
Formal logic

Miguel Palomino

1 Introduction

Logic studies the validity of arguments. A typical case in point is that of syllogisms:
logical arguments in which, starting from two premises, a conclusion is reached. For
example, given that

There are horses in Spain.
All horses are mammals.

it can be inferred that

There are mammals in Spain.

Of course, if instead of the second premise we had the weaker one

Some horses are mammals.

where the universal (all) has been replaced with an existential (some/exists) then the
argument would not be valid. In Ancient Greece, Aristotle exhaustively considered
all possible combinations of universals and existentials in syllogisms, allowing also for
the possibility of negations, and collected those corresponding to valid inferences in a
classification theorem. For many centuries, that classification (slightly enhanced by the
scholastics during the Middle Ages) was all there was to know about logic.

In its origin, the term “formal” logic used to be a reference to the form of the
arguments: the validity of an argument depends exclusively on the form of the premises
and the conclusion, not on whether these are true or false. In the previous example, if we
were to replace “horses” with “unicorns” the argument would still be valid, regardless
of the fact that unicorns do no exist.

Nowadays, however, “formal” refers to the use of the formal and rigorous methods
of mathematics in the study of logic that began to be put into practice in the second
half of the 19th century with George Boole and, especially, Gottlob Frege (see [1]). This
trend started with a shift to a symbolic notation and artificial languages, and gradually
evolved until, in 1933 with Tarski [2], it culminated with the withdrawal from an absolute
notion of Truth and instead focused on the particular truths of concrete structures or
models.

2 Propositional logic

Arguably, the simplest logic is propositional logic and we will use it to introduce the
underlying elements of every logic. Given a set A = {p, q, r, . . .} of atomic propositions,
the language of propositional logic is constructed according to the following rules:

1

ϕ ::= p ∈ A | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ→ ϕ | ϕ↔ ϕ

¬ means ‘No’ → means ‘Implies/Then’
∨ means ‘Or’ ↔ means ‘If and only if’
∧ means ‘And’

For example, let us assume that p represents “The chef is competent”, q represents
“The ingredients are expired”, and r, “The cake is delicious”. Then, the premise “If the
chef is competent and the ingredients are not expired, then the cake will be delicious”
could be represented in the language of propositional logic as

(p ∧ ¬q) → r .

Furthermore, if we assume that the chef is actually competent, that is, if we assume p
as the second premise, we can conclude that “If the cake is not delicious, the ingredients
are expired”, or, formally:

¬r → q .

But how and why can we conclude that this last sentence follows from the previous
two premises? Or, more generally, how can we determine whether a formula ϕ is a valid
consequence of a set of formulas {ϕ1, . . . , ϕn}? Modern logic offers two possible ways,
that used to be fused in the time of syllogisms: the model-theoretic approach and the
proof-theoretic one.

In model theory it is necessary to assign a meaning to the formulas, to define a
semantics for the language. The central notion is that of truth and of deciding the
circumstances under which a formula is true. The more complex the logic, the more
difficult this assignment is and hence the more complex the semantics. In propositional
logic, we have to start by assigning arbitrary values to the atomic propositions: a val-
uation V is defined as a function that maps atomic propositions to either 0 (meaning,
intuitively, false) or 1 (true). The meaning IV (ϕ) of an arbitrary formula ϕ is defined
recursively:

IV (p) = V (p)

IV (¬ϕ) =

{
1 if IV (ϕ) = 0
0 if IV (ϕ) = 1

IV (ϕ ∨ ψ) =

{
1 if IV (ϕ) = 1 or IV (ψ) = 1
0 otherwise

IV (ϕ ∧ ψ) =

{
1 if IV (ϕ) = 1 and IV (ψ) = 1
0 otherwise

IV (ϕ→ ψ) =

{
1 if IV (ϕ) = 0 or IV (ψ) = 1
0 otherwise

IV (ϕ↔ ψ) =

{
1 if IV (ϕ) = IV (ψ)
0 otherwise

For example, if V (p) = V (q) = 0 and V (r) = 1, then IV (¬p) = 1, IV (¬p ∧ q) = 0, and
IV (r → (¬p ∧ q)) = 0.

2

If IV (ϕ) = 1 then it is said that V is a model of ϕ, or that V satisfies ϕ; it is a “world”
in which ϕ is true. A formula is said to be valid if it is true under all circumstances,
that is, if every valuation is a model of ϕ:

ϕ is valid if IV (ϕ) = 1 for all valuations V .

For instance, it is easy to check that p→ (q → p) is a valid formula. Similarly, if V is a
model of all the formulas in a set Γ then V is said to be a model of Γ. A formula ϕ is a
semantic consequence of a set Γ of formulas, written Γ |= ϕ, if every model of Γ is also
a model of ϕ or, alternatively, if ϕ is true whenever all formulas in Γ are true:

Γ |= ϕ if IV (ϕ) = 1 whenever IV (ψ) = 1 for all ψ ∈ Γ .

