
A quick ITP tutorial∗

Manuel Clavel Miguel Palomino
Sistemas Informáticos y Programación Sistemas Informáticos y Programación

Universidad Complutense de Madrid Universidad Complutense de Madrid

clavel@sip.ucm.es miguelpt@sip.ucm.es

Abstract

The ITP tool is an experimental inductive the-
orem prover for proving properties of Maude
equational specifications, i.e., specifications in
membership equational logic with an initial al-
gebra semantics. The ITP tool has been writ-
ten entirely in Maude and is in fact an ex-
ecutable specification of the formal inference
system that it implements.

1 Introduction

Rewriting logic [10, 1] is a flexible formal-
ism for the specification of computational sys-
tems in which the dynamic aspects are cap-
tured by means of rewrite rules while the static
data structures are formalized in its underly-
ing membership equational logic [11]. Maude
[3] is a specification language that implements
rewriting logic; in particular, it implements
membership equational logic through func-
tional modules which can be executed very ef-
ficiently.

Mechanical reasoning about such functional
modules is supported by the ITP tool, an ex-
perimental, interactive, rewriting-based theo-
rem prover written entirely in Maude. The
users must guide the ITP by assuming the
main decisions in the proof development:
namely, when and which a lemma is needed
or inductive reasoning is helpful. The ITP, in
its turn, assists the users by automatizing the
underlying equational and arithmetic reason-
ing, and by checking the correctness of their

∗Research supported by the projects MELODIAS
TIC 2002-01167 and MIDAS TIC 2003–0100.

proof decisions.

Rewriting based theorem provers like the
ITP use term rewriting as their basic proof
engine, and they are useful for proving prop-
erties of equational specifications. In this re-
gard, a key feature of the ITP is its reflective
design [2], that exploits the reflective capabili-
ties of Maude in order to efficiently automatize
equational simplification proofs and to cleanly
integrate them with proofs in the theory of
linear arithmetic with uninterpreted function
symbols. The former is accomplished by call-
ing the underlying Maude’s default rewriting
engine, and the latter by equationally defin-
ing a rewriting strategy different from Maude’s
default one. Recently, a graphical interface
has been built on top of the ITP to spare the
user from the command-line shell required by
Maude.

The ITP is being used in the development of
two related projects. The first one is the ASIP
project, which is based on J. Goguen’s seminal
work on algebraic semantics of imperative pro-
grams. It aims to provide a version of the ITP
that may be used to formally specify and ver-
ify software. The other project is the develop-
ment of SCC, an experimental tool for check-
ing the sufficient completeness (the property
that operations are defined on all valid inputs)
of partial specifications written in Maude.

The aim of this paper is to give a quick
overview of all these developments, as well as
to illustrate how to use the ITP, for which we
use several examples. Knowledge of Maude
is assumed, but the syntax should be self-
explanatory in most examples.

2 Getting started

To run the current version of the ITP you
need to have installed the latest version of
the Maude system (version 2.1.1), which can
be downloaded from the Maude’s home page:
http://maude.cs.uiuc.edu.

The current version of the ITP is distributed
as the gzip-tar-file itp-tool-vxxx.tar.gz
(where xxx is the actual version identifier),
which is available at http://maude.sip.ucm.

es/itp. To untar this file, type tar xvfz

itp-tool-vxxx.tar.gz. This command will
create a directory itp-tool-vxxx with a sub-
directory itp-src containing the ITP tool’s
source files:

bash>tar xvfz itp-tool-vxxx.tar.gz
itp-tool-vxxx/

itp-tool-vxxx/itp-src/

itp-tool-vxxx/itp-src/unification.maude
itp-tool-vxxx/itp-src/basic.maude

itp-tool-vxxx/itp-src/check.maude

itp-tool-vxxx/itp-src/ext-mod.maude
itp-tool-vxxx/itp-src/ext-term.maude

itp-tool-vxxx/itp-src/itp-tool.maude

bash>

2.1 A first proof

To give a taste of the tool, consider the follow-
ing specification, that imports the predefined
INT module to build of lists of integers:

fmod LIST is

protecting INT .

sorts NeList List .

subsort NeList < List .

op [] : -> List [ctor] .

op _:_ : Int List -> NeList [ctor] .

op _++_ : List List -> List .

var I : Int .

vars L L’ : List .

eq [] ++ L = L .

eq (I : L) ++ L’ = I : (L ++ L’) .

endfm

Here, NeList is a subsort of List used to
represent the nonempty lists. An obvious

property that the specification should satisfy
is that concatenation of lists (_++_) is asso-
ciative. To prove it, once the LIST mod-
ule has been added to Maude’s database we
load the ITP with the Maude command in

itp-tool and initialize its own database with
loop init-itp. Then, the property can be
presented to the ITP using the ITP command
goal; all ITP commands have to be written
enclosed in brackets:1

(goal list-assoc : LIST |-

A{L1:List ; L2:List ; L3:List}

(((L1:List ++ L2:List) ++ L3:List) =

(L1:List ++ (L2:List ++ L3:List))) .)

Here, list-assoc is the name of the goal, LIST
is the module in which it is to be proved, and
the symbol A (representing ∀) precedes a list of
universally quantified variables which have to
be annotated with their sorts. Due to parsing
restrictions it is convenient to be generous in
the use of parentheses; in particular, note that
they are used to enclose the terms to be proved
equal.

