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Abstract. Covariant-contravariant simulation and conformance &ten gen-
eralize plain simulation and try to capture the fact thas ihot always the case
that “the larger the number of behaviors, the better”. Weehareviously stud-
ied some of their properties, showing that they can be ptedess particular
instances of the general notion of categorical simulatievetbped by Hughes
and Jacobs and constructing the axiomatizations of theg¢eendefined by the
simulation relations and their induced equivalences. We [zdso studied their
logical characterizations and in this paper we continué thiat study, presenting
them as instantiations of the categorical results on sitimdogics by Cirstea.
In addition, we continue exploring, now in this categorifi@mework, the re-
lationship between covariant-contravariant simulatigertial bisimulation over
labeled transition systems, refinement over modal tramsiystems and mixed
transition systems.

1 Introduction and related work

Simulations are a very natural way to compare systems defipddbeled transition
systems of other related mechanisms based on describinigetievior of states by
means of the actions they can execute. However, the classanrof simulation does
not take into account the fact that whenever a system hasaeassibilities for the
execution of an action, it will choose in an unpredictablenmex resulting in more
non-determinism and less control.

We have proposed two new simulation notions which are matelsa to deal with
non-determinism [7]. On the one hand, covariant-contian&isimulations were de-
signed to manage systems in which non-determinism ariszsibe of the presence of
both input and output actions; on the other hand, conformaimulations cope with
having several options for the same action. In previous warl have proved that these
simulations can be presented as instances of the coalgaimailation framework [7]
and have also described their logical characterizatiohs [8

In this paper we continue with the study of the logics thatrabterize these two
simulation notions, but now within the general categorftaimework developed by
Cirstea in [5]. In addition, we also consider partial bislation [2], which turns out to
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be just a particular case of covariant-contravariant sathorh, as well as modal tran-
sition systems, a concept introduced by Boudol and Larsbarf@ whose associated
notion of refinement clearly resembles our covariant-awatriant simulations; in do-
ing so, we expand on the comparison we started in [1] betwsesetrelated notions.
Actually, although more interesting, modal transitionteyss are just a particular case
of mixed transition systems; by reusing many of the concestsl for the former, we
show how to also obtain a logic for the latter for which, uslike others, we were not
aware of a previous non-coalgebraic logical characteomat

Now, besides describing a method for obtaining logical ab@rizations, [5] also
explains how to build new logics in a compositional mannéraflkknown ones. Unfor-
tunately, our simulations were not amenable to this mettoayand we were forced to
start from scratch. As a consequence, and besides the tvaation for mixed transi-
tion systems, the main contribution of this work is the aqgtiion of the ideas in [5] to
interesting case studies such as modal refinement or cantatsimulation, in what
we believe is a nice illustration of the methods involved.

2 Preliminaries

In this section we summarize some definitions and conceps f5, 7, 1, 3] and intro-
duce the notation we are going to use. Let us recall our twalsition notions:

Definition 1. Given P= (P,A, —p) and Q = (Q, A, —q), two labeled transition sys-
tems (LTS) for the alphabet A, apd’, A', AP} a partition of this alphabet, A", A)-
simulation (or just a covariant-contravariant simulation) betweereth is a relation
S € P x Q such that for every pS g we have:

— Forallae A" UAP and all p—> p’ there exists g g with pPSd.
— Forallae A' UAP, and all g— ¢ there exists p— p’ with p'Sd.

We will write p <cc q if there exists a covariant-contravariant simulation Sisthat
pPSa.
Definition 2. Given P= (P, A, —p) and Q= (Q, A, —¢) two labeled transition systems

for the alphabet A, @onformance simulation between them is a relation P x Q
such that whenever pRq, then:

— Forallae A ifp -2, then q—a> (this means, using the usual notation for process
algebras, that (p) < 1(q)).
— For all a € A such that qi> g and p—a>, there exists somée wiith p N p’ and
P'Rq.
We will write p<cs q if there exists a conformance simulation R such that pRg.
Now, we recall the definitions for modal transition systems.

Definition 3. For a set of actions A, anodal transitiorsystem (MTS) is defined by the
triple (P, —., —»), where P is a set of states arel,, > € P x Ax P are transition
relations such that> € —..



The transitions in— are called themust transitionsand those in—, are themay
transitions In an MTS, each must transition is also a may transitionctvimtuitively
means that any required transition is also allowed.

The notion of (modal) refinememnt over MTSs that we now proceed to introduce
is based on the idea that|if C g thenq is a ‘refinement’ of the specificatiop. In
that case, intuitivelyg may be obtained fronp by possibly turning some of its may
transitions into must transitions.

Definition 4. A relation RC P x Q is arefinement relatiobetween two modal transi-
tion systems if, whenever p R q:

- p 3 p implies that there exists somésych that 4> ¢ and g R d;
-q io g implies that there exists somésuch that pi<> p’and p Rd.

We writeC for the largest refinement relation.

Finally, we briefly recall the basic concepts on categorialulations that we are
going to use in Section 3. First, we will model finitary LTS byatgebrag : X —
P, XA for the finite powerset functd?”, where, as usually, we will denos¢ € c(x)(a)

by x 2, X'. We can also see modal transition systems as coalgebrasefdurictor

F = P(id x {0, O})A, where{o, [} is a set with two elements whefé stands for must
transitions ana for may transitions. We will make intensive use of the follog/nota-

tion along the paper.

c(X)(@)g = {¥ € X| (¥,0) € c(x)(a)}, and

c(X)(a), = {X € X | (X,0”) € c(X)(a), with o € {0, }}.
Note that with the previous definition we do not have necdlgsasg C —., but that
requirement is built-in in our notation since we have tt{@(a)g € c(x)(a)..

Example 1.GivenA = {a}, X = {x, X, y}, the coalgebra : X — P(Xx{o, d})* defined
by c(X)(a) = X, c(X)(@) = (y,d), c(y)(a) = 0 represents the MTS 2. x —a>D V.
Proposition 1. Modal refinement between MTS can be defined as the coalgefiraic

ulations for the functor F= P(id x {¢, [J})* with functorial orderc,s defined by WL ef v
if and only if:

— u(@g = v(a)g for all a; and
— u(a), 2 v(a). for all a,

Proof. Let us suppose that we have a modal refinenfiebetween modal transition
systemsg: : P — P(P x {o,[d})* andd : Q — P(Q x {¢, 3})” defined byc(p)(a)g =

(01 p S0 phep)@e. = (0 | p = ) d@@o = (g | g S0 q) andd(g)(a). =
d1q A, g’}. We must show that ipRgthen there exisp* andq* such that

c(p) Crer p"ReI(P(id x {o, 1))*)(R)G" Crer d(0)- (1)

We definep* andqg* as follows:



— p* has the same must transitionscég), except for those may transitiorplsi<> of
such that there is ngf with g io g andp’Rq.
— g* has the same must and may transitiond(@y, that is,g* = d(q).

It is immediate from these definitions the(ip) Crer p* andq* Crer d(q), SO We are
left with checking thap*Rel@(id x {o, O})")q".

If p’ € p*(a@)g, by construction ofp* andg* it is straightforward to see that also
d € g(@)g. On the other hand, l&t € g*(a)., by definition ofgq* we have that also
q 2. g'. SinceRis a modal refinement we also have thﬂtei><> p’ with p’Rq. But, by
construction ofp*, we also have thal’ € p;, as we needed to prove.

We show now the other implication, that a coalgebraic moefshiement is a classic
one. In this case we start from coalgelcasdd that satisfy relation (1) whenevpRq

If p 35 p,thenp e p @) because(p) Crer p* and, sincep*Rel@(id x
{o,ONA(RG", there is some € g*(a)g with p’Rd. Again, in this case, the defini-
tion of Cre¢ ensures thag*(a) = d(g)(a) and hencey —a>D g as required. Similarly, if
q 2, q, then alsay € g*(a), and thus, as in the previous case, there existsp*(a).
with p’Rd and hence 3 p. O

Following [7], we can prove that the previous notion of refirent is indeed a good
definition.

