a sort, whereas
error or undefined terms are terms that have a kind but do not have a sort. For
example, we can declare a kind Class for terms representing arbitrary objects,
with two sorts Train and Wagon, for terms representing, respectively, trains and
wagons. We can also declare a kind ClassCol for terms representing collections
of arbitrary objects, with two sorts TrainCol and WagonCol for representing,
respectively, collections of trains and collections of wagons. Then, assuming that
col and nil are the operators for building collections, the term col(Wagon1,

col(Wagon2, nil)) will be a term of the kind ClassCol with sort WagonCol,
while the term col(Train1, col(Wagon2, nil)) will be a term of the kind
ClassCol but with no sorts.3

The atomic formulas of MEL are either equations t = t′, where t and t′

are terms of the same kind, or membership assertions of the form t : s, where
the term t has kind k and s ∈ Sk. Sentences are Horn clauses on these atomic
formulas, i.e., sentences of the form ∀{x}A0 if A1 ∧ . . . ∧ An, where each Ai is
either an equation or a membership assertion. A theory (in other contexts called
“theory presentation”) is a pair (Ω, E), where E is a finite set of sentences in
MEL over the signature Ω. For example, our theory for collections of trains and
wagons will contain a conditional membership axiom that states that any term
col(X , XC) belongs to the sort TrainCol if X is of the sort Train and XC is
of the sort TrainCol, with X a variable of the kind Class and XC a variable
of the kind ClassCol. MEL inference system extends equational logic with rules
for handling sort-memberships.

3 The distinction between kinds and sorts is introduced in MEL to handle partiality.
Although the example does not show the expressiveness of this formalism (better
examples are data structures with partial constructors like priority queues, sorted
lists, etc.), it serves a purpose in the context of this paper: to introduce the basic
features of MEL and its use in our specification of UML+OCL static diagrams.

4 UML Class Diagrams

In this section we define a map ClassTheory from class diagrams to membership
equational theories. For the sake of simplification, we do not consider here enu-
meration classes or association classes, neither we consider query class operations
(that is, operations that do not change the state of the system) or multi-valued
class attributes: they are specified in a similar fashion. Non-query operations are
a different story: we discuss this issue in the concluding section. Finally, n-ary
associations can be reduced to binary ones.

Let CD be a class diagram. Then, ClassTheory (CD) is defined as follows:

– We specify, using (conditional) membership and equational axioms, the UML
predefined types Boolean, Integer, and String, with their operations, as the
sorts Boolean (of the kind Boolean?), Integer (of the kind Integer?), and
String (of the kind String?), with their operations.

– We introduce the kinds Class and ClassCol to contain the terms that rep-
resent, respectively, objects and collections of arbitrary objects;

– We introduce the operator col, and the constant nil to represent collections
of arbitrary objects;

– For each class c, we introduce a sort c of the kind Class to contain the
terms that represent the objects of the class c, and a sort c+Col (that is,
the concatenation of c and Col) of the kind ClassCol to contain the terms
that represent the collections of objects of the class c;

– For each class c, and each attribute at of c of type Boolean (respectively,
Integer and String), we introduce an operator at and declare, using a condi-
tional membership axiom, that at(X) always returns a term of sort Boolean
(respectively, Integer and String) when X is a term of sort c;

– For each generalization between classes c (subclass) and c′ (superclass), we
declare, using a conditional membership axiom, that X always has sort c′ if
it has sort c;

– For each pair of classes (not necessarily different) c and c′, and each asso-
ciation, with roles rl and rl ′, between c and c′, we introduce two operators
rl and rl ′, and declare, using conditional membership axioms, that rl(X)
always returns a term of sort c+Col when X is a term of sort c′, and that
rl ′(X) always returns a term of sort c′+Col when X is a term of sort c.

Notice that in the specification of class diagrams, the sorts representing the
classes are empty and the operators representing the attributes and roles are
undefined. In the next section we propose a specification of object diagrams as
extensions —sorts representing classes are filled with terms representing objects,
and operators representing attributes and roles are defined for those terms— of
the specifications of their class diagrams.