The ITP then outputs

=================================

label-sel: list-assoc@0

=================================

A{L1:List ; L2:List ; L3:List}

((L1:List ++ L2:List)++ L3:List =

L1:List ++(L2:List ++ L3:List))

+++++++++++++++++++++++++++++++++

indicating that the goal has been correctly
processed, has been internally labelled as
list-assoc$0 and is ready to be worked upon.

Now we can try to prove the property by
structural induction on the first variable, using
the ind command.

(ind on L1:List .)

As will be further explained in Section 4,
the ITP then generates a corresponding sub-
goal for each operator with codomain List

that has been declared with the attribute ctor
(taking subsorts into account), and selects one

1This is required by the LOOP-MODE module,
through which all user interfaces are implemented in
Maude [3, Chapter 11].

of them as the working subgoal by tagging it
with label-sel; in this case the first one, cor-
responding to the empty list []:

=================================

label-sel: list-assoc@1.0

=================================

A{L2:List ; L3:List}

(([]++ L2:List)++ L3:List =

[]++(L2:List ++ L3:List))

=================================

label: list-assoc@2.0

=================================

A{V0#0:Int ; V0#1:List}

((A{L2:List ; L3:List}

((V0#1:List ++ L2:List)++ L3:List =

V0#1:List ++(L2:List ++ L3:List)))==>

(A{L2:List ; L3:List}

(((V0#0:Int : V0#1:List)++ L2:List)++

L3:List =

(V0#0:Int : V0#1:List)++

(L2:List ++ L3:List))))

+++++++++++++++++++++++++++++++++

The working subgoal can be explicitly se-
lected using the ITP command sel; e.g.
(sel list-assoc@2.0 .)

Though the output for the second sub-
goal is all but clear, notice that the ex-
pression before the arrow ==> corresponds
to the induction hypothesis and how the
term V0#0:Int : V0#1:List is substituted for
V0#1:List in the subsequent expression.

At this point, we can try to automatically
prove the selected subgoal with the command
auto, that first transforms all variables into
fresh constants and then rewrites the terms in
both sides of the equality as much as possi-
ble by using the equations in the module as
rewrite rules.

(auto .)

The command succeeds, the subgoal is dis-
charged, and the ITP presents us with the
remaining subgoal generated by the induc-
tion; note how label has been replaced by
label-sel.

=================================

label-sel: list-assoc@2.0

=================================

A{V0#0:Int ; V0#1:List}

((A{L2:List ; L3:List}

((V0#1:List ++ L2:List)++ L3:List =

V0#1:List ++(L2:List ++ L3:List)))==>

(A{L2:List ; L3:List}

(((V0#0:Int : V0#1:List)++ L2:List)++

L3:List =

(V0#0:Int : V0#1:List)++

(L2:List ++ L3:List))))

+++++++++++++++++++++++++++++++++

We can also try to prove this subgoal auto-
matically with the auto command. Again, the
ITP succeeds and this completes the proof.

(auto .)

q.e.d

+++++++++++++++++++++++++++++++++

3 A script safari

The essentials of the ITP have already been
covered in the previous section: terms are
proved equal by reducing them to syntactically
equal terms and structural induction is based
on the constructor memberships. Here we con-
tinue exploring other ITP commands and illus-
trate how they are used in several scripts.

3.1 Another induction scheme: c-ind

In addition to the ind command to reason by
induction on the structure of terms, the ITP
also provides the c-ind command to reason
by induction over the natural numbers. This
command takes a term of sort Nat as argument
and generates two subgoals from the original
goal: one in which the term is assumed to be
equal to 0 and another one in which it states
that the goal holds for N assuming that it holds
for values less than N. To illustrate its use, let
us extend LIST with an operation to determine
the length of a list.

fmod LIST-LENGTH is

protecting LIST .

op length : List -> Nat .

var I : Int .

var L : List .

eq length([]) = 0 .

eq length(I : L) = 1 + length(L) .

endfm

Now, the associativity of the operator _++_

can alternatively be proved by using c-ind:

(goal list-assoc : LIST-LENGTH |-

A{L1:List ; L2:List ; L3:List}

(((L1:List ++ L2:List) ++ L3:List) =

(L1:List ++ (L2:List ++ L3:List))) .)

(c-ind on (length(L1:List)) .)

=================================

label-sel: list-assoc@1.0

=================================

A{L1:List ; L2:List ; L3:List}

((length(L1:List)= 0)==>

((L1:List ++ L2:List)++ L3:List =

L1:List ++(L2:List ++ L3:List)))

=================================

label: list-assoc@2.0

=================================

A{V0#0:Nat}

((A{L1:List ; L2:List ; L3:List}

((length(L1:List)< V0#0:Nat = true)==>

((L1:List ++ L2:List)++ L3:List =

L1:List ++(L2:List ++ L3:List))))==>

(A{L1:List ; L2:List ; L3:List}

((length(L1:List)= V0#0:Nat)==>

((L1:List ++ L2:List)++ L3:List =

L1:List ++(L2:List ++ L3:List)))))

+++++++++++++++++++++++++++++++++

The first (and selected) subgoal simply as-
sumes that length(L1:List) is 0. Using auto

seems to have no effect except for the trans-
formation of the variables into constants (the
second subgoal is not modified and we do not
show it).

(auto .)

=================================

label-sel: list-assoc@1.0

=================================

(L1*List ++ L2*List)++ L3*List =

L1*List ++(L2*List ++ L3*List)

=================================

label: list-assoc@2.0

...

