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Covariant-contravariant simulation and conformance &itan generalize plain simulation and try
to capture the fact that it is not always the case that "thgelathe number of behaviors, the better”.
We have previously studied their logical characterizegiand in this paper we present the axiomati-
zations of the preorders defined by the new simulation mrlatand their induced equivalences. The
interest of our results lies in the fact that the axiomatiret help us to know the new simulations
better, understanding in particular the role of the comtriant characteristics and their interplay with
the covariant ones; moreover, the axiomatizations prowvgeith a powerful tool to (algebraically)
prove results of the corresponding semantics. But we alasgider our results interesting from a
metatheoretical point of view: the fact that the covarienttravariant simulation equivalence is in-
deed ground axiomatizable when there is no action that @sHibth a covariant and a contravariant
behaviour, but becomes non-axiomatizable whenever wethge¢her actions of that kind and either
covariant or contravariant actions, offers us a new sulzenple of the narrow border separating ax-
iomatizable and non-axiomatizable semantics. We expeatti studying these examples we will
be able to develop a general theory separating axiomatizadal non-axiomatizable semantics.

1 Introduction and some related work

Simulations are a very natural way to compare systems delipddbeled transition systems or other
related mechanisms based on describing the behavior esdigitmeans of the actions they can execute
[20]. They aim at comparing processes based on the simpigiggeyou are better if you can do as
much as me, and perhaps some other new things”. This asshiteslltthe executable actions are
controlled by the user (no difference between input andwidptions) and does not take into account
that whenever the system has several possibilities for xbeution of an action it will choose in an
unpredictable internal way, so that more possibilities msdass control.

In order to cope with these limitations one should considkrgaate versions of simulation where
the characteristics of actions and the idea of preferrineggsses that are less non-deterministic are
taken into account. This leads to two new notions of simaottaticovariant-contravariant simulation
and conformance simulation that we roughly sketched'ih §it] presented in detail in’[L3], where we
proved that they can be presented as particular instandbége general notion of categorical simulation
developed by Hughes and Jacdbd [15].

Certainly, the distinction between input and output actionsimilar classifications is not meant to
be new at all and, for instance, they were present in modasitian systems as early as the end of the
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eighties. They also play a central role in I/O-automata @] more recently appear as component of
several works on interface automelfh 18, 16], where one filelsdvariant-contravariant distinction when
the guarantees of the specification can only be assumeddbtiditions of the specification are satisfied.
Also, supervisory control theory [22] distinguishes (caamt) controllable and (bivariant) uncontrollable
actions.

Concerning conformance simulation, the first related esfees are also quite old]18,123], corre-
sponding to the notion of conformance testing, which iselmsfailure semantic$ [5]. However, it is a
bit surprising that in both cases we lack a basic theory wiase notions are presented in a simplified
scenario, stressing their main characteristics and pieperWe think that the theory of semantics for
processes, and particularly the simulation semantics,pergect field in which to develop that basic
theory. This has been already proved[inl[13], where our newilsition semantics were shown to be
categorical simulations, thus inheriting all their goodyperties for free.

In [L2] we have also briefly presented the logical charazadions of the two semantics. Now that we
already know quite well the behaviour of the two new notiohsimulation we can give their algebraic
presentation. By the way, although in our previous workshenunified study of process semantics the
(classical) covariant character of all the actions hadregumportant consequences, mainly represented
by the extremely simple and easy to apply basic axiom for kitiwn (S) X C x+y (or equivalently, just
0 Cy), we have been able to borrow from [10,[1, 9] several ideasitaie axiomatization of process
semantics that, although not directly applicable due tosthexial characteristics of the new semantics,
can be adequately adapted.