Proposition 2. The orderc,s is left-stable. Hence, modal refinement can be defined as
theRel(F) o Cre-coalgebra.

We will denote bySetsthe category of sets and el the category of relations.
Given an endofunctof : Sets — Sets a monotonic T-relatof13, 5] is an endo-
funtorT : Rel — Relsuch thatJoI' = (T xT)o U, =rx C I'(=x), and['(SoR) =
I'(S) oT'(R), whereU : Rel — Setsx Setsis the forgetful functor. Al'-simulation
between coalgebra¥(c) and (Y, d) is just al'-coalgebra of the formR, (c, d)), i.e, a
relationR such thaxRyimpliesc(x)I'(R)d(y).

3 Logical characterizations of the semantics

For the logical characterization of the covariant-cordréant and conformance simula-
tions we will follow the general inductive methodology indtuced in [5]. First, we will
define the syntax and semantics of the logics by means of gukge constructor” and
its associated notion of semantics. In fact, both consbmstonly define a single step
that must be successively applied in an iterative procegsetids up with the definitive
syntax and semantics. The next stage consists in showihththéone-step” semantics
is adequate for the corresponding simulation notions.Iiinae will build the concrete
logics for coalgebras which characterize the new simikgitwhich are equivalent to
the logics we defined in [8].

We begin with the covariant-contravariant simulation heeawe consider it more
illustrative.



3.1 Covariant-contravariant simulations

Before starting with the methodology in [5], we must showt t@variant-contravariant
simulations can be modeled using monotonic relators [13, 5]

Definition 5 (Covariant-contravariant simulation relator ). Let RC Q x P be a re-
lation, g: Q — P,Q*and f: P — P,PALTS, and(A", A, A%} a partition of A.
We define th@ﬁ-relatorl"cc : Rel — Rel for covariant-contravariant simulations by
glcc(R) fiff

— forallae A" UA" and all pe f(a) there exists g g(a) with qRp.
— foralla e A' U AP, and all ge g(a) there exists & f(a) with qRp.

Proposition 3. The simulation notion defined by the relatbgc coincides with the
notion of covariant-contravariant simulation.

Proof. First, letR be a covariant-contravariant simulatiBrbetween the labeled tran-
sition systemsf : P — #,PA andg : Q — P,Q" defined in the usual way by
f(M@ = (p' | p— P} andg(@)(@) = (¢ g — q(). fac A"U A" andp’  f(p)(a)
thenp — p’. Using thatpRg there existgy such thaty — g with p'Rq, that is,
there isq’ € g(q)(a) with ’R°Pp’. Now, if a € A' U AP andq’ € g(g)(a), there existg’
such thatp 2 p’ with p’Rd, or, equivalentlyg’R°Pp’. Henceg I'cc(R%) f.

On the other hand, let us show thajc(R°P) defines a covariant-contravariant sim-
ulation. First, leta € A U A% andp —> p/, thenp’ € f(p)(a) with a e A" U AP and by
definition of the relator there existg € g(g)(a) with gRp, that is, we have 2 q
with p'R°Pq’.

Forae Al U AP andq — ¢ the result follows analogously. O

The first step for defining the logic is to define its syntax byameof what is called
alanguage constructoFrom now on we work with a signatulg C {tt, fi, A, v, A, \/}!
and its corresponding categoio(2g) of algebras.

Definition 6 ([5]). Alanguage constructoris an accessible endofunstoAlg(Zg) —
Alg(2) and the language.(S) induced bys is the initial algebra ofS.

In most interesting cases the languag&) is given byl J,, Ln(S), with Lo(S) the
initial Zg-algebra and.,;1(S) = S(Ln(S)).

In order to define the logic for covariant-contravariantgiations we proceed as
in [8]. First, givenX = {tt, A}, the languagel(S5) characterizing the simulation se-
mantics is defined in [5] as the language constructor takieg talgebral to the free
X-algebra over the s¢tp | ¢ € L}. Itis also shown in [5] that for LTS we could define
L(S%) as the language constructor taking falgebral to the free>-algebra over the
set{(a)y | ¢ € L}.

If we compare it with the Hennessy-Milner logi€ynm [9], it can be noted that
the main dfference is that negation is not present. Obviously, this teshe case to

L Although in [5] the elementf is not used, we will need it for the logics characterizing
covariant-contravariant simulations and modal refinement



capture a strict order that is not an equivalence relatioch 81s<cc. However, adding
both the constanff and the disjunction/ to X~ does no harm, thus obtaining(S%)
which also characterizeSs for LTS. B
As we did in [8], the inspiration to obtain the logic charaimg <cc comes from
the fact that if we only have contravariant actions, thes becomeggl, and therefore

by negating all the formulas ifi(S4) we would obtain the desired characterization (that
is why we needf). In particular, for the modal operatéa) we would obtain its dual
form [a].

Then, in the presence of both covariant and contravariditres; we need to con-
sider the existential operatgay for a € A" U AP and the universal operatob][for
b € Al U A thus obtaining the following definition of the syntax of trogic for
covariant-contravariant simulations.

Definition 7. LetZXg = {tt,ff, A, v} and letScc : Alg(2s) — Alg(Zg) denote the lan-
guage constructor taking Az-algebra L to the free€z-algebra over the sgfb]e | b €
AUAY o e Ljuay | ae AUAY ¢ e L}. Then, the language(Scc) can be
generated using the following syntax:

pu=tt[ffloAgleVvel[ble|(@e.

Now, in order to define the semantics of the operators abovesed some technical
definitions.

Definition 8 ([5]). An interpretation of aXz-algebra L over a set X is dg-algebra
morphism d L — £X.

Intuitively, an interpretation gives for each operator lre tsyntax (that is, of the
language/(Scs)) all the elements (of a given s&) that satisfy a formula, that is,
X € d(p) means that the formula holds in x. Interpretations define a category. A
map between interpretationls: L — PX andd’ : L' — $£X’ is a pair (, f) with
| © L — L" aXp-algebra morphism anfl : X’ — X a function such thaPfod =
d’ ol (where® denotes the contravariant powerset functor). We denosectitegory
of interpretations byntg, with L : Intg — Alg(2g) the functor takingd to L and
E : Intg — Sets$P the functor takingl to X.

Recall that in order to define the semantics for logics, wetrfitst define the se-
mantics of a single step. This single step is formalized Bevis.

Definition 9 ([5]). A T-semantics for a language construc®is a functorS : Intg —
Intg suchthatLoS = SoL andEoS = T°Po E. Thus, a T-semantics f& takes an
interpretation d: L — #X to an interpretation t: SL — PT X.

For our concrete case of covariant-contravariant simuiatithe interesting cases
are the definition of the semantic for the two modal operatorfs] the semantics for
the operatop is defined agl'(op) = {Y € P,X | Y Nnd(p) # 0}. So, it is easy to see
that if we consider the operat@ we haved’ ({(a)p) = {f : A— P X | f(a) N d(yp) #
0}. Analogously, following the classical definitions of the dab operators in [9] and
our work in [8], in order to define the semantics fda] [ve must consider not just



f(b) N d(y) # 0 but f(b) € d(¢) since with the classical interpretatigrE [b]e means

b . . .
thatp’ E ¢ for all p — p’; thus, all the successors must be in the interpretation and
not just one.

Hence, we have the following.

Definition 10. A Pﬁ-semantics foiScc is given by the functoBcc : Intg — Intg
taking an interpretation d L — £X to an interpretation t: Scc(L) — P(P,XA)
defined by:

— d'(tt) = P XA

— d'(f) = 0.

