
Categorical logics for contravariant simulations, partial
bisimulations, modal refinements and mixed transition

systems?

Ignacio Fábregas, Miguel Palomino, and David de Frutos-Escrig

Departamento de Sistemas Informáticos y Computación, UCM
fabregas@fdi.ucm.es {miguelpt, defrutos}@sip.ucm.es

Abstract. Covariant-contravariant simulation and conformance simulation gen-
eralize plain simulation and try to capture the fact that it is not always the case
that “the larger the number of behaviors, the better”. We have previously stud-
ied some of their properties, showing that they can be presented as particular
instances of the general notion of categorical simulation developed by Hughes
and Jacobs and constructing the axiomatizations of the preorders defined by the
simulation relations and their induced equivalences. We have also studied their
logical characterizations and in this paper we continue with that study, presenting
them as instantiations of the categorical results on simulation logics by Cı̂rstea.
In addition, we continue exploring, now in this categorical framework, the re-
lationship between covariant-contravariant simulation, partial bisimulation over
labeled transition systems, refinement over modal transition systems and mixed
transition systems.

1 Introduction and related work

Simulations are a very natural way to compare systems defined by labeled transition
systems of other related mechanisms based on describing the behavior of states by
means of the actions they can execute. However, the classic notion of simulation does
not take into account the fact that whenever a system has several possibilities for the
execution of an action, it will choose in an unpredictable manner resulting in more
non-determinism and less control.

We have proposed two new simulation notions which are more suitable to deal with
non-determinism [7]. On the one hand, covariant-contravariant simulations were de-
signed to manage systems in which non-determinism arises because of the presence of
both input and output actions; on the other hand, conformance simulations cope with
having several options for the same action. In previous works we have proved that these
simulations can be presented as instances of the coalgebraic simulation framework [7]
and have also described their logical characterizations [8].

In this paper we continue with the study of the logics that characterize these two
simulation notions, but now within the general categorical framework developed by
Cı̂rstea in [5]. In addition, we also consider partial bisimulation [2], which turns out to

? Research supported by the Spanish projects DESAFIOS10 TIN2009-14599-C03-01, TESIS
TIN2009-14321-C02-01 and PROMETIDOS S2009/TIC-1465.

be just a particular case of covariant-contravariant simulation, as well as modal tran-
sition systems, a concept introduced by Boudol and Larson [3] and whose associated
notion of refinement clearly resembles our covariant-contravariant simulations; in do-
ing so, we expand on the comparison we started in [1] between these related notions.
Actually, although more interesting, modal transition systems are just a particular case
of mixed transition systems; by reusing many of the concepts used for the former, we
show how to also obtain a logic for the latter for which, unlike the others, we were not
aware of a previous non-coalgebraic logical characterization.

Now, besides describing a method for obtaining logical characterizations, [5] also
explains how to build new logics in a compositional manner out of known ones. Unfor-
tunately, our simulations were not amenable to this methodology and we were forced to
start from scratch. As a consequence, and besides the characterization for mixed transi-
tion systems, the main contribution of this work is the application of the ideas in [5] to
interesting case studies such as modal refinement or contravariant simulation, in what
we believe is a nice illustration of the methods involved.

All the missing proofs can be found in the extended version at http://maude.
sip.ucm.es/˜miguelpt/bibliography.html.

2 Preliminaries

In this section we summarize some definitions and concepts from [5, 7, 1, 3] and intro-
duce the notation we are going to use. Let us recall our two simulation notions:

Definition 1. Given P = (P, A,→P) and Q = (Q, A,→Q), two labeled transition sys-
tems (LTS) for the alphabet A, and {Ar, Al, Abi} a partition of this alphabet, a (Ar, Al)-
simulation (or just a covariant-contravariant simulation) between them is a relation
S ⊆ P × Q such that for every pS q we have:

– For all a ∈ Ar ∪ Abi and all p
a
−→ p′ there exists q

a
−→ q′ with p′S q′.

– For all a ∈ Al ∪ Abi, and all q
a
−→ q′ there exists p

a
−→ p′ with p′S q′.

We will write p .CC q if there exists a covariant-contravariant simulation S such that
pS q.

Definition 2. Given P = (P, A,→P) and Q = (Q, A,→Q) two labeled transition systems
for the alphabet A, a conformance simulation between them is a relation R ⊆ P × Q
such that whenever pRq, then:

– For all a ∈ A, if p
a
−→, then q

a
−→ (this means, using the usual notation for process

algebras, that I(p) ⊆ I(q)).
– For all a ∈ A such that q

a
−→ q′ and p

a
−→, there exists some p′ with p

a
−→ p′ and

p′Rq′.

