The MOVA Tool: User Manual
(version 0.4.1)

Manuel Clavel Marina Egea Viviane Torres da Silva

November 27, 2007

Contents

I _Overview] 1

2 UML modeling] 2
2.1 Thetopmenul. o 2
2.2 The diagram container| 5
3 Theeditorl. o v v oo 7

13 SecureUML modeling| 9
B.1 Thetopmenul. 10
3.2 The diagram container| L. 13

4 UML modeling with Metrics| 16

Abstract

This document is the user manual for the MOVA tool (version 0.4.1),
a modeling and validation experimental tool developed at the Universidad
Complutense de Madrid (Spain) by the MOVA group. This document has
a descriptive purpose: it assumes familiarity with the UML [5] modeling
language and the OCL [4] constraint language.

1 Overview

The MOVA tool is a Java IDE for the ITP/OCL tool [3]. Events on MOVA
’s worksheets and toolbars are transformed into ITP/OCL’s text-input com-
mands, which are then interpreted and executed in a Maude process running
the ITP/OCL tool. The MOVA tool is freely available at http://maude.sip.
ucm. es/mova, along with this user manual and a collection of examples.

The MOVA tool consists of three applications:

http://maude.sip.ucm.es/mova
http://maude.sip.ucm.es/mova

e UML modeling [version 0.1 or higher|: it allows the user to draw UML
class and object diagrams, write and check OCL invariants, write and
evaluate OCL queries, and define OCL operations to be used in invariants
and queries.

o SecureUML modeling [versions 0.4.1 or higher]: it allows the user to draw
SecureUML [2] diagrams, write and evaluate OCL security policies, and
define OCL operations to be used in security policies.

o UML modeling with metrics [versions 0.2.1 or higher]: it allows the user
to draw UML class and object diagrams, write and check OCL invariants,
write and evaluate OCL queries, write and evaluate OCL metrics, and
define OCL operations to be used in invariants, queries, and metrics.

These applications share a common OCL editor/checker/evaluator which in-
cludes a model-based syntax-guiding facility.

At the beginning of each MOVA session, the user is requested to choose
one of the MOVA applications. By default the application selected is UML
modeling.

Differences with MOVA 0.3.1 This latest version makes available the Se-
cureUML modeling application.

2 UML modeling

This application allows a user to draw UML class and object diagrams, write
and check OCL invariants, and write and evaluate OCL operations and queries.

The main window is divided in two parts: the top menu and the diagram
container. The top menu includes the options of creating diagrams from scratch,
saving diagrams in files, opening diagrams previously saved, and printing dia-
grams. It also includes the option of inserting elements in diagrams, which are
given a default name.

The diagram container holds the class and object diagrams drawn by the
user; object diagrams of the same class diagram are kept together. Class and
object diagrams are drawn in diagram pallets which are stack in a pile. If the
container is not empty, the working diagram is the diagram drawn in the visible
pallet, i.e., the pallet at the top of the stack. Class diagrams are closed in the
diagram container when they hold object diagrams. Closed class diagrams can
not be modified.

2.1 The top menu

The top menu options are distributed in submenus: File, Edit, View, Insert, and
Help. The top menu also contains icons that provide quick access to particular
menu options.

The File submenu includes the following options:

File|New|Class Diagram. It creates a new class diagram pallet in the dia-
gram container, which becomes the working diagram.

File|New|Object Diagram. It creates a new object diagram pallet in the
diagram container, which becomes the working diagram.

File|Open|Class Diagram. It creates a new class diagram pallet in the di-
agram container, and draw in it the class diagram contained in the file
selected by the user. This file must contain the class diagram in (MOVA)
XML format. The new class diagram pallet becomes the working diagram.

File|Open|Object Diagram. It creates a new object diagram pallet in the
diagram container, and draw in it the object diagram contained in the file
selected by the user. This file must contain the object diagram in (MOVA)
XML format. The new object diagram pallet becomes the working dia-
gram.

File|Load|Invariants, operations. It adds to the working class diagram the
invariants and operations contained in the file selected by the user. This
file must contain the invariants in (MOVA) text format.