However, not all of the simple and nice results for the algihtheory of plain (covariant) simulation
can be extended to the general covariant-contravariaet tagarticular, in order to obtain the maximal
genericity, when we defined covariant-contravariant satiohs in [18] we admitted not only both co-
variant and contravariant actions, but also other actiatis avbivariant nature. This decision was taken
because when presenting a general theory of categoricalations in [15], J. Hughes and B. Jacobs
already noticed that bisimulation was a particular (in fégtial) example of simulation semantics. It
was also clear that inverse simulation (hamely, contramtusimulation) was also another example, and
then we were able to prove that our general covariant-ceartient simulation was another categorical
simulation that smoothly combines bisimulation, plairv@gant) simulation and inverse (contravariant)
simulation.

Obviously, plain bisimulation has a simple axiomatizatias is the case for plain simulation; we will
see in this paper that the preorder defined by our covar@mitavariant simulation can also be finitely
axiomatized. When we considered the induced equivalenedouwnd indeed a finite axiomatization for
the case in which there are no bivariant actions (actiortctirabe considered as both input and output) in
our alphabet. The axiomatization and its completenesd preie obtained by adapting the general tech-
niques in 9/ 10] for the covariant case to our more genenagant-contravariant scenario. However, as
soon as a single bivariant action is introduced, and at @snhon-bivariant one is also present, then the
equational theory of covariant-contravariant simulagguivalence becomes non-finitely axiomatizable,
and in fact the proof of this result is extraordinarily simpl

Even if this is a negative result, we think that it will cowie to enlight the narrow border separating
axiomatizable and non-axiomatizable process theorieghwlve expect to continue exploring in the
future.

There is a large collection of recent papers where notioosecto those studied here are either
developed or applied; a detailed comparison will appeawdiere. However, we insist on the fact that
we were not able to find a basic study where the main resultsaregs theory had been extended to a
framework containing any contravariant characteristéthjough it is true that some small contributions
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along this direction can be found in some of these papers. lg¥etp develop a thorough compilation
of the works on this topic by isolating the places where ounftational study could help to understand
the different developments, as well as looking for appidret and new enhancements to our theory that
could be of use to relate all the disconnected work on the dmearn, we hope that this will also provide
us with some intuition to understand those results and pedew formal techniques to obtain proofs
of those, or other interesting results in the area. So, sitapdive a hint, a sample of those works would
include [2[4[1F 21].

2 Preliminaries

In this section we summarize some definitions and concepis [#,[13] and introduce the notation we
are going to use. Let us recall our two new simulation notions

Definition 1 Given P= (P,A,—p) and Q= (Q,A, —q), two labeled transition systems (LTS) for the
alphabet A, and{A",Al, AP} a partition of this alphabet, A", A')-simulation (or just a covariant-
contravariant simulation) between them is a relatioa £ x Q such that for every pSq we have:

e Forallac A'UAY and all p—2 p’ there exists g of with p'Sd.
e Forallac AlUAY and all -2  there exists p> p’ with p'Sd.
We will write p<cc q if there exists a covariant-contravariant simulation Slsthat pSq.

This definition combines the requirements of plain simolatifor some of the actions, with those of
plain “anti-simulation”, for some of the remaining actioimaposing both on so-called bivariant actions.

Definition 2 Given P= (P A,—p) and Q= (Q,A,—q) two labeled transition systems for the alphabet
A, aconformance simulation between them is a relation ® P x Q such that whenever pRq, then:

e ForallacA, if p—2, then g—> (this means, using the usual notation for process algelthes,
1(p) € I(a)).
e Forall a c A such that ¢ ¢f and p—=, there exists somé pith p— p’ and pRd.

We will write p<csq if there exists a conformance simulation R such that pRq.

The first clause of the definition guarantees Qtas at least all the behaviors Bf allowing to “im-
prove” a process by extending the set of actions it offerssredis the second clause establishes that a
process can be “improved” by reducing the nondeterminisit in
Let us recall that the s@CCSP(A)of basic processes for the alphalfeis defined by theBNF-
grammar
p:=0|ap|p+p

wherea € A. The operational semantics for BCCSP terms is defined by

a / a /
_Pp—p _9—q

a
ap—
PP p+q-—>p p+q->d

With these operators we can only define finite processes; Jewieis well known that these operators
capture the essence of any transition system, which canfbeeddy a system of equations specifying
the behavior of each state. (The axioms for recursive psesesther interesting extensions including
the communication operators, and possibly some other¢gfarfer future work.)
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3 Axiomatization of the new simulation preorders

In this section we present a finite axiomatization of the tweopders for basic finite processes induced
by our new kinds of simulation.