We will write p .CS q if there exists a conformance simulation R such that pRq.

Now, we recall the definitions for modal transition systems.

2

Definition 3. For a set of actions A, a modal transition system (MTS) is defined by the
triple (P,→�,→�), where P is a set of states and→�,→� ⊆ P × A × P are transition
relations such that→� ⊆ →�.

The transitions in →� are called the must transitions and those in →� are the may
transitions. In an MTS, each must transition is also a may transition, which intuitively
means that any required transition is also allowed.

The notion of (modal) refinement v over MTSs that we now proceed to introduce
is based on the idea that if p v q then q is a ‘refinement’ of the specification p. In
that case, intuitively, q may be obtained from p by possibly turning some of its may
transitions into must transitions.

Definition 4. A relation R ⊆ P × Q is a refinement relation between two modal transi-
tion systems if, whenever p R q:

– p
a
→� p′ implies that there exists some q′ such that q

a
→� q′ and p′ R q′;

– q
a
→� q′ implies that there exists some p′ such that p

a
→� p′ and p′ R q′.

We write v for the largest refinement relation.

Finally, we briefly recall the basic concepts on categorical simulations that we are
going to use in Section 3. First, we will model finitary LTS by coalgebras c : X −→
PωXA for the finite powerset functor PA

ω, where, as usually, we will denote x′ ∈ c(x)(a)
by x

a
−→ x′. We can also see modal transition systems as coalgebras for the functor

F = P(id × {�,�})A, where {�,�} is a set with two elements where � stands for must
transitions and � for may transitions. We will make intensive use of the following nota-
tion along the paper.

c(x)(a)� = {x′ ∈ X | (x′,�) ∈ c(x)(a)}, and
c(x)(a)� = {x′ ∈ X | (x′, σ′) ∈ c(x)(a), with σ′ ∈ {�,�}}.

Note that with the previous definition we do not have necessarily →� ⊆ →�, but that
requirement is built-in in our notation since we have that c(x)(a)� ⊆ c(x)(a)�.

We will denote by Sets the category of sets and by Rel the category of relations.
Given an endofunctor T : Sets −→ Sets, a monotonic T-relator [14, 5] is an endo-
funtor Γ : Rel −→ Rel such that U ◦Γ = (T × T) ◦U, =T X ⊆ Γ(=X), and Γ(S ◦R) =

Γ(S) ◦Γ(R), where U : Rel −→ Sets × Sets is the forgetful functor. A Γ-simulation
between coalgebras (X, c) and (Y, d) is just a Γ-coalgebra of the form (R, (c, d)), i.e, a
relation R such that xRy implies c(x)Γ(R)d(y).

3 Logical characterizations of the semantics

For the logical characterization of the covariant-contravariant and conformance simula-
tions we will follow the general inductive methodology introduced in [5]. First, we will
define the syntax and semantics of the logics by means of a “language constructor” and
its associated notion of semantics. In fact, both constructions only define a single step
that must be successively applied in an iterative process that ends up with the definitive

3

syntax and semantics. The next stage consists in showing that the “one-step” semantics
is adequate for the corresponding simulation notions. Finally, we will build the concrete
logics for coalgebras which characterize the new similarities, which are equivalent to
the logics we defined in [8].

We begin with the covariant-contravariant simulation because we consider it more
illustrative.

3.1 Covariant-contravariant simulations

Before starting with the methodology in [5], we must show that covariant-contravariant
simulations can be modeled using monotonic relators [14, 5].

Definition 5 (Covariant-contravariant simulation relator). Let R ⊆ Q × P be a re-
lation, g : Q −→ PωQA and f : P −→ PωPA LTS, and {Ar, Al, Abi} a partition of A.
We define the PA

ω-relator ΓCC : Rel −→ Rel for covariant-contravariant simulations by
g ΓCC(R) f iff:

– for all a ∈ Ar ∪ Abi and all p ∈ f (a) there exists q ∈ g(a) with qRp.
– for all a ∈ Al ∪ Abi, and all q ∈ g(a) there exists p ∈ f (a) with qRp.

Proposition 1. The simulation notion defined by the relator ΓCC coincides with the
notion of covariant-contravariant simulation.

Proof (Sketch). First, for the implication from right to left, let us see the case of a ∈
Ar ∪ Abi and p′ ∈ f (p)(a) then p

a
−→ p′. Using that pRq, there exists q′ such that

q
a
−→ q′ with p′Rq′, that is, there is q′ ∈ g(q)(a) with q′Rop p′.

