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Ignacio Fábregas, Miguel Palomino, and David de Frutos-Escrig

Departamento de Sistemas Informáticos y Computación, UCM
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Abstract. Covariant-contravariant simulation and conformance simulation gen-
eralize plain simulation and try to capture the fact that it is not always the case
that “the larger the number of behaviors, the better”. We have previously stud-
ied some of their properties, showing that they can be presented as particular
instances of the general notion of categorical simulation developed by Hughes
and Jacobs and constructing the axiomatizations of the preorders defined by the
simulation relations and their induced equivalences. We have also studied their
logical characterizations and in this paper we continue with that study, presenting
them as instantiations of the categorical results on simulation logics by Cı̂rstea.
In addition, we continue exploring, now in this categoricalframework, the re-
lationship between covariant-contravariant simulation,partial bisimulation over
labeled transition systems, refinement over modal transition systems and mixed
transition systems.

1 Introduction and related work

Simulations are a very natural way to compare systems definedby labeled transition
systems of other related mechanisms based on describing thebehavior of states by
means of the actions they can execute. However, the classic notion of simulation does
not take into account the fact that whenever a system has several possibilities for the
execution of an action, it will choose in an unpredictable manner resulting in more
non-determinism and less control.

We have proposed two new simulation notions which are more suitable to deal with
non-determinism [7]. On the one hand, covariant-contravariant simulations were de-
signed to manage systems in which non-determinism arises because of the presence of
both input and output actions; on the other hand, conformance simulations cope with
having several options for the same action. In previous works we have proved that these
simulations can be presented as instances of the coalgebraic simulation framework [7]
and have also described their logical characterizations [8].

In this paper we continue with the study of the logics that characterize these two
simulation notions, but now within the general categoricalframework developed by
Cı̂rstea in [5]. In addition, we also consider partial bisimulation [2], which turns out to
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be just a particular case of covariant-contravariant simulation, as well as modal tran-
sition systems, a concept introduced by Boudol and Larson [3] and whose associated
notion of refinement clearly resembles our covariant-contravariant simulations; in do-
ing so, we expand on the comparison we started in [1] between these related notions.
Actually, although more interesting, modal transition systems are just a particular case
of mixed transition systems; by reusing many of the conceptsused for the former, we
show how to also obtain a logic for the latter for which, unlike the others, we were not
aware of a previous non-coalgebraic logical characterization.

Now, besides describing a method for obtaining logical characterizations, [5] also
explains how to build new logics in a compositional manner out of known ones. Unfor-
tunately, our simulations were not amenable to this methodology and we were forced to
start from scratch. As a consequence, and besides the characterization for mixed transi-
tion systems, the main contribution of this work is the application of the ideas in [5] to
interesting case studies such as modal refinement or contravariant simulation, in what
we believe is a nice illustration of the methods involved.

2 Preliminaries

In this section we summarize some definitions and concepts from [5, 7, 1, 3] and intro-
duce the notation we are going to use. Let us recall our two simulation notions:

Definition 1. Given P= (P,A,→P) and Q= (Q,A,→Q), two labeled transition sys-
tems (LTS) for the alphabet A, and{Ar ,Al ,Abi} a partition of this alphabet, a(Ar ,Al)-
simulation (or just a covariant-contravariant simulation) between them is a relation
S ⊆ P× Q such that for every pS q we have:

– For all a ∈ Ar ∪ Abi and all p
a
−→ p′ there exists q

a
−→ q′ with p′S q′.

– For all a ∈ Al ∪ Abi, and all q
a
−→ q′ there exists p

a
−→ p′ with p′S q′.

We will write p.CC q if there exists a covariant-contravariant simulation S such that
pS q.

Definition 2. Given P= (P,A,→P) and Q= (Q,A,→Q) two labeled transition systems
for the alphabet A, aconformance simulation between them is a relation R⊆ P × Q
such that whenever pRq, then:

– For all a ∈ A, if p
a
−→, then q

a
−→ (this means, using the usual notation for process

algebras, that I(p) ⊆ I (q)).
– For all a ∈ A such that q

a
−→ q′ and p

a
−→, there exists some p′ with p

a
−→ p′ and

p′Rq′.

We will write p.CS q if there exists a conformance simulation R such that pRq.

Now, we recall the definitions for modal transition systems.

Definition 3. For a set of actions A, amodal transitionsystem (MTS) is defined by the
triple (P,→⋄,→�), where P is a set of states and→⋄,→� ⊆ P× A× P are transition
relations such that→� ⊆ →⋄.
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The transitions in→� are called themust transitionsand those in→⋄ are themay
transitions. In an MTS, each must transition is also a may transition, which intuitively
means that any required transition is also allowed.

The notion of (modal) refinement⊑ over MTSs that we now proceed to introduce
is based on the idea that ifp ⊑ q thenq is a ‘refinement’ of the specificationp. In
that case, intuitively,q may be obtained fromp by possibly turning some of its may
transitions into must transitions.

Definition 4. A relation R⊆ P× Q is arefinement relationbetween two modal transi-
tion systems if, whenever p R q:

– p
a
→� p′ implies that there exists some q′ such that q

a
→� q′ and p′ R q′;

– q
a
→⋄ q′ implies that there exists some p′ such that p

a
→⋄ p′ and p′ R q′.

We write⊑ for the largest refinement relation.

Finally, we briefly recall the basic concepts on categoricalsimulations that we are
going to use in Section 3. First, we will model finitary LTS by coalgebrasc : X −→
PωXA for the finite powerset functorPA

ω, where, as usually, we will denotex′ ∈ c(x)(a)

by x
a
−→ x′. We can also see modal transition systems as coalgebras for the functor

F = P(id × {⋄,�})A, where{⋄,�} is a set with two elements where� stands for must
transitions and⋄ for may transitions. We will make intensive use of the following nota-
tion along the paper.

c(x)(a)� = {x′ ∈ X | (x′,�) ∈ c(x)(a)}, and
c(x)(a)⋄ = {x′ ∈ X | (x′, σ′) ∈ c(x)(a), with σ′ ∈ {⋄,�}}.

Note that with the previous definition we do not have necessarily →� ⊆ →⋄, but that
requirement is built-in in our notation since we have thatc(x)(a)� ⊆ c(x)(a)⋄.

Example 1.GivenA = {a}, X = {x, x′, y}, the coalgebrac : X −→ P(X×{⋄,�})A defined

by c(x)(a) = x′, c(x′)(a) = (y,�), c(y)(a) = ∅ represents the MTSx
a
→⋄ x′

a
→� y.

Proposition 1. Modal refinement between MTS can be defined as the coalgebraicsim-
ulations for the functor F= P(id×{⋄,�})A with functorial order⊑ref defined by u⊑ref v
if and only if:

– u(a)� = v(a)� for all a; and
– u(a)⋄ ⊇ v(a)⋄ for all a,

Proof. Let us suppose that we have a modal refinementR between modal transition
systemsc : P −→ P(P× {⋄,�})A andd : Q −→ P(Q× {⋄,�})A defined byc(p)(a)� =

{p′ | p
a
→� p′}, c(p)(a)⋄ = {p′ | p

a
→⋄ p′}, d(q)(a)� = {q′ | q

a
→� q′} andd(q)(a)⋄ =

{q′ | q
a
→⋄ q′}. We must show that ifpRqthen there existp∗ andq∗ such that

c(p) ⊑ref p∗Rel(P(id × {⋄,�})A)(R)q∗ ⊑ref d(q). (1)

We definep∗ andq∗ as follows:
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– p∗ has the same must transitions asc(p), except for those may transitionsp
a
→⋄ p′

such that there is noq′ with q
a
→⋄ q′ andp′Rq′.

– q∗ has the same must and may transitions asd(q), that is,q∗ = d(q).

It is immediate from these definitions thatc(p) ⊑ref p∗ andq∗ ⊑ref d(q), so we are
left with checking thatp∗Rel(P(id × {⋄,�})A)q∗.

If p′ ∈ p∗(a)�, by construction ofp∗ andq∗ it is straightforward to see that also
q′ ∈ q∗(a)�. On the other hand, letq′ ∈ q∗(a)⋄, by definition ofq∗ we have that also

q
a
→⋄ q′. SinceR is a modal refinement we also have thatp

a
→⋄ p′ with p′Rq′. But, by

construction ofp∗, we also have thatp′ ∈ p∗⋄, as we needed to prove.
We show now the other implication, that a coalgebraic modal refinement is a classic

one. In this case we start from coalgebrasc andd that satisfy relation (1) wheneverpRq.

If p
a
→� p′, then p′ ∈ p∗(a)� becausec(p) ⊑ref p∗ and, sincep∗Rel(P(id ×

{⋄,�})A)(R)q∗, there is someq′ ∈ q∗(a)� with p′Rq′. Again, in this case, the defini-

tion of ⊑ref ensures thatq∗(a) = d(q)(a) and henceq
a
→� q′ as required. Similarly, if

q
a
→⋄ q′, then alsoq′ ∈ q∗(a)⋄ and thus, as in the previous case, there existsp′ ∈ p∗(a)⋄

with p′Rq′ and hencep
a
→⋄ p′. ⊓⊔

Following [7], we can prove that the previous notion of refinement is indeed a good
definition.

Proposition 2. The order⊑ref is left-stable. Hence, modal refinement can be defined as
theRel(F) ◦⊑ref X-coalgebra.