Example 4. We show in Figure 3 the specification TRAINWAGON corresponding to
the theory ClassTheory (TRAINWAGON); we have omitted, however, the specifi-
cation of the predefined types Boolean, Integer, and String. The presentation of
TRAINWAGON follows the syntactical conventions of the Maude [5] language (an

efficient implementation of MEL), except for the fact that kinds are declared
explicitely using the keyword kind along with their associated sorts (enclosed
in square brackets). As in Maude, operator declarations start with the keyword
op (or ops for operators with the same rank) and are followed by the operator’s
name, a list with the arguments’ kinds, and the result’s kind; membership as-
sertions are introduced with the keyword mb, or cmb for conditional ones; and
unconditional and conditional equations are similarly presented using the key-
words eq and ceq.

Let X and XC be variables, respectively, of the kinds Class and ClassCol.

spec TRAINWAGON is

kind Class = [Wagon, Train] .
kind ClassCol = [WagonCol, TrainCol] .
op nil : -> ClassCol .
op col : Class ClassCol -> ClassCol .
mb nil : WagonCol .
cmb col(X, XC) : WagonCol if X : Wagon /\ XC : WagonCol .
mb nil : TrainCol .
cmb col(X, XC) : TrainCol if X : Train /\ XC : TrainCol .
ops train wagon pred succ : Class -> ClassCol .
cmb train(X) : TrainCol if X : Wagon .
cmb wagon(X) : WagonCol if X : Train .
cmb pred(X) : WagonCol if X : Wagon .
cmb succ(X) : WagonCol if X : Wagon .

endspec

Fig. 3. The theory ClassTheory (TRAINWAGON).

5 UML Object Diagrams

In this section we define a map ObjectTheory from object diagrams to mem-
bership equational theories. The relation between class diagrams and object
diagrams is reflected by the fact that object diagram theories extend their cor-
responding class diagram theories by instantiating the sorts representing their
classes and the operators representing their attributes and roles.

Let OD be an object diagram of a class diagram CD. Then, ObjectTheory(OD)
is defined as the following extension of ClassTheory(CD):

– For each object o, if c is the class of the object o, we introduce a constant o

of the kind Class, and declare, using a membership equational axiom, that
the constant o has sort c;

– For each object o, if v is the value of the attribute at for the object o, then
we declare, using an equational axiom, that the operator at returns the term
that represents the value v when applied to o;

– For each object o, if {o′1, . . . , o
′

n} is the collection of objects linked to o

under an association with roles rl and rl ′, we declare, using an equational
axiom, that the operator rl ′ returns the term that represent the collection
{o′

1
, . . . , o′

n
} when applied to o.

Example 5. We show in Figure 4 the specification TRAINWAGON-1 corresponding
to the theory ObjectTheory(TRAINWAGON-1). We use the keyword extending

to declare that TRAINWAGON-1 contains TRAINWAGON.

spec TRAINWAGON-1 is

extending TRAINWAGON .
op Train1 Wagon1 Wagon2 : -> Class .
mb Train1 : Train .
mb Wagon1 : Wagon .
mb Wagon2 : Wagon .
eq smoking(Wagon1) = true .
eq smoking(Wagon2) = false .
eq wagon(Train1) = col(Wagon1, col(Wagon2, nil)) .
eq train(Wagon1) = col(Train1, nil) .
eq pred(Wagon1) = nil .
eq succ(Wagon1) = col(Wagon2, nil) .
eq train(Wagon2) = col(Train1, nil) .
eq pred(Wagon2) = col(Wagon1, nil) .
eq succ(Wagon2) = col(Wagon1, nil) .

endspec

Fig. 4. The theory ObjectTheory(TRAINWAGON-1).