To try to understand what is going on we
can use the show-all command, which out-
puts the functional module the ITP is cur-
rently reasoning about.

(show-all .)

From its output—that we do not show—it
is apparent that the resulting module is iden-
tical to the original LIST-LENGTH except for
the additional declaration of the new constants
L1*List, L2*List, and L3*List, and the equa-
tion length(L1*) = 0. Obviously, this addi-
tional information is not enough to further re-
duce any of the terms in the goal.

To proceed with the proof we must supply
the ITP with additional guidelines to follow
and what turns out to be useful in this case
is to make a case analysis on the structure of
L1*List. For this we can use the command
ctor-split, which replaces the subgoal with
the following ones, corresponding to the con-
structors for List:

(ctor-split on L1*List .)

=================================

label-sel: list-assoc@1.1.1.1.1.1.0

=================================

(L1*List =[])==>

((L1*List ++ L2*List)++ L3*List =

L1*List ++(L2*List ++ L3*List))

=================================

label: list-assoc@1.1.1.1.1.2.0

=================================

A{V1#0:Int ; V1#1:List}

((L1*List = V1#0:Int : V1#1:List)==>

((L1*List ++ L2*List)++ L3*List =

L1*List ++(L2*List ++ L3*List)))

Now we can try to prove the selected sub-
goal, which assumes that L1*List is the empty
list, and auto easily succeeds.

(auto .)

The other subgoal generated by
ctor-split, list-assoc@1.1.1.1.1.2.0,
deserves closer attention. The list L1*List

is now built using _:_ and is not clear at all
why the terms at both sides of the equality
symbol should reduce to a common one.

But recall that this subgoal has arisen while
we are trying to prove the first subgoal
generated by c-ind, that is, the one in which
length(L1*List) is 0, and this is inconsistent
with L1*List being constructed with _:_. On
the one hand, by the induction hypothesis the
current module contains the equation

length(L1*List) = 0

On the other hand, if the auto command is
used to reduce the subgoal the following chain
of reductions is triggered:

length(L1*List)

= length(V1#0:Int : V1#1:List)

= 1 + length(V1#1:List)

At this point, the decision procedures for lin-
ear arithmetic that are interwoven in the ITP
rewrite strategy discover the inconsistency

0 = 1 + length(V1#1:List)

Thus, auto notices the inconsistency and au-
tomatically discharges the subgoal.

(auto .)

At this point we are left with the proof
of the second subgoal generated by c-ind,
list-assoc@2.0, which proceeds exactly like
that for the first one. After applying auto, it is
necessary to make a case analysis whose sub-
cases can be discharged with auto. (This time,
it is the proof of the first case which succeeds
by inconsistency.)

(auto .)

(ctor-split on L1*List .)

(auto .)

(auto .)

In this example, the script produced by
c-ind is certainly more cumbersome than the
one for ind. However, there are proofs (e.g.,
in the mergesort algorithm) where c-ind gives
rise to proofs that cannot easily be done by
structural induction.

3.2 Sorts

The key feature of membership equational
logic is its capability to define sorts by means
of membership axioms. This allows the speci-
fication of very precise types, like sorted lists,
and of operations that reflect that typing.

The ITP can also reason about sorts,
for which it provides the command
ctor-term-split which will be illustrated
below. Reasoning about sorts is subtle;
ideally, operations should be defined at the
kind level and the operations’ sorts defined by
means of memberships. As of yet, however,
this is not fully supported by the ITP so that
in the example below we will make use of
supersorts instead of kinds.2

Also, this example is more involved than the
previous ones and, in addition to illustrate the
treatment of sorts, it will serve to introduce
two additional ITP commands: lem, to in-
troduce auxiliary lemmas, and split for case
analysis.

Consider the following specification of
sorted lists.

fmod ORDERED-LIST is

protecting INT .

sort Int? OrdList OrdList? .

subsort Int < Int? .

subsort OrdList < OrdList? .

op [] : -> OrdList? .

op _:_ : Int? OrdList? -> OrdList? .

op insert : Int? OrdList? -> OrdList? .

op insertion-sort : OrdList? -> OrdList? .

vars E1 E2 I J : Int? .

vars OL OL1 OL2 : OrdList? .

mb [] : OrdList .

cmb (I : []) : OrdList if I : Int .

cmb (I : J : OL) : OrdList

if I : Int /\ J : Int

/\ I <= J = true

/\ (J : OL): OrdList .

eq insertion-sort([]) = [] .

eq insertion-sort(I : OL) =

insert(I, insertion-sort(OL)) .

2Intuitively, kinds represent collections of sorts;
see [11] for a detailed discussion, but also Section 4.

eq insert(I, []) = (I : []) .

ceq insert(I, (J : OL)) = I : J : OL

if I <= J .

ceq insert(I,(J : OL)) = J : insert(I,OL)

if I > J .

endfm

OrdList is intended to capture ordered lists
whereas its supersort OrdList? comprises ar-
bitrary ones. Note that OrdList is directly
defined by membership assertions and not con-
structors; this will be explained in Section 4.

We want the list returned by a call to
insertion-sort to be actually ordered so that
insertion-sort(L) : OrdList for all lists
L, and we set ourselves to prove it. (For the
operation insertion-sort to be well-defined
it would also be necessary to prove that the
resulting list is a permutation of the original
one: we leave this proof as an exercise to the
reader.)