We will denote bySetsthe category of sets and byRel the category of relations.
Given an endofunctorT : Sets−→ Sets, a monotonic T-relator[13, 5] is an endo-
funtor Γ : Rel −→ Rel such thatU ◦Γ = (T × T) ◦U, =TX ⊆ Γ(=X), andΓ(S ◦R) =
Γ(S) ◦Γ(R), whereU : Rel −→ Sets× Sets is the forgetful functor. AΓ-simulation
between coalgebras (X, c) and (Y, d) is just aΓ-coalgebra of the form (R, (c, d)), i.e, a
relationR such thatxRyimpliesc(x)Γ(R)d(y).

3 Logical characterizations of the semantics

For the logical characterization of the covariant-contravariant and conformance simula-
tions we will follow the general inductive methodology introduced in [5]. First, we will
define the syntax and semantics of the logics by means of a “language constructor” and
its associated notion of semantics. In fact, both constructions only define a single step
that must be successively applied in an iterative process that ends up with the definitive
syntax and semantics. The next stage consists in showing that the “one-step” semantics
is adequate for the corresponding simulation notions. Finally, we will build the concrete
logics for coalgebras which characterize the new similarities, which are equivalent to
the logics we defined in [8].

We begin with the covariant-contravariant simulation because we consider it more
illustrative.
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3.1 Covariant-contravariant simulations

Before starting with the methodology in [5], we must show that covariant-contravariant
simulations can be modeled using monotonic relators [13, 5].

Definition 5 (Covariant-contravariant simulation relator ). Let R⊆ Q × P be a re-
lation, g : Q −→ PωQA and f : P −→ PωPA LTS, and{Ar ,Al ,Abi} a partition of A.
We define thePA

ω-relator ΓCC : Rel −→ Rel for covariant-contravariant simulations by
g ΓCC(R) f iff:

– for all a ∈ Ar ∪ Abi and all p∈ f (a) there exists q∈ g(a) with qRp.
– for all a ∈ Al ∪ Abi, and all q∈ g(a) there exists p∈ f (a) with qRp.

Proposition 3. The simulation notion defined by the relatorΓCC coincides with the
notion of covariant-contravariant simulation.

Proof. First, letR be a covariant-contravariant simulationR between the labeled tran-
sition systemsf : P −→ PωPA andg : Q −→ PωQA defined in the usual way by

f (p)(a) = {p′ | p
a
−→ p′} andg(q)(a) = {q′ | q

a
−→ q′}. If a ∈ Ar ∪ Abi andp′ ∈ f (p)(a)

then p
a
−→ p′. Using thatpRq, there existsq′ such thatq

a
−→ q′ with p′Rq′, that is,

there isq′ ∈ g(q)(a) with q′Ropp′. Now, if a ∈ Al ∪ Abi andq′ ∈ g(q)(a), there existsp′

such thatp
a
−→ p′ with p′Rq′, or, equivalently,q′Ropp′. Hence,g ΓCC(Rop) f .

On the other hand, let us show thatΓCC(Rop) defines a covariant-contravariant sim-
ulation. First, leta ∈ Ar ∪ Abi andp

a
−→ p′, thenp′ ∈ f (p)(a) with a ∈ Ar ∪ Abi and by

definition of the relator there existsq′ ∈ g(q)(a) with q′Rp′, that is, we haveq
a
−→ q′

with p′Ropq′.
Fora ∈ Al ∪ Abi andq

a
−→ q′ the result follows analogously. ⊓⊔

The first step for defining the logic is to define its syntax by means of what is called
a language constructor. From now on we work with a signatureΣB ⊆ {tt, ff,∧,∨,

∧

,
∨

}1

and its corresponding categoryAlg(ΣB) of algebras.

Definition 6 ([5]). A language constructor is an accessible endofunctorS : Alg(ΣB) −→
Alg(ΣB) and the languageL(S) induced byS is the initial algebra ofS.

In most interesting cases the languageL(S) is given by
⋃

n Ln(S), with L0(S) the
initial ΣB-algebra andLn+1(S) = S(Ln(S)).

In order to define the logic for covariant-contravariant simulations we proceed as
in [8]. First, givenΣ = {tt,∧}, the languageL(S⊇) characterizing the simulation se-
mantics is defined in [5] as the language constructor taking theΣ-algebraL to the free
Σ-algebra over the set{⋄ϕ | ϕ ∈ L}. It is also shown in [5] that for LTS we could define
L(SA

⊇) as the language constructor taking theΣ-algebraL to the freeΣ-algebra over the
set{〈a〉ϕ | ϕ ∈ L}.

If we compare it with the Hennessy-Milner logicLHM [9], it can be noted that
the main difference is that negation is not present. Obviously, this mustbe the case to

1 Although in [5] the elementff is not used, we will need it for the logics characterizing
covariant-contravariant simulations and modal refinement.
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capture a strict order that is not an equivalence relation, such as.CC. However, adding
both the constantff and the disjunction∨ to Σ does no harm, thus obtaining ¯L(SA

⊇)
which also characterizes.S for LTS.

As we did in [8], the inspiration to obtain the logic characterizing .CC comes from
the fact that if we only have contravariant actions, then.CC becomes.−1

S , and therefore

by negating all the formulas in ¯L(SA
⊇) we would obtain the desired characterization (that

is why we needff). In particular, for the modal operator〈a〉 we would obtain its dual
form [a].

Then, in the presence of both covariant and contravariant actions, we need to con-
sider the existential operator〈a〉 for a ∈ Ar ∪ Abi and the universal operator [b] for
b ∈ Al ∪ Abi, thus obtaining the following definition of the syntax of thelogic for
covariant-contravariant simulations.

Definition 7. Let ΣB = {tt, ff,∧,∨} and letSCC : Alg(ΣB) → Alg(ΣB) denote the lan-
guage constructor taking aΣB-algebra L to the freeΣB-algebra over the set{[b]ϕ | b ∈
Al ∪ Abi, ϕ ∈ L} ∪ {〈a〉ϕ | a ∈ Ar ∪ Abi, ϕ ∈ L}. Then, the languageL(SCC) can be
generated using the following syntax:

ϕ ::= tt | ff | ϕ ∧ ϕ | ϕ ∨ ϕ | [b]ϕ | 〈a〉ϕ .

Now, in order to define the semantics of the operators above weneed some technical
definitions.

Definition 8 ([5]). An interpretation of aΣB-algebra L over a set X is aΣB-algebra
morphism d: L −→ PX.

Intuitively, an interpretation gives for each operator in the syntax (that is, of the
languageL(SCS)) all the elements (of a given setX) that satisfy a formula, that is,
x ∈ d(ϕ) means that the formulaϕ holds in x. Interpretations define a category. A
map between interpretationsd : L −→ PX andd′ : L′ −→ PX′ is a pair (l, f ) with
l : L −→ L′ a ΣB-algebra morphism andf : X′ −→ X a function such that̂P f ◦d =
d′ ◦ l (whereP̂ denotes the contravariant powerset functor). We denote this category
of interpretations byInt B, with L : Int B −→ Alg(ΣB) the functor takingd to L and
E : Int B −→ Setsop the functor takingd to X.

Recall that in order to define the semantics for logics, we must first define the se-
mantics of a single step. This single step is formalized as follows.

Definition 9 ([5]). A T-semantics for a language constructorS is a functorS : Int B −→

Int B such thatL ◦S = S ◦ L andE ◦S = Top◦E. Thus, a T-semantics forS takes an
interpretation d: L −→ PX to an interpretation d′ : SL −→ PT X.

For our concrete case of covariant-contravariant simulations the interesting cases
are the definition of the semantic for the two modal operators. In [5] the semantics for
the operator⋄ is defined asd′(⋄ϕ) = {Y ∈ PωX | Y ∩ d(ϕ) , ∅}. So, it is easy to see
that if we consider the operator〈a〉 we haved′(〈a〉ϕ) = { f : A −→ PωX | f (a) ∩ d(ϕ) ,
∅}. Analogously, following the classical definitions of the modal operators in [9] and
our work in [8], in order to define the semantics for [b] we must consider not just
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f (b) ∩ d(ϕ) , ∅ but f (b) ⊆ d(ϕ) since with the classical interpretationp |= [b]ϕ means

that p′ |= ϕ for all p
b
−→ p′; thus, all the successors must be in the interpretation and

not just one.
Hence, we have the following.

Definition 10. A PA
ω-semantics forSCC is given by the functorSCC : Int B −→ Int B

taking an interpretation d: L −→ PX to an interpretation d′ : SCC(L) −→ P(PωXA)
defined by:

– d′(tt) = PωXA.
– d′(ff) = ∅.
– d′(ϕ ∧ ψ) = d′(ϕ) ∩ d′(ψ).
– d′(ϕ ∨ ψ) = d′(ϕ) ∪ d′(ψ).
– d′([b]ϕ) = { f : A −→ PωX | f (b) ⊆ d(ϕ)}.
– d′(〈a〉ϕ) = { f : A −→ PωX | f (a) ∩ d(ϕ) , ∅}.

Note that, since an interpretation between theΣB-algebrasL(SCC) andPX is a mor-
phism, the value ofd′ on tt, ff, ∧ and∨ is imposed.

Next, we show that the semanticsSCC is adequate for covariant-contravariant sim-
ulations. The notion of adequacy is given by “preserving expressiveness”. Informally,
a preorder is expressive if froma ≤ b it follows thatb satisfies a logical formula (ac-
cording to the interpretation) whenevera does; a semantics preserve expressiveness
whenever it maps expressive interpretations and preordersinto expressive ones. The
following definition makes these concepts precise.

Definition 11 ([5]). Given an interpretation d: L −→ PX, for x, y ∈ X we write y≥L x
if y ∈ d(ϕ) whenever x∈ d(ϕ). We will say that d is expressive for a preorder R⊆ X×X
if R = ≥L, in other words, yRx if and only if y∈ d(ϕ) whenever x∈ d(ϕ).