File|Load|Operations. It adds to the working class diagram the operations
contained in the file selected by the user. This file must contain the
operations in (MOVA) text format.

File|Close. Tt closes the working diagram. If the working diagram is a class
diagram it also closes all its object diagrams.

File|Page setup. It allows the user to change the page configuration (media,
orientation, and margins) of the working diagram for printing purposes.

File|Print. It allows the user to print the working diagram, possible chang-
ing its current page configuration.

File|Export to EPS. It saves the working diagram in EPS format in the file
selected by the user.

File|Save as|Diagram. It saves the working diagram in (MOVA) XML for-
mat in the file selected by the user.

File|Save as|Operations, Invariants. It saves the operations and invariants
inserted in the working class diagram in (MOVA) text format in the file
selected by the user.

File|Exit. It close the application.

The Edit submenu includes the following options:

Edit|Zoom +. It zooms-in in the working diagram.

Edit|Zoom -. It zooms-out in the working diagram.

The View submenu includes the following options:

View|Invariants. It allows the user to view the invariants added to the
working class diagram, and select those to be checked over the object
diagrams linked to the working class diagram.

View|Class diagram. It allows the user to hide/show the roles, multiplic-
ities, and names of the associations, and the attributes of the classes,
depicted in the working class diagram.

View|Object diagram. It allows the user to hide/show the roles and names
of the links, and the attributes of the objects, depicted in the working
object diagram.

The Insert submenu includes the following options:

Insert|Class diagram|Class. It inserts a class in the working class diagram.
This element is drawn as a rectangle in the location where the user clicked
upon. The class is assigned a default name.

Insert|Class diagram|Enum. It inserts an enumeration class in the working
class diagram. This element is drawn as a rectangle in the location where
the user clicked upon. The enumeration class is assigned a default name.

Insert|Class diagram|Association. It inserts a binary association in the work-
ing class diagram. This element is drawn as an association-arrow between
the two classes upon which the user clicks at the beginning and the end
of a sequence of clickings. If the size of the sequence of clickings is greater
than two, the association-arrow is drawn in segments, and the intermedi-
ate clicks determine the locations of the end-points of each of the segments.
The association is assigned a default name, default roles, and default mul-
tiplicities.

Insert|Class diagram|Generalization. It inserts a generalization in the work-
ing class diagram. This element is drawn as a generalization-arrow be-
tween the two classes upon which the user clicks at the beginning and the
end of a sequence of clickings. The class clicked at the end of the sequence
is the super-class. If the size of the sequence of clickings is greater than
two, the generalization-arrow is drawn in segments, and the intermediate
clicks determine the locations of the end-points of each of the segments.

Insert|Class diagram|Invariant. It allows the user to add an invariant to the
working class diagram. The context (if any) of the invariant is determined
by the user, by clicking upon the working diagram. If the user clicks upon
a class, the invariant is written in the context of this class; otherwise, the

invariant is written without a context. Invariants are written using the
MOVA editor as described in Section 2.3l

e Insert|Class diagram|Operation. It allows the user to add an operation to the
working class diagram. The context (if any) of the operation is determined
by the user, by clicking upon the working diagram. If the user clicks upon
a class, the operation is written in the context of this class; otherwise,
the operation is written without a context. The name, arguments, and
resulting type of the operation are introduced by the user in the operation
window; the body of the operation is written using the MOVA editor as
described in Section 2.3

e Insert|Object diagram|Object. It inserts an object (of the class chosen by the
user) in the working object diagram. This element is drawn as a rectangle
in the location where the user clicked upon. The object is assigned a
default name and its attributes are assigned a default value.

e Insert|Object diagram|Link. It inserts a link (of the association chosen by
the user) in the working object diagram. This element is drawn as a link-
arrow between the two objects upon which the user clicks at the beginning
and the end of a sequence of clickings. If the size of the sequence of
clickings is greater than two, the link-arrow is drawn in segments, and the
intermediate clicks determine the locations of the end-points of each of
the segments.

e Insert|Object diagram|Query. It allows the user to execute a query over the
working object diagram. Queries are written using the MOVA editor as
described in Section 2.3

The Help submenu includes the following options:
e Help|About us. It provides information about the MOVA project.