6 OCL Queries

In what follows, we call iterating expressions those of the form (s →Υ (x :z | e)),
where Υ is an OCL iterator, like forAll, exists, collect, reject, or select; we call the
variable x :z the iterator-variable and the expression e the body of the iterating
expression. We call basic expressions those that do not contain any iterating ex-
pressions. When the body of an iterating expression contains variables different
from its iterator-variable, we say that the iterating expression is parametarized

by those variables. For example, the innermost iterating expression in the invari-
ant nonInCyclicWay in Example 3 is parameterized by the variable (w1:Wagon.
Finally, we call values of an object diagram to the elements of a predefined type,
the objects of a class, or the collection of elements of a predefined type or of the
objects of a class.

6.1 An evaluator for basic OCL queries

In this section we define a map, QueryBasicTheory , from object diagrams to
membership equational logic, which, informally, generates the equational spec-
ification of the OCL non-iterating operators over the models described by the
given object diagrams. We also define a map QueryBasicTerm that, informally,
translate OCL non-iterating expressions into terms in the signature of the the-
ories generated by QueryBasicTheory . More formally, let e be a basic OCL ex-
pression over a class diagram CD, and let OD be an object diagram of CD. The
two maps QueryBasicTheory and QueryBasicTerm are such that, if e evaluates
to a value v in the object diagram OD, then

QueryBasicTheory (OD) ` QueryBasicTerm(e) = AsTerm(v) ,

where AsTerm(v) is the term that represents v in QueryBasicTheory (OD),
namely, objects are represented as constants, and collections are represented
using col and nil.

We define the theory QueryBasicTheory (OD) as the following extension of
ObjectTheory(CD):

– We introduce the kinds BooleanCol?, IntegerCol?, and StringCol?, with sorts
BooleanCol, IntegerCol, and StringCol, to contain, respectively, the terms that
represent collections of booleans, integers and strings;

– We introduce the (overloaded) operator col and the (overloaded) constant
nil, to represent collections of booleans; and similarly, for the integers and
the strings;

– We declare, using membership axioms, that nil is a term of sort BooleanCol,
and that col(X,XC) is a term of sort BooleanCol, when X is a term of sort
Boolean and XC is a term of sort BooleanCol; similarly, for the integers and
the strings;

– We declare operators that specify the non-iterating operators over booleans,
integers, strings, and collections of objects (like size, includes, asSet, and so
on), and we define, using (conditional) membership and equational axioms,
their semantics;

– We introduce the kind ClassId to contain the terms that represent class
names;

– We introduce the operator allInstances;
– For each class c in the class diagram, we introduce a constant c of the kind

ClassId; we declare, using a membership axiom, that allInstances(c) always
return a term of sort c+Col, that is, a term representing a collection of objects
of the class c; and we define, using an equational axiom, that allInstances(c)
is equal to the collection of objects of the class c.

Example 6. We show in Figure 5 a fragment of the specification QUERY-BASIC-TRAINWAGON-1

corresponding to the theory QueryBasicTheory (TRAINWAGON-1), in which we
specify the operators includes and isEmpty for collections of arbitrary objects,
and the operator allInstances for the classes Train and Wagon.

Let X, X ′ be variables of the kind Class and let XC be a variable of the kind ClassCol.

spec QUERY-BASIC-TRAINWAGON-1 is

extending TRAINWAGON-1 .
op isEmpty : ClassCol -> Boolean? .
cmb isEmpty(XC) : Boolean if XC : TrainCol.
cmb isEmpty(XC): Boolean if XC : WagonCol.
eq isEmpty(nil) = true .
eq isEmpty(cons(X,XC)) = false .
op includes : ClassCol Class -> Boolean? .
cmb includes(XC , X) : Boolean if XC : TrainCol ∧ X : Train .
cmb includes(XC , X) : Boolean if XC : WagonCol ∧ X : Wagon .
eq includes(nil, X) = true .
ceq includes(cons(X, XC), X ′) = true

if equal(X, X ′) = true.
ceq includes(cons(X, XC), X ′) = includes(XC , X ′)

if equal(X, X ′) = false.
op Train : -> ClassId .
op Wagon : -> ClassId .
op allInstances : ClassId -> ClassId .
mb allInstances(Wagon) : WagonCol .
mb allInstances(Train) : TrainCol .
eq allInstances(Wagon) = cons(Wagon1, cons(Wagon2, nil)) .
eq allInstances(Train) = cons(Train1, nil) .