3.1 Covariant-contravariant semantics

We consider a partitiod A", Al, AP} of the alphabef\, with actions that have either a covariant nature,
or contravariant, or both at the same time. Contravarianulsition ggl is just the inverse of plain
simulation and therefore can be trivially axiomatized byeiing the axiom for plain simulation

(S) XL Xx+y,
thus obtaining
(S x+yCx

In order to produce an axiomatization of covariant-corgreant simulation we need to combine in
an adequate way these two axioms, by constraining eachmftinéhe case in which the added process
y only offers actions with the corresponding covariant ortcrariant character. Hence we obtain:

(S Iy) CA" = xC x+y.
(S™H) 1(y) CA = x+yCx
We can omit the conditions in these two axioms by considermmgeneric actions, € A" anda, € A':
(Sh) XEx+ay.
(Sh) x+ayCx

Note that actions iA” do not appear in the axioms above, although they could bededl in the
processes instantiating the variableandy. This is an immediate consequence of the fact that their
behavior corresponds to that governed by bisimulationhabwe need not add any new axiom to those
capturing the bisimilarity relation:

(B1) x+y=y+x

(B2) (X+y)+z=x+(y+2).
(B3) Xx+x=x.

(Bsg) x+0=x.

We will use these axioms implicitly in the remainder of thappr.

Proposition 1 The (A", Al)-simulation preorder can be axiomatically defined by meahthe set of
axioms{Bl, B2, B3, Ba, S';), Slp}.

Proof. First we prove that the axion($)) and(S'p) are sound for th¢A", A')-similarity relation <cc.
Indeed:

e Forallac ATUAY if x -2 X thenx—+ay — X andx <ccX.

o Forallac AlUAP, if x+ay - X, thenx — X' andX <cc X Note thata # & sinceA N (A'U
AP = 0.
e Forallac ATUAP if x+ay —> X thenx — X andxX <cc X as above, because a again.
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e Forallac AlUAY if x -2 X, thenx+ay - X andX <cc X.
To prove completeness we consigetcc g and reason by structural induction pn

e If pis 0 thenl(g) C A", sincep cannot simulate any action i UAP'. Theng= ¥ a.q; and we
can apply(S},) to each summand in turn to getOq.

e Letusconsidep= (3 a pr+ 3 api + Y apPp), distinguishing the summands pfvhich start with
actions in eitheA", A" or AP, We decompose in the same way to obtaig= (¥ brg; + S big +
Y boap). Then:

— For everya, there existdy,, with a, = by, such thatp, <cc g and, by induction hypothesis,
pr C or. Theny a.pr C 5 brq. It could be the case that some summands bifg, are never
used to simulate any of the transitionsmpfout then we can add all those summand by using
(SB), to derivey a; pr C 5 byqy.

— For the summands a p; andy bjg we can argue in exactly the same way, but starting with
the righhand side and usir(@'p) instead of(S}), to conclude novy ajp C Y biq.

— Finally, using standard arguments for bisimulation, we esatablish a full correspondence
between the summangsa, py, andy byqy, havinga, = by and py Sce ., and by induction
hypothesis we provg a,p, = Y by, thus concluding the proof

3.2 Conformance semantics

Conformance simulation combines in a curious manner thieires of both ordinary (covariant) and
inverse (contravariant) simulation: the addition of neypatailities is always considered beneficial but,
when an action is already offered, new ways to execute it a&ed since this leads to a more non-
deterministic process.