For the other implication, again, let a ∈ Ar ∪ Abi and p
a
−→ p′, then p′ ∈ f (p)(a)

with a ∈ Ar ∪ Abi and by definition of the relator there exists q′ ∈ g(q)(a) with q′Rp′,
that is, we have q

a
−→ q′ with p′Ropq′. ut

The first step for defining the logic is to define its syntax by means of what is called
a language constructor. From now on we work with a signature ΣB ⊆ {tt, ff,∧,∨,

∧
,
∨
}1

and its corresponding category Alg(ΣB) of algebras.

Definition 6 ([5]). A language constructor is an accessible endofunctor S : Alg(ΣB) −→
Alg(ΣB) and the language L(S) induced by S is the initial algebra of S.

In most interesting cases the language L(S) is given by
⋃

n Ln(S), with L0(S) the
initial ΣB-algebra and Ln+1(S) = S(Ln(S)).

In order to define the logic for covariant-contravariant simulations we proceed as
in [8]. First, given Σ = {tt,∧}, the language L(S⊇) characterizing the simulation se-
mantics is defined in [5] as the language constructor taking the Σ-algebra L to the free
Σ-algebra over the set {�ϕ | ϕ ∈ L}. It is also shown in [5] that for LTS we could define
L(SA

⊇) as the language constructor taking the Σ-algebra L to the free Σ-algebra over the
set {〈a〉ϕ | ϕ ∈ L}.

1 Although in [5] the element ff is not used, we will need it for the logics characterizing
covariant-contravariant simulations and modal refinement.

4

If we compare it with the Hennessy-Milner logic LHM [10], it can be noted that
the main difference is that negation is not present. Obviously, this must be the case to
capture a strict order that is not an equivalence relation, such as .CC . However, adding
both the constant ff and the disjunction ∨ to Σ does no harm, thus obtaining ¯L(SA

⊇)
which also characterizes .S for LTS.

As we did in [8], the inspiration to obtain the logic characterizing .CC comes from
the fact that if we only have contravariant actions, then.CC becomes.−1

S , and therefore
by negating all the formulas in ¯L(SA

⊇) we would obtain the desired characterization (that
is why we need ff). In particular, for the modal operator 〈a〉 we would obtain its dual
form [a].

Then, in the presence of both covariant and contravariant actions, we need to con-
sider the existential operator 〈a〉 for a ∈ Ar ∪ Abi and the universal operator [b] for
b ∈ Al ∪ Abi, thus obtaining the following definition of the syntax of the logic for
covariant-contravariant simulations.

Definition 7. Let ΣB = {tt, ff,∧,∨} and let SCC : Alg(ΣB) → Alg(ΣB) denote the lan-
guage constructor taking a ΣB-algebra L to the free ΣB-algebra over the set {[b]ϕ | b ∈
Al ∪ Abi, ϕ ∈ L} ∪ {〈a〉ϕ | a ∈ Ar ∪ Abi, ϕ ∈ L}. Then, the language L(SCC) can be
generated using the following syntax:

ϕ ::= tt | ff | ϕ ∧ ϕ | ϕ ∨ ϕ | [b]ϕ | 〈a〉ϕ .

Now, in order to define the semantics of the operators above we need some technical
definitions.

Definition 8 ([5]). An interpretation of a ΣB-algebra L over a set X is a ΣB-algebra
morphism d : L −→ PX.

Intuitively, an interpretation gives for each operator in the syntax (that is, of the
language L(SCS)) all the elements (of a given set X) that satisfy a formula, that is,
x ∈ d(ϕ) means that the formula ϕ holds in x. Interpretations define a category. A
map between interpretations d : L −→ PX and d′ : L′ −→ PX′ is a pair (l, f) with
l : L −→ L′ a ΣB-algebra morphism and f : X′ −→ X a function such that P̂ f ◦ d =

d′ ◦ l (where P̂ denotes the contravariant powerset functor). We denote this category
of interpretations by IntB, with L : IntB −→ Alg(ΣB) the functor taking d to L and
E : IntB −→ Setsop the functor taking d to X.

Recall that in order to define the semantics for logics, we must first define the se-
mantics of a single step. This single step is formalized as follows.

Definition 9 ([5]). A T-semantics for a language constructor S is a functor S : IntB −→

IntB such that L ◦ S = S ◦ L and E ◦ S = T op ◦E. Thus, a T-semantics for S takes an
interpretation d : L −→ PX to an interpretation d′ : SL −→ PT X.

