
On the Unification of Process Semantics: Logical
Semantics

David Romero Hernández, David de Frutos Escrig

Dpto. Sistemas Informáticos y Computación
Facultad CC. Matemáticas, Universidad Complutense de Madrid, Spain

dromeroh@pdi.ucm.es, defrutos@sip.ucm.es

Abstract. We continue with the task of obtaining a unifying view of
process semantics by considering in this case the logical characterization
of the semantics. Recently, a unified presentation of both the observa-
tional and the equational characterizations of the semantics has been
obtained. As in those papers, we start by considering the classical Linear
time-branching time spectrum developed by R.J. van Glabbeek. He pro-
vided indeed a logic characterization of most of the semantics classified in
his spectrum but, as was the case for the other kinds of semantics, it lacks
uniformity. In this paper, we provide a uniform logical characterization
of all the semantics in the extended spectrum. The common structure
of the formulas that constitute all the corresponding logics gives us a
much clearer picture of the spectrum, clarifying the relations between
the different semantics, and allows us to develop generic proofs of some
general properties of the semantics.

1 Introduction

The definition of the semantics for concurrent / non-deterministic processes is a
delicate question. As soon as the effect of non-determinism is taken into account
we have to decide to which extent we will do so. Trace semantics which were
adequate for deterministic systems obviously do not consider non-determinism
at all. Instead, bisimulation semantics captures all the information induced by
the choices at the observed process. There are different semantics for processes
in the literature. The most popular of them were collected in Van Glabbeek’s
linear time-branching time spectrum [vG01], after being introduced along the
years by different authors. But it is not only at the level of discrimination where
we have a choice for defining these semantics, we can also choose between dif-
ferent frameworks to describe the different semantics, so we have operational,
observational, testing, logical and equational semantics.

In [vG01] we find the famous picture of the ltbt-spectrum (Figure 1) and
descriptions of all the semantics in it including observational / testing, logi-
cal and equational (when possible) characterizations for each of the presented
semantics. Certainly, the basic elements used in the characterizations for a
given framework are related, but a more systematic approach is desirable. In
[dFGP09a,dFGP09b], it has been developed a unified presentation of both the

2

(tree semantics)

?
bisimulation semantics (B)

?
2-nested simulation semantics (2-S)

?
ready simulation semantics (RS)

?
possible worlds semantics (PW)

?
ready trace semantics (RT)

�
���

H
HHj

failure trace semantics (FT) readiness semantics (R)
HH

Hj
��

��
failures semantics (F)

?
completed trace semantics (CT)

?
trace semantics (T)

@
@
@R

possible-futures semantics (PF)

�
�
�
�
��

�
�
�

�
�
�

��	
simulation semantics (S)
H
HHH

HHH
HHj

Fig. 1. ltbt-spectrum

observational and the equational semantics, which shows how the generic defi-
nitions allow to relate both without repeating similar arguments.

In this paper we present a unified view of the logical semantics by showing
how different subsets of the Hennessy-Milner logic HML [HM85] characterize
each of the semantics in the spectrum. Certainly, the logical characterizations
presented in [vG01] were also subsets of HML, however in that paper the author
looked for sets of formulas as small as possible, probably driven by the idea that
a smaller set of formulas makes any study based on it simpler. Instead, we will
follow here the opposite approach, so that we are able to obtain more natural
characterizations which immediately show the relations between the different
semantics.

As already happened in [dFGP09a,dFGP09b], our unified logical semantics
will provide an enlarged spectrum (Figure 2) with a clearer structure and addi-
tional nodes which correspond to new semantics that in some cases have been
also defined using different frameworks by several authors. In particular, we will
show the logical characterization of revivals semantics introduced by Bill Roscoe
in [Ros09], that was already axiomatized in [dFGP09a].

S ? T

CS ? CT

RS PW RT
R

FT

F

Trace Simulation (TS) ? ?

PF

?

(IF) Impossible future

2S . . .

B

- -?

- -

? ?

?

- - ��
�*

��
�*HHj

HHj

? ?��	

�
�
�

��+

?

- - ��
�*

��
�*HHj

HHj

? ?
?

?
?

?

-?

Fig. 2. (A part of) the new spectrum

3

Moreover, we “discover” here the semantics of minimal readies that was not
included in the previous version of the extended spectrum, because the devel-
opment of the observational and equational frameworks did not detect their
existence, while now in the logical framework its definition comes quite natu-
rally. Finally, by considering the logical characterizations we have been able to
detect some new basic facts of the elements in the hierarchy of semantics, dis-
covering more new semantics that fill some gaps in it. We have, also been able
to discover a minor mistake in the classical logical characterization of one of
the semantics: possible worlds, that has been easily corrected when applying our
uniform characterization.