Fig. 5. A fragment of the theory QueryBasicTheory (TRAINWAGON-1).

We define the map QueryBasicTerm recursively over the structure of well-
typed OCL expressions. We have grouped the clauses according to the type of
the expression; in each group, the cases that are not covered are treated in a
similar fashion. Let Kind(x :z) denote the kind corresponding to the type z (that
is, Boolean? for Boolean, Class for Wagon and Train, ClassCol for the types of
the collections of objects of a class, and so on). Also, let AsVar be a map that
generates, for each expression x : z, a unique variable of the kind Kind(x : z).
Finally, let e, e1, e2, s be arbitrary expressions. Then,

Boolean expressions

QueryBasicTerm(e) , asTerm(e), if e ∈ {true, false}.

QueryBasicTerm(not e) , not(QueryBasicTerm(e)) .

QueryBasicTerm(e1 and e2) , QueryBasicTerm(e1) andQueryBasicTerm(e2) .

QueryBasicTerm(e1 =e2) , equal(QueryBasicTerm(e1) ,QueryBasicTerm(e2)) .

QueryBasicTerm(e1 < e2) , QueryBasicTerm(e1) <QueryBasicTerm(e2) .

QueryBasicTerm(s → includes(e)) , includes(QueryBasicTerm(s) ,QueryBasicTerm(e)) .

QueryBasicTerm(s.isEmpty()) , isEmpty(QueryBasicTerm(s)) .

QueryBasicTerm(e.at) , at(QueryBasicTerm(e)), if at is a Boolean attribute.

Integer expressions

QueryBasicTerm(e) , asTerm(e), if e is an integer number.

QueryBasicTerm(e1 + e2) , add(QueryBasicTerm(e1) ,QueryBasicTerm(e2)) .

QueryBasicTerm(e1.max(e2)) , max(QueryBasicTerm(e1) ,QueryBasicTerm(e2)) .

QueryBasicTerm(e.at) , at(QueryBasicTerm(e)), if at is an Integer attribute.

QueryBasicTerm(s → size()) , size(QueryBasicTerm(s)) .

String expressions

QueryBasicTerm(e) , asTerm(e), if e is a string.

QueryBasicTerm(e1.concat(e2)) , concat(QueryBasicTerm(e1) ,QueryBasicTerm(e2)) .

QueryBasicTerm(e.at) , at(QueryBasicTerm(e)), if at is a String attribute.

Collection expressions

QueryBasicTerm(id .allInstances) , allInstances(asCns(id)), where id is a class identifier.

QueryBasicTerm(e.rl) , rl(QueryBasicTerm(e)), if rl is a role.

Variables

QueryBasicTerm(x :z) , AsVar (x :z) .

Example 7. Consider the following expression over the object diagram TRAINWAGON-1:

(Wagon.allInstances) → includes(Wagon1)

Its value in the object diagram is true. QueryBasicTerm maps this expression to
the term:

includes(allInstances(Wagon), Wagon1) ,

which is equal to true in QueryBasicTheory (TRAINWAGON1).

6.2 An evaluator for OCL queries

In this section we define two maps, QueryTheory and QueryTerm, that extend
the maps QueryBasicTheory and QueryBasicTerm to cover also the specification
of OCL iterating operators over the models described by the given object dia-
grams. Informally, QueryTheory is an extension of QueryBasicTheory in which,
for each iterating expression (s →Υ (x :z | e′)) occurring in a given OCL expres-
sion e, we introduce an operator f and declare, using equational axioms, how
this operator iterates over collections of values of type z. Then, QueryTerm(e)
is the result of mapping e with an extension of QueryBasicTerm in which each
iterating expression (s → Υ (x : z | e′)) occurring in e, is mapped to the term
f(QueryTerm(s)). More formally, let e be an OCL expression over a class dia-
gram CD, and let OD be an object diagram of CD. The two maps QueryTheory

and QueryTerm are such that if e evaluates to a value v in the object diagram
OD, then

QueryTheory(OD, e) ` QueryTerm(e) = AsTerm(v) .