The top menu contains icons that provide quick access to particular menu
options. Table [1] shows the menu option associated with each icon in the top
menu.

2.2 The diagram container

The diagram container holds the diagram pallets. Diagrams pallets have a
notched tab along their top. The notched tabs of the class diagrams are visible,
as well as those of the object diagrams of the working class diagram. The user
can change the working diagram by clicking upon its notched tab.

The icons in the left-margin of the diagram container provide quick access
to particular menu options. The icons shown depend on the working diagram: a
different set is shown from class diagrams than from object diagrams. Tables
and [3] show the menu option associated with each icon in the left-margin, ex-
cept the pointer-icon which is used to select elements in the working diagram.
Selected elements can be edited or removed by clicking upon them with the
right-button of the mouse and choosing the appropriate option in the selection
menu: Properties for editing, and Remove for removing. Elements can also be
edited by double-clicking upon them.

(o¥

File|New|Class diagram

o

File|New|Object diagram

El

File|Open|Class diagram

]

File|Open|Object diagram

H

File|Load|Invariants, operations

X File|Close

= File|Save as|Diagram

& File|Save as|Invariants, operations
| File|Exit

\/| Help|About us

Table 1: The UML modeling top menu icons.

Cursor

Insert|Class diagram|Class

L Insert|Class diagram|Enum
S Insert|Class diagram|Association
~ 7 7 | Insert|Class diagram|Association Class
~ " | Insert|Class diagram|Generalization
g Insert|Class diagram|Invariant

Insert|Class diagram | Operation

Table 2: The UML modeling class diagram container icons.

e (lasses: The user can modify the name of selected class, and insert or
remove its attributes. Attributes must have a predefined type (Integer,
Boolean, and String) or the type introduce by an enumeration class.

e Associations: The user can modify the name of selected association, its
roles and their multiplicities.

e Objects: The user can modify the name of a selected object and the value
of its attributes.

2.3 The editor

The editor assists the user in writing OCL expressions in three different contexts:
adding an invariant to a class diagram; writing a query about an object diagram;
and defining the body of an operation.

To write an expression the user selects patterns from lists that are built
at “run-time” when the buttons Start, Dot, Arrow, or Space are pressed. The
actual patterns shown in the lists depend on the model under consideration, the
current type of the expression, and the button that has been pressed: the Start
button is used to start writing an expression; the Dot button is used to access a
property of a class; the Arrow button is used to access a property of a collection;
and the Space button is used to introduce a logical or an arithmetic operator.
The current type of an expression is shown in the Current Type subwindow.

Insert|Object diagram|Object

Al Insert|Object diagram|Link
N Edit|Zoom +
- Edit|Zoom -
i View|Invariants
=

View|Class diagram/Object diagram

5 It opens the metrics editor
4 It checks the invariant selected by the user.
e Insert|Object diagram|Query

Table 3: The UML modeling object diagram container icons.

Patterns can contain holes, which are types enclosed in angle brackets pos-
sibly followed by an index. For example, the exists-pattern contains the hole
(Boolean). When a pattern with holes is selected the user has to fill its holes
with expressions of the appropriate type. Each of these expressions is written
in a new editor window, that is a child of the window in which the pattern has
been selected. The type of the hole to be filled in a child window is shown in its
Target Type subwindow, and the context in which this hole appears is shown in
its Context subwindow.

The type of the hole to be filled in a child window is shown in its Target Type
subwindow, and the context in which this hole appears is shown in its Context
subwindow. A hole with type Any can be filled with expressions of any type.
When the user presses the button OK in a child window, the expression writ-
ten in its Expression subwindow replaces the corresponding hole in its Context
subwindow; if there are no more holes to be filled, the expression in the Context
subwindow is appended to the right of the expression written in the Expression
subwindow of its parent.

There are two special patterns for writing set of elements:

e Set{} denotes the empty set of elements of the type selected by the user;
and

o Set{{((type)) }—union((Set[(type)])) denotes the union of two sets of ele-
ments of the type selected by the user: the first contains just one element
and the second can contain arbitrary number of elements.

There is also a special pattern for writing if-then-else statement whose then-
and else- expressions are of the type selected by the user:

o if((Boolean))then({({type):1))else({({type):2))fi.