For our concrete case of covariant-contravariant simulations the interesting cases
are the definition of the semantic for the two modal operators. In [5] the semantics for
the operator � is defined as d′(�ϕ) = {Y ∈ PωX | Y ∩ d(ϕ) , ∅}. So, it is easy to see
that if we consider the operator 〈a〉 we have d′(〈a〉ϕ) = { f : A −→ PωX | f (a) ∩ d(ϕ) ,

5

∅}. Analogously, following the classical definitions of the modal operators in [10] and
our work in [8], in order to define the semantics for [b] we must consider not just
f (b) ∩ d(ϕ) , ∅ but f (b) ⊆ d(ϕ) since with the classical interpretation p |= [b]ϕ means

that p′ |= ϕ for all p
b
−→ p′; thus, all the successors must be in the interpretation and

not just one.
Hence, we have the following.

Definition 10. A PA
ω-semantics for SCC is given by the functor SCC : IntB −→ IntB

taking an interpretation d : L −→ PX to an interpretation d′ : SCC(L) −→ P(PωXA)
defined by:

– d′(tt) = PωXA.
– d′(ff) = ∅.
– d′(ϕ ∧ ψ) = d′(ϕ) ∩ d′(ψ).
– d′(ϕ ∨ ψ) = d′(ϕ) ∪ d′(ψ).
– d′([b]ϕ) = { f : A −→ PωX | f (b) ⊆ d(ϕ)}.
– d′(〈a〉ϕ) = { f : A −→ PωX | f (a) ∩ d(ϕ) , ∅}.

Note that, since an interpretation between the ΣB-algebras L(SCC) and PX is a mor-
phism, the value of d′ on tt, ff, ∧ and ∨ is imposed.

Next, we show that the semantics SCC is adequate for covariant-contravariant sim-
ulations. The notion of adequacy is given by “preserving expressiveness”. Informally,
a preorder is expressive if from a ≤ b it follows that b satisfies a logical formula (ac-
cording to the interpretation) whenever a does; a semantics preserve expressiveness
whenever it maps expressive interpretations and preorders into expressive ones. The
following definition makes these concepts precise.

Definition 11 ([5]). Given an interpretation d : L −→ PX, for x, y ∈ X we write y ≥L x
if y ∈ d(ϕ) whenever x ∈ d(ϕ). We will say that d is expressive for a preorder R ⊆ X × X
if R = ≥L, in other words, yRx if and only if y ∈ d(ϕ) whenever x ∈ d(ϕ).

Given a T-relator Γ : Rel −→ Rel and a language constructor S : Alg(ΣB) −→
Alg(ΣB), we will say that a T-semantics S for S preserves expressiveness w.r.t. Γ if it
maps an interpretation d : L −→ PX which is expressive for R ⊆ X × X, into an
interpretation d′ : S(L) −→ PT X which is expressive for ΓR.

Proposition 2. The semantics SCC for SCC preserves expressiveness w.r.t. ΓCC.

Finally, the last step of the construction in [5] is the definition of the “definitive”
logic for a coalgebra induced by a relator. The semantics of this logic will be built as
the limit of the “single step” semantics.

Definition 12 ([5]). For any ordinal α, given (Zα), (ρβα : Zα −→ Zβ)β≤α, the final se-
quence of the functor T , an interpretation d : L −→ PZα induces a logic (L, |=) for
T-coalgebras with

c |=γ ϕ if and only if γα(c) ∈ d(ϕ),

where (γα : C −→ Zα) denotes the cone over the final sequence of T defined as follows:

– γ0 : C −→ 1 is the unique such map.

6

– γα = Tγβ ◦ γ.
– γω is the unique arrow satisfying ρωα ◦ γω = γα for each α < ω.

In particular, if the final sequence of Γ : Rel −→ Rel stabilizes at α, then the logic
induced by S and Γ [5] is the logic induced by the interpretation dα : Lα −→ PZα.
Then, if S preserves expressiveness w.r.t. Γ, the final sequence of T stabilizes at α, and
the initial sequence of S stabilizes at α, the final sequence of Γ also stabilizes at α [5,
Prop. 61]. If that is the case, the logic induced by S and Γ characterizes the similarity
relation [5, Cor. 60].

In our case, we finally obtain the following proposition.

Proposition 3. For an LTS γ : C −→ PωCA, the logic which characterizes covariant-
contravariant simulation is given by:

– c |=γ tt.
– c 6|=γ ff.
– c |=γ ϕ1 ∧ ϕ2 if and only if c |=γ ϕ1 and c |=γ ϕ2.
– c |=γ ϕ1 ∨ ϕ2 if and only if c |=γ ϕ1 or c |=γ ϕ2.
– c |=γ 〈a〉ϕ if and only if c′ |=γ ϕ for some c′ ∈ γ(c)(a).
– c |=γ [b]ϕ if and only if c′ |= ϕ for all c′ ∈ γ(c)(b).