To capture the first situation we need a variant of the axidircharacterizing ordinary simulation:

(Scs) 1(p)N1(q) =0—= pLE p+a.
For the latter, we instantiate the axiqi$r!) obtaining
(Sca) (@) S1(p) = p+aCp,
which can be equivalently stated as
(Scsp) ap+aqr ap.

There is, however, an important drawback: conformance lation is not a precongruence because
it is not always preserved by. Indeed, 0<csab andac <csac, but notac <csab+ ac. Fortunately,
to obtain a satisfactory algebraic treatment of the conéorre order it is enough to consider the weak-
est precongruence contained in it, as is done for weak biation and the corresponding observation
congruence. Let us simply replace the axi@gs) by its guarded version

(Scsg) 1(p)NI(a) =0—=apLa(p+q).
Definition 3 We define the conformance precongruence relaticﬂﬁgq by

p<Psq <= (p<csqandl(p) 21(q)).



Note that the conditiori(p) 2 I(q) is not imposed recursively but just on the initial stateshaf t
processes, which corresponds to the fact that the (oncejlemiaxiom(Scsg) becomes sound for the
classical substitution calculus, in order to charactettieeconformance precongruengge.

Proposition 2 If the set of actions A is infinite, then the precongruencatieh 585 is the coarsest
precongruence contained Bcs.

Proof. Obviously, we havegcsc <cs If there were a larger precongruence, there would exestd

g with p <csqbutl(q) £ I(p): then, takinga € I(qg) \ I (p) andb € A such that 7/—> we would have
ab+ p £csab—+ g (sinceab £cs0q).
Finally, both the prefix operator and preserveggs:

e lf p< < sa thenapwCS aqsincel (ap) = 1(aqg) = {a}, and foraq -2, qwe haveap -2 p with
p <qu
o If p<&sq, thenap+r <&sag+r sincel (ap+r) =I(ag+r) = I(r)u{a}, and forag+r 2.9
we haveap+r —= p with p <CSq and, wheneveaq-+r L withr 2 r’, we trivially have

b
ap+r—>r.D

Proposition 3 The set of axioms#s = {B1,B2,B3,Ba, Scsg,Sgép} is complete for the conformance
precongruence relatiort g

Proof. We show by induction on the depth pfthat, whenevep < < s g (resp. prCS bg), we have
acst pE g (resp.acst bpC ba).

e 1f0 <gsq, then alsay = 0 and OC 0 using(Scs,,)-
e If bO ggs bg, then we can applyScsg) with p=0.
Let us now considep = 3 o < (p) & Pij andd = Y 51 (q) & Gik-

o If p< < s thenl(p) =1(g) andp Scsq, so for eachy there is somep;; with pi; Scs ok and
therefore we can apply the second induction hypothesisrtolede thag; pjj C ;. Itis possible
that some summands; will be paired with nogj in the step above, but then we can apply the
axiom (S¢g,,) to them to conclude the proof.

e Assume thabp < NCS bg. If I(p) =1(q) then we also have <gsq and this corresponds to the
situation above. However, in this case we could he\® C 1(q); thenq g +r, with r the
summandss ;¢ q)\1(p) &%k, 1 (P) = (q) andeCSq and hencep C . Now, we conclude the
proof by applying the axioniScsg) to o andr. O

4 Axiomatization of the new simulation equivalences
Next we discuss the axiomatizability of the equivalencesiged by covariant-contravariant and confor-
mance simulations, obtaining a finite axiomatization fa tter, and also for the first, but only when

the setAP! of bivariant actions is empty. Instead, we also presentriossibility result proving that
covariant-contravariant simulation is not axiomatizablge haveAP £ 0 andA" UA' +# 0.
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4.1 Covariant-contravariant simulation

Let us first consider the case in whighi = 0. In order to axiomatize the equivalensg. induced by
(A", A)-simulation we apply the general procedure introduced@;119], based on the characterization

P=sp+0<=0q3sh.

Thus we obtain:

(S1) & (x+bry) = a (X +bry) +arx.