- d(pAy)=d(e)ndy).
—d'(pVvy)=de)ud@y).

= d'([blp) = {f : A— P, X | f(b) C d(¢)}.
—d(ay) ={f : A— P,X| f(a) nd(y) # 0}.

Note that, since an interpretation betweenXgealgebras/(Scc) andPX is a mor-
phism, the value of’ ontt, ff, A andv is imposed.

Next, we show that the semanti§sc is adequate for covariant-contravariant sim-
ulations. The notion of adequacy is given by “preservingregpiveness”. Informally,
a preorder is expressive if from< b it follows thatb satisfies a logical formula (ac-
cording to the interpretation) whenevardoes; a semantics preserve expressiveness
whenever it maps expressive interpretations and preoid&rexpressive ones. The
following definition makes these concepts precise.

Definition 11 ([5]). Given an interpretationd L — £X, for x y € X we write y>| X
if y € d(¢) whenever x d(¢). We will say that d is expressive for a preordecRX x X
if R = >, in other words, yRx if and only if & d(¢) whenever »x d(p).

Given a T-relatorl” : Rel — Rel and a language construct® : Alg(2g) —
Alg(Zg), we will say that a T-semanticfor S preserves expressiveness WIT.if it
maps an interpretation d L — #X which is expressive for B X x X, into an
interpretation d : S(L) — T X which is expressive faiR.

Proposition 4. The semanticScc for Scc preserves expressiveness Wide.

Proof. Letd : L — PX be expressive foR. We must prove thag I'cc(R) f if and
onlyif g >s.q) f foranyg, f € P, XA,

First, let us suppose thgil'cc(R) f and see thay >g ) f, thatis, thatiff € d’(p)
theng e d'(p), for all ¢ € Scc(L). The proof proceeds by structural induction.

— Lety = tt. Then sincad’ (i) = P4 X, we trivially get the result.

— Letyp = g1 A @p. Thend'(p) = d'(p1) N d'(p2). If f € d'(p) thenf € d'(¢1) and
f € d'(¢2), so by induction hypothesis algpe d’'(¢1) andg € d’(¢2), that is,
g€ d'(g).

— Letyp = ¢1 V . Itis analogous to the previous case.

— Lety = [bly withb e AUAY, y e L. Thend'(¢) = {f : A— P, X | f(b) C d(¥)).
If f e d(p)thenf(b) C d(¥). Now,g T'cc(R) f andb € Al U AP implies that for
all y € g(b) there exists somee f(b) such thatyRz and sincel is expressive for
Randz € d(y), then we have alsp € d(y). Henceforthg € d’([b]y) as we needed
to prove.



—Lety = (@y witha e AV UAY y e L. If f e d'(¢) then there exists some
2 € f(a) N d(y). Now,g I'cc(R) f anda € A" U A% imply that for allz € f(a)
there exists somge g(a) such that ifz € d(y) theny € d(yo), for all ¢ € L. This
way, takingz, € f(a) N d(y) we get that there exisig € g(a) such that, € d(y).
Henceforthg € d’({(a)y) as we needed to prove.

On the other hand, let us suppose now thBtc(R) f does not hold, and let us see
thatg #s.c) f- If g Tec(R) f does not hold, either there is soraes A" U A® and
z e f(a) such thaty, ) ¢ Rfor all y € g(a), or there ard € A' U A” andy e g(b) such
that {y, 2) ¢ Rfor all ze f(b).

In the first case, the expressivenessl aindR gives us for eacly € g(a) a formula
Yy € L such that € d(yy) buty ¢ d(yy). If we consider the formula = (a) A, ¥y, we
getf e d'(¢) butg ¢ d’(¢). For the second case, we get for each f(b) a formula
W, € L such thatz € d(y,) buty ¢ d(7). In this case the formula = [b] \/, ¥ is such
thatf e d’(¢) butg ¢ d’(¢). That way we have proved thatgflTcc(R) f does not hold,

theng %< f. o

Finally, the last step of the construction in [5] is the défor of the “definitive”
logic for a coalgebra induced by a relator. The semantichisflogic will be built as
the limit of the “single step” semantics.

Definition 12 ([5]). For any ordinale, given(Za),(pﬁ D Zo — Zg)p<as the final se-
quence of the functor T, an interpretation:df — #Z, induces a logid L, ) for
T-coalgebras with

Ck, ¢ if and only ify,(c) € d(p),

where(y, : C — Z,) denotes the cone over the final sequence of T defined as follows

— %0 : C — 1is the unique such map.

— Ya = T)’ﬁ oYy.
— v IS the unique arrow satisfyingf’ o y,, = vy, for eache < w.

In particular, if the final sequence bf: Rel — Rel stabilizes aty, then the logic
induced byS andT [5] is the logic induced by the interpretatialy : L, — #Z,.
Then, if S preserves expressiveness wii,tthe final sequence df stabilizes atr, and
the initial sequence d® stabilizes aty, the final sequence @f also stabilizes at [5,
Prop. 61]. If that is the case, the logic inducedgndI’ characterizes the similarity
relation [5, Cor. 60].

In our case, we finally obtain the following proposition.

Proposition 5. For an LTSy : C — #,CA, the logic which characterizes covariant-
contravariant simulation is given by:

- CE, tt.

C £y ff.

— CE, g1 Apzifandonly if cl, ¢ and cl=y 2.

— CE, g1 Vepifandonlyif cl, ¢1 Or C =y 2.

Ck, (apifand only if ¢ |, ¢ for some €< y(c)(a).
Ck, [bleifand only if ¢ = ¢ for all ¢’ € y(c)(b).



Before attempting the proof of the proposition, let us cangtin detail the initial
sequence of &, denoted byl(,), (Lg : Lg — Lq)s<e » and the final sequence of the

functorT = P4, denoted byZ,), (¢ : Z, — Zp)p<a. That s,

Ly Ty, D | e
I I
Scc(lo)  Scella)
and
1 2T (p}) 3=T(o?)
ZO Po lel OZzpz 1..-<—Zw+w

Il I I
1 T(Z) T(Z4)

Sincel, C L,+1 andd, is a morphism betweebg-algebras;  , is the inclusion
from L, into Ly41. Also, L, = U, L, with (¢ the inclusion fronL, to L.

For the final sequence of the functbrwe haveZ, = 1, the final element oets
and it is straightforward to check thdy = TZ, = #,,1” consists of all the possible
A-trees of depth one. Subsequently, sidge = TZ, = £, Z, we get thaZ, contains
all the possible (up to bisimilarity)-trees of depth at most+ 1 with branching at most
|Ale. Now, givena > 8, Py transforms a tree of depth at masinto a tree of depth at
mostB by eliminating the last — 8-floors (and applying bisimilarity).

Continuing with this schemeZ,, contains all theA-trees, possibly with infinitely
many branches apar infinite depth (see [14, 15] for further details). Now, lefidition,
Zy1 = T2, = P,Z4, this means thak,.; = {f : A — P,Z,}, thatis,f € Z,1
implies that for eacla € A, f(a) must be a finite subset &,. In other wordsZ,,; is
the set ofA-trees (possibly infinite) such that its first floor is finitdlyanched (because
f(a) is a finite set). Analogously,,.» = TZ,,; is the set ofA-trees (possibly infinite)
such that its first and second floor are finitely branched. Whig we reach the terminal
elementZ,.,, which contains all the finitely brancheitrees (possibly infinite). It is
also shown in [14,15] that**! : Z,,1 — Z, is injective (but not surjective) so,
by definition, every“*k = Tp“*kl is also injective. This means that ™ is just the
embedding o, into Z,,.