2 Preliminaries

We will not repeat here the long list of original definitions of all the semantics in
van Glabbeek’s spectrum. Please, look at [vG01]. The systematic classification
of all these semantics using both observational and equational characterizations
can be found at [dFGP09a,dFGP09b]. The main ingredient in this classification,
that of course was already present at the original spectrum, is the distinction be-
tween branching and linear time semantics. In particular, all the pure branching
semantics can be described by means of N-constrained simulations as defined at
[dFEGR08].

Definition 1 ([dFEGR08]). Given a relation N over BCCSP process, an N-
constrained simulation is a relation SN such that pSNq implies: SN ⊆ N and
for every a ∈ Act, if p a→ p′ there exists q′, q a→ q′ and p′SNq

′. We say that
process p is N-simulated by process q, or that q N-simulates p, written pvNSq,
whenever there exists an N-constrained simulation SN such that pSNq.

2.1 Van Glabbeek’s logical characterizations for process semantics

Van Glabbeek also presented in [vG01] a logical characterization of the semantics
in the (classical) linear time-branching time spectrum. These logics are sublan-
guages of the Hennessy-Milner logic [HM85], LHM , characterizing the bisimula-
tion semantics in the general (possibly infinitary) case.

Definition 2 (Hennessy-Milner logic, HML). The set LHM of Hennessy-
Milner logical formulas is defined by: > ∈ LHM ; if ϕ, ϕi ∈ LHM ∀i ∈ I and
a ∈ Act then we have

∧
i∈I ϕi, aϕ, ¬ϕ ∈ LHM .

For each labelled transition system P, the satisfaction relation |=⊆ P×LHM
is defined by:

• p |= > for all p ∈ P;
• p |= aϕ if there exists q ∈ P : p

a→ q and q |= ϕ;
• p |=

∧
i∈I ϕi if for all i ∈ I : p |= ϕi.

• p |= ¬ϕ if p 2 ϕ.

4

The finite version of this logic LfHM uses binary conjunction ∧ instead of the
general (possibly infinite) conjunction

∧
i∈I . The former can be obtained as a

particular case of this general conjunction operator: ϕ ∧ ψ, is obtained taking
I = {1, 2}, ϕ1 = ϕ, ϕ2 = ψ. In this way we obtain LfHM ⊆ LHM , and we will
say that LfHM is the finite part of the whole logic LHM . It is well known that
LfHM characterizes the bisimulation semantics between finite image processes,
that are those that do not allow infinitely branching for any action a ∈ Act at
any state.

Van Glabbeek uses LB to refer to LHM in [vG01].

Definition 3. Any subset L of LHM induces a logical semantics for processes,
given by the preorder vL: We have p vL q if, and only if, for all ϕ ∈ L we have
p |= ϕ ⇒ q |= ϕ. We say that L and L′ are equivalent, and we write L ∼ L′, if
they induce the same semantics, that is vL=vL′ .

Table 1 contains the logical characterization of each of the semantics in van
Glabbeek’s spectrum: LZ denotes each of the logical languages, the dots indicate
the clauses that we need to introduce to obtain the corresponding languages, and
the boxes marked with ν correspond to rules that are also valid in LZ , but not
needed. The following connectives, which appear in the table, are not in LHM ,
but can be obtained as syntactic sugar, as follows:

> :=
∧
i∈∅

ϕi X̃ :=
∧
a∈X
¬a> X̃ϕ′ := X̃ ∧ϕ′ 0 := Ãct

ϕ1∧ϕ2 :=
∧

i∈{1,2}

ϕi X :=
∧
a∈X

a>∧
∧
a6∈X

¬a> Xϕ′ := X∧ϕ′ ã := ¬a>

Disjunction does not appear in LHM , and therefore neither in any of the logics
LZ characterizing the semantics in the linear time-branching time spectrum.
Probably, it is folklore that it can be added in all cases without changing the
expressive power of each of these logics, but since we have not found a clear
statement in this direction in any of our references, next we establish the result
and comment on its proof.