(S2%)  ax=ax+a (x+hy).
Obviously, the characterization above becomes unsound wt@ravariant prefixes appear because the
pure contravariant simulation satisfies

q=s'p+a<=q<s'p.

Therefore, we must reverse the inequalities above to olit@iradequate axioms for contravariant pre-
fixes:

(S34)  ax=ax+a(x+by).

(S4) & (x+by) = a(x+by) +ax.

Now we would expect the set of axiomg=. = {B1,B5, B3, B4,S51", 52" 53" 54"} to axiomatize
p rms_‘,c { 1,b2,b3, b4, =) =) = =

(A", A)-simulation equivalence. Certainly, all the axioms in thig are sound; in order to prove com-

pleteness in the absence of actid®§ we start by stating the following lemma that gives us twduise
derived axioms.

Lemma 1 The following equalities are derivable:

{1452} - a (x4 pr) = ar(x+pr) +a(x+p)  (DS1Y)
{s3.say Fa(x+p) =a(x+p)+a(x+p)  (DS2Y)

where p (resp. p) denotes any process prefixed by actions'ifrésp. A): more formally, p = Siel al pj
(resp. p= 31 pj)-

Proof. We only show the case ¢DS1™). We start by proving thaa, (x+ p) = a (X+ pr) + aX by
induction over the sizd | of I.

e If |I| =0, the result is trivial.
e If |I| =1, we immediately obtain the result by applying the axi(ﬁ'm;').

e For|l| > 1, we takel = I'U{i} with |I’| = |I| — 1. Note thata, (x+ p;) = a,((x+ p}) +alp;) so
that, applying axion{S1"'), we obtain

3 (X+ Pr) = a (X+ P) + &k pi) + & (X+ P}) = a (X+ pr) + & (X+ pf).
Using the induction hypothesis with the teep(x+ p}) leads to
ar(X+pr) = ar(x+ pr) +ar(X+ pp) +ar,
and, reusing the equality (x+ pr) + a (X+ p;) = & (x+ pr) above, we obtain
a (X4 Pr) = a (X+ pr) +aX 1)

as desired.



Now, we can analogously prove the equality
arX=arX+ar(X+pr). (2)
Replacinga,x in equatior]l by the righthand side of equafidn 2 produces

a (X+pr) = a (X+pr) +ax+a (x+p)
and, applying equatidd 1 again, we finally obtéDSlg' ):

a(X+pr) =a (X+pr)+a(X+pr).

For the main proof we have to adapt the classic techniqudnéocompleteness of the axiomatization
of the plain simulation semanticp s q implies o5+ q = p+ q), taking into account the difference
between covariant and contravariant actions. For techréesons we need to consider a “free” arbitrary
termr.

Proposition 4 If p <cc g then, for all processes r:

decha(g+r)=a(g+r)+a(p+r)

and
decha(p+r)=a(p+r)+a(g+r).

Proof. We proceed by induction on the depthpfWe start by decomposing bothandq as follows:
p=pr+p, d=0 +0a, wherep, = Jici, &P, P = Yiei, &P & = Yiel, &G andg = Yiel, &0
Then, it is clear that the depths of bgth and p; are less or equal than the depthpénd besides we
havep Scc <= pr Scc & AP Scc -

Next, let us considep; <cc g: this is an instance of the hypothesis of the statement teeprshich
corresponds to the particular case in which) Ul(g) C A,. Then, we need to prove both

dicha(q+r)=a(q+r)+a(p+r)

and
decha(p+r)=a(p+r)+a(q+r).