The maps QueryTheory and QueryTerm are formally defined in terms of
an auxiliary map QueryAux from pairs 〈e, x :z〉, where x :z denotes a list
(x1 :z1, . . . , xn :zn) of iterating variables, to triples 〈t, ops , eqs〉, where ops are
the operators for the iterating expression occurring in e and eqs are the equations
that declare how these operators iterate over collections. Thus, QueryTheory(OD, e)
is the theory that results from adding ops and eqs to the theory QueryBasicTheory (OD),
and QueryTerm(e) is the term t.

The auxiliary map QueryAux is defined recursively over the structure of well-
typed OCL expressions. To simplify the presentation, we use three auxiliary maps
defined as follows: if QueryAux(〈e, x :z〉) = 〈t, ops , eqs〉, then,

QueryAuxTerm(〈e, x :z〉) , t,

QueryAuxOps(〈e, x :z〉) , ops , and

QueryAuxEqs(〈e, x :z〉) , eqs .

For non-iterating expressions, the definition of QueryAux follows the definition of
QueryBasicTerm . Notice that non-iterating expressions may contain, in general,
iterating subexpressions. We show below the clauses defining QueryAux for the
Boolean expressions considered in our definition of the map QueryBasicTerm .
Let e, e1, e2, and s be arbitrary expressions, and let x :z be a list of parameters.
Then,

QueryAux (〈e, x :z〉) , 〈AsTerm(e), ∅, ∅〉, if e ∈ {true, false}.

QueryAux (〈x :Boolean, x :z〉) , 〈AsVar (x :Boolean), ∅, ∅〉 .

QueryAux (〈not e, x :z〉) , 〈not(QueryAuxTerm(〈e, x :z〉)),

QueryAuxOps(〈e, x :z〉),QueryAuxEqs(〈e, x :z〉)〉 .

QueryAux (〈e1 and e2, x :z〉) , 〈QueryAuxTerm(〈e1, x :z〉) andQueryAuxTerm(〈e2, x :z〉),
[

i=1,2

QueryAuxOps(〈ei, x :z〉),
[

i=1,2

QueryAuxEqs (〈ei, x :z〉)〉 .

QueryAux (〈e1 = e2, x :z〉) , 〈equal(QueryAuxTerm(〈e1, x :z〉),QueryAuxTerm(〈e2, x :z〉)),
[

i=1,2

QueryAuxOps(〈ei, x :z〉),
[

i=1,2

QueryAuxEqs (〈ei, x :z〉)〉 .

QueryAux (〈e1 < e2, x :z〉) , 〈QueryAuxTerm(〈e1, x :z〉)<QueryAuxTerm(〈e2, x :z〉),
[

i=1,2

QueryAuxOps(〈ei, x :z〉),
[

i=1,2

QueryAuxEqs (〈ei, x :z〉)〉 .

QueryAux (〈s → includes(e), x :z〉) , 〈includes(QueryAuxTerm(〈s,x :z〉),QueryAuxTerm(〈e, x :z〉)),

QueryAuxOps(〈s, x :z〉) ∪ QueryAuxOps(〈e, x :z〉),

QueryAuxEqs(〈s, x :z〉) ∪ QueryAuxEqs(〈e, x :z〉)〉 .

QueryAux (〈s.isEmpty(), x :z〉) , 〈isEmpty(QueryAuxTerm(〈s, x :z〉)),

QueryAuxOps(〈s, x :z〉),QueryAuxEqs (〈s,x :z〉)〉 .

QueryAux (〈e.at , x :z〉) , 〈at(QueryAuxTerm(〈s, x :z〉)),

QueryAuxOps(〈e, x :z〉),QueryAuxEqs(〈e, x :z〉)〉,

if at is a Boolean attribute.