Given a T-relatorΓ : Rel −→ Rel and a language constructorS : Alg(ΣB) −→
Alg(ΣB), we will say that a T-semanticsS for S preserves expressiveness w.r.t.Γ if it
maps an interpretation d: L −→ PX which is expressive for R⊆ X × X, into an
interpretation d′ : S(L) −→ PT X which is expressive forΓR.

Proposition 4. The semanticsSCC for SCC preserves expressiveness w.r.t.ΓCC.

Proof. Let d : L −→ PX be expressive forR. We must prove thatg ΓCC(R) f if and
only if g ≥SCC(L) f for anyg, f ∈ PωXA.

First, let us suppose thatg ΓCC(R) f and see thatg ≥SCC(L) f , that is, that iff ∈ d′(ϕ)
theng ∈ d′(ϕ), for all ϕ ∈ SCC(L). The proof proceeds by structural induction.

– Let ϕ = tt. Then sinced′(tt) = PA
ωX, we trivially get the result.

– Let ϕ = ϕ1 ∧ ϕ2. Thend′(ϕ) = d′(ϕ1) ∩ d′(ϕ2). If f ∈ d′(ϕ) then f ∈ d′(ϕ1) and
f ∈ d′(ϕ2), so by induction hypothesis alsog ∈ d′(ϕ1) and g ∈ d′(ϕ2), that is,
g ∈ d′(ϕ).

– Let ϕ = ϕ1 ∨ ϕ2. It is analogous to the previous case.
– Letϕ = [b]ψwith b ∈ Al∪Abi, ψ ∈ L. Thend′(ϕ) = { f : A −→ PωX | f (b) ⊆ d(ψ)}.

If f ∈ d′(ϕ) then f (b) ⊆ d(ψ). Now, g ΓCC(R) f andb ∈ Al ∪ Abi implies that for
all y ∈ g(b) there exists somez ∈ f (b) such thatyRz; and sinced is expressive for
R andz ∈ d(ψ), then we have alsoy ∈ d(ψ). Henceforth,g ∈ d′([b]ψ) as we needed
to prove.
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– Let ϕ = 〈a〉ψ with a ∈ Ar ∪ Abi, ψ ∈ L. If f ∈ d′(ϕ) then there exists some
z0 ∈ f (a) ∩ d(ψ). Now, g ΓCC(R) f anda ∈ Ar ∪ Abi imply that for all z ∈ f (a)
there exists somey ∈ g(a) such that ifz ∈ d(ψ0) theny ∈ d(ψ0), for all ψ0 ∈ L. This
way, takingz0 ∈ f (a) ∩ d(ψ) we get that there existsy0 ∈ g(a) such thaty0 ∈ d(ψ).
Henceforth,g ∈ d′(〈a〉ψ) as we needed to prove.

On the other hand, let us suppose now thatg ΓCC(R) f does not hold, and let us see
that g �SCC(L) f . If g ΓCC(R) f does not hold, either there is somea ∈ Ar ∪ Abi and
z ∈ f (a) such that (y, z) < R for all y ∈ g(a), or there areb ∈ Al ∪ Abi andy ∈ g(b) such
that (y, z) < R for all z ∈ f (b).

In the first case, the expressiveness ofd andR gives us for eachy ∈ g(a) a formula
ψy ∈ L such thatz ∈ d(ψy) but y < d(ψy). If we consider the formulaϕ = 〈a〉

∧

yψy, we
get f ∈ d′(ϕ) but g < d′(ϕ). For the second case, we get for eachz ∈ f (b) a formula
ψz ∈ L such thatz ∈ d(ψz) but y < d(ψz). In this case the formulaϕ = [b]

∨

zψz is such
that f ∈ d′(ϕ) butg < d′(ϕ). That way we have proved that ifg ΓCC(R) f does not hold,
theng�SCC f . ⊓⊔

Finally, the last step of the construction in [5] is the definition of the “definitive”
logic for a coalgebra induced by a relator. The semantics of this logic will be built as
the limit of the “single step” semantics.

Definition 12 ([5]). For any ordinalα, given(Zα), (ρβα : Zα −→ Zβ)β≤α, the final se-
quence of the functor T , an interpretation d: L −→ PZα induces a logic(L, |=) for
T-coalgebras with

c |=γ ϕ if and only ifγα(c) ∈ d(ϕ),

where(γα : C −→ Zα) denotes the cone over the final sequence of T defined as follows:

– γ0 : C −→ 1 is the unique such map.
– γα = Tγβ ◦ γ.
– γω is the unique arrow satisfyingρωα ◦ γω = γα for eachα < ω.

In particular, if the final sequence ofΓ : Rel −→ Rel stabilizes atα, then the logic
induced byS andΓ [5] is the logic induced by the interpretationdα : Lα −→ PZα.
Then, ifS preserves expressiveness w.r.t.Γ, the final sequence ofT stabilizes atα, and
the initial sequence ofS stabilizes atα, the final sequence ofΓ also stabilizes atα [5,
Prop. 61]. If that is the case, the logic induced byS andΓ characterizes the similarity
relation [5, Cor. 60].

In our case, we finally obtain the following proposition.

Proposition 5. For an LTSγ : C −→ PωCA, the logic which characterizes covariant-
contravariant simulation is given by:

– c |=γ tt.
– c 6|=γ ff.
– c |=γ ϕ1 ∧ ϕ2 if and only if c|=γ ϕ1 and c|=γ ϕ2.
– c |=γ ϕ1 ∨ ϕ2 if and only if c|=γ ϕ1 or c |=γ ϕ2.
– c |=γ 〈a〉ϕ if and only if c′ |=γ ϕ for some c′ ∈ γ(c)(a).
– c |=γ [b]ϕ if and only if c′ |= ϕ for all c′ ∈ γ(c)(b).
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Before attempting the proof of the proposition, let us construct in detail the initial
sequence of SCC, denoted by (Lα), (ια

β
: Lβ −→ Lα)β≤α , and the final sequence of the

functorT = PA
ω, denoted by (Zα), (ρβα : Zα −→ Zβ)β≤α. That is,

L0
ι01

// L1
ι12=SCC(ι01)

// L2
ι23=SCC(ι12)

// . . . // Lω

SCC(L0) SCC(L1)

and

Z0 Z1
ρ1

0
oo Z2

ρ2
1=T(ρ1

0)
oo . . .

ρ3
2=T(ρ2

1)
oo Zω+ωoo

1 T(Z0) T(Z1)

SinceLα ⊆ Lα+1 andια
α+1 is a morphism betweenΣB-algebras,ια

α+1 is the inclusion
from Lα into Lα+1. Also, Lω =

⋃

α Lα with ιαω the inclusion fromLα to Lω.
For the final sequence of the functorT we haveZ0 = 1, the final element ofSets,

and it is straightforward to check thatZ1 = TZ0 = Pω1A consists of all the possible
A-trees of depth one. Subsequently, sinceZα+1 = TZα = PωZA

α , we get thatZα contains
all the possible (up to bisimilarity)A-trees of depth at mostα+1 with branching at most
|A|α. Now, givenα ≥ β, ρα

β
transforms a tree of depth at mostα into a tree of depth at

mostβ by eliminating the lastα − β-floors (and applying bisimilarity).
Continuing with this scheme,Zω contains all theA-trees, possibly with infinitely

many branches and/or infinite depth (see [14, 15] for further details). Now, by definition,
Zω+1 = TZω = PωZA

ω, this means thatZω+1 = { f : A −→ PωZω}, that is, f ∈ Zω+1

implies that for eacha ∈ A, f (a) must be a finite subset ofZω. In other words,Zω+1 is
the set ofA-trees (possibly infinite) such that its first floor is finitelybranched (because
f (a) is a finite set). Analogously,Zω+2 = TZω+1 is the set ofA-trees (possibly infinite)
such that its first and second floor are finitely branched. Thisway, we reach the terminal
elementZω+ω which contains all the finitely branchedA-trees (possibly infinite). It is
also shown in [14, 15] thatρω+1

ω : Zω+1 −→ Zω is injective (but not surjective) so,
by definition, everyρω+k

ω+l = Tρω+k−1
ω+l−1 is also injective. This means thatρω+k

ω is just the
embedding ofZω+k into Zω.

For the proof of Proposition 5 we are also going to need the sequence ˆρα
β
= P̂(ρβα)

built from the terminal sequence ofZα by applying the contravariant functorP̂. That is,

PZ0
ρ̂0

1
// PZ1

ρ̂1
2

// PZ2
ρ̂2

3
// . . .

P1 PT(Z0) PT(Z1)

So, by definition, ifα ≤ β, ρ̂α
β
(u) = {v ∈ Zβ | ρ

β
α(v) ∈ u}; in other words, ˆρα

β
maps

a set of trees inZα to the set of all the trees inZβ such that when we eliminate from
them the lastβ − α floors we obtain the original trees inZα. SinceP̂ is a contravariant
functor andρω+k

ω+l is injective,ρ̂ω+l
ω+k is surjective. Givenl ≤ k, ρ̂ω+l

ω+k(u) maps anA-treeu

9



of Zω+l with its k first floors finitely branching into the sameA-tree inZω+k; otherwise
it mapsu into ∅ (because inZω+k there are noA-trees without theirk first floors finitely
branching).