Proposition 1 All the logics considered above are semantically closed under
disjunction, that is, if we define L∨Z with Z ∈ {T,CT, F, FT,R,RT, PF, S,CS,
RS, 2S, PW,B}, by adding the clause σi ∈ L∨Z ∀i ∈ I ⇒

∨
i∈I σi ∈ L∨Z to the

clauses which define each semantics LZ , replacing LZ by L∨Z at each of the other
clauses, and making p |=

∨
σi iff ∃i ∈ I: p |= ϕi, we will get an equivalent logic.

Proof. It is interesting to observe that even if the result is valid for all the
semantics, the reason behind, is not the same as in the case of bisimulation. In
that case, we only need to apply the De Morgan laws to get the “definition” of ∨
as a combination of ¬ and ∧. However, for the rest of the semantics, we do not
have negation as “constructor”, but ∨ distributes over ∧ and the prefix operator
(because

∨
aϕi = a

∨
ϕi), while negation is never applied to a formula ϕ′ ∈ L∨Z .

5

```````````Formulas
Semantics (Z) T S CT CS F FT R RT PW RS PF 2S B

> ∈ LZ • ν • ν • • • • ν ν ν ν ν

0 ∈ LZ • • ν ν ν ν ν ν ν ν ν

ϕ ∈ LZ , a ∈ Act⇒ • • • • • • • • ν • • • •
aϕ ∈ LZ
X ⊆ Act⇒ • ν ν ν ν ν ν ν ν
X̃ ∈ LZ

X ⊆ Act⇒ • ν • • ν ν ν
X ∈ LZ

ϕ ∈ LZ , X ⊆ Act⇒ • ν ν ν ν ν
X̃ϕ ∈ LZ

ϕ ∈ LZ , X ⊆ Act⇒ • ν ν ν ν
Xϕ ∈ LZ

ϕi ∈ LZ ∀i ∈ I ⇒ • • • • •∧
i∈I ϕi ∈ LZ

X ⊆ Act, ϕa ∈ LPW ∀a ∈ X ⇒ • ν ν ν∧
a∈X aϕa ∈ LZ

ϕi, ϕj ∈ LT ∀i ∈ I ∀j ∈ J ⇒ • ν ν∧
i∈I ϕi ∧

∧
j∈J ¬ϕj ∈ LZ

ϕ ∈ LS ⇒ • ν¬ϕ ∈ LZ
ϕ ∈ LZ ⇒ •¬ϕ ∈ LZ

Table 1. Van Glabbeek’s logical characterizations for the semantics in the ltbt-
spectrum

Therefore, by floating away any ∨ in a formula in L∨Z , it becomes equivalent to
a disjunction of formulas within the corresponding language LZ , and then the
equivalence of both logics follows.

Note that ∧ cannot be filtered by the prefix operator. By the way this fact
generates the difference between linear semantics (whose logics do not allow an
arbitrary use of conjunction) and branching semantics (where we can arbitrarily
use conjunction).

2.2 Observational characterizations for process semantics

Since we will relate at the end of the paper our new logical characterizations with
the unified observational characterizations of the semantics from [dFGP09b], we
briefly present next the definitions needed to get these observational characteri-
zations.

One important fact about these characterizations is its finite character. All
the considered observations are finite, and this means that the characterizations
work as long as we keep ourselves to the continuous side of the range of possible
semantic domains. Therefore, we have to restrict ourselves to finite processes,
or at least to image-finite processes. It is for this class of processes that Th. 1
works.



6

Definition 4 ([dFGP09b]). The sets LN of local observations corresponding
to each of the N-constrained simulations in the spectrum, and LN (p) of obser-
vations associated to a process p, are defined as follows:

• S: LU = {·}, LU (p) = ·.
• CS: LC = Bool, LC(p) is true if p ≡ 0 and false otherwise.
• RS: LI = P(Act), LI(p) = I(p) = {a| a ∈ Act and p a→}.
• TS: LT = P(Act∗), LT (p) is T(p), the set of traces of p.
• 2S: LS = {‖p‖S}, LS(p) = ‖p‖S.
• NS: LS = {‖p‖(n−1)S}, LS(p) = ‖p‖(n−1)S, where ‖p‖kS denotes the k-nested
simulation equivalence class of p.

Definition 5 ([dFGP09b]).

1. A branching general observation (bgo for short) of a process is a finite,
non-empty tree whose arcs are labeled with actions in Act and whose nodes
are labeled with local observations from LN , for N a constraint; the corre-