(goal sorted : ORDERED-LIST |-

A{L:OrdList?}

((insertion-sort(L:OrdList?)) : OrdList) .)

The proof proceeds by structural induction
on L; a case for each of the axioms that define
OrdList—since it is a subsort of OrdList?—
is generated. For the empty list and for a list
with a single element the result follows imme-
diately using auto; in the inductive step, how-
ever, after applying auto we arrive to:

=================================

label-sel: sorted@3.1.1.1.1.1.1.1.1.1.0

=================================

insert(V0#0*Int?,insert(V0#1*Int?,

insertion-sort(V0#2*OrdList?))): OrdList

+++++++++++++++++++++++++++++++++

The goal labeled sorted@3.1.1.1.1.1.1.1...

is not an identity

At this point, the ITP can no longer reduce
the term and gets stuck.

Let us think about what remains to
be proved. By the induction hypothesis,
the list insertion-sort(V0#2*OrdList?) is
sorted and, since we believe the equations for
insert are correct, we would expect

insert(V0#1*Int?,

insertion-sort(V0#2*OrdList))

to be sorted as well, even though it can be re-
duced no further; the same argument would
apply to the insertion of V0#0*Int? as well.
What we need is precisely this, an auxiliary
result that states that inserting a new element
into an ordered list using insert results in an-
other ordered list. Such a lemma can be intro-
duced in the ITP with the lem command and
has to be proved for the reasoning to be sound.

(lem insert-orderedlist :

A{E:Int? ; OL:OrdList?}

((((E:Int?): Int) &

((OL:OrdList?): OrdList))

=>

((insert(E:Int?, OL:OrdList?)): OrdList))

.)

=================================

label-sel: insert-orderedlist@0

=================================

A{E:Int? ; OL:OrdList?}

(((OL:OrdList? : OrdList) &

(E:Int? : Int))==>

(insert(E:Int?,OL:OrdList?): OrdList))

=================================

label: sorted@3.1.1.1.1.1.1.1.1.1.0

=================================

insert(V0#0*Int?,insert(V0#1*Int?,

insertion-sort(V0#2*OrdList?))): OrdList

+++++++++++++++++++++++++++++++++

The syntax for lemmas is the same as for goals,
except for the fact that no module is specified.
Note that the statement to be proved in this
case is not just an equality, but an implication
where the symbol & is used to separate con-
junctions in the antecedent. Also, note that
the lemma has become the current goal. (From
now on we will only show the current subgoal.)

Again, we can think of proving the lemma
with the ind command and, as happened for
the main goal, auto discharges the case gener-
ated for the empty list. However, in the case
of the singleton list, it merely transforms the
goal into

=================================

label-sel: insert-orderedlist@2.1.1.1.1...

=================================

insert(E*Int?,V1#0*Int? :[]): OrdList

If we take a look at the equations for
insert, the reason why this term cannot be
reduced becomes apparent: the two equa-
tions that might apply are conditional and
depend on whether E*Int <= V1#0*Int or
E*Int > V1#0*Int. Thus, to discharge this
subgoal it is necessary to reason by cases ac-
cording to whether E*Int? <= V1#0*Int? is
true or not. For that, the ITP offers the com-
mand split:

(split on (E*Int? <= V1#0*Int?) .)

This prompts the ITP to replace the working
subgoal with the following ones:

=================================

label-sel:

insert-orderedlist@2.1.1.1.1.1.1.1.1.0

=================================

insert(E*Int?,V1#0*Int? :[]): OrdList

=================================

label:

insert-orderedlist@2.1.1.1.1.1.1.1.2.0

=================================

insert(E*Int?,V1#0*Int? :[]): OrdList

Note that the goals themselves are the same;
the difference lies in the internal modules
these goals are about: for the first one, the
equation E*Int? <= V1#0*Int? = true has
been added—which can be checked using
show-all—while in the second the inequality
is false. Now, both subgoals can be automat-
ically discharged with auto.

(auto .)

(auto .)

The situation for the inductive step is simi-
lar: after applying auto we are left with

=================================

label-sel: insert-orderedlist@3.1.1...

=================================

insert(E*Int?,V1#0*Int? : V1#1*Int? :

V1#2*OrdList?): OrdList

Again, we need to reason by cases.

(split on (E*Int? <= V1#0*Int?) .)

(auto .)

(auto .)

This time, however, the second auto does not
discharge the goal but presents us with

=================================

label-sel: insert-orderedlist@3.1.1...

=================================

V1#0*Int? : insert(E*Int?,V1#1*Int? :

V1#2*OrdList?): OrdList

Under the current assumption that
E*Int? <= V1#0*Int? is false and
the induction hypothesis that the list
insert(E*Int?,V1#1*Int? : V1#2*OrdList?)

is ordered, it is clear that the equality holds.
What we need is yet another lemma that
makes this observation a general and explicit
statement.

(lem insert-sortedlist-aux :

A{E1:Int? ; E2:Int? ; OL:OrdList?}

((((E1:Int?): Int) & ((E2:Int?): Int) &

((OL:OrdList?): OrdList) &

((E1:Int? <= E2:Int?) = (true)) &

((E1:Int? : OL:OrdList?): OrdList) =>

((E1:Int? : insert(E2:Int?, OL:OrdList?))

: OrdList))) .)

As usual, we prove it by induction on the
structure of the list. The case generated for
the empty list is trivially discharged with auto

whereas for the singleton list a case analysis is
needed (--- introduces a comment):

(ind on OL:OrdList? .)