Proof (Proposition 5).Let (Lα), (ια
β

: Lβ −→ Lα)β≤α denote the initial sequence of

SCC and (Zα), (ρβα : Zα −→ Zβ)β≤α denote the final sequence of the functorT = PA
ω,

with {Ar ,Al ,Abi} a partition ofA. We define the initial segment of the initial sequence
(dα), ((ια

β
, ρ

β
α) : dβ −→ dα)β≤α of SCC by [5, Prop. 57]:

d0
(ι01,ρ

1
0)

// d1
(ι12,ρ

2
1)

// d2
(ι23,ρ

3
2)

// . . .

SCC(d0) SCC(d1)

– d0 : L0 −→ PZ0 is defined byd0(tt) = Z0, d0(ff) = ∅, d0(ϕ1 ∨ ϕ2) = d0(ϕ1) ∪ d0(ϕ2)
andd0(ϕ1 ∧ ϕ2) = d0(ϕ1) ∩ d0(ϕ2).

– dα+1 = SCC(dα) : SCC(Lα) −→ PTZα = P(PωZA
α ) for all 0 < α < ω. In particular,

dα+1(tt) = PωZA
α , dα+1(ff) = ∅, dα+1(ϕ1 ∧ ϕ2) = dα+1(ϕ1) ∩ dα+1(ϕ2), dα+1(ϕ1 ∨

ϕ2) = dα+1(ϕ1) ∪ dα+1(ϕ2), dα+1([b]ϕ) = { f : A −→ PωZα | f (b) ⊆ dα(ϕ)} and
dα+1(〈a〉ϕ) = { f : A −→ PωZα | f (a) ∩ dα(ϕ) , ∅}.

– dω : Lω −→ PZω is defined by the obvious clauses for each of the logical connec-
tives. For [a]ϕ, 〈a〉ϕ ∈ Lα, we definedω as:
• dω([a]ϕ) = {u ∈ Zω | ρωα (u) ∈ dα([a]ϕ)} = ρ̂αω(dα([a]ϕ)).
• dω(〈a〉ϕ) = {u ∈ Zω | ρωα (u) ∈ dα(〈a〉ϕ)} = ρ̂αω(dα(〈a〉ϕ)).

Note that, by construction of the initial sequence (Lα), if [ a]ϕ, 〈a〉ϕ ∈ Lα then also
[a]ϕ, 〈a〉ϕ ∈ Lβ for β ≥ α. Therefore, we need to check thatdω does not depend on
β and is thus well-defined. Indeed, assumingα ≤ β and since (ια

β
, ρ

β
α) is a map from

the interpretationdα into dβ, we have:

ρ̂αω(dα([a]ϕ)) = (ρ̂βω ◦ ρ̂αβ )(dα([a]ϕ))

= ρ̂
β
ω(ρ̂α

β
(dα([a]ϕ)))

= ρ̂
β
ω(dβ(ιαβ ([a]ϕ)))

= ρ̂
β
ω(dβ([a]ϕ)).

Now, we must prove that (ιαω, ρ
ω
α ) is well-defined for all ordinalsα < ω, that is, that

the following diagram commutes:

Lω PZω

Lα PZα

ιαω ρ̂αω

dω

dα

Let ϕ ∈ Lα and let us show thatdω ◦ ιαω(ϕ) = ρ̂αω ◦dα(ϕ). The proof will follow by
structural induction overϕ:

– ϕ = tt. Then, by definition,ιαω(tt) = tt ∈ Lω anddω(tt) = Zω. On the other hand
dα(tt) = Zα andρ̂αω(Zα) = Zω.
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– ϕ = φ ∧ ψ. Then, sinceιαω is the inclusion ofLα into Lω, ιαω(φ ∧ ψ) = (φ ∧ ψ) ∈ Lω.
Thus,dω(φ ∧ ψ) = dω(φ) ∩ dω(ψ). On the other hand,dα(ϕ) = dα(φ) ∩ dα(ψ) and
ρ̂αω(dα(φ) ∩ dα(ψ)) = ρ̂αω(dα(φ)) ∩ ρ̂αω(dα(ψ)). By induction hypothesis,dω(φ) =
ρ̂αω(dα(φ)) anddω(ψ) = ρ̂αω(dα(ψ)), and the equality follows.

– ϕα = φα ∨ ψα. Analogous to the previous case.
– ϕα = [a]ψ. Thenιαω([a]ψ) = [a]ψ ∈ Lω and, by definition,dω([a]ψ) = ρ̂αω(dα([a]ψ)).
– ϕα = 〈a〉ψ. Analogous to the previous case.

It remains to prove thatdω is a limiting element of the initial sequence ofSCC. If
d : L −→ PZ and fα : dα −→ d is a cocone for the initial sequence ofSCC, we must
show that there exists a unique arrow (!L, !Z) : dω −→ d making the following diagram
commute:

d

dω

dα dβ
(ια
β
,ρ
β
α)

(ιαω,ρ
ω
α ) (ιβω,ρωβ )

fα fβ(!L ,!Z)

By focusing on the first component offα, we take !L as the unique arrow between
Lω 99K L (it exists becauseLω is a limit element of the initial sequence ofLα); and
by focusing on the second, we take !Z : Z 99K Zω to be the unique arrow to the limit
elementZω. Then, !Z ◦dω = d◦!L and (!L, !Z) is well-defined. The uniqueness of (!L, !Z)
and the fact that it makes the above diagram commute follow from the uniqueness and
commutativity of !L and !Z, as detailed next.

Let us consider (!L, !Z) ◦(ιαω, ρ
ω
α ). Since fα : dα −→ d is a morphism of interpre-

tations, fα is defined as (lα, gα) with lα : Lα −→ L a morphism ofΣB-algebras an
gα : Z −→ Zα such that ˆgα ◦dα = d◦ lα (ĝα = P̂(gα)). Now, using the fact that !L and !Z
are the unique arrows of the limiting elementsLω andZω, respectively, we obtain that
!L ◦ ι

α
ω = lα andρωα ◦!Z = gα, in other words, (!L, !Z) ◦(ιαω, ρ

ω
α ) = (lα, gα) = fα.

Now, since the initial sequence of SCC stabilizes atω and the final sequence ofT
stabilizes atω + ω, we also have that the initial sequence ofSCC stabilizes atω + ω [5,
Prop. 61]. Letγ : C −→ PωCA be a labeled transition system, with{Ar ,Al ,Abi} a
partition ofA: by Definition 12, when considering the induced logic, we must work with
dω+ω andγω+ω. We have remarked before thatρω+k

ω : Zω+k −→ Zω is a monomorphism
so, sinceγω = ρω+ωω ◦ γω+ω, γω+ω(c) = γω(c). On the other hand, since ˆρω

ω+k = P̂(ρω+k
ω ) :

PZω −→ PZω+k is an epimorphism, we have thatdω+ω : Lω −→ PZω+ω anddω+ω(ϕ)  
dω(ϕ), because indω(ϕ) we also have infinitely branchingA-trees as possible behaviors
of ϕ. However, sinceγω(c) = γω+ω(c) is a finitely branchingA-tree, it turns out that
γω+ω(c) ∈ dω+ω(ϕ) if and only if γω(c) ∈ dω(ϕ), that is, we can just considerγω anddω.

Now, the logic induced bySCC andΓCC for the givenγ is defined by:

– c |=γ tt, trivially.
– c 6|=γ ff, trivially.

11



– c |=γ ϕ1 ∧ ϕ2 if and only if γω(c) ∈ dω(ϕ1 ∧ ϕ2) = dω(ϕ1) ∩ dω(ϕ2), that is, if and
only if c |=γ ϕ1 andc |=γ ϕ2.

– c |=γ ϕ1 ∨ ϕ2 if and only if c |=γ ϕ1 or c |=γ ϕ2.
– c |=γ 〈a〉ϕ with a ∈ Ar ∪ Abi if and only if γω(c) ∈ dω(〈a〉ϕ). First note that, by

definition of γω, ρωα ◦ γω = γα, for all α < ω. So, if 〈a〉ϕ ∈ Lα, thenγω(c) ∈
dω(〈a〉ϕ) = ρ̂αω(dα(〈a〉ϕ)) if and only if γα(c) ∈ dα(〈a〉ϕ) = { f ∈ PωZA

α−1 | f (a) ∩
dα−1(ϕ) , ∅}. Also, sinceγα(c) is a finitely branchingA-tree of depth at mostα, we
can viewγα(c)(a) as the (finite) set of subtrees ofγα(c) reachables from the root by
ana-arc. Formally, sinceγα = Tγα−1 ◦ γ, γα(c) = Tγα−1(γ(c)) = PA

ωγα−1(γ(c)) it
follows that

γα(c)(a) =
[

(PA
ωγα−1)γ(c)

]

(a)

= γα−1(γ(c)(a))
= {γα−1(c′) | c′ ∈ γ(c)(a)}.

Now, recall that γα(c) ∈ dα(〈a〉ϕ) iff γα(c)(a) ∩ dα−1(ϕ) , ∅, that is, ifγα−1(c′) ∈
dα−1(ϕ) for somec′ ∈ γ(c)(a), which is equivalent toγω(c′) ∈ dω(ϕ) for some
c′ ∈ γ(c)(a). Thus, we have just proved thatc |=γ 〈a〉ϕ if and only if c′ |=γ ϕ for
somec′ ∈ γ(c)(a).

– c |=γ [b]ϕ if and only if c′ |= ϕ for all c′ ∈ γ(c)(b). The proof is analogous to that
for the previous case. ⊓⊔

Hence, by Proposition 5, the logic induced bySCC andΓCC is equivalent to the logic
for covariant-contravariant simulation in [8].