When the editor is used for adding an invariant to a class diagram, the type
shown in the Target Type subwindow of the initial window is Boolean. When
the editor is used for writing a query about an object diagram, the type shown
in the Target Type subwindow of the initial window is Any. Finally, when the
editor is used for writing the body of an operation, the type shown in the Target
Type subwindow of the initial window is its resulting type.

3 SecureUML modeling

This application supports the automated analysis of security-design models [2],
following the metamodel-based approach proposed [I]. In particular, it allows
a user to draw security-design models and scenarios, and to write and evaluate
OCL queries on these models to automatically analyse their security policies.
The main window is divided in two parts: the top menu (Section and the
diagram container (Section . The top menu includes the options of creating
diagrams from scratch, saving diagrams in files, opening diagrams previously

saved, and printing diagrams. It also includes the option of inserting elements
in diagrams.

The diagram container holds the security-design diagrams and scenarios
drawn by the user; scenarios of the same security-design diagram are kept to-
gether. Security-design diagrams and scenarios are drawn in diagram pallets
which are stack in a pile. If the container is not empty, the working diagram is
the diagram drawn in the visible pallet, i.e., the pallet at the top of the stack.
Security-design diagrams are closed in the diagram container when they hold
scenarios. Closed security-design diagrams cannot be modified.

This application shares with the other MOVA applications the OCL edi-
tor/checker /evaluator (see Section [2.3)), which can be used in this case to write
authorization constraints, and to write and execute queries on security-design
and scenarios diagrams. Notice that the current version of the tool includes as
predefined OCL operations. all the analysis operations defined [I].

3.1 The top menu

The top menu options are distributed in submenus: File, Edit, Insert, and Help.
The top menu also contains icons that provide quick access to particular menu
options.

The File submenu includes the following options:

o File|New|Security Diagram. It creates a new security-design diagram pallet
in the diagram container, which becomes the working diagram.

e File|New|Object Security Diagram. It creates a new scenario diagram pallet
in the diagram container, which becomes the working diagram.

e File|Open|Security Diagram. It creates a new security-design diagram pal-
let in the diagram container, and draw in it the security-design diagram
contained in the file selected by the user. This file must contain the secu-
rity diagram in (MOVA) XML format. The new security-design diagram
pallet becomes the working diagram.

e File|Open|Object Security Diagram. It creates a new scenario diagram pallet
in the diagram container, and draw in it the scenario diagram contained in
the file selected by the user. This file must contain the scenario diagram in
(MOVA) XML format. The new object security diagram pallet becomes
the working diagram.

e File|Close. It closes the working diagram. If the working diagram is a
security-design diagram it also closes all its scenario diagrams.

e File|Page setup. It allows the user to change the page configuration (media,
orientation, and margins) of the working diagram for printing purposes.

e File|Print. Tt allows the user to print the working diagram, possible chang-
ing its current page configuration.

10

e File|Export to EPS. It saves the working diagram in EPS format in the file
selected by the user.

e File|Save as|Diagram. It saves the working diagram in (MOVA) XML for-
mat in the file selected by the user.

e File|Exit. It closes the application.

The Edit submenu includes the following options:

e Edit|Zoom +. It zooms-in in the working diagram.
e Edit|Zoom -. It zooms-out in the working diagram.
The Insert submenu includes the following options:

e Insert|Security diagram|Role. It inserts a role in the working security-design
diagram. This element is drawn as a rectangle labeled ((Role)) in the
location where the user clicked upon. The tool asks the user to insert a
name for the new role.

e Insert|Security diagram|Entity. It inserts an entity in the working security-
design diagram. This element is drawn as a rectangle labeled ((Entity))
in the location where the user clicked upon. The tool asks the user to
insert a name for the new entity.

e Insert|Security diagram|Permission. It inserts a permission in the working
security-design diagram. This element is drawn as a rectangle labeled
({Permission)) in the location where the user clicked upon. The tool
asks the user to insert a name for the new permission.