In the proof-theoretic approach the central concept is that of proof : to show that a
statement follows from some others one has to make use of a deduction system. Deduc-
tion systems are syntactic in nature, caring only about the form of sentences and not
about what they represent or their possible meaning. One such system, the axiomatic
method, distinguishes a subset of formulas, called axioms, formed by all sentences that
match any of the following patterns:

ϕ→ (ψ → ϕ)
(ϕ→ (ψ → χ)) → ((ϕ→ ψ) → (ϕ→ χ))
(¬ϕ→ ¬ψ) → (ψ → ϕ)

Given a set of formulas Γ, a formula ϕ is said to be a logical consequence of Γ, written
Γ ` ϕ, if there is a sequence of formulas ϕ1, ϕ2, . . . , ϕn such that:

1. ϕn = ϕ.

2. For all i ≤ n, either ϕi is an axiom, or ϕi belongs to Γ, or there exist j, k < i such
that ϕk = ϕj → ϕi.

This corresponds to an iterative process in which we can add to the set of provable
sentences, at every stage, either an axiom (whose validity is clear according to the defined
semantics), an element of Γ (a hypothesis we are assuming as given), or a formula ϕi

whenever we have previously proved ϕj and that ϕj implies ϕi.
The axiomatic method is not the only deduction system. In natural deduction there

are rules associated to the connectives: introduction rules, to prove formulas containing
the connective, and elimination rules, to obtain consequences from a formula with a
given connective. For example, the following are prototypical:

ϕ ψ

ϕ ∧ ψ
ϕ ∧ ψ
ϕ

ϕ ∧ ψ
ψ ϕ

if ϕ ∈ Γ

The first rule is the introduction rule for the logical “and,” and captures the idea that
if ϕ and ψ can both be proved, so can their conjunction; the next two are elimination
rules, stating that from a conjunction both its conjuncts can be derived; the last allows
the derivation of a hypothesis. Similar rules are associated to the remaining connectives.
Compared to the axiomatic method, natural deduction has a richer set of rules: as a
result, it is easier to prove things in the logic using natural deduction, but the simplicity

3

of the axiomatic method comes in handy if one is interested in proving something about
the logic. Although the presentations of deduction systems vary, they all allow the
derivation of the same set of sentences (assuming they are properly designed).

Let us return to the example of the chef and the cake. In symbols, the argument
can now be expressed as

{(p ∧ ¬q) → r, p} |= ¬r → q .

Although it is a bit tedious, one can consider all eight possible assignments of values to
p, q, and r and check that it is actually a semantic consequence.

But then the following question can be raised. Why cannot the argument be ex-
pressed instead as

{(p ∧ ¬q) → r, p} ` ¬r → q?

Indeed, we have defined two different notions of consequence, semantic and logical, and
though both are reasonable they do not seem to have much in common: which one
should be chosen? This is an important metalogical question. Fortunately, in the case
of propositional logic it does not matter for it can be proved that

Γ ` ϕ if and only if Γ |= ϕ .

The implication from left to right, that asserts that any proof-theoretic logical conse-
quence is also a semantic consequence, is known as the soundness of propositional logic.
The implication from right to left, that claims that any semantic consequence has a
syntactic derivation, is the completeness of propositional logic.

Assume that we have a finite set Γ of assumptions. We then have two methods at our
disposal to decide whether a given formula follows from Γ: either we build a syntactic
proof, or show that all models of the assumptions also satisfy the formula. In particular,
since we are working with a finite set of formulas there is only a finite number of atomic
propositions involved: we can consider all possible valuations and study whether there
is one that satifies Γ but not ϕ. Hence, for propositional logic, the validity problem
is decidable, in the precise sense that there is an effective procedure or algorithm that
solves it (see Computability).

This ends the presentation of propositional logic. Summing up, the most important
elements introduced, common to all logics are: a syntax which defines the language;
a semantics to assign meaning to the formulas; logical and semantic consequences and
relationships between them; and the validity problem.

3 Predicate logic

The simplicity of propositional logic comes at a price: its expressive power is rather
limited; in particular, it cannot deal with syllogisms like that at the beginning of this
article:

There are horses in Spain.
All horses are mammals.

implies that

There are mammals in Spain.

4

In propositional logic we would have to formalize the first premise by means of an
atomic proposition p, the second with q, and the conclusion, r, would not be a valid
consequence.

To remedy this, predicate logic (also known as first-order logic) introduces predicates
and quantifiers. Assume that we use H(x), S(x), and M(x) to express that x is a horse,
x dwells in Spain, and x is a mammal, respectively. Then, the syllogism can be presented
as a valid argument in predicate logic as

∃x (H(x) ∧ S(x))
∀x (H(x) →M(x))
∃x (M(x) ∧ S(x))

where the quantifier ∀ means “for all” and ∃ means “there exists.”
But predicate logic goes beyond syllogisms. It not only allows multiple premises, but

also predicates with an arbitrary number of arguments. For example, a statement like
“the ancestor of an ancestor is also an ancestor” has no room in the syllogistic theory,
whereas it can be dealt with in predicate logic by using a binary predicate A(x, y) with
the meaning x is an ancestor of y:

A(x, y) ∧A(y, z) → A(x, z) .