3.2 Partial bisimulation

Partial bisimulation is defined in [2] as a behavioural relation over LTSs for studying
the theory of supervisory control [12] in a concurrency-theoretic framework. In [2], the
authors considered LTSs that also include a termination predicate↓ over states. For the
sake of simplicity, since its role is orthogonal to our aims in this paper, we simply omit
it in what follows.

Definition 13. A partial bisimulation with bisimulation setB between two LTSs P and
Q is a relation R⊆ P× Q such that, whenever p R q:

– For all a ∈ A, if p
a
→ p′ then there exists some q

a
→ q′ with p′ R q′.

– For all b ∈ B, if q
b
→ q′ then there exists some p

b
→ p′ with p′ R q′.

We write p.B q if p R q for some partial bisimulation with bisimulation setB.

In [1] we proved that partial bisimulation is a particular case of covariant-contravariant
simulation, when the LTSP has signatureAr = A \ B, Al = ∅ andAbi = B. Hence, in-
stantiating Proposition 5 with this particular case we obtain the same logic as in [1],
which is simpler than that proposed in [2].
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3.3 Conformance simulations

As we did in Section 3.1, we can apply the methodology in [5] toobtain the logical
characterization of conformance simulations. First, we define the corresponding relator
and prove that it defines the same simulation notion as the non-coalgebraic one.

Definition 14 (Conformance simulation relator).Given R⊆ Q × P, f ∈ PωPA and
g ∈ PωQA, we define thePA

ω-relator ΓCS : Rel −→ Rel for conformance simulation by
g ΓCS(R) f iff

– for each a∈ A, f(a) , ∅ implies g(a) , ∅.
– for all a ∈ A, if q′ ∈ g(a) and f(a) , ∅ then there is p′ ∈ f (a) such that q′Rp′.

Proposition 6. The simulation notion defined by the relatorΓCS coincides with the no-
tion of conformance simulation.

Proof. Let us suppose that we have a classic conformance simulationR between the
labeled transition systemsf : P −→ PωPA andg : Q −→ PωQA, defined in the usual

way by f (p)(a) = {p′ | p
a
−→ p′} andg(q)(a) = {q′ | q

a
−→ q′}. Let us show that

g ΓCS(Rop) f .
First, if f (p)(a) , ∅ then, by definition,p

a
−→ and alsoq

a
−→ becausepRq, hence

g(p)(a) , ∅. Now, let q′ ∈ g(q)(a) and f (p)(a) , ∅ then sinceR is a conformance
simulation there existsp′ such thatp

a
−→ p′ with p′Rq′, that is, there existsp′ ∈ f (p)(a)

such thatq′Ropp′, as we needed to prove. On the other hand, let us show thatΓCS(Rop)
defines a conformance simulationRop. If g ΓCS(Rop) f then, by definition of the relator,

f (p)(a) , ∅ impliesg(q)(a) , ∅, that is,p
a
−→ impliesq

a
−→. Also, q′ ∈ g(q)(a) and

f (p)(a) , ∅ imply the existence ofp′ ∈ f (p)(a) andq′Rp′; in other words, if there

existsq′ such thatq
a
−→ q′ and p

a
−→, then there existsp′ such thatp

a
−→ p′ and

p′Ropq′. ⊓⊔

Next, we define the corresponding syntax.

Definition 15. LetΣB = {tt,∧,∨} andSCS : Alg(ΣB) → Alg(ΣB) denote the language
constructor taking aΣB-algebra L to the freeΣB-algebra over the set{[a]ϕ | a ∈ A, ϕ ∈
L}. Then, the languageL(SCS) is that generated using the following syntax:

ϕ ::= tt | ϕ ∧ ϕ | ϕ ∨ ϕ | [a]ϕ .

Note that in order to define the syntax for conformance simulation logic we do not
considerff since we do not have two kinds of modal operators with different nature
(as opposed to the case of covariant-contravariant simulation). Nevertheless, we could
addff to our logic without changing its meaning. This is make clearer in the following
definition that gives us the semantics.

Definition 16. ThePA
ω-semantics forSCS is given by the functorSCS : Int B −→ Int B

taking an interpretation d: L −→ PX to an interpretation d′ : SCS(L) −→ P(PωXA)
defined by:

– d′(tt) = PωXA.

13



– d′(ϕ ∧ ψ) = d′(ϕ) ∩ d′(ψ).
– d′(ϕ ∨ ψ) = d′(ϕ) ∪ d′(ψ).
– d′([a]ϕ) = { f : A −→ PωX | f (a) , ∅ and f(a) ⊆ d(ϕ)}.

Again, as we saw in [8], in order to define the semantics for conformance simu-
lation we need to define the operator [a], which captures the idea of “having just one
a-action is better than having more”, by imposing that all theelements inf (a) must
(non-trivially) satisfy the formulaϕ. The next step is to prove that it is adequate for
conformance simulations.

Proposition 7. The semanticsSCS for SCS preserves expressiveness w.r.t.ΓCS.

Proof. Let us fix d : L −→ PX expressive forR, that is,yRx if and only if y ∈ d(ϕ)
wheneverx ∈ d(ϕ); we must prove thatg ΓCS(R) f if and only if g ≥SCS(L) f for any
g, f ∈ PωXA.

First, let us suppose thatg ΓCS(R) f . Let us see thatg ≥SCS(L) f , that is, that if
f ∈ d′(ϕ) theng ∈ d′(ϕ) for all ϕ ∈ SCS(L). The proof is by structural induction.

– Let ϕ = tt. Then sinced′(tt) = PωXA we trivially get the result.
– Letϕ = ϕ1∧ϕ2. Thend′(ϕ) = d′(ϕ1)∩d′(ϕ2). So if f ∈ d′(ϕ) we get thatf ∈ d′(ϕ1)

and f ∈ d′(ϕ2). Applying the induction hypothesis we getg ∈ d′(ϕ1) andg ∈ d′(ϕ2),
that is,g ∈ d′(ϕ).

– Letϕ = ϕ1∨ϕ2. Thend′(ϕ) = d′(ϕ1)∪d′(ϕ2). So if f ∈ d′(ϕ) we get thatf ∈ d′(ϕ1)
or f ∈ d′(ϕ2); by induction hypothesis eitherg ∈ d′(ϕ1) or g ∈ d′(ϕ2), and hence
g ∈ d′(ϕ).

– Let ϕ = [a]ψ with ψ ∈ L. Thend′(ϕ) = { f : A −→ PωX | f (a) , ∅ and f (a) ⊆
d(ψ)}. If f ∈ d′(ϕ) then f (a) , ∅ and f (a) ⊆ d(ψ).
Now, g ΓCS(R) f implies thatg(a) , ∅ and also that for ally ∈ g(a) there exists
somez ∈ f (a) such thatyRz. Sinced is expressive forR we have that ifz ∈ d(ψ0)
theny ∈ d(ψ0), for all ψ0 ∈ L. Combining these two facts we get thaty ∈ d(ψ) for
all y ∈ g(a). Henceforth,g ∈ d′([a]ψ) as we needed to prove.

On the other hand, let us suppose now thatg ΓCS(R) f does not hold, and let us see
that g �SCS(L) f . If g ΓCS(R) f does not hold, eitherf (a) , ∅ andg(a) = ∅, or there
existsy ∈ g(a) such thatf (a) , ∅ and, for allz ∈ f (a), (y, z) < R. In the first case is
clear thatf ∈ d′([a]tt) butg < d′([a]tt). For the second case, since noz ∈ f (a) is related
with y andd is expressive forR, we have thaty �L z, that is, for eachz ∈ f (a) there
is a formulaψz ∈ L such thatz ∈ d(ψz) but y < d(ψz). If ϕ = [a]

∨

zψz then f ∈ d′(ϕ)
since f (a) , ∅ and f (a) ⊆ d(

∨

zψz) =
⋃

z d(ψz); but g < d′(ϕ) because, by hypothesis
y ∈ g(a) is such thaty < d(ψz), for anyz. ⊓⊔

Finally, we obtain the following logic.

Proposition 8. For an LTSγ : C −→ PωCA, the logic which characterizes confor-
mance simulation is given by:

– c |=γ tt.
– c |=γ ϕ1 ∧ ϕ2 if and only if c|=γ ϕ1 and c|=γ ϕ2.
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– c |=γ ϕ1 ∨ ϕ2 if and only if c|=γ ϕ1 or c |=γ ϕ2.
– c |=γ [a]ϕ if and only ifγ(c)(a) , ∅ and ci |=γ ϕ, for all ci ∈ γ(c)(a).

Proof. Let (Lα), (ια
β

: Lβ −→ Lα)β≤α denote the initial sequence of SCS and (Zα), (ρβα :

Zα −→ Zβ)β≤α denote the final sequence of the functorT = PA
ω. As in the proof on

Proposition 5 we define the initial segment of the initial sequence ofSCS (dα), ((ια
β
, ρ

β
α) :

dβ −→ dα)β≤α by:

d0
(ι01,ρ

1
0)

// d1
(ι12,ρ

2
1)

// d2
(ι23,ρ

3
2)

// . . .

SCS(d0) SCS(d1)

– d0 : L0 −→ PZ0 is defined byd0(ϕ) = Z0 for all ϕ ∈ L0.
– dα+1 = SCS(dα) : SCS(Lα) −→ PTZα = P(PωZA

α ) for all 0 < α < ω. In particular,
dα+1(tt) = Zα+1, dα+1(ϕ1 ∧ ϕ2) = dα+1(ϕ1) ∩ dα+1(ϕ2), dα+1(ϕ1 ∨ ϕ2) = dα+1(ϕ1) ∪
dα+1(ϕ2) anddα+1([a]ϕ) = { f : A −→ PωZα | f (a) , ∅ and f (a) ⊆ dα(ϕ)}.