Proof (Sketch). First, we have to consider the initial sequence of SCC , (Lα), (ιαβ : Lβ −→

Lα)β≤α, the final sequence of T = PA
ω, (Zα), (ρβα : Zα −→ Zβ)β≤α, and the sequence

ρ̂αβ = P̂(ρβα) built from the terminal sequence of Zα by applying the contravariant functor
P̂. Note that Zα contains all the possible (up to bisimilarity) A-trees of depth at most
α + 1 with branching at most |A|α, whereas Zω contains all the A-trees, possibly with
infinitely many branches and/or infinite depth, and Zω+k is the set of A-trees (possibly
infinite) such that their first k floors are finitely branching.

Next, following [5, Prop. 57], we have to define the initial segment of the initial
sequence (dα), ((ιαβ , ρ

β
α) : dβ −→ dα)β≤α of SCC , where dα+1 = SCC(dα). For each 0 ≤

α < ω, we have to follow Definition 10 and, for example, we obtain dα+1(tt) = PωZA
α ,

dα+1(ff) = ∅, dα+1(ϕ1 ∧ ϕ2) = dα+1(ϕ1) ∩ dα+1(ϕ2) or dα+1(〈a〉ϕ) = { f : A −→ PωZα |
f (a) ∩ dα(ϕ) , ∅}.

For the case of dω we have dω([a]ϕ) = {u ∈ Zω | ρωα (u) ∈ dα([a]ϕ)} = ρ̂αω(dα([a]ϕ))
and dω(〈a〉ϕ) = {u ∈ Zω | ρωα (u) ∈ dα(〈a〉ϕ)} = ρ̂αω(dα(〈a〉ϕ)). An important step in the
proof is to check that dω is well-defined and that it is a limiting element of the sequence
(see the details at [9]).

Now, since the initial sequence of SCC stabilizes at ω and the final sequence of T
stabilizes at ω + ω, we also have that the initial sequence of SCC stabilizes at ω + ω [5,
Prop. 61]. Let γ : C −→ PωCA be a labeled transition system, with {Ar, Al, Abi} a
partition of A: by Definition 12, when considering the induced logic, we must work
with dω+ω and γω+ω. But, in fact, ρω+k

ω : Zω+k −→ Zω is a monomorphism [9] so, since
γω = ρω+ω

ω ◦ γω+ω, γω+ω(c) = γω(c). On the other hand, since ρ̂ω
ω+k = P̂(ρω+k

ω) : PZω −→
PZω+k is an epimorphism [9], we have that dω+ω : Lω −→ PZω+ω and dω+ω(ϕ) dω(ϕ),
because in dω(ϕ) we also have infinitely branching A-trees as possible behaviors of ϕ.
However, since γω(c) = γω+ω(c) is a finitely branching A-tree, it turns out that γω+ω(c) ∈
dω+ω(ϕ) if and only if γω(c) ∈ dω(ϕ), that is, we can just consider γω and dω.

7

Finally, the remaining of the proof consists in the application of Definition 12 for
γω and dω, that is, c |=γ ϕ if and only if γω(c) ∈ dω(ϕ) (see again [9] for the details). ut

Hence, by Proposition 3, the logic induced by SCC and ΓCC is equivalent to the logic
for covariant-contravariant simulation in [8].

3.2 Partial bisimulation

Partial bisimulation is defined in [2] as a behavioural relation over LTSs for studying
the theory of supervisory control [13] in a concurrency-theoretic framework. In [2], the
authors considered LTSs that also include a termination predicate ↓ over states. For the
sake of simplicity, since its role is orthogonal to our aims in this paper, we simply omit
it in what follows.

Definition 13. A partial bisimulation with bisimulation set B between two LTSs P and
Q is a relation R ⊆ P × Q such that, whenever p R q:

– For all a ∈ A, if p
a
→ p′ then there exists some q

a
→ q′ with p′ R q′.

– For all b ∈ B, if q
b
→ q′ then there exists some p

b
→ p′ with p′ R q′.

We write p .B q if p R q for some partial bisimulation with bisimulation set B.

In [1] we proved that partial bisimulation is a particular case of covariant-contravariant
simulation, when the LTS P has signature Ar = A \ B, Al = ∅ and Abi = B. Hence, in-
stantiating Proposition 3 with this particular case we obtain the same logic as in [1],
which is simpler than that proposed in [2].