In predicate logic one can distinguish two levels: terms and formulas; terms denote in-
dividuals while formulas are statements about those individuals. Terms are constructed
from a set of variables (x0, x1, x2, . . .) and a set of constants and function symbols with
arbitrary arities:

t ::= x | c | f(t1, . . . , t2) f function symbol of arity n .

Thus, if mother is a unary function symbol, the fact that one’s mother is an ancestor
can be expressed with A(mother(x), x).

Formulas, in turn, are constructed from terms and a set of predicate symbols:

ϕ ::= t1 = t2 | R(t1, . . . , tn) | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ→ ϕ | ϕ↔ ϕ | ∀xϕ | ∃xϕ

where R is a predicate symbol of arity n. The resulting set of formulas depends on
the concrete sets of function and predicate symbols, F and P : we will write L(F, P) to
denote the set of formulas, or language, built using the sets F and P , or just L if no
ambiguity arises. For example, if peter is a constant that represents a concrete boy and
S is a binary predicate that stands for “sibling,” the sentence

∀x (S(x, peter) → ∀z (A(z, peter) ↔ A(z, x)))

expresses that peter has the same ancestors as his siblings.
For another, less contrived example, consider the function symbols 0 (constant), suc

(unary), and +, * (binary), and the predicate < (binary), which give rise to the language
of arithmetic for obvious reasons. Commutativity of addition is then expressed as

∀x∀y+(x, y) = +(y, x) .

5

Though awkward, this is the correct notation; however, we will usually stick to the
standard infix notation and write +(x, y) as x+ y.

Note that quantifiers are variable binding operators in the same sense as the sum-
mation symbol

∑
in an expression like

∑9
x=1 x, where the variable x cannot “vary” and

take any arbitrary value. (This will become clearer once the semantics of quantifiers is
presented in the next section.) In ∀xϕ and ∃xϕ, the formula ϕ is said to be the scope
of the quantifier. Then, an occurrence of a variable in an arbitrary formula is said to
be free if it falls under the scope of no quantifier; otherwise, that occurrence is called
bound.

3.1 Semantics

First of all, the universe of discourse, the elements to be referred to by terms, has to be
fixed; then, function and predicate symbols from the sets F and P have to be interpreted
over it. More precisely, a structure A is a tuple

〈A, cA, . . . , fA, . . . , RA . . .〉

such that

• A is a nonempty set;

• for every constant c ∈ F , cA ∈ A;

• for every n-ary function symbol f ∈ F , fA is a function from An to A;

• for every n-ary predicate symbol R ∈ P , RA is a subset of An.

An obvious structure N for the language of arithmetic consists of the set IN of
natural numbers as universe, with 0N the number zero, sucN the successor operation,
+N and ∗N addition and multiplication of natural numbers, and <N the “less-than”
relation. Note, however, that the structure can be arbitrary. Another valid structure is
M, where:

• the universe M is the set of digits 0, 1, 2, . . . , 9;

• 0M is the digit 9;

• sucM returns 0 when applied to 9 and the following digit in the usual order oth-
erwise;

• +M , when applied to two digits, returns the smallest one;

• ∗M returns the greatest digit;

• <M is the set of all pairs (u, v) with u greater than v.

More generally, the set A can consist of letters, derivable functions, matrices, or whatever
elements one chooses.

Before meaning can be ascribed to terms, yet another component is needed: an
assignment mapping variables to elements of A. Then, an interpretation I = (A, V) is

6

a pair formed by a structure and an assignment V . The meaning of a term in a given
interpretation, that is, the individual it refers to in the universe, can now be defined
recursively:

I(x) = V (x)
I(c) = cA

I(f(t1, . . . , tn)) = fA(I(t1), . . . , I(tn))

Let us consider the previously defined structure N and let V be an assignment such
that V (x) = 3 and V (y) = 5. In the interpretation I = (N , V), I(x ∗ suc(suc(0))) =
6 and I(x + suc(y)) = 9. On the other hand, in the interpretation J = (M,W),
where W (x) = 3 and W (y) = 5, those same two terms get very different meanings:
J (x ∗ suc(suc(0))) = 3 and J (x+ suc(y)) = 3.

A last piece of machinery is needed. Given an assignment V , a variable x, and an
element a of the universe, we write V [a/x] for the assignment that maps x to a and
coincides with V in the remaining variables. The truth value of a formula, 0 (false) or
1 (true), with respect to an interpretation I can finally be defined:

• I(t1 = t2) = 1 if I(t1) = I(t2), and 0 otherwise;

• I(R(t1, . . . , tn)) = 1 if (tA1 , . . . , t
A
n) ∈ RA;

• I(¬ϕ), I(ϕ ∧ ψ), I(ϕ ∨ ψ), I(ϕ → ψ), I(ϕ ↔ ψ) are defined analogously to the
propositional case.