--- case 1

(auto .)

--- case 2

(auto .)

(split on (E2*Int? <= V2#0*Int?) .)

--- case true

(auto .)

--- case false

(auto .)

Unfortunately (and surprisingly!) the last
auto cannot discharge the corresponding sub-
goal, but presents us with

=================================

label-sel: insert-sortedlist-aux@2.1.1...

=================================

E1*Int? : V2#0*Int? : E2*Int? :[]: OrdList

So what is going on? This step corresponds
to the case in which we have the singleton
list V2#0*Int? : []; by one of the hypoth-
esis of the lemma, E1*Int? : V2#0*Int? is
sorted, and since this is the second branch of
the split, V2#0*Int? < E2*Int? is true. It
is then clear that the list

E1*Int? : V2#0*Int? : E2*Int? :[]

is sorted, so why can’t the ITP prove it? The
reason is that nowhere is explicitly stated that
E1*Int? <= V2#0*Int? is true; this informa-
tion has to be extracted from the fact that
E1*Int? : V2#0*Int? is sorted, by using the
command ctor-term-split:

(ctor-term-split on

(E1*Int? : V2#0*Int? : []) .)

This prompts the ITP to make explicit all as-
sumptions about the terms involved, based on
the membership axioms that define the sort
OrdList; the resulting subgoal can then be
easily proved with auto.

=================================

label-sel: insert-sortedlist-aux@2.1.1...

=================================

((((V2#0*Int? :[]: OrdList) &

(V2#0*Int? : Int)) &

(E1*Int? : Int)) &

(E1*Int? <= V2#0*Int? = true)) ==>

(E1*Int? : V2#0*Int? : E2*Int? :[]: OrdList)

The rest of the proof of the lemma proceeds
along lines that should be familiar by now; no
new auxiliary results are needed and we just
present the necessary commands: we encour-
age the reader to try to obtain them by him-
self.

--- case 3

(auto .)

(split on (E2*Int? <= V2#0*Int?) .)

--- case true

(auto .)

--- case false

(auto .)

(ctor-term-split on (E1*Int? : V2#0*Int? :

V2#1*Int? : V2#2*OrdList?) .)

(auto .)

Once the last auto in the script above
has been executed, the ITP prompts us
with the goal at which point the proof
was interrupted to introduce the lemma
insert-sortedlist-aux; with this result
at our disposal we can discharge it with
auto. This brings forward the goal
sorted@3.1.1.1.1.1.1.1.1.1.0 and, simi-
larly, the ITP can finally prove it with auto

by using insert-orderedlist and complete
the proof.

3.3 Quantifiers

Even though all the examples considered so
far have consisted of universally quantified for-
mulas, the ITP can also deal with existential
quantifiers: we illustrate its use with an ex-
ample borrowed from the PVS’s tutorial [5,
Section 4.3].

We wish to prove that any postage require-
ment of 8 cents or more can be met solely
with 3 and 5 cent stamps, i.e., is the sum of
some multiple of 3 and some multiple of 5. As
such, this is simply a property about natural
numbers and the corresponding specification is
trivial. (The module INT is imported instead
of NAT because the proof needs the subtraction
operator, which is not available in NAT.)

fmod STAMP is

protecting INT .

endfm

Using E as the existential quantifier, the
property is then stated as

(goal stamps : STAMP |- A{I:Nat}

(E{Three:Nat ; Five:Nat}

((I:Nat + 8) =

((3 * Three:Nat) + (5 * Five:Nat)))) .)

and the proof proceeds by induction on I:Nat:

(ind on I:Nat .)

=================================

label-sel: stamps@1.0

=================================

E{Three:Nat ; Five:Nat}

(0 + 8 = 3 * Three:Nat + 5 * Five:Nat)

=================================

label: stamps@2.0

=================================

A{V0#0:Nat}(

(E{Three:Nat ; Five:Nat}

(V0#0:Nat + 8 =

3 * Three:Nat + 5 * Five:Nat))

==>

(E{Three:Nat ; Five:Nat}

(s V0#0:Nat + 8 =

3 * Three:Nat + 5 * Five:Nat)))

Clearly, letting Three:Nat and Five:Nat

both be 1 fulfills the base case; such instan-
tiation is communicated to the ITP through
the e-inst command:

(e-inst with ((Three:Nat <- (1)) ;

(Five:Nat <- (1))) .)

This replaces the goal stamps@1.0 with the fol-
lowing three ones: while the first is but the in-
stantiated goal, the two others make sure that
the terms used in the substitution have the
right sorts.

=================================

label: stamps@1.0

=================================

0 + 8 = 3 * 1 + 5 * 1

=================================

label-sel: stamps@1.1.0

=================================

1 : Nat

=================================

label: stamps@1.2.0

=================================

1 : Nat

All three cases are discharged with auto:

(auto .)

(auto .)

(auto .)