For the proof of Proposition 5 we are also going to need thaem:goz = @(pﬁ)

built from the terminal sequence &@f by applying the contravariant functét That s,

A)O A)l ~2
P2 pz, 2oz,
Il

I I
P1 PT(Zo)  PT(Z1)

So, by definition, ife < g, ﬁg(u) ={ve Zg| pﬁ(v) € u}; in other WOI’dSpZ maps
a set of trees iz, to the set of all the trees if; such that Whep we eliminate from
them the lasp — a floors we obtain the original trees #),. Since® is a contravariant

+K ic iniactive ot i iacti i Sw+l
functor ando®!( is injective,c7, is surjective. Given < k, p“*, (u) maps arA-treeu



of Z,,+1 with its k first floors finitely branching into the samfetree inZ,,«; otherwise
it mapsu into @ (because i1z, there are n@d-trees without theik first floors finitely
branching).

Proof (Proposition 5).Let (La),(LZ : Lg — La)p<e denote the initial sequence of
Scc and @,),(pﬁ 1 Zo — Zp)p<, denote the final sequence of the funcioe PA,
with {A", Al, AP} a partition of A. We define the initial segment of the initial sequence
(da), ((L“,pﬁ) : dg — do)p<e Of Scc by [5, Prop. 57]:

(.0%) (3,03 (2.03)

do d; do
Il Il
Scc(do) Scc(di)

— do : Lo — PZy is defined bydo(tt) = Zo, do(ff) = 0, do(¢1 V ¢2) = do(1) U do(2)
anddo(g1 A ¢2) = do(p1) N do(g2).

— dos1 = Sce(da) : Sce(ly) — PTZ, = P(P,Z2) forall 0 < @ < w. In particular,
o1 (tt) = PuZy, dora(f) = 0, dau1(er A 02) = daua(e1) N Aasa(@2), dasaler v
@2) = Qor1(p1) U dasag2), dova([bl@) = {f : A — P,Z, | f(b) € di(e)} and
dos1((@)9) = {f 1 A— PLZ, | F(8) N du(p) # 0).

- d, : L, — PZ, is defined by the obvious clauses for each of the logical conne
tives. For B]y, (a)p € L,, we defined,, as:

o dy([alp) = {u e Z, | p7(u) € de([al¢)} = pg,(da([E]¥))-

o du((@)¢) = {u e Z,|p7(u) € d.((@¢)} = o7, (do((@)¢)).-
Note that, by construction of the initial sequentg)( if [a]¢, (a)¢ € L, then also
[ale, (ayp € Lg for B = @. Therefore, we need to check titht does not depend on
B and is thus well-defined. Indeed, assuming 8 and sincetg,pﬁ) is a map from
the interpretatioml, into ds, we have:

£(de([8l9)) = (7, © 5) (A8 %))
Y ACHACHEID))
= Po(ds(e3([al9)))
= ol ds([al ).
Now, we must prove that{, p%) is well-defined for all ordinalg < w, that is, that
the following diagram commutes:

Lo

do

PL,

Lo

PZ,

Lety € L, and let us show that, o %(¢) = p% o da(¢). The proof will follow by
structural induction ovep:

— ¢ = tt. Then, by definition;%(tt) = tt € L, andd,(tt) = Z,. On the other hand
da(tt) =2y andp”“f,(z(,) =Zy.

10



— ¢ = ¢ Ay. Then, since? is the inclusion oL, into L, (& (¢ AY) = (p AY) € L.
Thus,d,(¢ A ¥) = d,(¢) N d, (). On the other handi,(¢) = d.(¢) N d.(¥) and
P2(de(9) N (@) = A%(a(e)) N 35(da(¥)). By induction hypothesisd, (¢) =
P (da(9)) andd,,(y) = pg,(da()), and the equality follows.

— Yo = do V ¥,. Analogous to the previous case.

— ¢o = [aly. Then? ([a]y) = [a]y € L, and, by definitiond,, ([a]y) = p¢(d.([a]¥)).

— @, = (a. Analogous to the previous case.

It remains to prove thad, is a limiting element of the initial sequence $fc. If
d: L — $Zandf, : d, — dis a cocone for the initial sequence $fc, we must
show that there exists a unique arroy, {¥) : d, — d making the following diagram
commute:

W

@02 @

da ds

By focusing on the first componerl(%ﬁ), we take | as the unique arrow between
L, --» L (it exists becausg,, is a limit element of the initial sequence bf); and
by focusing on the second, we take:!'Z --» Z, to be the unique arrow to the limit
elemen®z,. Then, Y od, = do!_and (},!7) is well-defined. The uniqueness of (17)
and the fact that it makes the above diagram commute follom the uniqueness and
commutativity of | and ¥, as detailed next.

Let us consider (L !7) o(:%, p%). Sincef, : d, — d is a morphism of interpre-
tations, f, is defined asl{,g,) with I, : L, — L a morphism of2p-algebras an
Os : Z — Z, suchthagy od, =dol, (8. = P(d.)). Now, using the fact that land
are the unique arrows of the limiting elemehtsandZ,, respectively, we obtain that
I ol =1, andp? olz = gy, in other words, (1, !2) o(:2,02) = (lo, Ga) = fa-

Now, since the initial sequence og&stabilizes atw and the final sequence af
stabilizes atv + w, we also have that the initial sequenceSet stabilizes atv + w [5,
Prop. 61]. Lety : C — #,C” be a labeled transition system, witA", A', A%} a
partition of A: by Definition 12, when considering the induced logic, we twirk with
0w+ andy,.,. We have remarked before tmgfk : Zyk — 2y, IS @ monomorphism
SO, sincey,, = P © Yurw, Yo+w(C) = ¥u(C). On the other hand, singg |’ = 75(p3+k) :
PZ, — PZ,. is an epimorphism, we have théy,,, : L, — PZ,+, andd, () &
d.(¢), because i, (¢) we also have infinitely branchingtrees as possible behaviors
of ¢. However, sincey,(c) = v,+.(C) is a finitely branchingA-tree, it turns out that
Yo+o(C) € dyyo(e) if and only if y,(c) € d,(¢), that is, we can just consider, andd,,.

Now, the logic induced b§cc andI'cc for the giveny is defined by:

— CE, tt, trivially.
— C I, ff, trivially.

11



— CEy ¢1 A g ifand only if y,(C) € dy(e1 A 2) = dule1) N du(e2), that is, if and
only if c =, ¢1 andc k=, ¢o.

—CE, g1 Vezifandonlyifcl, ¢y 0rcl, .

- ¢k, (@) with a € A" U A’ if and only if y,(C) € d,((@)). First note that, by
definition of y,, p¥ oy, = 7., for all @ < w. So, if (&8¢ € L,, theny,(c) €
do, (@) = 57, (de((@)¢)) if and only if y,(c) € do((@)g) = {f € P,Z2, | F(@) N
do-1(¢) # 0}. Also, sincey,(c) is a finitely branching\-tree of depth at most, we
can viewy,(c)(a) as the (finite) set of subtreespf(c) reachables from the root by
ana-arc. Formally, sincg, = Tya-1°%, ¥a(0) = Tya-1(¥(C)) = PLYe-1(¥(0) it
follows that

72(0)(@) = | (Phya-1)¥(9)|(2)
= Vo1 (¥(©)(@))
= {7<r—l(c,) | c e Y(C)(a)}

Now, recall that y,(c) € d,({a)y) iff y.(c)(@) N da-1(¢) # 0, that is, ify,_1(C) €
ds-1(¢) for somec’ € y(c)(a), which is equivalent toy,,(c’) € du(¢) for some
¢ € y(c)(a). Thus, we have just proved that=, (a)¢ if and only if ¢’ |, ¢ for
somec’ € y(c)(a).

— Cy [bleifand onlyif ¢’ = ¢ for all ¢’ € y(c)(b). The proof is analogous to that
for the previous case. O

Hence, by Proposition 5, the logic induced¥pt andl'cc is equivalent to the logic
for covariant-contravariant simulation in [8].