• I(∀xϕ) = 1 if J (ϕ) = 1 for all a ∈ A, where J = (A, V [a/x]);

• I(∃xϕ) = 1 if there exists a ∈ A with J (ϕ) = 1, where J = (A, V [a/x]).

As in propositional logic, if I(ϕ) is 1 we say that I is a model of ϕ or that I satisfies
ϕ, and denote it by I |= ϕ. We write Γ |= ϕ if every model of all formulas in Γ is also a
model of ϕ.

Note that assignments are only needed to ascribe a meaning to free occurrences of
variables: if there are none, the interpretation of a formula is the same regardless of the
assignment. Now it can be checked that the formulas

∀x (0 < suc(x)) and ∀x∃y (x < y)

are both true in the interpretation N , but false in M.

3.2 Proof theory

Deduction systems for predicate logic extend those of propositional logic to take care
of predicates and quantifiers. In the axiomatic method, the main difference arises from
the extension of the set of axioms.

A valuation in predicate logic is a function from the set of formulas to the set {0, 1}
that respects the meaning of propositional connectives, that is, f(¬ϕ) = 1 − f(ϕ),
f(ϕ ∧ ψ) = 1 if and only if f(ϕ) = f(ψ) = 1, . . . The set of axioms is then the set of
formulas with one of the following forms:

1. Formulas which are mapped to 1 by all valuations.

7

2. ∀x (ϕ→ ψ) → (∀xϕ→ ∀xψ).

3. ϕ→ ∀xϕ, with no free occurrences of x in ϕ.

4. ∃x (x = t) where t is a term which does not contain x.

5. t1 = t2 → (ϕ → ψ) where ϕ contains no quantifiers and ψ is obtained from ϕ by
replacing an occurrence of t1 in ϕ with t2.

A derivation of ϕ from Γ is a sequence ϕ1, . . . , ϕn such that:

1. ϕn = ϕ.

2. For all i ≤ n, either:

(a) ϕi is an axiom;

(b) ϕi belongs to Γ;

(c) there exist j, k < i such that ϕk = ϕj → ϕi;

(d) there exists j < i and a variable x such that ϕi is ∀xϕj .

The formula ϕ is then a logical consequence of Γ and it is denoted with Γ ` ϕ.
Likewise, a system of natural deduction for predicate logic is obtained, essentially,

by extending the propositional one with the rules

ϕ

∀xϕ
∀xϕ
ϕ[t/x]

subject to a couple of technical conditions that are omitted and where ϕ[t/x] means
that every free occurrence of x in ϕ is replaced by t.

3.3 Completeness and decidability

Deduction systems are designed so that they are sound, that is, so that a logical conse-
quence is also a semantic consequence, and it is not hard to show that this is the case
in predicate logic. The converse implication, completeness, is much harder to prove but
it was also shown to hold for predicate logic by Gödel [3] in 1929. Therefore, for a set
of formulas Γ and a formula ϕ,

Γ ` ϕ if and only if Γ |= ϕ .

Faced with the problem of deciding whether a given formula is a consequence of
a set of premises, we again have the same two alternatives as in propositional logic:
either build a derivation or consider the models involved. Now, however, there is a
crucial difference: the set of models is not finite and thus, in general, it will not be
possible their study to conclude whether a formula is a semantic consequence of the
premises. Hence, if we intend to obtain a mechanical procedure, an algorithm, to decide
the validity of a formula we are only left with the proof-theoretic approach.

Assume that we want to determine whether a formula ϕ is valid, that is, whether
` ϕ (it can be derived from no hypothesis). By using the axiomatic method we can
enumerate all valid formulas. First, all derivations ϕ1 which use axioms of length up

8

to, say 10, are listed; since there can only be a finite number of these, the process ends.
Next, derivations ϕ1 and ϕ1, ϕ2 with axioms of length up to 11 are considered; again,
there is only a finite number of such derivations. In the next step, derivations of up to
three steps with axioms of length less than or equal to 12 are listed; and so on. The
process is tedious, but it is mechanizable and considers all posible derivations. If ϕ is
valid, then it has a corresponding derivation and this procedure will eventually produce
it. But what if ϕ is not valid? Then the procedure will not terminate and will offer no
clue as to the validity of ϕ. Indeed, that it is no accident but an unavoidable shortcoming
of any procedure to decide the validity of a formula is the content of the undecidability
theorem proved independently by Church and Turing [4, 5] in 1936.

Note that this does not mean that it is not possible to decide whether a given formula
is valid or not, but that it is not possible to develop a general procedure that always
works. For example, if all predicates considered are monadic (take one argument) the
resulting language is decidable and in this case a computer could be programmed to
solve the validity problem.