Let us consider in detail the second statement.

e If p=0, it follows thate/sz - ar = ar+a(g+r) by an application of the equatic(ﬁ)52r57' ), with
p=0,x=r,andp; =q.

o If p=73iq ai,p{ andqg= zieJa‘rp{, from p <cc q it follows, without loss of generality, thdtC
J=1UJ and then we takd = | UJ’ with J’ chosen such thal Nl = 0, with p/ Scc d for all
i € 1. Now, by induction hypothesisy - alqf = alq/ + & p/. Next we obtain - S &g =
Siel a‘rq{ + p and hence, by adding;cy alqi’ to both sides,«/5- - 9= g+ p, by congruence, we
haves/sc - g+r =q+ p+r. Now, by applying(DS2rE~') with x=p+r, pp =0, andp, = q, we
obtainazc - a(p+r)=a(p+r)+a(p+r+q) which, combined with the previous equation,
finally leads toa/c - a (p+r1) =a (p+r)+a(q+r).
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The first statement above is proved in a similar way, and ttes anising fromp, < g can be dealt
with analogously.

To conclude, we consider the general cps€cc g. By applying the results obtained above, starting
from bothp; <cc g- andp <cc q, we have

decha(Or+1) =a (0 +1)+a(pr+r)
and

Aecha(@+r)=a(aq+r)+a(p+r).
In particular, making equal tog, + r’ in the first equality:

deta(a+a+r)=a(+a-+r)+a(p+aq-+r).

(It is at this point that the “free” variable in the statement is needed, so as to be able to proceed by
instantiating it in a suitable manner). Now, instantiatingith p, +r’ in the second derived equation:

et ap+a+r)=ap+a-+r)+a(p+p+r).

If we now combine the last two equations we can obtain

et a(+a+r)=a(g+g-+r)+a(p+p+r),

and, since’ is arbitrary, we finally get

gecha(a+r)=a(q+r)+a(p+r).

We can proceed in a similar way fey, thus obtaining

dicha(p+r)=a(p+r)+a(q+r).

And this concludes the proaf]

The main theorem is now at hand.

Theorem 1 Whenever A= A" UA, the set of axiomsy = {B1,B,B3,B4,51%,528 31 5411} is
complete forf A", A')-simulation equivalence.

Proof. Let p=cc 0: we need to proves: - p = g. The proof will follow by induction on the depth of
p.
e If p= 0 we obviously have = 0.
o Letp=yic ap +Yjcid pl andq= yicy & a + ¥y aql. Then,
— for eachi € |, there exists somié € I’ with al = al’ andpl <cc g}, and
— for eachi’ € I there exists som¥ € | with & =&’ andq} <cc p .

Obviously, it could be the case thiag i”. Then, we could repeat the same argument with i”,
and withi; = if, ..., to obtain a sequendgiy,iz,...). Since|l| < e, eventually we will find
im = in and, hence,

— for eachi € | we obtaini’ € I’ andi” € | such thael = al =&, pl <ccd andpl’ =ccqf .
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Of course, we can repeat the same reasoning startingivéth' as well as for the contravariant
summands in a dual way, to obtain the following decompasitio

_ i K K m,.m
p ;anr+zarpr+ 3 p +mgma+p|

kekK k'eK’
and,
q—zarqurZarqr S ad+ Y g
iel’ k' eK’ meM’
where:

— foralli €1, there existk € K such that] = af andp <cc pr, and
— forall me M, there existk’ € K’ such thag" = af andp Sce P and
— foralli’ € I, there existk € K such that] = a andq Scc qr, and
— for all m € M/, there exist&’ € K’ such thag{" = af andg <cc q™; and
— forallk e K, pr =cc qr, and
— forallK e K/, p{ =cc .
Then we can apply the induction hypothesis to any palirg) and also to any pal(rp| ,q, )

conclude the proof we only need to apply Proposifibn 4, @kie= 0, to any such pairép}, pr)
and(p| ,p"), and analogously for the componentsjofs

The addition of bivariant actions (assuming that there aemady other actions present) changes the
picture completely. Now, it is no longer possible to axioixathe equivalence.

Theorem 2 If AP £ 0 and AUA' # 0, then(A", A')-simulation equivalence is not finitely axiomatizable.

Proof. Let us takeap; € AP and, without loss of generalitg, € A". We consider the two families of
processes
pn=aapa0 and a)=aaga0+aap0,

where, as usual, we denote By (with n > 0) the repeated application of the prefix operaigr(n
times).