– dω : Lω −→ PZω is defined by the obvious clauses for each of the logical con-
nectives. Now, for a formula [a]ϕ ∈ Lω =

⋃

α Lα, if [ a]ϕ ∈ Lα thendω([a]ϕ) =
{u ∈ Zω | ρωα (u) ∈ dα([a]ϕ)} = ρ̂αω(dα([a]ϕ)). As in the proof of Proposition 5,dω is
well-defined.

To prove both that the morphisms (ιαω, ρ
ω
α ) are well-defined for all ordinalsα < ω

and thatdω is a limiting element of the sequence is analogous to that in Proposition 5,
so we omit the proof. Also, the initial sequence of SCS stabilises atω and the final
sequence ofT stabilises atω +ω, hence the initial sequence ofSCS stabilises atω +ω.
Now, letγ : C −→ PωCA be a labeled transition system; as we showed in Proposition 5,
γω+ω(c) ∈ dω+ω(ϕ) is equivalent toγω(c) ∈ dω(ϕ). Then:

– c |=γ tt, trivially.
– c |=γ ϕ1 ∧ ϕ2 if and only if γω(c) ∈ dω(ϕ1 ∧ ϕ2) = dω(ϕ1) ∩ dω(ϕ2), that is, if and

only if c |=γ ϕ1 andc |=γ ϕ2.
– c |=γ ϕ1 ∨ ϕ2 if and only if c |=γ ϕ1 or c |=γ ϕ2.
– c |=γ [a]ϕ if and only if γω(c) ∈ dω([a]ϕ), or, equivalently,γα(c) ∈ dα([a]ϕ) =
{ f ∈ PωZA

α−1 | f (a) , ∅ and f (a) ⊆ dα−1(ϕ)}, with [a]ϕ ∈ Lα. As in the proof
of Proposition 5,γα(c)(a) = {γα−1(c′) | c′ ∈ γ(c)(a)}. Now, γα(c) ∈ dα([a]ϕ) iff
γα(c)(a) , ∅ andγα(c)(a) ⊆ dα−1(ϕ). By the above equality,γα(c)(a) , ∅ if and
only if γ(c)(a) , ∅; whereasγα(c)(a) ⊆ dα−1(ϕ) if and only if γα−1(ci) ∈ dα−1(ϕ),
for all ci ∈ γ(c)(a), which is equivalent toγω(ci) ∈ dω(ϕ), for all ci ∈ γ(c)(a). Thus,
we have just proved thatc |=γ [a]ϕ if and only if γ(c)(a) , ∅ andci |=γ ϕ, for all
ci ∈ γ(c)(a). ⊓⊔

Hence, Proposition 8 shows that the logic induced bySCS andΓCS is equivalent to
the logic for conformance simulation defined at [8].
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3.4 Modal refinement

Again, we can apply the methodology in [5] to obtain the logical characterization of
modal refinement between modal transition systems. First, we define the corresponding
relator and prove that it defines the same simulation notion as the non-coalgebraic one.

Definition 17 (Modal refinement relator). Given R⊆ Q × P, g : Q −→ Pω(Q ×
{⋄,�})A and f : P −→ Pω(P × {⋄,�})A, we define thePω(id × {⋄,�})A-relator Γref :
Rel −→ Rel for modal refinement by gΓref(R) f iff

– for all a ∈ A, if p′ ∈ f (a)� then there is q′ ∈ g(a)� such that q′Rp′.
– for all a ∈ A, if q′ ∈ g(a)⋄ then there is p′ ∈ f (a)⋄ such that q′Rp′.

Proposition 9. The simulation notion defined by the relatorΓref coincides with the no-
tion of modal refinement.

Proof. First, let R be a modal refinement between the modal transition systemsf :
P −→ P(P × {⋄,�})A and g : Q −→ P(Q × {⋄,�})A defined in the usual way. If

p′ ∈ f (p)(a)� then p
a
→� p′ and, using thatpRq, there existsq′ such thatq

a
→� q′

with p′Rq′, that is, there isq′ ∈ g(q)(a)� with q′Ropp′. Now, if q′ ∈ g(q)(a)⋄, we have
that q

a
→⋄ q′ and thus there existsp′ such thatp

a
→⋄ p′ with p′Rq′, or, equivalently,

p′ ∈ f (p)(a)⋄ andq′Ropp′. Hence,g Γref(Rop) f .
On the other hand, let us show thatΓref(Rop) defines a modal refinement. First, if

p
a
→� p′ thenp′ ∈ f (p)(a)� and by definition of the relator there existsq′ ∈ g(q)(a)�

with q′Rp′, that is, we haveq
a
→� q′ with p′Ropq′. For q

a
→⋄ q′ the result follows

analogously. ⊓⊔

Next, we define the corresponding syntax and semantics.

Definition 18. LetΣB = {tt, ff,∧,∨} andSref : Alg(ΣB)→ Alg(ΣB) denote the language
constructor taking aΣB-algebra L to the freeΣB-algebra over the set{[a]ϕ | a ∈ A, ϕ ∈
L} ∪ {〈a〉ϕ | a ∈ A, ϕ ∈ L}. Then, the languageL(Sref ) is that generated using the
following syntax:

ϕ ::= tt | ff | ϕ ∧ ϕ | ϕ ∨ ϕ | [a]ϕ | 〈a〉ϕ .

Definition 19. ThePω(id × {⋄,�})A-semantics forSref is given by the functorSref :
Int B −→ Int B taking an interpretation d: L −→ PX to an interpretation d′ : Sref (L) −→
P(Pω(X × {⋄,�})A) defined by:

– d′(tt) = Pω(X × {⋄,�})A.
– d′(ff) = ∅.
– d′(ϕ ∧ ψ) = d′(ϕ) ∩ d′(ψ).
– d′(ϕ ∨ ψ) = d′(ϕ) ∪ d′(ψ).
– d′([a]ϕ) = { f : A −→ Pω(X × {⋄,�}) | f (a)⋄ ⊆ d(ϕ)}.
– d′(〈a〉ϕ) = { f : A −→ Pω(X × {⋄,�}) | f (a)� ∩ d(ϕ) , ∅}.
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In order to define the semantics for modal refinements we have needed to define
two operators [a] and 〈a〉, where the first one captures the transitions that the process
may do, whereas the second one captures the transitions thatthe process must do. It is
not surprising to note that, in particular, the definitions of these two modal operators
are essentially the same as those for covariant-contravariant simulation, but taking into
account in each case the “must” or “may” transitions.

The next step is to prove that it is adequate for modal refinement, and to obtain the
corresponding logic.

Proposition 10. The semanticsSref for Sref preserves expressiveness w.r.t.Γref.

Proof. Let us fix d : L −→ PX expressive forR, that is,yRx if and only if y ∈ d(ϕ)
wheneverx ∈ d(ϕ); we must prove thatg Γref(R) f if and only if g ≥Sref (L) f for any
g, f ∈ Pω(X × {⋄,�})A.

First, let us suppose thatg Γref(R) f . Let us see thatg ≥Sref (L) f , that is, that if
f ∈ d′(ϕ) theng ∈ d′(ϕ) for all ϕ ∈ Sref (L). The proof is by structural induction.

– Let ϕ = tt. Sinced′(tt) = Pω(X × {⋄,�}) we trivially get the result.
– Letϕ = ϕ1∧ϕ2. Thend′(ϕ) = d′(ϕ1)∩d′(ϕ2). So if f ∈ d′(ϕ) we get thatf ∈ d′(ϕ1)

and f ∈ d′(ϕ2). Applying the induction hypothesis we getg ∈ d′(ϕ1) andg ∈ d′(ϕ2),
that is,g ∈ d′(ϕ).

– Letϕ = ϕ1∨ϕ2. Thend′(ϕ) = d′(ϕ1)∪d′(ϕ2). So if f ∈ d′(ϕ) we get thatf ∈ d′(ϕ1)
or f ∈ d′(ϕ2); by induction hypothesis eitherg ∈ d′(ϕ1) or g ∈ d′(ϕ2), and hence
g ∈ d′(ϕ).

– Letϕ = [a]ψwith ψ ∈ L. Thend′(ϕ) = { f : A −→ Pω(X×{⋄,�}) | f (a)⋄ ⊆ d(ψ)}. If
f ∈ d′(ϕ) then f (a)⋄ ⊆ d(ψ). Now,g Γref(R) f implies that for all (y, σ) ∈ g(a) there
exists some (x, σ′) ∈ f (a) such thatyRx. Sinced is expressive forR andx ∈ f (a)⋄
we also obtain thaty ∈ d(ψ). Henceforth,g ∈ d′([a]ψ) as we needed to prove.

– Let ϕ = 〈a〉ψ. If f ∈ d′(ϕ) then there existsz ∈ f (a)� ∩ d(ϕ). Now, g Γref(R) f
imply that for all (x,�) ∈ f (a) there exists some (y,�) ∈ g(a) such thatyRx. This
way, takingz ∈ f (a)�∩d(ψ) we get that there existsyz ∈ g(a)� such thatyz ∈ d(ψ).
Henceforth,g ∈ d′(〈a〉ψ) as we needed to prove.

On the other hand, let us suppose now thatg Γref(R) f does not hold, and let us
see thatg �Sref (L) f . If g Γref(R) f does not hold, either there is somez ∈ f (a)� such
that (y, z) < R for all y ∈ g(a)�, or there is (y, σ) ∈ g(a) such that (y, z) < R for all
(z, σ′) ∈ f (a).