4 A glimpse of other logics

4.1 Second-order and higher-order logic

In predicate logic, variables range over the elements of the universe in the structure;
this is why it is also called first-order logic. But in mathematics it is often necessary to
refer, not to single individuals, but to collections of these. As a result, it is sometimes
convenient to consider an extension of predicate logic with second-order variables that
range over subsets or, more generally, over n-ary relations of the universe.

The syntax and semantics of second-order logic are defined similarly to those of
precicate logic. Now, if X is an n-ary variable and t1, . . . , tn are terms, X(t1, . . . , tn) is
also a formula. Second-order logic is more expressive than predicate logic. For example,
the structure of the natural numbers cannot be characterized by means of predicate
formulas because the induction principle can only be approximated by means of all
formulas of the form

ϕ(0) ∧ ∀x (ϕ(x) → ϕ(suc(x))) → ∀xϕ .

In second-order logic, however, the induction principle is formally captured by the single
formula

∀X (X(0) ∧ ∀x (X(x) → X(suc(x))) → ∀xX(x)) ,

where X is a unary variable, and the structure of natural numbers is characterizable.
Second-order logic allows the expression of mathematical facts in a more natural

way; however, this additional expressive power makes the logic much more complex,
with many useful properties of predicate logic no longer holding. In particular, there is
no deduction system both sound and complete; of course, this is no obstacle for setting
up correct and useful (though incomplete) systems. Also, the validity problem is even
more undecidable (in a precise technical sense, see Computability) than in the first-order
case.

While second-order logic allows to quantify over predicates, higher-order logic (his-
torically, proposed a couple of decades earlier than predicate logic) goes a step beyond

9

and considers, and allows quantification over, predicates that take other predicates as
arguments, and predicates which take predicates that take predicates, . . . The resulting
logic is, again, very complex but extremely expressive and it has proved to be very useful
in computer science.

4.2 Intuitionistic logic

In traditional (also called classical) mathematics, nonconstructive arguments are valid
proof methods: it is possible to show that there has to exist an element satisfying a
certain property without actually producing a witness to it, and the statement that
either a proposition or its negation holds is admitted as true even if none of them has
been proved. Some mathematicians object against such principles when working with
infinite sets and advocate the practice of constructive procedures. In particular:

• a statement of the form ∃xϕ is not proved until a concrete term t has been con-
structed such that ϕ[t/x] is proved;

• a proof of a disjunction ϕ ∨ ψ is a pair 〈a, b〉 such that if a = 0 then b proves ϕ,
and if a 6= 0 then b proves ψ.

Intuitionistic logic captures the valid principles of inference for constructive mathe-
matics. In this new setting, familiar statements cease to hold: for example, ϕ∨¬ϕ is not
universally true and, while the implication (¬ϕ ∨ ¬ψ) → ¬(ϕ ∧ ψ) can still be proved,
it is not possible to strenghten it to a biconditional. Perhaps surprisingly, a deductive
system for intuitionistic logic can be obtained from a classical one just by preventing
the law of double negation

¬¬ϕ→ ϕ ,

or any other equivalent to it, from being used as an axiom.
In this sense, intuitionistic logic is a subset of classical logic. On the other hand,

classical logic can also be embedded in intuitionistic logic: for every formula ϕ, a formula
ψ can be constructed such that ϕ is derivable in the classical calculus if and only if ψ is
derivable in the intuitionistic one.

Since the deduction system has been restricted, it is still sound with respect to
the semantics for predicate logic but it is no longer complete. A number of semantics
for intuitionistic logic have been defined, the simplest of which is probably the one
introduced by Kripke. For propositional intuitionistic logic, a Kripke structure is a
partially ordered set 〈K,≤〉 together with an assignment V of atomic propositions to
the elements of K such that, if k ≤ k′, V (k) ⊆ V (k′). One can think of the elements
in K as stages in time and then V (k) would be the “basic facts” known at instant k.
Satisfaction of a formula by a model, called forcing and representing the knowledge at
a certain stage, is defined recursively:

• k forces p if p ∈ V (k).

• k forces ¬ϕ if for no k′ ≥ k does k′ force ϕ.

• k forces ϕ ∧ ψ if k forces ϕ and k forces ψ.

• k forces ϕ ∨ ψ if k forces ϕ or k forces ψ.

10

• k forces ϕ→ ψ if, for every k′ ≥ k, if k′ forces ϕ then k′ forces ψ.

The intuition for all clauses except the second and the fifth is clear. One knows ϕ→ ψ
at instant k, even if none of ϕ or ψ is yet known, if one knows that for all future instants
one can establish ψ if ϕ can be established. As for the negation, ¬ϕ is known when no
evidence for ϕ can be found at a later stage.

A Kripke structure forces a formula if all its elements do so, and the intuitionistic
calculus is sound and complete with respect to forcing. Kripke structures and forcing can
be extended to predicate logic so that the corresponding deduction system also becomes
sound and complete. Like their classical counterparts, intuitionistic propositional logic
is decidable whereas intuitionistic predicate logic is not.