3.3 Conformance simulations

As we did in Section 3.1, we can apply the methodology in [5] to obtain the logical
characterization of conformance simulations. First, we define the corresponding relator
and prove that it defines the same simulation notion as the non-coalgebraic one.

Definition 14 (Conformance simulation relator). Given R ⊆ Q × P, f ∈ PωPA and
g ∈ PωQA, we define the PA

ω-relator ΓCS : Rel −→ Rel for conformance simulation by
g ΓCS(R) f iff

– for each a ∈ A, f (a) , ∅ implies g(a) , ∅.
– for all a ∈ A, if q′ ∈ g(a) and f (a) , ∅ then there is p′ ∈ f (a) such that q′Rp′.

Proposition 4. The simulation notion defined by the relator ΓCS coincides with the no-
tion of conformance simulation.

Next, we define the corresponding syntax.

Definition 15. Let ΣB = {tt,∧,∨} and SCS : Alg(ΣB) → Alg(ΣB) denote the language
constructor taking a ΣB-algebra L to the free ΣB-algebra over the set {[a]ϕ | a ∈ A, ϕ ∈
L}. Then, the language L(SCS) is that generated using the following syntax:

ϕ ::= tt | ϕ ∧ ϕ | ϕ ∨ ϕ | [a]ϕ .

8

Note that in order to define the syntax for conformance simulation logic we do not
consider ff since we do not have two kinds of modal operators with different nature
(as opposed to the case of covariant-contravariant simulation). Nevertheless, we could
add ff to our logic without changing its meaning. This is make clearer in the following
definition that gives us the semantics.

Definition 16. The PA
ω-semantics for SCS is given by the functor SCS : IntB −→ IntB

taking an interpretation d : L −→ PX to an interpretation d′ : SCS (L) −→ P(PωXA)
defined by:

– d′(tt) = PωXA.
– d′(ϕ ∧ ψ) = d′(ϕ) ∩ d′(ψ).
– d′(ϕ ∨ ψ) = d′(ϕ) ∪ d′(ψ).
– d′([a]ϕ) = { f : A −→ PωX | f (a) , ∅ and f (a) ⊆ d(ϕ)}.

Again, as we saw in [8], in order to define the semantics for conformance simu-
lation we need to define the operator [a], which captures the idea of “having just one
a-action is better than having more”, by imposing that all the elements in f (a) must
(non-trivially) satisfy the formula ϕ. The next step is to prove that it is adequate for
conformance simulations.

Proposition 5. The semantics SCS for SCS preserves expressiveness w.r.t. ΓCS.

Finally, we obtain the following logic.

Proposition 6. For an LTS γ : C −→ PωCA, the logic which characterizes confor-
mance simulation is given by:

– c |=γ tt.
– c |=γ ϕ1 ∧ ϕ2 if and only if c |=γ ϕ1 and c |=γ ϕ2.
– c |=γ ϕ1 ∨ ϕ2 if and only if c |=γ ϕ1 or c |=γ ϕ2.
– c |=γ [a]ϕ if and only if γ(c)(a) , ∅ and ci |=γ ϕ, for all ci ∈ γ(c)(a).

Proof (Sketch). The proof is essentially the same as that for Proposition 3. The only
main difference is in the final proof of c |=γ [a]ϕ, where we have to take into account
that γ(c)(a) , ∅. ut

Hence, Proposition 6 shows that the logic induced by SCS and ΓCS is equivalent to
the logic for conformance simulation defined at [8].

3.4 Modal refinement

Again, we can apply the methodology in [5] to obtain the logical characterization of
modal refinement between modal transition systems. First, we define the corresponding
relator and prove that it defines the same simulation notion as the non-coalgebraic one.

Definition 17 (Modal refinement relator). Given R ⊆ Q × P, g : Q −→ Pω(Q ×
{�,�})A and f : P −→ Pω(P × {�,�})A, we define the Pω(id × {�,�})A-relator Γref :
Rel −→ Rel for modal refinement by g Γref(R) f iff

9

– for all a ∈ A, if p′ ∈ f (a)� then there is q′ ∈ g(a)� such that q′Rp′.
– for all a ∈ A, if q′ ∈ g(a)� then there is p′ ∈ f (a)� such that q′Rp′.

Proposition 7. The simulation notion defined by the relator Γref coincides with the no-
tion of modal refinement.

Next, we define the corresponding syntax and semantics.

Definition 18. Let ΣB = {tt, ff,∧,∨} and Sref : Alg(ΣB)→ Alg(ΣB) denote the language
constructor taking a ΣB-algebra L to the free ΣB-algebra over the set {[a]ϕ | a ∈ A, ϕ ∈
L} ∪ {〈a〉ϕ | a ∈ A, ϕ ∈ L}. Then, the language L(Sref) is that generated using the
following syntax:

ϕ ::= tt | ff | ϕ ∧ ϕ | ϕ ∨ ϕ | [a]ϕ | 〈a〉ϕ .