Remark 1. Let e be a well-typed basic OCL expression over an object diagram
OD. Then, QueryTheory(OD, e) = QueryBasicTheory (OD), and QueryTerm(e) =
QueryBasicTerm(e).

For iterating expressions, the definition of QueryAux depends on the iterator
at the top of the expression. We show below the clauses defining exists-iterating
expressions. The definition of QueryAux for the other iterating expression is
entirely similar. By x0 :z0 ⊕x :z we denote the result of appending x0 :z0 to the
list x :z.

QueryAux (〈s →exists(x0 :z0 | e), x :z〉)

, 〈AsOp(exists(x0 :z0 | e))(QueryAuxTerm(〈s, x :z〉)),

QueryAuxOps(〈s, x :z〉) ∪ QueryAuxOps(〈e, (x0 :z0 ⊕ x :z)〉)

∪OpDecl(exists(x0 :z0 | e), x :z),

QueryAuxEqs(〈s, x :z〉) ∪ QueryAuxEqs(〈e, (x0 :z0 ⊕ x :z)〉)

∪EqAxms(exists(x0 :z0 | e), x :z,QueryAuxTerm(〈s, x :z〉))〉 ,

where AsOp generates a unique operator for each iterating expression (by form-
ing, for example, a single string of characters from the different strings of char-
acters that build the expression, disregarding blank spaces), OpDecl generates
the declaration corresponding to this operator, and EqAxms generates the ax-
ioms that define how this operator iterates over collections given its body. Of
course, the definitions of OpDecl and OpDecl are specific for each iterator. No-
tice also that these definitions must take into account that iterating expres-
sions can be parameterized. We show the definitions of OpDecl and OpDecl
for expression of the form exists(x0 : z0 | e), with iterating variables x :z.
In the (conditions of the) equations below, t is the term that results from
QueryAuxTerm(〈e, (x0 : z0 ⊕ x :z)〉). That is, t is the representation of the
Boolean expression in the exists-iterating expression which must hold for at least
on object in the collection. Notice, also, that, since QueryBasicTerm maps vari-
ables x : z to variables AsVar(x : z) of the kind Kind(x : z), the variables in t
must belong to the list AsVar(x0 :z0),AsVar(x1 :z1), . . . ,AsVar(xn :zn).

op AsOp(exists(x :z | e)): Kind(x1 :z1) · · ·Kind(xn :zn) z0+Col -> Boolean? .

eq AsOp(exists(x :z | e))(AsVar (x1 :z1), . . . ,AsVar (xn :zn), nil) = true .
ceq AsOp(exists(x :z | e))(AsVar (x1 :z1), . . . ,AsVar (xn :zn), col(AsVar (x0 :z0),XC))

= false if t = true .
ceq AsOp(exists(x :z | e))(AsVar (x1 :z1), . . . ,AsVar (xn :zn), col(AsVar (x0 :z0),XC))

= AsOp(exists(x :z | e))(AsVar (x1 :z1), . . . ,AsVar (xn :zn),XC)
if t = false .

Example 8. Consider the nonInCyclicWay invariant in Example 3. Its value in
the object diagram TRAINWAGON-1 is false. We show in Figure 6 the spec-
ification QUERY-TRAINWAGON-1-nonInCyclicWay corresponding to the theory
QueryTheory(TRAINWAGON-1, nonInCyclicWay). For this example, we have mapped
the outermost exists-expression to the operator exists1, and the innermost one
to the operator exists2. Notice that QueryTerm maps the nonInCyclicWay in-
variant to the term

not(exists1(allInstances(Wagon))),

which is equal to false in the theory QueryTheory(TRAINWAGON-1,nonInCyclicWay).