3.2 Partial bisimulation

Partial bisimulation is defined in [2] as a behavioural lielabver LTSs for studying
the theory of supervisory control [12] in a concurrencyettetic framework. In [2], the
authors considered LTSs that also include a terminatiodigae| over states. For the
sake of simplicity, since its role is orthogonal to our aimgiis paper, we simply omit
it in what follows.

Definition 13. A partial bisimulation with bisimulation s@& between two LTSs P and
Q is arelation RC P x Q such that, whenever p R q:

— ForallaeA,ifp 3 p’ then there exists someaq g withp Rq.
— Forallb e B,ifq 5 g then there exists some—% p’ with p R d.

We write p<g q if p R g for some partial bisimulation with bisimulation gt

In [1] we proved that partial bisimulation is a particulaseaf covariant-contravariant
simulation, when the LT® has signaturéd’ = A\ B, A' = 0 andA” = B. Hence, in-
stantiating Proposition 5 with this particular case we obthe same logic as in [1],
which is simpler than that proposed in [2].

12



3.3 Conformance simulations

As we did in Section 3.1, we can apply the methodology in [Sbitain the logical
characterization of conformance simulations. First, wiinéethe corresponding relator
and prove that it defines the same simulation notion as thecnalgebraic one.

Definition 14 (Conformance simulation relator). Given Rc Q x P, f € #,PA and
ge P,Q" we define thé’ﬁ-relator I'cs : Rel — Rel for conformance simulation by

glcs(R) fiff

— for each ac A, f(a) # 0 implies da) # 0.
— forallae A, ifd € g(@) and f(a) # 0 then there is pe f(a) such that ¢Rp.

Proposition 6. The simulation notion defined by the relaltys coincides with the no-
tion of conformance simulation.

Proof. Let us suppose that we have a classic conformance simulatletween the
labeled transition systenfs: P — #,P* andg : Q — #,Q", defined in the usual
way by f(p)@ = {p’ | p 2 p'} andg(@)(@) = {d' | g =2 g’}. Let us show that
g es(RP) f.

First, if f(p)(a) # 0 then, by definitionp -2, and alsog 2 becauseRg hence
g(p)(@ # 0. Now, letq € g(g)(a) and f(p)(a) # 0 then sinceR is a conformance
simulation there existg’ such thaip N p’ with p'Rq, thatis, there existg’ € f(p)(a)
such thaiy R°Pp’, as we needed to prove. On the other hand, let us showW Ha€R")
defines a conformance simulatiBfP. If g T'cs(R°P) f then, by definition of the relator,
f(p)(@) # 0 impliesg(g)(a) # 0, that is,p 2, impliesq 2, Also, g € g(g)(a) and
f(p)(@) # 0 imply the existence ofY € f(p)(a) andg'Ry; in other words, if there
existsq’ such thatq 2, g andp —a>, then there existg’ such thatp N p’ and
pP'ROPq’. O

Next, we define the corresponding syntax.

Definition 15. LetXg = {it, A, vV} and Scs : Alg(2g) — Alg(2g) denote the language

constructor taking &g-algebra L to the fre&g-algebra over the s¢faly | ac A, p €
L}. Then, the languagé€(Scs) is that generated using the following syntax:

pu=ttloAe|leVellae.

Note that in order to define the syntax for conformance sitiaridogic we do not
considerff since we do not have two kinds of modal operators witffiedént nature
(as opposed to the case of covariant-contravariant simnjaiNevertheless, we could
addff to our logic without changing its meaning. This is make abean the following
definition that gives us the semantics.

Definition 16. The?ﬁ-semantics focs is given by the functdBcs : Intg — Intg
taking an interpretation d L — £X to an interpretation t: Scs(L) — P(P,XA)
defined by:

— d'(tt) = P XA
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—deay)=d(End@y).
—d(pvy)=d(Eud@y).
— d'([ale) = {f : A— P, X| f(@) # 0 and f(a) C d(y)}.

Again, as we saw in [8], in order to define the semantics fof@wonance simu-
lation we need to define the operatat,[which captures the idea of “having just one
a-action is better than having more”, by imposing that all ¢hements inf(a) must
(non-trivially) satisfy the formulay. The next step is to prove that it is adequate for
conformance simulations.

Proposition 7. The semanticScs for Scs preserves expressiveness Wids.

Proof. Let us fixd : L — PX expressive foR, that is,yRxif and only ify € d(y)
wheneverx € d(p); we must prove thag I'cs(R) f if and only if g >s ) f for any
g, f e P XA

First, let us suppose thatI'cs(R) f. Let us see thag > ) f, that is, that if
f e d'(¢) theng € d’(¢) for all ¢ € Scs(L). The proof is by structural induction.

— Lety = tt. Then sincal’(it) = P, X we trivially get the result.

— Lety = p1 Ape. Thend'(¢) = d'(p1)Nd’'(p2). Soif f € d'(p) we getthatf € d’(¢1)
andf e d'(¢2). Applying the induction hypothesis we gt d’(¢1) andg € d’(¢2),
thatis,g € d’(¢).

— Lety = p1 V. Thend'(¢) = d'(p1)Ud'(¢2). Soif f € d'(¢) we getthatf € d’(¢1)
or f € d’(¢2); by induction hypothesis eithere d’(¢1) or g € d’(¢2), and hence
ged(e).

— Lety = [a]y with ¢ € L. Thend'(p) = {f : A— P, X | f(@) # 0 and f(a) C
d(y)}. If f € d'(¢) thenf(a) # 0 andf(a) C d(y).

Now, g I'cs(R) f implies thatg(a) # @ and also that for aly € g(a) there exists
somez € f(a) such thatyRz Sinced is expressive foR we have that iz € d(yo)
theny e d(yg), for all o € L. Combining these two facts we get tha¢ d(y) for
ally € g(a). Henceforthg € d’'([a]¥) as we needed to prove.

On the other hand, let us suppose now thdics(R) f does not hold, and let us see
thatg #s.su f. If g I'cs(R) f does not hold, eithef(a) # 0 andg(a) = 0, or there
existsy € g(a) such thatf(a) # 0 and, for allz € f(a), (y,2 ¢ R In the first case is
clear thatf € d’([a]tt) butg ¢ d’([a]tt). For the second case, sinceze f(a) is related
with y andd is expressive foR, we have thay #, z that is, for eaclz € f(a) there
is a formulay, € L such thatz € d(y,) buty ¢ d(y,). If ¢ = [a] ¥z thenf e d'(¢)
sincef(a) # 0 andf(a) € d(\V/,¥2) = U,d(y¥,); butg ¢ d’(¢) because, by hypothesis
y € g(a) is such thay ¢ d(y), for anyz O

Finally, we obtain the following logic.

Proposition 8. For an LTSy : C — #,CA, the logic which characterizes confor-
mance simulation is given by:

— CEy tt.
— CE, g1 Agppifandonly if cl, ¢ and cl=y 2.
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- CkE, p1 Vg ifandonlyifck, ¢1 0rcls, po.
- Ck, [a]pif and only ify(c)(a) # 0 and G I, ¢, for all ¢ € y(c)(a).

Proof. Let (La),(tg : Ly — Lo)s<e denote the initial sequence ogSand @), (&
Z, — Zs)p<o denote the final sequence of the funclor= P%. As in the proof on
Proposition 5 we define the initial segment of the initialsengce ofcs (d,), (2, F2)
dﬁ I da)ﬁﬁa by

d (0-03) d (503 d (503)
0 1 2 e
I I

Scs(do) Scs(d1)

— do : Lo — PZyis defined bydy(¢) = Z for all ¢ € Lo.