For the inductive step stamps@2.0, we need
to find Three:Nat and Five:Nat such that

s V0#0:Nat + 8= 3 * Three:Nat + 5 * Five:Nat

assuming that there exist natural numbers
T:Nat and F:Nat such that

V0#0:Nat + 8 = 3 * T:Nat + 5 * F:Nat

Then, if F:Nat is 0 we can take Five:Nat to
be 2 and T:Nat to be equal to Three:Nat -

3; otherwise, we obtain the result by making
Five:Nat equal to F:Nat - 1 and Three:Nat

to T:Nat + 1.
The ITP script mimics quite closely the

proof above. First, auto transforms the vari-
able V0#0:Nat in stamsp@2 into a constant and
adds the induction hypothesis to the specifica-
tion, removing it from the implication:

=================================

label-sel: stamps@2.0

=================================

E{Three:Nat ; Five:Nat}

(s V0#0*Nat + 8 = 3*Three:Nat + 5*Five:Nat)

Since the induction hypothesis is not a for-
mula in membership equational logic, it can-
not be added to the STAMP module and hence
does not show up in the show-all command.
However, the ITP internally keeps a link be-
tween the module and the formula which, at
present, can only be revealed with the Maude
command cont3 and that can be used in this
case to find out that the induction hypothe-
sis has been labeled as hyp-0. We can now
use e-inst to remove the existential quanti-
fier from it

(e-inst hyp-0 .)

which results in a new module that contains
the equation

V0#0*Nat + 8 =

3 * Three!hyp-0*Nat + 5 * Five!hyp-0*Nat

as can be checked with show-all.
The rest of the proof is straightforward: we

simply have to distinguish cases according to
whether Five!hyp-0*Nat is zero or not, and
instantiate Three:Nat and Five:Nat accord-
ingly.

(split on ((Five!hyp-0*Nat) <= 0) .)

--- Five!hyp-0*Nat <= 0 = true (i.e it is 0)

(e-inst with

((Three:Nat <- (_-_(Three!hyp-0*Nat, 3))) ;

3This command shows the term representing the
ITP’s internal state [3, Chapter 11]

(Five:Nat <- (2))) .)

(auto .)

(auto .)

(auto .)

--- Five!hyp-0*Nat <= 0 = false

(e-inst with

((Three:Nat <- (_+_(Three!hyp-0*Nat, 2))) ;

(Five:Nat <- (_-_(Five!hyp-0*Nat, 1)))) .)

(auto .)

(auto .)

(auto .)

There is also a command a-inst for uni-
versal quantifiers: the examples we currently
have are more involved and can be found at
the ITP’s webpage.

4 Constructor and defined member-
ships and the ind command

The behavior of the ind command (and
for the same reasons the ctor-split and
ctor-term-split commands) deserves a
closer look: how does the ITP generate the
inductive subgoals? In the LIST module,
the operators [] and _:_ are declared to be
constructors of the sorts List and NeList,
respectively, by means of the attribute ctor;
since NeList is a subsort of List, this
automatically makes _:_ a constructor of
List as well. Then, when asked to prove a
goal by structural induction on a variable of
sort List, the ind command generates two
subgoals:

• The first one, that corresponds to the base
case, is obtained by replacing the variable
with the constant [] in the goal.

• The second one, which is somewhat more
obscure and corresponds to the inductive
step, is built as an implication where the
antecedent and the consequent arise from
the original goal by replacing the variable
with a fresh one in the first case, and with
a term constructed using _:_ in the sec-
ond.

In general, the situation is a bit more com-
plicated and requires the notion of a construc-

tor membership. In Maude, an operator dec-
laration

op f : s1 · · · sn -> s0

is logically equivalent to a declaration

op f : [s1] · · · [sn] -> [s0]

at the kind level ([si] is the kind to which si

belongs), together with a membership axiom

mb f(x1:s1,...,xn:sn) : s0 .

The ITP, in addition, distinguishes those op-
erator declarations that contain the ctor at-
tribute from those that do not, and tags the
membership axioms associated to the latter
with the label metadata "dfn". Hence, the
LIST module is interpreted by the ITP as:

fmod LIST-MB is

protecting INT .

sorts NeList List .

subsort NeList < List .

op [] : -> [List] .

op _:_ : [Int] [List] -> [NeList] .

op _++_ : [List] [List] -> [List] .

var I : Int .

vars L L’ : List .

mb [] : List .

mb (I : L) : NeList .

mb (L ++ L’) : List [metadata "dfn"] .

eq [] ++ L = L .

eq (I : L) ++ L’ = I : (L ++ L’) .

endfm

The defined memberships of a functional
module are the memberships in the trans-
formed module that are tagged with the la-
bel metadata "dfn"; the remaining ones are
called constructor memberships. When the
ind command is used to reason by structural
induction on a variable of sort s, it gener-
ates the goals that correspond to the induc-
tive cases from the constructor memberships
associated to s and to all its subsorts.

The defined memberships in a specification
provide in a handy manner helpful information

for the ITP to reason with, but in “good” spec-
ifications they should actually be redundant
and deducible from the rest of the specification
(for example, it is clear that the concatena-
tion of two lists should also be a list). For this
situation to actually hold, the equations that
define the operations have to thoroughly con-
sider all possibilities so that every term even-
tually reduces to a canonical form to which a
constructor membership applies. This is the
sufficient completeness problem that we illus-
trate in the next section; see also Section 7.