QUERY-TRAINWAGON-1-nonInCyclicWay is

extending QUERY-BASIC-TRAINWAGON-1 .
op exists1 : ClassCol -> Boolean? .
op exists2 : Class ClassCol -> Boolean? .

eq exists1(nil) = false .
ceq exists1(col(W1 , XC)) = true

if exists2(W1 , allInstances(Wagon)) = true .
ceq exists1(col(W1 , XC)) = exists2(XC)

if exists2(W1 , allInstances(Wagon)) = false .

eq exists2(W1 , nil) = false .
ceq exists2(W1 , col(W2 , XC)) = true

if and(not(equal(W1 , W2)),
and(includes(succ(W1), W2),
and(includes(succ(W2), W1)))) = true .

ceq exists2(W1 , col(W2 , XC)) = exists2(W1 , XC)
if and(not(equal(W1 , W2)),

and(includes(succ(W1), W2),
and(includes(succ(W2), W1)))) = false .

Fig. 6. The theory QueryTheory(TRAINWAGON-1, nonInCyclicWay).

7 Related Work

Here we will focus on related proposals for equational specifications for UML+OCL
diagrams. A comparison between the ITP/OCL tool and the USE tool [13]
(which also supports validation of OCL contraints, although based on a different
semantics) can be found in [8, 6].

– RIVIERA [16] is a framework for the verification and simulation of UML
class diagram models (without OCL constraints) and statecharts. It is based
on the representation of class diagrams and statecharts as terms (not as
theories, as in our proposal) in Maude modules that specify the UML meta-
model [1].

– MOMENT [2] is a generic model management framework. It uses Maude
modules to automatically serialize software artifacts. It supports OCL queries
(but not OCL constraints over UML models). MOMENT is integrated in
Eclipse, an open platform for tool integration. The specification of OCL
queries is done manually, and it requires a deep understanding of both Maude
and the MOMENT specific representation of UML diagrams.

– CASL-LTL [12] is the metalanguage adopted by the CoFI Group [17] to de-
scribe the semantics of UML models, including behavioural diagrams. It pro-
poses a “flatten” representation of the different modeling elements (classes,
attributes, operations, associations an so on) as constants (of the same type)
whose modeling meaning and relationships must be defined with additional
logical axioms. This representation of UML models must be done manually.

8 Conclusion and Future Work

In this paper we have proposed an equational specification of UML+OCL static
diagrams that provides a formal foundation for automatically validating UML
object diagrams with respect to OCL constraints. Basically, class and object
UML diagrams are specified as membership equational theories, and OCL invari-
ants are represented as Boolean terms over extensions of those theories. Then,
validating object diagrams with respect to invariants is reduced to checking
whether the corresponding Boolean terms rewrite to true or false. Based on this
ideas, we have developed a tool, named ITP/OCL, that provides automatic val-
idation of object diagrams with respect to OCL constraints. The ITP/OCL tool
is written entirely in Maude [5], making extensive use of its reflective capabil-
ities. The ITP/OCL interface effectively keeps the tool’s underlying semantics
hidden to the user.

We plan to extend this work to deal with the specification of constraints
(pre- and post-conditions) on operations and methods. In our view, operations
and methods are in a different semantic level with respect to the rest of the
modeling elements in a class diagram. When evaluated, operations and methods
may change the model as a whole. This, in our view, corresponds to a change in
the membership equational theory specifying the model. To address this issue, we
will take advantage of the reflective properties of membership equational logic,
and of its implementation in the Maude language. Operations and methods will
be specified as metalevel operators that take class theories as arguments and
modify their declarations so as to reflect the changes in the models provoked by
the evaluation of the operations and methods.

References

1. Jose Lúıs Fernández Alemán. Una Propuesta de Formalizacin de la Arquitectura

en Cuatro Capas de UML. PhD thesis, Universidad de Murcia, 2001.
2. A. Boronat, J.A. Cars, and I. Ramos. Automatic support for traceability in a

generic model management framework. In David Kreische, editor, European Con-

ference on Model-Driven Architecture - Foundations and Applications, volume 3748
of Lecture Notes in Computer Science, pages 316–330, 2005.

3. Adel Bouhoula, Jean-Pierre Jouannaud, and Jose Meseguer. Specification and
proof in membership equational logic. Theor. Comput. Sci., 236(1-2):35–132, 2000.