Definition 19. The Pω(id × {�,�})A-semantics for Sref is given by the functor Sref :
IntB −→ IntB taking an interpretation d : L −→ PX to an interpretation d′ : Sref (L) −→
P(Pω(X × {�,�})A) defined by:

– d′(tt) = Pω(X × {�,�})A.
– d′(ff) = ∅.
– d′(ϕ ∧ ψ) = d′(ϕ) ∩ d′(ψ).
– d′(ϕ ∨ ψ) = d′(ϕ) ∪ d′(ψ).
– d′([a]ϕ) = { f : A −→ Pω(X × {�,�}) | f (a)� ⊆ d(ϕ)}.
– d′(〈a〉ϕ) = { f : A −→ Pω(X × {�,�}) | f (a)� ∩ d(ϕ) , ∅}.

In order to define the semantics for modal refinements we have needed to define
two operators [a] and 〈a〉, where the first one captures the transitions that the process
may do, whereas the second one captures the transitions that the process must do. It is
not surprising to note that, in particular, the definitions of these two modal operators
are essentially the same as those for covariant-contravariant simulation, but taking into
account in each case the “must” or “may” transitions.

The next step is to prove that it is adequate for modal refinement, and to obtain the
corresponding logic.

Proposition 8. The semantics Sref for Sref preserves expressiveness w.r.t. Γref .

Proposition 9. For an MTS γ : C −→ Pω(C × {�,�})A, the logic which characterizes
modal refinement is given by:

– c |=γ tt.
– c |=γ ϕ1 ∧ ϕ2 if and only if c |=γ ϕ1 and c |=γ ϕ2.
– c |=γ ϕ1 ∨ ϕ2 if and only if c |=γ ϕ1 or c |=γ ϕ2.
– c |=γ 〈a〉ϕ if and only if c′ |=γ ϕ, for some c′ ∈ γ(c)(a)�.
– c |=γ [a]ϕ if and only c′ |=γ ϕ, for all c′ ∈ γ(c)(a)�.

Proof (Sketch). Again, the proof is essentially the same of that as Proposition 3. The
main difference is that we have to consider the final sequence of T = Pω(id × {�,�})A

instead of that of the functor PA
ω, that is, we consider A-trees with two kinds of transi-

tions. For the remaining of the proof we have just to consider the specific definitions of
Sref and dω in order to get the desired result. ut

Hence, Proposition 9 shows that the logic induced by Sref and Γre f is equivalent to
the logic for modal refinements between modal transition systems as defined in [3].

10

3.5 Mixed transition systems

Mixed transition systems [11, 6] generalize MTS by considering two kinds of transitions
that need not be related at all.

Definition 20 ([6]). For a set of actions A, a mixed transition system (MiTS) is a triple
(P,→1,→2), where P is a set of states and→1,→2 ⊆ P × A × P are transition relations.

As for the associated simulation notion, it requires one transition relation to behave
covariantly and the other one contravariantly.

Definition 21 ([6]). A relation R ⊆ P × Q is a mixed simulation between two MiTS if,
whenever p R q:

– p
a
→1 p′ implies that there exists some q′ such that q

a
→1 q′ and p′ R q′;

– q
a
→2 q′ implies that there exists some p′ such that p

a
→2 p′ and p′ R q′.

Thus, MTS are obtained as the particular case in which→1 ⊆ →2. Other than that,
MiTS behave as MTS and can be described in similar coalgebraic terms. An MiTS
arises as a coalgebra for the functor F = P(id × {1, 2})A, where 1 stands for →1 tran-
sitions and 2 for →2 transitions; given c : X −→ Pω(X × {1, 2})A, we shall use the
following notation:

c(x)(a)1 = {x′ ∈ X | (x′, 1) ∈ c(x)(a)}, and
c(x)(a)2 = {x′ ∈ X | (x′, 2) ∈ c(x)(a)}.

Then, the definition of the relator that captures MiTS simulations is straightforward,
by mimicking that for MTS.

Definition 22 (Mixed relator). Given R ⊆ Q × P, g : Q −→ Pω(Q × {1, 2})A and
f : P −→ Pω(P × {1, 2})A, we define the Pω(id × {1, 2})A-relator Γmix : Rel −→ Rel for
mixed simulation by g Γmix(R) f if and only if:

– for all a ∈ A, if p′ ∈ f (a)1 then there is q′ ∈ g(a)1 such that q′Rp′;
– for all a ∈ A, if q′ ∈ g(a)2 then there is p′ ∈ f (a)2 such that q′Rp′.