e Insert|Security diagram|Role hierarchy. It inserts a hierarchy between two
roles in the working security-design diagram. This element is drawn as a
generalization-arrow between the two roles upon which the user clicks at
the beginning and the end of a sequence of clickings. The role clicked at the
end of the sequence is the super-role. If the size of the sequence of clickings
is greater than two, the generalization-arrow is drawn in segments, and
the intermediate clicks determine the locations of the end-points of each
of the segments.

o Insert|Security diagram|Association. It inserts an association relation be-
tween two entities in the working security diagram. This element is drawn
as a bidirectional arrow between the two entities upon which the user
clicks at the beginning and the end of a sequence of clickings. If the size
of the sequence of clickings is greater than two, the arrow is drawn in
segments, and the intermediate clicks determine the locations of the end-
points of each of the segments. At the end of the sequence of clickings,
a window is opened up and the user is asked for inserting a name for the
association, and a name for the origin and target association-ends along
with the multiplicity of each of these ends.

11

e Insert|Security diagram|Permission assignment. It inserts an assignment re-
lation among a role, a permission, and an entity in the working security-
design diagram. This element is drawn with a solid line between the role
and the entity, and a dashed line between the permission and this solid
line. The role, the permission, and the entity are those upon which the
user clicks at the beginning, in the middle, and the end of a sequence of
clickings.

e Insert|Object security diagram|Entity instance. It inserts an instance of the
entity chosen by the user in the working scenario diagram. This element
is drawn as a rectangle in the location where the user clicked upon. The
entity instance is assigned a default name and its attributes are assigned
a default value. It is also shown whether the instance can be a user in
the working scenario diagram (and therefore can be assigned a role) which

depends on whether the entity has been declared or not as a user-provider
entity (more on Section [3.2).

e Insert|Object security diagram|Link. It inserts a link of the association cho-
sen by the user in the working scenario diagram. This element is drawn
as a link-arrow between the two entity instances upon which the user
clicks at the beginning and the end of a sequence of clickings. If the size
of the sequence of clickings is greater than two, the link-arrow is drawn
in segments, and the intermediate clicks determine the locations of the
end-points of each of the segments.

e Insert|Object security diagram|Role. It inserts a role in the working scenario
diagram. The role has to be chosen from the collection of roles defined
in the security-design diagram which had not been yet introduced in the
scenario. This element is drawn like in the security-design diagram, and
it is placed in the location where the user click upon.

e Insert|Object security diagram|Role assignment. It inserts a relation between
a user, that is, an instance of a user-provider entity, and a role in the
working scenario diagram. This element is drawn as a bidirectional arrow
between the user and the role upon which the user clicks at the beginning
and the end of a sequence of clickings. If the size of the sequence of
clickings is greater than two, the bidirectional arrow is drawn in segments,
and the intermediate clicks determine the locations of the end-points of
each of the segments.

The Help submenu includes the following options:
e Help|About us. It provides information about the MOVA project.

The top menu contain also icons that provide quick access to particular menu
options. Table [4] shows the menu option associated with each icon in the top
menu.

12

File|New|Security diagram

e

File|New|Object security diagram

Bl

File|Open|Security diagram

E]

File|Open|Object security diagram

File|Close

File|Save as|Diagram

a (I (X

File|Exit

\/

Help|About us

Table 4: The SecureUML modeling top menu icons.

3.2 The diagram container

The diagram container holds the diagram pallets.

notched tab.

The icons in the left-margin of the diagram container provide quick access
to particular menu options and also to additional functionalities of this applica-
tion. The icons shown depend on the working diagram: a different set is shown
from security-design diagrams than from scenario diagrams. When the working
diagram is a security-design diagram, the icons in the left-margin which are
linked to menu options are shown in Table [5} the rest of the icons are described

below.

13

Diagrams pallets have a
notched tab along their top. The notched tabs of the security-design diagrams
are visible, as well as those of the scenario diagrams of the working security-
design diagram. The user can change the working diagram by clicking upon its

It is used to select an element in the working
security-design diagram.

g It is used to associate an authorization contraint
to a particular permission in the working security-
design diagram. The authorization constraint is
linked to the permission’s dash-arrow which the
user clicks upon.

& It is used to execute a query on the working
security-design diagram.