— dos1 = Scs(dy) : Scs(Le) — PTZ, = P(P,Z2) forall 0 < @ < w. In particular,
Ao+1(t) = Zos1, Jas1(@1 A 02) = dosa1(01) N der1(92), das1(1 V @2) = dora(e1) U
do+1(p2) andd,.a([alg) = {f 1 A— PLZ, | f(a) # 0 and f(a) € du(p)}-

-d, : L, — PZ, is defined by the obvious clauses for each of the logical con-
nectives. Now, for a formulaa)ey € L, = U, L., if [d]l¢ € L, thend,([a]¢) =
{ue Z, | p2u) € dy([a]lp)} = p%(d.([a]¢)). As in the proof of Proposition %, is
well-defined.

To prove both that the morphisms (0%) are well-defined for all ordinals < w
and thatd,, is a limiting element of the sequence is analogous to thatdpdsition 5,
so we omit the proof. Also, the initial sequence @fsstabilises atw and the final
sequence of stabilises atv + w, hence the initial sequence $fs stabilises atv + w.
Now, lety : C — #,C” be a labeled transition system; as we showed in Proposition 5
Yu+w(C) € Uuio (@) is equivalent toy,(c) € d,(¢). Then:

C |, tt, trivially.

CE, p1 Apzifand only ify,(c) € du(p1 A ¢2) = du(e1) N du(e2), that is, if and
onlyif c &, ¢1 andc k=, ¢o.

Ck, p1Verifandonlyifcls, 1 0rcly ¢o.

— €k, [ae if and only if y,(c) € d,([ale), or, equivalentlyy,(c) € d.([a]ly) =

{f e P,Z2%, | f(d) # 0 and f(a) C d,-1(¢)}, with [a]¢ € L,. As in the proof
of Proposition 5y,(c)(a) = {ye-1(c) | ¢ € ¥(c)(a)}. Now, ya(C) € do([ale) iff

ve(C)(@) # 0 andy,(c)(a) € d,-1(¢). By the above equalityy,(c)(a) # 0 if and
only if y(c)(a) # 0; whereasy,(c)(a) € d,-1(¢) if and only if y,_1(Ci) € dy-1(¢),

for all ¢; € y(c)(a), which is equivalent te,(c) € d,(¢), for all ¢; € y(c)(a). Thus,
we have just proved that =, [a]e if and only if y(c)(a) # 0@ andc; [, ¢, for all

G € y(c)(a). O

Hence, Proposition 8 shows that the logic inducedgy andI'cs is equivalent to
the logic for conformance simulation defined at [8].
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3.4 Modal refinement

Again, we can apply the methodology in [5] to obtain the lagicharacterization of
modal refinement between modal transition systems. Fiestefine the corresponding
relator and prove that it defines the same simulation noagh@non-coalgebraic one.

Definition 17 (Modal refinement relator). Given RC Qx P, g: Q — £,(Q X
{o,O0NAand f: P — P,(P x {o,O)A, we define theP,,(id x {o, d})*-relator [y :
Rel — Rel for modal refinement by Be1(R) f iff

— forallae A, if p € f(a)g then there is e g(a)g such that 6Rp.
— foralla e A, if g € g(a@), then there is pe f(a), such that (R.

Proposition 9. The simulation notion defined by the relaig; coincides with the no-
tion of modal refinement.

Proof. First, letR be a modal refinement between the modal transition systems
P — PP x{o,0)*andg : Q — P(Q x {o,ON” defined in the usual way. If
p’ € f(p)(@g thenp —a>g p’ and, using thapRq there existgy’ such thatg —a>D q
with p'Rd, that is, there i € g(q)(a)g with g'R°Pp’. Now, if g" € g(g)(a)., we have
thatq io g and thus there exists’ such thatp io p’ with p’Rd, or, equivalently,
p’ € f(p)(a), andg’'R°°p’. Henceg Ies(R°P) f.

On the other hand, let us show tHat:(R°P) defines a modal refinement. First, if
p iD p’ thenp’ € f(p)(a)g and by definition of the relator there exisfse g(g)(a)g
with 'R, that is, we havey —a>D g with p'R°Pq’. Forq g g the result follows
analogously. O

Next, we define the corresponding syntax and semantics.

Definition 18. LetXg = {it, ff, A, V} andS,s : Alg(2s) — Alg(2Zg) denote the language
constructor taking &g-algebra L to the fre&-algebra over the sgfaly | ac A, p €
L} U {(a)yp | a € A ¢ € L}. Then, the languag&(Ses) is that generated using the
following syntax:

pu=ttiffloAgloVvellale| (@e.

Definition 19. The P, (id x {0, d})A-semantics foiSe is given by the functoBes :
Intg — Intg taking an interpretationd L — $£X to an interpretation tl: Se(L) —
P(P.,(X x {o,d))") defined by:

— d'(itt) = P (X x {o, ONA.

— d'(f) = 0.

- d(eny) =d(p)nd ).

- d(evy) =d(p)ud@).

- d'([alg) = {f : A— P,(Xx{e,0}) | f(a), € d(e)}-

- d' (@) ={f : A— P,(X x{o,00}) | f(@)o Nd(p) # 0}.
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In order to define the semantics for modal refinements we haeded to define
two operatorsd] and (a), where the first one captures the transitions that the psoces
may do, whereas the second one captures the transitiorthéhatocess must do. It is
not surprising to note that, in particular, the definitiorigteese two modal operators
are essentially the same as those for covariant-conteatasimulation, but taking into
account in each case the “must” or “may” transitions.

The next step is to prove that it is adequate for modal refimenaged to obtain the
corresponding logic.

Proposition 10. The semanticSes for Ser preserves expressiveness Wit;.

Proof. Let us fixd : L — PX expressive foR, that is,yRxif and only ify € d(¢)
wheneverx € d(g); we must prove thaf) I'e;(R) f if and only if g >s, ) f for any
g, f e P,(Xx{o,ONA.

First, let us suppose that I'e;(R) f. Let us see thay >s ) f, thatis, that if
f e d’(¢) theng € d'(¢) for all ¢ € Ser(L). The proof is by structural induction.

— Lety = tt. Sinced'(tt) = P, (X x {o, [1}) we trivially get the result.

— Lety = p1 Ape. Thend'(¢) = d’(p1)Nd’'(p2). Soif f € d’'(¢) we getthatf € d’(¢1)
andf e d’(¢2). Applying the induction hypothesis we ggt d’(¢1) andg € d’(¢2),
thatis,g € d’(¢).

— Lety = 1 V. Thend'(¢) = d’(p1)Ud’'(¢2). Soif f € d'(¢) we getthatf € d’(¢1)
or f € d’(¢2); by induction hypothesis eithere d’(¢1) or g € d’(¢2), and hence
g e d'(g).

— Lety =[a]y withy € L. Thend'(¢) = {f : A— P, ,(Xx{e,00}) | (@), C d(y)}. If
f e d'(¢) thenf(a), c d(y). Now,g I'er(R) f implies that for all ¢, o) € g(a) there
exists somex, o’) € f(a) such thayRx Sinced is expressive foR andx € f(a),
we also obtain that € d(y). Henceforthg € d’([a]y) as we needed to prove.

— Lety = (a. If f e d'(p) then there existg € f(a)g N d(¢). Now, g TI'ei(R) f
imply that for all (x,(J) € f(a) there exists somey((J) € g(a) such thatyRx This
way, takingz € f(a)gNnd(y) we get that there existg € g(a) such tha;, € d(y).
Henceforthg € d’({(a)y) as we needed to prove.

On the other hand, let us suppose now thpdt;(R) f does not hold, and let us
see thag #s,u f.If g Ter(R) f does not hold, either there is some f(a)g such
that §/,2) ¢ Rfor all y € g(@)g, or there is ¥,0?) € g(a) such thaty,2) ¢ R for all
(z o) € f(a).