It is easy to check that, =cc g,. On the one hand), <cc s trivially; on the other hand, checking
that o, Scc pn simply amounts to checking that$:c a. (However, note that taking, = a;;a,0 and
a, = ap;a,0+af;0 does not lead tp, =cc q,; indeed,p, Zcc d, because if we start with the firag;
from the second summand qf thena}) *a;0 Zcc af) *0.) Now, for any finite axiomatizationy, letn
be bigger than the depth of any term appearingzinwe are going to show that &7 is sound for=c¢
then we cannot have’ - pn, = Qn.

We will show that if we start withp, and obtain a sequence of equivalent tegrs- pt = p2 =
where each term is obtained from the previous one by an apjolic of a single axiom i/, then no
ph can beg,. If we apply an axiom tq, in a position different from its root, then we are transfanmi
a subprocesg’ = ajjla;0, with m < n, into some equivalent procegs=cc p'. If we defineq | mas the
process obtained by “pruningj at depthm, the result will be bisimilar t&]l0, sinceq cannot execute
any other action until it executes the predix mtimes and, moreover, it cannot stop in the meantime. In a
similar way, fromq =cc p’ we also infer thaty | (m+1) ~ p’ | (m+1) and then the obtalnepi}] satisfies
pt | (n+2) ~ pr. The same argument can be applied starting fromp#much thatp) | (n+2) ~ pn,
so that this invariant is preserved as long as there is nacaiph of an axiom ineZ at the root of any

ph.
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Therefore, the only possible way to break this invariangt thbviously is not satisfied by, is
to apply an axiom fromeZ at the root of somep). In that case, the lefthand side of such an axiom
would match several prefixes of the procesga]i0 and then, following[l14], it is easy to see that the
corresponding axiom has to be correct under bisimulatioo, tAs a consequence, the proc¢$§1
resulting after the application of the axiom also satisﬁﬁ§l I (n+2) ~ pn. Therefore by repeated
application of the axioms in7 we will never reach a term such gg thus concluding ¥ pn, = gn. O

Note that the proof would remain valid even if we allowed dtindal axioms whose conditions only
observed the process locally, since the key fact in the pbofte is that in order to generate the choice
at g, we need to “see from the top” that the two branches below, édifferent from each other, can
be joined to obtain a process equivalentptp But the branches cannot be joined bottom up, in a step
by step fashion, sincp;, #cc 0, . Therefore, a conditional axiomatization whose condgiobserve the
processes locally would suffer the same problems as a pegeigtional one.

Interestingly, the infinite collection of equations thapegr in our proof of Theorem 2 has also been
used in [[8] to support a conjecture that partial bisimula@ouivalence (a particular case of covariant-
contravariant simulation equivalence) is not finitely amatisable either.

4.2 Conformance simulation

As before, we start by applying to the axioms characteriz,ﬁ& the general procedure presented in
[10,[1,[9]. In this case we obtain the following two axioms:

(59 1(p)Nnl(g) =0 = ap=ap+a(p+q).
(S=*%) 1(a) C1(p) = a(p+a) =a(p+0q)+ap.

Note that we have used the contravariant version of the duveebecause once we compare two
processes offering the same set of actions the behavigRgfs contravariant since we have

ap>2sap+aq.

Therefore, we cannot apply the general results_in [10, 9]rave the completeness of the proposed
axiomatization. However, a beautiful variant of the cleakproof for plain simulation will do the job.

Theorem 3 The set of axioms7; = {B1, B2, B3, Bs,5S5 S=*“°} is a complete axiomatization for the
simulation equivalencescs.