When the working diagram is a scenario diagram, the icons in the left-margin
which are linked to particular menu options are shown in Table [6} the rest of
the icons are described below.

. It is used to select an element in the working sce-
nario diagram.

g) It is used to execute a query on the working sce-
nario diagram.

Finally, elements can be edited or removed by double clicking upon them.
In particular,

e FEntities: By double clicking upon an entity, the user can declare it as a
user-provider entity, modify its name, and insert or remove its attributes
and methods (both query and non-query). He/she can also delete the
entity.

e Association: By double clicking upon an association, the user can modify
its name, and the names and multiplicities of its association-ends. He/she
can also delete the association.

e Role: By double clicking upon a role, the user can modify its name and
delete it.

e Permission: By double clicking upon a permission, the user can modify
its name and delete it.

e Role hierarchy: By double clicking upon a role hierarchy, the user can
delete it.

o Action assignment: By double clicking upon a permission’s dash-line, the
user can assign or remove (atomic or composite) actions on the associated
entity to the permission.

14

Cursor

Insert|Security diagram|Role

m

r

4 4
! E

Insert|Security diagram|Entity

PR | Insert|Security diagram|Permission
Insert|Security diagram|User
- Insert|Security diagram|Role hierarchy
= Insert|Security diagram|Association
—i— Insert|Security diagram|Permission assignment
g

Insert|Security diagram|Query

Table 5: The SecureUML modeling diagram container icons.

OBJ Insert|Object security diagram|Entity instance
<HINK, Insert|Object security diagram|Link

. Edit|Zoom +

= Edit|Zoom -

e

Insert|Object security diagram|Query

Table 6: The SecureUML modeling diagram container icons.

15

4 UML modeling with Metrics

UML Modeling with Metrics adds to UML modeling the possibility of evalu-
ating metrics over the working class diagram. Both applications have similar
interfaces, the only difference being that the Insert|Class Diagram|Metric option
is active in UML Modeling with Metrics.

In MOVA, metrics are OCL queries over the instance of the MOVA meta-
model corresponding to the working class diagram. The editor can assist the
user in writing these metrics: in this case the patterns offered by the editor, and
the result of its evaluation, correspond to:

e the classes, attributes, roles, generalizations, and associations included in
the MOVA metamodel.

e the objects and links included in the instance of the MOVA metamodel
that corresponds to the working class diagram; this instance is automati-
cally generated by the application.

To ease the task of writing queries, the editor offers additional patterns that
correspond to metrics/queries which belong to the MOVA metrics library. The
complete list of metrics/queries included in this library is shown below: Each
metric/query is first informally explained and then formally defined /implemented
as an OCL query over the MOVA /UML metamodel

Class Metrics/Meta Queries

The number of proper attributes of the class c.

numAttrClass(c:MovaClass)::Integer

c.ownedAttribute—size()

The set of the immediate succesors of the class c.

childClass(c:MovaClass):Set[Classifier|

c.nonNavigable—collect(g:Generalization|g.specific)

The number of the immediate succesors of the class c.

numChildClass(c:MovaClass)::Integer

childClass(c)—size()

The number of proper connectors of the class c.

numConnClass(c:MovaClass)::Integer

c.inAssociation—size() + c.generalization—size() 4+ c.nonNavigable—size()

The set of the immediate ancestors of the class c.

parentClass(c:MovaClass)::Set[MovaClass]

c.generalization—collect(g|g.general.oclAsType(MovaClass))

The set of all the ancestors of the class c.

parentClassAll(c:MovaClass)::Set[MovaClass]

parentClass(c)—union(parentClass(c)—collect(p|parentClassAll(p)))

16

Class Metrics/Meta Queries

The set of the immediate inherited attributes of the class c.

inherAttrClass(c:MovaClass)::Set[Property]

parentClass(c)—collect(cl|cl.ownedAttribute)

The set of all inherited attributes of the class c.

inherAttrClassAll(c:MovaClass)::Set[Property]

parentClassAll(c)—collect(cl|cl.ownedAttribute)

The number of all inherited attributes of the class c.

numlinherAttrClassAll(c:MovaClass)::Integer

inherAttrClassAll(c)—size

The set of all (proper and inherited) attributes of the class c.