In the first case, the expressivenesd ahdR gives us for eacl € g(a)g a formula
Yy € L such thaiz € d(yy) buty ¢ d(yy). If we consider the formula = (a) A\, ¢y,
we getf € d'(p) butg ¢ d’(¢). For the second case, we get for eaglo() € f(a) a
formulay, € L such thatz € d(y,) buty ¢ d(/;). In this case the formula = [a] \/, -
is such thatf € d’'(p) butg ¢ d’(¢). That way we have proved thatdfT':(R) f does
not hold, thery ?s,, f. o

Proposition 11. For an MTSy : C — P,,(C x {o,0})A, the logic which characterizes
modal refinement is given by:

— CEy tt.
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Ck, w1 A gy ifand only if ck, @1 and cl=, ¢o.

Ck, p1V e ifandonlyif cl, @1 0r c 5, @o.

Ck, (ayifand only if ¢ |, ¢, for some te y(c)(a)o.
Ck, [alpifand only ¢ k=, ¢, for all ¢’ € y(c)(a)..

Before attempting this proof, as we did for the case of thectorP?, we must
construct in detail the final sequence of the fundiot P, (id x {¢, 0})", denoted by

(Z(t)» (pg : Z(t — Zﬁ)ﬁS(Y' That isa

Zo P z, 02=T(0g) Zng:wa -
I I I
1 T(Z) T(Z1)

For the final sequence of the functbrwe haveZ, = 1, the final element oBets
and, as we have done before, it is straightforward to cheakzh= TZ, = #,(1 x
{0, ONA consists of all the possibla-trees with two kinds of transitions of depth one
or; in other words, we can think d&; = TZ = P,(1 x {¢,0})" as containing all
the posible specifications &-trees of depth one (where a may transition indicates
that the implementation may include that transition, wherfor a must transition the
implementation must contain it). Hence, it is easy to se¢ $heeZ,,; = TZ, =
P.(Z, x {o,O)A, Z, contains all the possible (up to bisimilarity) specificasoof A-
trees of depth at moat+1 with branching at mogA|a. Now, givena > B pj transforms
a specification of a tree of depth at mesnto a specification of a tree of depth at most
B by eliminating the last — g-floors (and applying bisimilarity).

Continuing with this scheme, analogously to the case fofitta sequence af%,
we have thaZ, contains all the specifications 8ftrees, possibly with infinitely many
branches andr infinite depth. Thus, by definitioZ,,,1 = TZ, = P, (Z, x {o,O)" is
the set of specifications d-trees (possibly infinite) such that its first floor is finitely
branched. This way, we reach the terminal elenZgnt, which contains all the finitely
branched specifications #ftrees (possibly infinite). Again, by definition, evepyjlk =
Tp“t1lis injective. This means thaf’*¥ is just the embedding &,,.x into Z,,.

w+l-1

Now, it is mere routine to build the sequem;e:” @(pﬁ) by applying the contravari-
ant functor® to the terminal sequence gf. That s,

50 ol n2
P7, s pz, 2 L p7, 2
Il Il

I
P1 PT(Z)  PT(Z)

By definition, if @ < 8, p% maps a set of specifications of tree<into the set of all
the specifications of trees # such that when we remove from them the Jast: floors
we obtain the original specification of treesdn Since? is a contravariant functor and
prk is injective,g" is surjective. Given < k, 5“*| (u) maps a specification of ak-
treeu of Z,,,,, with its k first floors finitely branching, into the same specificatiomnf
A-tree inZ,,.x; otherwise it mapsi into 0.
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Proof (Proposition 11)Let (L(,),(Lg : Ly — Lg)p<e denote the initial sequence of
Sef and &,), (p(ﬁ, 1 Z, — 7)<, denote the final sequence of the funcios P, (id x
{o,d)A. As in the previous proofs for covariant-contravariant aadformance simula-
tions, we define the initial segment of the initial sequemnt, ((:2, 0°) : dsg — do)p<a

of Srer by:

(.08 0% (C¥)

do di dy
Il Il
Sref (dO) Sref (dl)

— do 1 Lo — PZy is defined bydo(tt) = Zo, do(ff) = 0, do(¢1 V ¢2) = do(1) U do(y2)
anddo(p1 A ¢2) = do(g1) N do(2).
= Gos1 = Srer(da) : Seet(Le) — PTZ, = P(Pu(Ze x {o.O)M forall 0 < e < w.
In particular,de+1(tt) = Zg+1, dosa(ff) = 0, dar1(p1 A 92) = dosa(p1) N dara(p2),
da+l(90l \ ‘102) = da+1(‘pl) U da+l(902)r da+1([a]‘10) = {f A — Pw(za X {0’ D}) |
f(@). C du(p)} @andda({@p) = {f 1 A — Py (Zy x {0, O}) | f(@)a N da(y) # 0}
- d, : L, — PZ, is defined by the obvious clauses for each of the logical conne
tives. For B]y, (a)p € L,, we defined,, as:
e dy([alp) = {ue Z, | p7(u) € di([al¢)} = pg(da([E]¢))-
o d,((@0) = (U € Z, | p2(U) € do((@)} = 55(da((@)p)). As We showed in the
proofs of Propositions 5 andd, is well-defined.

The proof that the morphisms!( p%) are well-defined for all ordinals < w and
thatd, is a limiting element of the sequence is analogous to thatrapésitions 5
and 8. Also, the initial sequence ofsSstabilises atw and the final sequence af
stabilises atw + w, hence the initial sequence Bfys stabilises atw + w. Now, let
y : C — P,(Cx{o,d}))" be a modal transition system; as we showed in Propositions 5
and 8,y,+,(C) € du+w(¢) is equivalent toy,,(c) € d,(¢). Then:

C k=, tt, trivially.

C i, ff, trivially.

— CEy ¢1 A g ifand only if y,(C) € dy(p1 A 2) = dule1) N du(e2), that is, if and
only if c =, ¢1 andc k=, ¢o.

Cky w1V rifandonlyifcls, 1 0rcly ¢o.

- C k, (@ if and only if y,(c) € d,((a)¢). First note that, by definition of,,,
P ©Yw = Yas foralla < w. So, if(a)y € L, theny,(c) € d,((a)y) = ﬁZ(da«a)‘P))
if and only if y,(c) € d,((@)p) = {f : A — Pu(Zo-1 X {0, O}) | f(@Q)g N de-1(y) #
0}, wheref(a)g = {p € Z,-1 | (p,O0) € f(a)}. As in the proofs of Propositions 5
and 81 we can show th%(c)(a) = {’}/(t—l(c/) | (C,»O-,) € Y(C)(a)} = {ycr—l(c,) | (oS
¥(c)(a).}, and analogously that,(c)(a)o = {y.-1(¢) | ¢’ € ¥(c)(@)a}-
Indeed,y,(c) is a finitely branching specification of atree of depth at most.
So, we can view,(c)(a) as the (finite) set of specification of subtreeggfc) that
may or must be reachable from the root byeaarc. Formally, sincg, = Ty,-1 0,
Ya(€) = Tya-1(¥(€)) = Pu(id X {0, O})*y4-1(¥(0)) it follows that

7a(©)(@) = [(Pu(id x {0, ) ya-1)7(0)| ()
= Yar(¥()(a).)
= {’}/(t—l(c/) | c e ’)/(C)(a)o}.
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Now, recall thaty, (c) € d,({a)y) iff y,(c)(@)q N de_1(¢) # 0, that is, i y,_1(c') €
ds-1(¢) for somec’ € y(c)(a)g. In other words, ft y,-1(¢’) € d,-1(¢) for some
(¢’,0) € y(c)(a), that is, for some element reachable front by a must transition
a. This is equivalent te,(¢) € d,(¢) for somec’ € y(c)(a)g. Thus, we have just
proved that k=, (a)¢ if and only if ¢’ |5, ¢ for somec’ € y(c)(a)o.