4. Dan Chiorean, Maria Bortes, and Dyan Corutiu. Proposals for a widespread use of
OCL. In Thomas Baar, editor, Proceedings of the MoDELS’05 Conference Work-

shop on Tool Support for OCL and Related Formalisms - Needs and Trends, Tech-
nical Report LGL-REPORT-2005-001, pages 68–82. EPFL, 2005.

5. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. F.
Quesada. Maude: Specification and programming in rewriting logic. Theoretical

Computer Science, 285:187–243, 2002.
6. Manuel Clavel and Marina Egea. ITP/OCL: A rewriting-based validation tool for

UML+OCL static class diagrams. Submitted for publication. http://maude.sip.
ucm.es/~clavel.

7. Steve Cook, Anneke Kleppe, Richard Mitchell, Bernhard Rumpe, Jos Warmer,
and Alan Wills. The Amsterdam Manifesto on OCL. In Object Modeling with

the OCL, The Rationale behind the Object Constraint Language, pages 115–149,
London, UK, 2002. Springer-Verlag.

8. Marina Egea. ITP/OCL: a theorem prover-based tool for UML+OCL class di-
agrams. Master’s thesis, Facultad de Informática, Universidad Complutense de
Madrid, September 2005. http://maude.sip.ucm.es/~marina/.

9. Ali Hamie, Franco Civello, John Howse, Stuart Kent, and Richard Mitchell. Re-
flections on the Object Constraint Language. In 1998: Selected papers from the

First International Workshop on The Unified Modeling Language, pages 162–172,
London, UK, 1999. Springer-Verlag.

10. Object Management Group. Object Constraint Language specification, 2004.
http://www.omg.org.

11. Object Management Group. Unified Modeling Language specification, 2004. http:
//www.uml.org.

12. G. Reggio, E. Astesiano, and C. Choppy. Casl-Ltl: A Casl Extension for Dynamic
Reactive Systems - Summary. Technical report, DISI-Università di Genova, Italy,
February 2000. DISI-TR-99-34.

13. Mark Richters. The USE tool : A UML-based specification environment, 2001.
http://www.db.informatik.uni-bremen.de/projects/USE/.

14. Mark Richters. OCL Constraints. PhD thesis, Universitat Bremen, Berlin, 2002.
15. Mark Richters and Martin Gogolla. OCL: Syntax, semantics, and tools. In Tony

Clark and Jos Warmer, editors, Object Modeling with the OCL: The Rationale

behind the Object Constraint Language, pages 42–68. Springer, 2002.
16. J. Saez, A. Toval Alvarez, and J.L. Fernandez Aleman. Tool support for trans-

forming UML models to a formal language. In J. Whittle et al., editor, Workshop

on Transformations in UML, pages 111–115, 2001.
17. The CoFI Reactive System Group. The Common Framework Initiative for alge-

braic specification and development. http://www.brics.dk/Projects/CoFI/.

A The Visual ITP/OCL

The Visual ITP/OCL tool is simply a Java graphical front-end for the ITP/OCL
tool.4 Events on the Visual ITP/OCL’s worksheets and toolbars are transformed
into ITP/OCL commands and are interpreted and executed in a Maude process
running the ITP/OCL tool. In fact, the Visual ITP/OCL tool does not contain
any knowledge about the meaning of the UML modeling elements, neither about
the semantics of OCL expressions.

In this screenshot we show a standard Visual ITP/OCL session: in one win-
dow (the main window) we see a class diagram (in this case, our TRAINWAGON

4 The Visual ITP/OCL tool is being developed by F. Alcaraz, J. P. Gavela, and
J. Arias as a Master’s project.

example) under construction; in a second window (a pop-up window) we see a
class property sheet that has been opened out (possibly, to edit a class already
introduced); finally, in a third window (a shell terminal) we see the commands
that have been sent to the ITP/OCL tool which is running on a Maude process
in the background.

Fig. 7. A Visual ITP/OCL tool running example.