From here, the same steps taken for building a logic that characterizes MTS can be
retraced. For example, the functor for the Pω(id × {1, 2})A-semantics maps an interpre-
tation d to d′ as on page 10, just replacing f (a)� and f (a)� with f (a)1 and f (a)2. This
way, the resulting logic for MiTS is:

Proposition 10. For an MiTS γ : C −→ Pω(C × {1, 2})A, the logic which characterizes
mixed simulation is given by:

– c |=γ tt.
– c |=γ ϕ1 ∧ ϕ2 if and only if c |=γ ϕ1 and c |=γ ϕ2.
– c |=γ ϕ1 ∨ ϕ2 if and only if c |=γ ϕ1 or c |=γ ϕ2.
– c |=γ 〈a〉ϕ if and only if c′ |=γ ϕ, for some c′ ∈ γ(c)(a)1.
– c |=γ [a]ϕ if and only c′ |=γ ϕ, for all c′ ∈ γ(c)(a)2.

As a consequence, Proposition 9 turns out to be a corollary of this result.

11

4 Conclusion and future work

Following [5], we have built the characterizing logics for covariant-contravariant and
conformance simulations, partial bisimulation (which can be considered as a particu-
lar case of the covariant-contravariant notion), modal refinement and mixed transition
systems. In particular, we have presented a novel (to the best of our knowledge) coalge-
braic characterization of modal and mixed transition systems. Even though most of the
results are not new (except for the logical characterization of mixed transition systems),
we believe that their proofs constitute a nice illustration of the method developed in [5],
with non-trivial systems.

As future work, we intend to explore the relationship between covariant-contravariant
simulation and modal refinement at the institution level that we sketched in [1]. Our idea
would be to check whether the machinery of borrowing [4, 12] could be used to express
our results in [1] relating the logics for covariant-contravariant simulation and modal
transition systems in a more precise manner at the categorical level.

References

1. L. Aceto, I. Fábregas, D. de Frutos Escrig, A. Ingólfsdóttir, and M. Palomino. Relating modal
refinements, covariant-contravariant simulations and partial bisimulations. In F. Arbab and
M. Sirjani, editors, Fundamentals of Software Engineering, FSEN 2011, Lecture Notes in
Computer Science. Springer, 2011.

2. J. Baeten, D. van Beek, B. Luttik, J. Markovski, and J. Rooda. Partial bisimulation. SE Re-
port 2010-04, Systems Engineering Group, Department of Mechanical Engineering, Eind-
hoven University of Technology, 2010.

3. G. Boudol and K. G. Larsen. Graphical versus logical specifications. Theor. Comput. Sci.,
106(1):3–20, 1992.

4. M. Cerioli and J. Meseguer. May I borrow your logic? (Transporting logical structures along
maps). Theor. Comput. Sci., 173(2):311–347, 1997.

5. C. Cı̂rstea. A modular approach to defining and characterising notions of simulation. Inf.
Comput., 204(4):469–502, 2006.

6. D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems. ACM
Transactions on Programming Languages and Systems, 19:253–291, 1997.

7. I. Fábregas, D. de Frutos-Escrig, and M. Palomino. Non-strongly stable orders also define
interesting simulation relations. In Proceedings of CALCO 2009, volume 5728 of Lecture
Notes in Computer Science, pages 221–235. Springer, 2009.

8. I. Fábregas, D. de Frutos-Escrig, and M. Palomino. Logics for contravariant simulations.
In Proceedings of FORTE 2010, volume 6117 of Lecture Notes in Computer Science, pages
224–231. Springer-Verlag, 2010.

9. I. Fábregas, M. Palomino, and D. de Frutos-Escrig. Categorical logics for contravariant sim-
ulations, partial bisimulations, modal refinements and mixed transition systems (extended).
http://maude.sip.ucm.es/˜miguelpt/bibliography.html

10. M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. J. ACM,
32(1):137–161, 1985.

11. K. G. Larsen and L. Xinxin. Equation solving using modal transition systems. In LICS,
pages 108–117. IEEE Computer Society, 1990.

12. T. Mossakowski. Relating CASL with other specification languages: the institution level.
Theor. Comput. Sci., 286(2):367–475, 2002.

12

13. P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event processes.
SIAM J. Control Optim., 25(1):206–230, 1987.

14. A. Thijs. Simulation and fixpoint semantics. PhD thesis, Rijksuniversiteit Groningen, 1996.

13