— Ck, [agifand only if ¢’ = ¢ for all ¢ € y(c)(a).. The proof is analogous to that
for the previous case. O

Hence, Proposition 11 shows that the logic induce&jyandr¢ is equivalent to
the logic for modal refinements between modal transitiotesys as defined in [3].

Definition 20 ([3]). Given a set of actions A, the collection Bbudol-Larsen’s modal
formulaeis given by the following grammar:

pi=L|Tlerplevellael(@y (acA).

The semantics of these formulae with respectto an MTS P aatkaps= P is defined by
means of the satisfaction relati¢fy which is the least relation satisfying the following
clauses:

PPET.

(PP E @1 Apif (P p)E ¢1and

(P. p) E ¢2.

(PP E@1Veif (P )k ¢or (P, p)fw-
(P.p) E<@¢if (P, p) E ¢ for some p—g p.
(P p) E[alpif (P p) E¢foralp—, p.

3.5 Mixed transition systems

Mixed transition systems [10, 6] generalize MTS by consitgtwo kinds of transitions
that need not be related at all.

Definition 21 ([6]). For a set of actions A, aixed transition systerfMiTS) is a triple
(P, —1, —2), where P is a set of states arey, —, C P x A x P are transition relations.

As for the associated simulation notion, it requires oneditéon relation to behave
covariantly and the other one contravariantly.

Definition 22 ([6]). A relation RC P x Q is amixed simulatiorbetween two MiTS if,
whenever p R Q:

-p il p’ implies that there exists somésgych that qil gandpgR(q;
a . . . a
— g — ( implies that there exists soméguch that p—, p’and g R (.

Thus, MTS are obtained as the particular case in whighc —,. Other than that,
MITS behave as MTS and can be described in similar coalgebeains. An MiTS
arises as a coalgebra for the funckore P(id x {1, 2})*, wherel stands for—; tran-
sitions and2 for —, transitions; giverc : X — P, (X x {1,2})", we shall use the
following notation:
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c(X)(a); = {X € X|(X,1) € c(¥)(a)}, and
c(X)(@), = {X € X| (X, 2) € c(X)(a)}.

Then, the definition of the relator that captures MiTS sirtiates is straightforward,
by mimicking that for MTS.

Definition 23 (Mixed relator). Given RC Qx P, g: Q — P,(Q x {1,2)" and
f:P— P (Px{1,2)" we define the,(id x {1, 2})A-relator ['nx : Rel — Rel for
mixed simulation by §mix(R) f if and only if:

— forallae A, if p € f(a); then there is e g(a); such that (R;
— foralla e A, if g € g(a); then there is pe f(a), such that (R.

Proposition 12. The simulation notion defined by the relaf@fix coincides with the
notion of simulation between MiTS.

Proof. First, letR be a simulation between the mixed transition systdmsP —
P(Px {1,2))" andg : Q — P(Q x {1, 2})* defined in the usual way. i’ € f(p)(a);
thenp il p’ and, using thapRg there existg’ such thatg —a>1 g with p'Rq, that
is, there isy € g(g)(a), with g R°Pp’. Now, if g € g(g)(a)2, we have thag 2, g and
thus there existg’ such thatp —a>2 p’ with p’Rq, or, equivalentlyp’ € f(p)(a), and
g'R°Pp’. Henceg I'nix(R°P) f.

The other implication follows analogously. O

From here, the same steps taken for building a logic thatadherizes MTS can be
retraced.

Definition 24. Let2g = {tt,ff, A, vV} and Syix : Alg(2Zs) — Alg(Zg) denote the lan-
guage constructor taking Ag-algebra L to the freeg-algebra over the sgfaly | a e
AgpelLlu{ayy | ae A ¢ € L}. Then, the languagé€(Snix) is that generated using
the following syntax:

pu=tt|ffloAgleVvellale| (@ye.

Definition 25. The?P,,(id x {1, 2})*-semantics foiSy; is given by the functoBpy; :
Intg — Int g taking aninterpretationd L — $X to an interpretation tl: Spix(L) —
PP, (X x {1, 2})") defined by:

— d'(tt) = Po(X x {1, 2)A.

— d'(f) = 0.

- d(eny) =d(p)nd ().

- d(evy) =d(p)ud ().

= d([ale) = {f : A— P,(Xx{1,2}) | f(a)2 C d(¥)}-

- d'((@y) ={f : A— P,(X x{1,2}) | f(a)1 nd(y) # 0}.

Proposition 13. The semanticSmix for Smix preserves expressiveness Wifix.

Proof. First, let us suppose thgtl'mix(R) f. Let us see thag >g,, ) f, thatis, that if
f e d’(p) theng € d’(¢) for all ¢ € Snix(L). The proof is by structural induction.
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— The case® =tt, ¢ = ¢1 A @2 @andp = ¢1 V ¢, are simple to prove.

— Lety = [a]y withy € L. Thend'(p) = {f : A — P,(Xx{1,2}) | f(a)2 C d(y)}. If
f € d’(¢) thenf(a), € d(y). Now,g I'nix(R) f implies that for all ¢, 2) € g(a) there
exists somex, 2) € f(a) such thatyRx Sinced is expressive foR andx € f(a),
we also obtain that € d(y). Henceforthg € d’([a]y) as we needed to prove.

— Letp = (a)y. This case is analogous to the previous one.

On the other hand, let us suppose now thBkx(R) f does not hold, and let us see
thatg #s.. f- If 9 Tmix(R) f does not hold, either there is some f(a); such that
(y,2) ¢ Rfor all y € g(a),, or there isy € g(a), such thaty, 2) ¢ Rfor all ze f(a)s.

In the first case, the expressivenesd ahdR gives us for eacly € g(a); a formula
Yy € L such thaiz € d(yy) buty ¢ d(yy). If we consider the formula = (a) A\, ¢y,
we getf e d’(¢) butg ¢ d’(¢). For the second case, we get for each f(a);ypeBa
formulay, € L such thatz € d(y,) buty ¢ d(/;). In this case the formula = [a] \/, -
is such thatf € d’(¢) butg ¢ d’(¢). O

Again, the same steps taken for building a logic that charemts MTS can be
retraced. This way, the resulting logic for MiTS is:

Proposition 14. For an MiTSy : C — #,,(C x {1, 2})", the logic which characterizes
mixed simulation is given by:

- CE, tt.

— CE, g1 Agpzifandonly if cl, ¢ and cl=y 2.

— CE, g1 Vepifandonlyif ck, ¢1 0r C =y 2.

Ck, (ayifand only if ¢ |, ¢, for some te y(c)(a):.
Ck, [algifand only ¢ k, ¢, for all ¢’ € y(c)(a)..

As a consequence, Proposition 11 turns out to be a corolfahyworesult.

4 Conclusion and future work

Following [5], we have built the characterizing logics favariant-contravariant and
conformance simulations, partial bisimulation (which d¢@nconsidered as a particu-
lar case of the covariant-contravariant notion), modahesfient and mixed transition
systems. In particular, we have presented a novel (to thieobear knowledge) coalge-
braic characterization of modal and mixed transition systeEven though most of the
results are not new (except for the logical characteripagfonixed transition systems),
we believe that their proofs constitute a nice illustratddthe method developed in [5],
with non-trivial systems.

As future work, we intend to explore the relationship betweevariant-contravariant
simulation and modal refinement at the institution level tiasketched in [1]. Our idea
would be to check whether the machinery of borrowing [4, Ti]ld be used to express
our results in [1] relating the logics for covariant-conteiant simulation and modal
transition systems in a more precise manner at the catedjtiel.
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