4.3 Predicate logic in perspective

In mathematics, predicate logic has been a great success, to the point of being often
deemed as the logic: it is in principle sufficient for mathematics, has a sound and
complete deduction system, and satisfies important semantic results. Indeed Lindstrom’s
theorems show that there can be no logical system with more expressive power than
predicate logic and with the same good semantic properties.

By contrast, computer science (and other fields) has seen a cornucopia of logics suited
for different purposes. To cite a few:

• Modal logic. It is a logic to reason about concepts such as possibility or necessity.

• Temporal logic. It is a brand of modal logic with operators to talk about the
passage of time.

• Fuzzy logic, to deal with approximate, or vague concepts such as the distinction
between “warm” and “hot”.

• Probabilistic logic, in which the truth values of formulas are probabilities.

• Nonmonotonic logic. In this logic, an established piece of knowledge may have to
be retracted if additional facts are later known.

Moreover, these logics come in different flavors, usually admitting propositional, first-
order, higher-order, and intuitionistic presentations, as well as combinations of these
and many ad hoc variants.

5 Logic and computer science

Though profound and important, the practical significance for mathematics of the results
obtained during the blossoming of logic in the 20th century has been rather limited. By
contrast, logic has risen to prominence in computer science where it is expected to play
a role analogous to that of calculus in physics. Specification and programming rank
among its most important areas of application, which also include fields as diverse as
descriptive complexity, compiler techniques, databases, or type theory [6].

11

5.1 Specification and verification

Computer programs are extremely complex entities and reasoning about them, except
for the smallest instances, is no easy feat. A given computer program poses two related
problems: deciding what it is supposed to do and then checking whether it does it.
Logic can help here, first, with the formal specification of the expected behavior of a
program and, secondly, in the process of verifying that the program indeed abides by
its specification.

In its first use, logic can be seen as tool to resolve ambiguities. Assume that a
programmer is asked to write a program which, given two integers a and b, returns
the quotient and remainder of dividing a by b. The behaviour of the program when
a and b are positive should be obvious but if one of them is negative, say a = 5 and
b = −2, and the mathematical training of the programmer is a bit shaky, he might
be inclined to admit −3 and −1 as valid quotient and remainder. Furthermore, what
should the behavior be when the divisor is 0? A bullet-proof, unambiguos specification
of the behaviour of the program would look like:

ϕ ≡ a, b integers
fun division(a, b) returns 〈q, r〉
ψ ≡ (q, r integers, a = b ∗ q + r, 0 ≤ r < |b|) ∨ (b = 0 ∧ q = r = −1)

In this specification, the precondition ϕ requires the arguments to be integers whereas
the postcondition ψ imposes that q and r are the appropriate quotient and remainder
if b 6= 0, and sets them both to −1 if b is 0 to mark the error condition. Alternatively,
one could assume/require that b is never instantiated with 0 as value:

ϕ ≡ a, b integers, b 6= 0
fun division(a, b) returns 〈q, r〉
ψ ≡ q, r integers, a = b ∗ q + r, 0 ≤ r < |b|

In this case the postcondition ψ leaves unspecified the behaviour of the program if b is
0, so that it should be used only at one’s own risk.

In general, the precondition imposes some requirements on the input while the post-
condition states all properties that can be assumed about the output. Anything not
reflected in them falls outside the programmer’s responsibility. To express the precon-
dition and postcondition, any logic can be used.

A specification imposes a contract on the programmer who, given that programming
is an error-prone task, would like to have a means to verify that his final code actually
satisfies those requirements (see Formal Program Verification). The prototypical exam-
ple of the use of logic in this regard is Hoare logic, designed for imperative programming
languages. It defines a derivation system consisting of a set of rules of the form

Condition
ϕ instruction ψ

,

for every instruction in the programming language, establishing the conditions under
which a precondition ϕ and postcondition ψ hold. For example, to the assignment
instruction it corresponds the rule

ϕ[e/x] x := e ϕ

12

which states that some property holds for variable x after the instruction is executed only
if it already held when the expression e was substituted for x. Similarly, for sequential
composition of instructions we have the rule

ϕ intruction1 ψ ψ intruction2 χ

ϕ intruction1 ; intruction2 χ
,

which states the conditions required for χ to hold after executing intruction1 followed
by instruction2. Ideally, to show that a program P satisfies a specification ϕ P ψ one
would start with ψ and the final line of P and proceed backwards by applying the
corresponding rule in the calculus. The fact that programs are hundreds of thousands
of lines long and that the application of some of the rules require human intervention
makes this direct approach unfeasible in practice.