attrClassAll(c:MovaClass)::Set[Property]

inherAttrClassAll(c)—union(c.ownedAttribute)

The set of data types of all the (proper and inherited) attributes of the class c.

typeAttrClassAll(c:MovaClass)::Set[Type]

attrClassAll(c)—-collect(p|p.dataType)

The value of checking whether the class ¢ has an attribute of end type t.

hasAttrClass(c:MovaClass, t:Type)::Boolean

typeAttrClassAll(c)—includes(t)

Class Metrics/Meta Queries

The set of the immediate inherited associations of the class c.

inherAssocClass(c:MovaClass)::Set[Association]

parentClass(c)—collect(cl|cl.inAssociation)

inherAssocClassAll(c:MovaClass)::Set[Association]

The set of all inherited associations of the class c.

parentClassAll(c)—collect(cl|cl.inAssociation)

The number of all inherited associations of the class c.

numinherAssocClassAll(c:MovaClass)::Integer

inherAssocClassAll(c)—size

The set of all (proper and inherited) associations of the class c.

assocClassAll(c:MovaClass)::Set[Association]

inherAssocClassAll(c)—union(c.inAssociation)

The set of data types of all the (proper and inherited) attributes of the class c.

typeAssocClassAll(c:MovaClass)::Set[Type]

assocClassAll(c)—collect(p|p.end Type)

The value of checking whether the class ¢ has an association with end type t.

hasAssocClass(c:MovaClass, t:Type)::Boolean

typeAssocClassAll(c)—includes(t)

17

Class Metrics/Meta Queries

avgCoupledTo(cl:MovaClass, c2:MovaClass)::Boolean

The value of checking whether the class cl is coupled with the class c2.

hasAttrClass(cl, c2) or hasAssocClass(cl, c2)

The set of classes that are coupled with the class c.

avgCouplings(c:MovaClass)::Set[MovaClass]

MovaClass.alllnstances—excluding(c)
—select(cl|avgCoupledTo(cl,c) or avgCoupledTo(c,cl))

The number of classes that are coupled with the class c.

numAvgCouplings(c:MovaClass)::Integer

avgCouplings(c)—size()

Diagram Metrics

The number of classes in the diagram.

numClass::Integer

MovaClass.alllnstances—size()

The number of associations in the diagram.

numAssoc::Integer

Association.alllnstances—size()

The number of generalizations in the diagram.

numGenr::Integer

Generalization.alllnstances—size()

The number of classifiers in the diagram.

numClasf::Integer

Classifier.alllnstances—size()

The number of connectors in the diagram.

numConn::Integer

Relationship.alllnstances—size()

The number of attributes in the diagram.

numAttr::Integer

(MovaClass.alllnstances—collect(c|attrClassAll(c)))—asSet() —size()

The number of all inherited attributes in the diagram.

numlinherAttr::Integer

(MovaClass.alllnstances—collect(c|inherAttrClassAll(c)))—asSet()—size()

References
[1] David Basin, Manuel Clavel, Jirgen Doser, and Marina Egea. Auto-

mated analysis of security-design models. Submitted for publication. http:
//maude.sip.ucm.es/ clavel/pubs.

18

http://maude.sip.ucm.es/~clavel/pubs
http://maude.sip.ucm.es/~clavel/pubs

2]

David A. Basin, Jirgen Doser, and Torsten Lodderstedt. Model driven
security: From UML models to access control infrastructures. ACM Trans.
Softw. Eng. Methodol., 15(1):39-91, 2006.

Manuel Clavel and Marina Egea. ITP/OCL: A rewriting-based validation
tool for UML+OCL static class diagrams. In Michael Johnson and Varmo
Vene, editors, AMAST, volume 4019 of Lecture Notes in Computer Science,
pages 368—-373. Springer, 2006.

Object Management Group. Object Constraint Language specification,
2004. http://www.omg.org.

Object Management Group. Unified Modeling Language specification, 2004.
http://www.uml.org.

19

http://www.omg.org
http://www.uml.org

	Overview
	UML modeling
	The top menu
	The diagram container
	The editor

	SecureUML modeling
	The top menu
	The diagram container

	UML modeling with Metrics