4.1 Defined memberships revisited

To stress how defined memberships are treated
by the ITP, let us extend the LIST-MB module
with an operator empty? that checks whether
a list is empty or not. Admittedly, since
we already have a sort NeList to distinguish
nonempty lists, the use of the operator empty?
in this example is a bit contrived; let us stick
with it for the sake of the argument.

fmod LIST-MB is

protecting INT .

sorts NeList List .

subsort NeList < List .

op [] : -> [List] .

op _:_ : [Int] [List] -> [NeList] .

op _++_ : [List] [List] -> [List] .

op empty? : List -> Bool .

var I : Int .

vars L L’ : List .

mb [] : List .

mb (I : L) : NeList .

mb (L ++ L’) : List [metadata "dfn"] .

eq [] ++ L = L .

eq (I : L) ++ L’ = I : (L ++ L’) .

eq empty?([]) = true .

eq empty?(I : L) = false .

endfm

We can now try to show that the term
empty?(L) is of sort Bool for every list L.

(goal empty-bool : LIST-MB |-

A{L:List} ((empty?(L:List)) : Bool) .)

As expected, since the specification includes
the declaration

op empty? : List -> Bool .

the goal can be discharged by just using auto.
What would have happened, however, if we
had forgotten to add the equation

eq empty?([]) = true .

to the specification? Obviously, this would
have left undefined empty? over the empty
list with the undesired consequence that now
not all terms of the form empty?(L) are of
sort Bool. Nonetheless, the ITP would have
still proved it! This shows that even though
the defined memberships of a functional mod-
ule are not used to generate inductive cases,
they are nevertheless applied whenever possi-
ble. And this is precisely the sufficient com-
pleteness problem: to guarantee that the equa-
tions for the defined operators in the specifica-
tion consider all possible cases so that defined
memberships would become irrelevant from a
proof-theoretical point of view. In this situa-
tion, the defined membership

mb empty?(L) : Bool [metadata "dfn"] .

associated to the declaration of empty? is not
redundant and cannot be derived from the rest
of the specification.

5 A graphical interface for the ITP

Since the ITP is but a Maude specification, the
standard way of interacting with the tool is by
loading Maude in a shell and typing the com-
mands to be executed. Currently, however,
the ITP is being endowed with a graphical in-
terface that will spare the users from the need
to interact directly with Maude and to learn
the ITP syntax. Though not yet completed,4

we offer here a glimpse of what the interface
will look like.

Selection of the functional module to be
worked upon will be made through the use of

4We expect to have it ready in the early future.

Figure 1: Introducing a goal

Figure 2: Introducing a formula

menus. Then, a series of pop-up windows like
the one shown in Figure 1 will guide the user to
introduce the goal to be proved. In particular,
Figure 2 shows how formulas will be entered
through a formula editor that will avoid the
error-prone process of typing them directly in
the shell.

Once the goal has been introduced, the flow
of the proof is controlled by a window like
that shown in Figure 3. There the user can
choose which ITP command to apply from the
middle combo box, with the resulting subgoals
building up the proof tree—through which the
user can navigate—in the center of the win-
dow. The current subgoal can be selected by
clicking over it and appears marked with a *;
pressing then the info button will open a win-
dow showing the concrete goal as well as the
functional module in which it has to be proved.

6 ASIP: algebraic semantics of im-
perative semantics

The ASIP project is based on Goguen and
Malcolm’ work on algebraic semantics of im-
perative programs [7]. It aims to provide a ver-
sion of the ITP that may be used to formally
specify and verify software; in this approach,
the semantics of imperative semantics is de-
fined by specifying a class of abstract machines
and giving equational axioms which specify
the effect of programs on such machines.

Figure 3: Tree of pending goals

Goguen and Malcolm’s original work used
OBJ, but the fact that OBJ was not a theorem
prover and that some things had to be done
manually that should be done automatically
led Goguen to point out (in [6], a work upon
which [7] is based) that “it would be useful to
construct a verification interface for OBJ to
generate proof scores that use only techniques
already shown correct.” The ASIP+ITP tool
is an extension of the ITP in which such veri-
fication interface is made available; a detailed
presentation of the tool is provided in [4].

7 SCC: a sufficient completeness
checker

SCC [8] is an experimental tool for checking
the sufficient completeness of partial specifi-
cations written in Maude. Sufficient complete-
ness is the property that operations are defined
on all valid inputs. It is an important prop-
erty both for developers of specifications, to
check that they have not missed a case while
defining the operations, and to inductive the-
orem provers, to check the soundness of a pro-
posed induction scheme. The SCC tool has
been written in Maude and relies on Maude’s
reflective capabilities and the ITP tool. The
SCC tool is included in the latest distribu-
tion of the ITP tool and can be executed both
in stand-alone mode and through appropriate
commands during an ITP session. When ap-

plied to a module, it returns a set of equations
that, if valid, guarantee its sufficient complete-
ness.

For example, for the version of the LIST-MB

module in Section 4 that contains the decla-
ration of empty? at the sort level, but with
the equation empty?([]) = true missing, the
result would be:

(scc LIST-MB .)

=================================

CTOR-LIST-MB$1.0

=================================

|- true = false

+++++++++++++++++++++++++++++++++

Though not very informative, this output is
enough to point out that the specification is
not sufficiently complete.

8 Conclusions

In this tutorial, we have given a quick overview
of the ITP tool, an interactive, rewriting-based
theorem prover that can be used to prove in-
ductive properties of membership equational
specifications. Some of the inference rules im-
plemented in the ITP tool borrows from tech-
niques introduced by Goguen for proving prop-
erties of order-sorted equational specifications
using the OBJ system [6].

The ITP is still an experimental tool, but
the results obtained so far are quite encour-
aging. The ITP tool is the only theorem
prover at present that supports reasoning
about membership equational logic specifica-
tions. The key feature of membership equa-
tional logic is its capability to define sorts by
means of membership axioms. This allows the
specifications of very precise types, like sorted
lists, and of operations that reflect that typing.