In the first case, the expressiveness ofd andRgives us for eachy ∈ g(a)� a formula
ψy ∈ L such thatz ∈ d(ψy) but y < d(ψy). If we consider the formulaϕ = 〈a〉

∧

yψy,
we get f ∈ d′(ϕ) but g < d′(ϕ). For the second case, we get for each (z, σ′) ∈ f (a) a
formulaψz ∈ L such thatz ∈ d(ψz) but y < d(ψz). In this case the formulaϕ = [a]

∨

zψz

is such thatf ∈ d′(ϕ) but g < d′(ϕ). That way we have proved that ifg Γref(R) f does
not hold, theng�Sref f . ⊓⊔

Proposition 11. For an MTSγ : C −→ Pω(C × {⋄,�})A, the logic which characterizes
modal refinement is given by:

– c |=γ tt.
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– c |=γ ϕ1 ∧ ϕ2 if and only if c|=γ ϕ1 and c|=γ ϕ2.
– c |=γ ϕ1 ∨ ϕ2 if and only if c|=γ ϕ1 or c |=γ ϕ2.
– c |=γ 〈a〉ϕ if and only if c′ |=γ ϕ, for some c′ ∈ γ(c)(a)�.
– c |=γ [a]ϕ if and only c′ |=γ ϕ, for all c′ ∈ γ(c)(a)⋄.

Before attempting this proof, as we did for the case of the functor PA
ω, we must

construct in detail the final sequence of the functorT = Pω(id × {⋄,�})A, denoted by
(Zα), (ρβα : Zα −→ Zβ)β≤α. That is,

Z0 Z1
ρ1

0
oo Z2

ρ2
1=T(ρ1

0)
oo . . .

ρ3
2=T(ρ2

1)
oo

1 T(Z0) T(Z1)

For the final sequence of the functorT we haveZ0 = 1, the final element ofSets,
and, as we have done before, it is straightforward to check that Z1 = TZ0 = Pω(1 ×
{⋄,�})A consists of all the possibleA-trees with two kinds of transitions of depth one
or; in other words, we can think ofZ1 = TZ0 = Pω(1 × {⋄,�})A as containing all
the posible specifications ofA-trees of depth one (where a may transition indicates
that the implementation may include that transition, whereas for a must transition the
implementation must contain it). Hence, it is easy to see that sinceZα+1 = TZα =
Pω(Zα × {⋄,�})A, Zα contains all the possible (up to bisimilarity) specifications of A-
trees of depth at mostα+1 with branching at most|A|α. Now, givenα ≥ β, ρα

β
transforms

a specification of a tree of depth at mostα into a specification of a tree of depth at most
β by eliminating the lastα − β-floors (and applying bisimilarity).

Continuing with this scheme, analogously to the case for thefinal sequence ofPA
ω,

we have thatZω contains all the specifications ofA-trees, possibly with infinitely many
branches and/or infinite depth. Thus, by definition,Zω+1 = TZω = Pω(Zω × {⋄,�})A is
the set of specifications ofA-trees (possibly infinite) such that its first floor is finitely
branched. This way, we reach the terminal elementZω+ω which contains all the finitely
branched specifications ofA-trees (possibly infinite). Again, by definition, everyρω+k

ω+l =

Tρω+k−1
ω+l−1 is injective. This means thatρω+k

ω is just the embedding ofZω+k into Zω.

Now, it is mere routine to build the sequence ˆρα
β
= P̂(ρβα) by applying the contravari-

ant functorP̂ to the terminal sequence ofZα. That is,

PZ0
ρ̂0

1
// PZ1

ρ̂1
2

// PZ2
ρ̂2

3
// . . .

P1 PT(Z0) PT(Z1)

By definition, ifα ≤ β, ρ̂α
β

maps a set of specifications of trees inZα to the set of all
the specifications of trees inZβ such that when we remove from them the lastβ−α floors
we obtain the original specification of trees inZα. SinceP̂ is a contravariant functor and
ρω+k
ω+l is injective,ρ̂ω+l

ω+k is surjective. Givenl ≤ k, ρ̂ω+l
ω+k(u) maps a specification of anA-

treeu of Zω+l , with its k first floors finitely branching, into the same specification ofan
A-tree inZω+k; otherwise it mapsu into ∅.
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Proof (Proposition 11).Let (Lα), (ια
β

: Lβ −→ Lα)β≤α denote the initial sequence of

Sref and (Zα), (ρβα : Zα −→ Zβ)β≤α denote the final sequence of the functorT = Pω(id ×
{⋄,�})A. As in the previous proofs for covariant-contravariant andconformance simula-
tions, we define the initial segment of the initial sequence (dα), ((ιαβ , ρ

β
α) : dβ −→ dα)β≤α

of Sref by:

d0
(ι01,ρ

1
0)

// d1
(ι12,ρ

2
1)

// d2
(ι23,ρ

3
2)

// . . .

Sref (d0) Sref (d1)

– d0 : L0 −→ PZ0 is defined byd0(tt) = Z0, d0(ff) = ∅, d0(ϕ1 ∨ ϕ2) = d0(ϕ1) ∪ d0(ϕ2)
andd0(ϕ1 ∧ ϕ2) = d0(ϕ1) ∩ d0(ϕ2).

– dα+1 = Sref (dα) : Sref (Lα) −→ PTZα = P(Pω(Zα × {⋄,�})A) for all 0 < α < ω.
In particular,dα+1(tt) = Zα+1, dα+1(ff) = ∅, dα+1(ϕ1 ∧ ϕ2) = dα+1(ϕ1) ∩ dα+1(ϕ2),
dα+1(ϕ1 ∨ ϕ2) = dα+1(ϕ1) ∪ dα+1(ϕ2), dα+1([a]ϕ) = { f : A −→ Pω(Zα × {⋄,�}) |
f (a)⋄ ⊆ dα(ϕ)} anddα+1(〈a〉ϕ) = { f : A −→ Pω(Zα × {⋄,�}) | f (a)� ∩ dα(ϕ) , ∅}.

– dω : Lω −→ PZω is defined by the obvious clauses for each of the logical connec-
tives. For [a]ϕ, 〈a〉ϕ ∈ Lα, we definedω as:
• dω([a]ϕ) = {u ∈ Zω | ρωα (u) ∈ dα([a]ϕ)} = ρ̂αω(dα([a]ϕ)).
• dω(〈a〉ϕ) = {u ∈ Zω | ρωα (u) ∈ dα(〈a〉ϕ)} = ρ̂αω(dα(〈a〉ϕ)). As we showed in the

proofs of Propositions 5 and 8dω is well-defined.

The proof that the morphisms (ιαω, ρ
ω
α ) are well-defined for all ordinalsα < ω and

that dω is a limiting element of the sequence is analogous to that in Propositions 5
and 8. Also, the initial sequence of Sref stabilises atω and the final sequence ofT
stabilises atω + ω, hence the initial sequence ofSref stabilises atω + ω. Now, let
γ : C −→ Pω(C×{⋄,�})A be a modal transition system; as we showed in Propositions 5
and 8,γω+ω(c) ∈ dω+ω(ϕ) is equivalent toγω(c) ∈ dω(ϕ). Then:

– c |=γ tt, trivially.
– c 6|=γ ff, trivially.
– c |=γ ϕ1 ∧ ϕ2 if and only if γω(c) ∈ dω(ϕ1 ∧ ϕ2) = dω(ϕ1) ∩ dω(ϕ2), that is, if and

only if c |=γ ϕ1 andc |=γ ϕ2.
– c |=γ ϕ1 ∨ ϕ2 if and only if c |=γ ϕ1 or c |=γ ϕ2.
– c |=γ 〈a〉ϕ if and only if γω(c) ∈ dω(〈a〉ϕ). First note that, by definition ofγω,
ρωα ◦ γω = γα, for all α < ω. So, if 〈a〉ϕ ∈ Lα, thenγω(c) ∈ dω(〈a〉ϕ) = ρ̂αω(dα(〈a〉ϕ))
if and only if γα(c) ∈ dα(〈a〉ϕ) = { f : A −→ Pω(Zα−1 × {⋄,�}) | f (a)� ∩ dα−1(ϕ) ,
∅}, where f (a)� = {p ∈ Zα−1 | (p,�) ∈ f (a)}. As in the proofs of Propositions 5
and 8, we can show thatγα(c)(a) = {γα−1(c′) | (c′, σ′) ∈ γ(c)(a)} = {γα−1(c′) | c′ ∈
γ(c)(a)⋄}, and analogously thatγα(c)(a)� = {γα−1(c′) | c′ ∈ γ(c)(a)�}.
Indeed,γα(c) is a finitely branching specification of anA-tree of depth at mostα.
So, we can viewγα(c)(a) as the (finite) set of specification of subtrees ofγα(c) that
may or must be reachable from the root by ana-arc. Formally, sinceγα = Tγα−1 ◦ γ,
γα(c) = Tγα−1(γ(c)) = Pω(id × {⋄,�})Aγα−1(γ(c)) it follows that

γα(c)(a) =
[

(Pω(id × {⋄,�})Aγα−1)γ(c)
]

(a)

= γα−1(γ(c)(a)⋄)
= {γα−1(c′) | c′ ∈ γ(c)(a)⋄}.
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Now, recall thatγα(c) ∈ dα(〈a〉ϕ) iff γα(c)(a)� ∩ dα−1(ϕ) , ∅, that is, iff γα−1(c′) ∈
dα−1(ϕ) for somec′ ∈ γ(c)(a)�. In other words, iff γα−1(c′) ∈ dα−1(ϕ) for some
(c′,�) ∈ γ(c)(a), that is, for some elementc′ reachable fromc by a must transition
a. This is equivalent toγω(c′) ∈ dω(ϕ) for somec′ ∈ γ(c)(a)�. Thus, we have just
proved thatc |=γ 〈a〉ϕ if and only if c′ |=γ ϕ for somec′ ∈ γ(c)(a)�.