A different flavor in which logic supports the verification process comes in the form
of proof assistants or theorem provers (see Automated Theorem Proving). These are
usually embedded within verification systems which allow to formally specify functions
and predicates, to state mathematical theorems and to develop formal proofs. Many
of these systems are based on higher-order logic, but some use predicate logic. These
environments do not directly work with the program code but instead focus on the
algorithms that implements, by translating them into an appropriate logical language
and then formally proving the properties they are required to satisfy. These systems
are very powerful and some impressive results have been achieved in the verification
of certain hardware architectures and protocols, but they present as a major drawback
their dependency on user interaction.

In contrast to theorem provers, model checkers are fully automated and their un-
derlying logic is some variation of temporal logic. Model checking was proposed in the
early 1980s to verify complex hardware controllers and has also come to be used in the
verification of software since then. A model checker explores all posible states in a sys-
tem to check for a counterexample of the desired property and herein lies its limitation:
whereas hardware controllers have a finite, if huge, number of states, typical programs
have an infinite number. Even for hardware systems, the number of states can grow ex-
ponentially giving rise to what is known as the explosion problem. Hence, the devise of
abstraction techniques that significantly reduce the size of a system to make it amenable
to model checking, without altering its “main” properties, is an active area of research.

5.2 Programming

Logic also serves as the foundation of programming languages and has given rise to the
declarative paradigm.

5.2.1 Logic programming

Imagine a problem for which all assumptions and requirements have been expressed
as predicate logic formulas and gathered in a set Γ. For this problem, we are inter-
ested in determining whether there exists a solution, an element that under the given
requirements satisfies a certain condition. Formally, we are interested in the entailment

Γ ` ∃xϕ(x) .

13

Furthermore, we are probably interested not only in finding out if such an element exists
but also in a concrete instance, that is, a term t such that Γ ` ϕ[t/x].

In general, from Γ ` ∃xϕ it does not follow that ϕ[t/x] for some term t; think of
Γ = {∃xR(x)} for a counterexample. Logic programming is the area of research that
studies the conditions that guarantee the existence of t and the ways of obtaining it (see
Answer Set Programming). In logic programming, the formulas in Γ are restricted to
universal Horn formulas of the forms

∀x1 . . .∀xn ϕ and ∀x1 . . .∀xn (ϕ1 ∧ . . . ∧ ϕm → ϕ)

while the goal is an existential formula

∃x1 . . .∃xn (ϕ1 ∧ . . . ∧ ϕm) ;

all ϕi and ϕ have the form t = t′ or R(t1, . . . , tn). Under these conditions, if the goal can
be proved, then there exist concrete terms t1, . . . , tn for which ϕ holds. In principle, these
terms can be found by systematically applying the rules of any of the deduction systems
presented in Section 3. However, given the restricted form of Horn formulas, a rule
of inference more suitable for logic programming called resolution has been developed
which computes all terms that make ϕ1∧ . . .∧ϕm true. Recall that the validity problem
in predicate logic is undecidable; this is reflected in logic programming in the fact that
every implementation of resolution may loop forever if there are no solutions to the
problem.

As an example of a logic program, let us consider the problem of finding paths in
a directed graph. Assuming we use constants a, b, . . . , f to represent the nodes and
corresponding binary predicates arc and path, the conditions of the problem can be
represented as follows (omitting quantifiers, as customary in this context):

arc(a, b)
arc(a, c)
arc(b, d)
arc(e, f)
arc(f, e)
arc(x, y) → path(x, y)
arc(x, z) ∧ path(z, y) → path(x, y)

A path from x to y is specified either as a direct arc between the nodes, or as an arc
from x to an intermediate node z followed by a path from z to y. Now, to obtain all
nodes reachable from a the goal path(a, x) would be used and the resolution procedure
would return b, c, and d as possible values for x.

Imposing further restrictions on the form of the formulas has led to the definition of
query languages for deductive databases.

5.2.2 Functional programming

Functional programming languages are based on the lambda calculus. Although there
are many variants and they all favour an operational interpretation, lambda calculi can
be endowed with both semantics and sound and complete deduction systems (but note

14

that it took almost 40 years to define a semantics for the original, untyped lambda
calculus), thus partaking in the main logical features. Unlike predicate logic, functions
are first-class citizens in the lambda calculus and can therefore be passed as arguments
to other functions and returned as results.

Functional languages come in many different flavors (see Functional Programming)
but the central notion in all of them is that of definition t ≡ s, which is interpreted
operationally as a rule that allows the transformation of the term in the lefthand side,
t, into the one in the righthand side, s, in a process called rewriting. A program consists
simply of a set of definitions. For example, the program

square : Integer → Integer apply : (Integer → Integer) → Integer
square x ≡ x ∗ x apply f x ≡ f x

defines a function square that returns the square of its argument, and a function apply
that takes a function f and an integer as arguments and applies f to that integer. The
term apply square 2 would then be rewritten first to square 2 and then to 2 ∗ 2 (which
the compiler would evaluate to 4). For some terms, however, the process of reduction
may never stop:

infinity : Integer
infinity ≡ infinity + 1

Terms such as this do not denote well-defined values in the normal mathematical sense.
Another potential difficulty lies in the possible existence of different rewriting sequences
for the same term. Given definitions t ≡ t′ and t ≡ t′′, in principle t could be reduced to
either t′ or t′′, and there are no guarantees that these two terms can be further reduced
to a common one. In functional programming, if two different rewriting sequences
terminate then they converge, that is, they lead to the same result.