Proof. First note thatp =csqimplies|(p) = 1(q) andp =c5 0, and therefore we can use eithegs or
—cs- indistinctly. Itis also routine to check the correctnekthe axioms for=cs. To prove completeness,
we show thatp < < sgimplies @S- p = p+ . Obviously, then we are done becaysecsq implies
p Sesgandg <cs p.
We proceed by induction on the depthmf
e p=0impliesq=0 triviaIIy
e Letp <CSq with p—2+. Then we also have -2 and for allq with g —= ¢ there existp > p/
such thatp’ <csd. Note that we cannot conclugg <4 q since it is possible thd{p') & I(q),
but then we can writg = q” +r with 1 (¢") =1 (p') andl (r) N1 (q") = 0. It is clear thap’ <E<q”,
so that by induction hypothesis we obtaiigt p' = p'+d”. Then, we havez g ap = a(p +
q’) and applying(S_lcs) gt ap =a(p +q')+aq’, and thenz5+ ap = ap +aq’. Now,
by applylng(S ) we haved st ad’ = aq’ +a(q’ +r), to conclude that/Zs+ ap = ap +ad
and thereforez g p=p+0. O
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Note that(S;l’CS) is the axiom characterizing the ready simulation equivaderirom which we
conclude thaters C =cs. Obviously, the reverse inclusion is false sir(&gs) is not sound for=gs
For instanceab =csab+ a(b+c), buta(b+ c) £rsab. In fact, we also hava(b+ c) £sab, proving
that=cs ¢ =s. In order to obtain=rs from =cs we should strengthen the definition of the latter by
considering ready conformance simulations defined as ptaiformance simulations, but only allowing
pairs of processes satisfyingp) = 1(q). If we denote by<rcsthe generated preorder we have the
following result.

Proposition 5 <grcs= Sge, and thereforespcs= =rsand <gs C Scs

~

Since(S;l'CS) is the axiom that defines ready simulation equivalence, rit loa presented in an
equivalent way avoiding the condition and thus obtainingueepalgebraic axiom. However, it is not
clear whether axioniS€S) allows such a finite pure algebraic presentation, and intfecsame happens
with the axiom(Scs) in the axiomatization of the conformance preorder. Hertamlild be the case that
both the conformance preorder and the induced equivalemceaat finitely axiomatizable using pure
equational axioms, as is the case for ready trace semantics.

5 Conclusions

We have continued with the study of covariant-contravargimulation and conformance simulation
semantics started in_[1LB,112] by considering the axiomttizeof the preorders and equivalences that
they define.

We have showed that the desired axiomatizations can beneltdiom that of the plain simula-
tion preorder, whose completeness proof can be adaptedimpdes but elegant manner to obtain the
completeness of the new axiomatizations. Also, by applgirsyitable variation of our “ready to pre-
order” techniques[[10] we have obtained the axiomatizatiohthe corresponding conformance sim-
ulation equivalence. Surprisingly, we also succeeded ionaatizating the equivalence for covariant-
contravariant simulations but only in the particular casereA” = 0; otherwise, we proved that the
covariant-contravariant simulation equivalence hasedrout to be the second known example of a se-
mantics whose defining preorder can be finitely axiomatibed the induced equivalence cannot. The
first example of such a borderline situation can be foundlnlfds curious to notice that although the
two semantics are completely different (the semantics isegeite simple since it is a plain semantics,
while the one in[[B] is much more complicated), and in our gaseclear that the difficulties stem from
the interference between bivariant and monovariant agtithre structure of the considered “counterex-
amples” in both cases is essentially the same: there is acheitweeen two quite long branches which
can be can joined into a single one, but this should be donesingde step because the choice cannot
be delayed at all, even if the beginnings of the two branchesh@ same. Therefore, in order to capture
the equivalence, we would need an axiom able to “see” thefépaway) ends of the two branches,
but this is of course impossible with a finite number of axigimge the lengths of the branches in the
counterexamples can be arbitrarily long.

We expect our work on the subject to contribute to a betteerstdnding of all the complex situations
that arise when covariant and contravariant concepts soeXhis, for example, is the case in all the
recent works on modal, input-output or interface formasisthat try to clarify the relationships betwen
specifications and implementations. In fact, it is our ititento continue with this line of research by
trying to discover, and take benefit from all the connectibasveen our work and those cited in this
paper.
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