– c |=γ [a]ϕ if and only if c′ |= ϕ for all c′ ∈ γ(c)(a)⋄. The proof is analogous to that
for the previous case. ⊓⊔

Hence, Proposition 11 shows that the logic induced bySref andΓre f is equivalent to
the logic for modal refinements between modal transition systems as defined in [3].

Definition 20 ([3]). Given a set of actions A, the collection ofBoudol-Larsen’s modal
formulaeis given by the following grammar:

ϕ ::= ⊥ | ⊤ | ϕ ∧ ϕ | ϕ ∨ ϕ | [a]ϕ | 〈a〉ϕ (a ∈ A).

The semantics of these formulae with respect to an MTS P and a state p∈ P is defined by
means of the satisfaction relation|=, which is the least relation satisfying the following
clauses:

(P, p) |= ⊤.
(P, p) |= ϕ1 ∧ ϕ2 if (P, p) |= ϕ1 and
(P, p) |= ϕ2.
(P, p) |= ϕ1 ∨ ϕ2 if (P, p) |= ϕ1 or (P, p) |= ϕ2.
(P, p) |= 〈a〉ϕ if (P, p′) |= ϕ for some p

a
→� p′.

(P, p) |= [a]ϕ if (P, p′) |= ϕ for all p
a
→⋄ p′.

3.5 Mixed transition systems

Mixed transition systems [10, 6] generalize MTS by considering two kinds of transitions
that need not be related at all.

Definition 21 ([6]). For a set of actions A, amixed transition system(MiTS) is a triple
(P,→1,→2), where P is a set of states and→1,→2 ⊆ P× A× P are transition relations.

As for the associated simulation notion, it requires one transition relation to behave
covariantly and the other one contravariantly.

Definition 22 ([6]). A relation R⊆ P× Q is amixed simulationbetween two MiTS if,
whenever p R q:

– p
a
→1 p′ implies that there exists some q′ such that q

a
→1 q′ and p′ R q′;

– q
a
→2 q′ implies that there exists some p′ such that p

a
→2 p′ and p′ R q′.

Thus, MTS are obtained as the particular case in which→1 ⊆ →2. Other than that,
MiTS behave as MTS and can be described in similar coalgebraic terms. An MiTS
arises as a coalgebra for the functorF = P(id × {1, 2})A, where1 stands for→1 tran-
sitions and2 for →2 transitions; givenc : X −→ Pω(X × {1, 2})A, we shall use the
following notation:
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c(x)(a)1 = {x′ ∈ X | (x′, 1) ∈ c(x)(a)}, and
c(x)(a)2 = {x′ ∈ X | (x′, 2) ∈ c(x)(a)}.

Then, the definition of the relator that captures MiTS simulations is straightforward,
by mimicking that for MTS.

Definition 23 (Mixed relator). Given R⊆ Q × P, g : Q −→ Pω(Q × {1, 2})A and
f : P −→ Pω(P× {1, 2})A, we define thePω(id × {1, 2})A-relator Γmix : Rel −→ Rel for
mixed simulation by gΓmix(R) f if and only if:

– for all a ∈ A, if p′ ∈ f (a)1 then there is q′ ∈ g(a)1 such that q′Rp′;
– for all a ∈ A, if q′ ∈ g(a)2 then there is p′ ∈ f (a)2 such that q′Rp′.

Proposition 12. The simulation notion defined by the relatorΓmix coincides with the
notion of simulation between MiTS.

Proof. First, let R be a simulation between the mixed transition systemsf : P −→
P(P× {1, 2})A andg : Q −→ P(Q× {1, 2})A defined in the usual way. Ifp′ ∈ f (p)(a)1

then p
a
→1 p′ and, using thatpRq, there existsq′ such thatq

a
→1 q′ with p′Rq′, that

is, there isq′ ∈ g(q)(a)1 with q′Ropp′. Now, if q′ ∈ g(q)(a)2, we have thatq
a
→2 q′ and

thus there existsp′ such thatp
a
→2 p′ with p′Rq′, or, equivalently,p′ ∈ f (p)(a)2 and

q′Ropp′. Hence,g Γmix(Rop) f .
The other implication follows analogously. ⊓⊔

From here, the same steps taken for building a logic that characterizes MTS can be
retraced.

Definition 24. Let ΣB = {tt, ff,∧,∨} and Smix : Alg(ΣB) → Alg(ΣB) denote the lan-
guage constructor taking aΣB-algebra L to the freeΣB-algebra over the set{[a]ϕ | a ∈
A, ϕ ∈ L} ∪ {〈a〉ϕ | a ∈ A, ϕ ∈ L}. Then, the languageL(Smix) is that generated using
the following syntax:

ϕ ::= tt | ff | ϕ ∧ ϕ | ϕ ∨ ϕ | [a]ϕ | 〈a〉ϕ .

Definition 25. ThePω(id × {1, 2})A-semantics forSmix is given by the functorSmix :
Int B −→ Int B taking an interpretation d: L −→ PX to an interpretation d′ : Smix(L) −→
P(Pω(X × {1, 2})A) defined by:

– d′(tt) = Pω(X × {1, 2})A.
– d′(ff) = ∅.
– d′(ϕ ∧ ψ) = d′(ϕ) ∩ d′(ψ).
– d′(ϕ ∨ ψ) = d′(ϕ) ∪ d′(ψ).
– d′([a]ϕ) = { f : A −→ Pω(X × {1, 2}) | f (a)2 ⊆ d(ϕ)}.
– d′(〈a〉ϕ) = { f : A −→ Pω(X × {1, 2}) | f (a)1 ∩ d(ϕ) , ∅}.

Proposition 13. The semanticsSmix for Smix preserves expressiveness w.r.t.Γmix.

Proof. First, let us suppose thatg Γmix(R) f . Let us see thatg ≥Smix(L) f , that is, that if
f ∈ d′(ϕ) theng ∈ d′(ϕ) for all ϕ ∈ Smix(L). The proof is by structural induction.
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– The casesϕ = tt, ϕ = ϕ1 ∧ ϕ2 andϕ = ϕ1 ∨ ϕ2 are simple to prove.
– Let ϕ = [a]ψwith ψ ∈ L. Thend′(ϕ) = { f : A −→ Pω(X×{1, 2}) | f (a)2 ⊆ d(ψ)}. If

f ∈ d′(ϕ) then f (a)2 ⊆ d(ψ). Now,g Γmix(R) f implies that for all (y, 2) ∈ g(a) there
exists some (x, 2) ∈ f (a) such thatyRx. Sinced is expressive forR andx ∈ f (a)2

we also obtain thaty ∈ d(ψ). Henceforth,g ∈ d′([a]ψ) as we needed to prove.
– Let ϕ = 〈a〉ψ. This case is analogous to the previous one.

On the other hand, let us suppose now thatg Γmix(R) f does not hold, and let us see
thatg �Smix(L) f . If g Γmix(R) f does not hold, either there is somez ∈ f (a)1 such that
(y, z) < R for all y ∈ g(a)2, or there isy ∈ g(a)2 such that (y, z) < R for all z ∈ f (a)2.

In the first case, the expressiveness ofd andRgives us for eachy ∈ g(a)1 a formula
ψy ∈ L such thatz ∈ d(ψy) but y < d(ψy). If we consider the formulaϕ = 〈a〉

∧

yψy,
we get f ∈ d′(ϕ) but g < d′(ϕ). For the second case, we get for eachz ∈ f (a)typeBa
formulaψz ∈ L such thatz ∈ d(ψz) but y < d(ψz). In this case the formulaϕ = [a]

∨

zψz

is such thatf ∈ d′(ϕ) butg < d′(ϕ). ⊓⊔

Again, the same steps taken for building a logic that characterizes MTS can be
retraced. This way, the resulting logic for MiTS is:

Proposition 14. For an MiTSγ : C −→ Pω(C× {1, 2})A, the logic which characterizes
mixed simulation is given by:

– c |=γ tt.
– c |=γ ϕ1 ∧ ϕ2 if and only if c|=γ ϕ1 and c|=γ ϕ2.
– c |=γ ϕ1 ∨ ϕ2 if and only if c|=γ ϕ1 or c |=γ ϕ2.
– c |=γ 〈a〉ϕ if and only if c′ |=γ ϕ, for some c′ ∈ γ(c)(a)1.
– c |=γ [a]ϕ if and only c′ |=γ ϕ, for all c′ ∈ γ(c)(a)2.

As a consequence, Proposition 11 turns out to be a corollary of this result.

4 Conclusion and future work

Following [5], we have built the characterizing logics for covariant-contravariant and
conformance simulations, partial bisimulation (which canbe considered as a particu-
lar case of the covariant-contravariant notion), modal refinement and mixed transition
systems. In particular, we have presented a novel (to the best of our knowledge) coalge-
braic characterization of modal and mixed transition systems. Even though most of the
results are not new (except for the logical characterization of mixed transition systems),
we believe that their proofs constitute a nice illustrationof the method developed in [5],
with non-trivial systems.

As future work, we intend to explore the relationship between covariant-contravariant
simulation and modal refinement at the institution level that we sketched in [1]. Our idea
would be to check whether the machinery of borrowing [4, 11] could be used to express
our results in [1] relating the logics for covariant-contravariant simulation and modal
transition systems in a more precise manner at the categorical level.
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