5.2.3 Other paradigms and tidbits

Logic and functional programming are the two main representatives of declarative pro-
gramming. Their main advantage is their logical foundation, which makes it possible to
mathematically reason about the programs themselves and enormously facilitates the
verification process. This has led many researchers to seek ways of enhancing their ex-
pressive power while remaining in the corresponding framework and thus retaining their
good properties, and has produced languages in which convergence may not happen and
nondeterminism is allowed or where (some) a priori infinite computations can be dealt
with. Also, both approaches have been integrated in what is known as functional logic
programming ; here the computational process is guided not by resolution nor rewriting,
but by a technique called narrowing.

Some languages have withdrawn from predicate logic and the lambda calculus and are
based on equational logic, which is quite a restrictive subset of them both and precludes
the use of functions. The loss in expressivity is made up with the gain in efficiency and
simplicity of the mathematical reasoning about the programs. More recently, a whole
family of languages has been designed based on yet another logic, rewriting logic, which
extends equational logic with rules to allow a natural treatment of concurrency and
nondeterminism. Unlike equations, a rule t → s does not express the identity between

15

the meanings of the two terms but rather that the state represented by t evolves to that
represented by s.

6 Coda

The previous sections may convey the impression that a logic is a precisely defined
entity, when there is actually no consensus about what constitutes a logic. It is true
that most logics have both a model and a proof-theory, but that is not always the case
and, even when it is, one of the approaches may be clearly emphasized over the other.
For Quine [7], on more philosophical grounds, even a full-fledged logic like second-order
logic should be rather regarded as a mathematical theory since its logical truths by
themselves capture substantial mathematical statements. Together with the explosion
in the number of proposed logics, this diversity has spurred work in research with a
unifying aim that has resulted in the development of:

• logical frameworks, that are logics in which other logics can be represented and
used, and

• extremely abstract formalisms such as institutions, that intend to capture the
defining characteristics of any logic.

A detailed discussion on these topics, as well as on many others not mentioned in this
article, can be found in the comprehensive surveys [8, 9, 10].

Much of the impetus for the development of mathematical logic came from the desire
of providing a solid foundation for mathematics. Nowadays it is computer science that
has taken the leading role and it will be the applications and needs in this area that are
bound to guide the future of formal logic.

References

[1] M. Davis. Engines of Logic: Mathematicians and the Origin of the Computer, 2nd
edition. W. W. Norton & Company, 2001.

[2] A. Tarski. The concept of truth in the languages of the deductive sciences
(in Polish). Prace Towarzystwa Naukowego Warszawskiego, Wydzial III Nauk
Matematyczno-Fizycznych, 34, 1933. Expanded English translation in [11].

[3] K. Gödel. The completeness of the axioms of the functional calculus of logic (in
German). Monatshefte für Mathematik und Physik, 37:349–360, 1930. Reprinted in
[12].

[4] A. Church. A note on the Entscheidungsproblem. Journal of Symbolic Logic, 1:40–
41, 1936.

[5] A.M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 42:230–265, 1936.

16

[6] J.Y. Halpern, R. Harper, N. Immerman, P.G. Kolaitis, M.Y. Vardi, and V. Vianu.
On the unusual effectiveness of logic in computer science. The Bulletin of Symbolic
Logic, 7(2):213–236, 2001.

[7] W.V. Quine. Philosophy of Logic, 2nd edition. Harvard University Press, 1986.

[8] S. Abramsky, D.M. Gabbay, and T.S.E. Maibaum, editors. Handbook of Logic in
Computer Science. Oxford Science Publications. In six volumes, the first published
in 1993.

[9] D.M. Gabbay, C.J. Hogger, and J.A. Robinson, editors. Handbook of Logic in
Artificial Intelligence and Logic Programming. Oxford Science Publications. In five
volumes, the first published in 1993.

[10] D.M. Gabbay and F. Guenthner, editors. Handbook of Philosophical Logic. 2nd
edition. Springer. In eighteen volumes, the first published in 2001.

[11] A. Tarski. Logic, Semantics, Metamathematics, papers from 1923 to 1938. Hackett
Publishing Company, 1983.

[12] K. Gödel. Collected Works. I: Publications 1929–1936. Oxford University Press,
1986.

Reading list

D. van Dalen. Logic and Structure. Fourth Edition. Springer, 2004.

H.-D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Second Edition.
Springer, 1996.

J.A. Goguen and G. Malcolm. Algebraic Semantics of Imperative Programs. The MIT
Press, 1996.

17