The powerful integration of term rewriting
with a decision procedure for linear arithmetic
with uninterpreted function symbols, while
also available in other rewriting-based theorem
provers like the Rewriting Rule Laboratory [9],
has been easily and efficiently implemented in
the ITP by exploiting the reflective design of

the tool and the reflective capabilities of the
Maude system. This fact has encouraged us
to plan to add other decision procedures to
our tool in the near future.

Finally, the graphical interface, currently
under construction, will definitely help the
already growing ITP’s user community as a
much needed help to embark on more complex
verification challenges.

Acknowledgments. We thank Marina
Egea for very detailed on a previous draft.

References

[1] R. Bruni and J. Meseguer. Generalized
rewrite theories. In J. C. M. Baeten,
J. K. Lenstra, J. Parrow, and G. J. Woeg-
inger, editors, Automata, Languages and
Programming. 30th International Collo-
quium, ICALP 2003, volume 2719 of
LNCS, pages 252–266. Springer, 2003.

[2] M. Clavel. Reflection in Rewriting Logic:
Metalogical Foundations and Metapro-
gramming Applications. CSLI Publica-
tions, 2000.

[3] M. Clavel, F. Durán, S. Eker, P. Lin-
coln, N. Mart́ı-Oliet, J. Meseguer, and
C. Talcott. Maude manual (ver-
sion 2.1.1). http://maude.cs.uiuc.edu/
manual/, 2005.

[4] M. Clavel and J. Santa-Cruz. ASIP+ITP:
A verification tool based on algebraic se-
mantics. In this volume.

[5] J. Crow, S. Owre, J. Rushby, N. Shankar,
and M. Srivas. A tutorial introduction
to PVS. In Workshop on Industrial-
Strength Formal Specification Techniques,
Boca Raton, Florida, 1995.

[6] J. A. Goguen. OBJ as a theorem
prover with applications to hardware ver-
ification. In Current Trends in Hard-
ware Verification and Automated Theo-
rem Proving, pages 218–267. Springer-
Verlag, 1989.

[7] J. A. Goguen and G. Malcolm. Algebraic
Semantics of Imperative Programs. MIT
Press, 1996.

[8] J. Hendrix. The SCC tool’s home page.
http://maude.cs.uiuc.edu/tools/scc/

[9] D. Kapur and M. Subramaniam. New
uses of linear arithmetic in automated
theorem proving by induction. Journal
of Automated Reasoning, 16(1-2):39–78,
1996.

[10] J. Meseguer. Conditional rewriting logic
as a unified model of concurrency. The-
oretical Computer Science, 96(1):73–155,
1992.

[11] J. Meseguer. Membership algebra as a
logical framework for equational speci-
fication. In F. Parisi-Presicce, editor,
12th International Workshop, WADT’97,
volume 1376 of LNCS, pages 18–61.
Springer, 1998.

A ITP commands

• (goal Label : Entailment .). This
command introduces a goal Labelto be
proved with the ITP. The expression
Entailment has the form IdMod |- A{x1 :
s1, . . . , xn : sn} expression, with IdMod
the name of the module the goal is about,
x1, . . . , xn variables, and expression a
Horn clause built with & and =>.

• (lem Label : LEntailment .). This
command introduces a lemma, named
Label , to be proved with the ITP. The
expression LEntailment has the form
|- A{x1 : s1, . . . , xn : sn} expression,
with x1, . . . , xn variables and expression
a Horn clause built with & and =>.

• (auto .). It first transforms all the vari-
ables into fresh constants and then re-
duces the terms in the goal as much as
possible by using the equations in the
module as rewrite rules. When necessary,
decision procedures are applied to check
if the conditions of conditional equations
are satisfied.

• (c-ind on Nat-Term .). It generates
two subgoals from the current one. The
first one consists in the original goal as-
suming that the value of Nat-Term is 0.
The second subgoal states that if the orig-
inal one holds when the value of Nat-
Term is less that N, then it also holds
when the value of Nat-Term is N.

• (ctor-split on Const .). The goals
are generated from the constructor mem-
berships for the sort of Const and all its
subsorts, in the same way as for ind, but
no induction hypothesis is generated.

• (e-inst Label .). The existential for-
mula Label , which is a hypothesis, is “in-
stantiated” with values that satisfy it.

• (e-inst with Substitution .). It in-
stantiates the current existential goal
with the given Substitution.

• (ind on Var .). The goals are gener-
ated from the constructor memberships
for the sort of Var and all its subsorts.
Base cases correspond to unconditional
memberships of the form mb t : s ., and
give rise to new subgoals by replacing the
Var in the current goal with t. The induc-
tive steps correspond to conditional mem-
berships.

• (scc IdMod .). It first calls on the func-
tional module named IdMod the func-
tion checkCompleteness, which imple-
ments the SCC’s sufficient completeness
analizer. Then, it converts the resulting
proof obligations into a set of goals, which
are all associated with the constructor
submodule of IdMod . Finally, it elimi-
nates from the state of the proof those
goals that can be proved automatically
using the ITP’s auto command.

• (show-all .). It outputs the active mod-
ule in the ITP’s module database.

• (split on (Bool-Term) .). It splits
the current goal in two: one in which
Bool-Term is assumed to be true and an-
other one in which it is assumed to be
false.