sponding set BGON is recursively defined as: 〈l, ∅〉 ∈ BGON for l ∈ LN ;
〈l, {(ai, bgoi)|i ∈ 1..n}〉 ∈ BGON for every n ∈ N, ai ∈ Act and bgoi ∈
BGON .

2. The set BGON (p) of branching general observations of p corresponding to the
constraint N is BGON (p) = {〈LN (p), S〉|S ⊆ {(a, bgo)|bgo ∈ BGON (p′), p

a→
p′}}.

3. We write p ≤bN q if BGON (p) ⊆ BGON (q).

Theorem 1 ([dFGP09b]). For all N ∈ {U,C, I, T, S} and any two processes
p and q, p vNS q iff p ≤bN q.

Definition 6 ([dFGP09b]).

1. The set LGON of linear general observations (lgo for short) for a local ob-
server LN is the subset of BGON defined as: 〈l, ∅〉 ∈ LGON for each l ∈ LN ;
〈l, {(a, lgo)}〉 whenever a ∈ Act and lgo ∈ LGON .

2. The set LGON (p) of linear general observations of a process p with respect
to the local observer LN is LGON (p) = BGON (p) ∩ LGON .

Definition 7 ([dFGP09b]). For ζ, ζ ′ ⊆ LGON , we define the orders ≤lN , ≤
l⊇
N ,

≤lfN , and ≤lf⊇N by:

• ζ ≤lN ζ ′ ⇔ ζ ⊆ ζ ′.
• ζ ≤l⊇N ζ ′ ⇔ ∀ X0a1X1 . . . Xn ∈ ζ ∃ Y0a1Y1 . . . Yn ∈ ζ ′ ∀i ∈ 0..n Xi ⊇ Yi.
• ζ ≤lfN ζ ′ ⇔ ∀ X0a1X1 . . . Xn ∈ ζ ∃ Y0a1Y1 . . . Yn ∈ ζ ′ Xn = Yn.
• ζ ≤lf⊇N ζ ′ ⇔ ∀ X0a1X1 . . . Xn ∈ ζ ∃ Y0a1Y1 . . . Yn ∈ ζ ′ Xn ⊇ Yn.

Definition 8 ([dFGP09b]). Given two processes p and q we have p ≤ZN q
iff LGON (p) ≤ZN LGON (q), where Z ∈ {l, l ⊆, lf, lf ⊆}. We will denote the
corresponding equivalence by =ZN .



7

Definition 9 ([dFGP09b]). For all ζ ⊆ LGON , we consider the following
closures:

• ζ⊇ = {X0a1X1 . . . Xn ∈ ζ | ∃ Y0a1Y1 . . . Yn ∈ ζ ′ ∀i ∈ 0..n Xi ⊇ Yi},
• ζf = {X0a1X1 . . . Xn ∈ ζ | ∃ Y0a1Y1 . . . Yn ∈ ζ ′ Xn = Yn},
• ζf⊇ = {X0a1X1 . . . Xn ∈ ζ | ∃ Y0a1Y1 . . . Yn ∈ ζ ′ Xn ⊇ Yn}.

Proposition 1 ([dFGP09b]). For all X ∈ {⊇, f, f ⊇}, ζ ≤lXN ζ ′ if and only
if ζ

X ⊆ ζ ′X .

Recalling the classification presented in [dFGP09b], we can divide the new
spectrum into four parts:

• Bisimulation semantics, which is characterized by HML as shown in [HM80]
and [HM85]. Note that this logic is closed under negation (¬), and therefore
the preorder defined is an equivalence (the bisimulation). The remaining
semantics are defined by non-trivial preorders, i.e., the preorders are not
equivalences, and their logical characterizations are, of course, not closed
under negation.

• Simulation semantics (S, CS, RS, . . . ), characterized by branching observa-
tions, which will be reflected by the non-restricted use of the operator

∧
in

the formulas.
• Linear semantics (T, F, R, . . . ), characterized by linear observations. We will

get them by severely restricting the use of
∧

and the use of the negation.
• Deterministic branching semantics, corresponding to an intermediate class

between branching and linear semantics, where determinism appears restrict-
ing the use of the operator

∧
in combination with the operator prefix. The

only semantics in this class is PW.

3 A new logical characterization of the most popular
semantics

Next we will present the new logics that characterize the different semantics in a
uniform way. Following the same procedure that was used in [dFGP09a,dFGP09b],
we will begin by studying the particular cases of the best known classical seman-
tics, that is, those at the level of ready simulation in the extended spectrum. In
Section 4, we will present the logics for the rest of the semantics in a unified way.

We will prove the equivalence between each of our logics and the correspond-
ing logical characterization defined by van Glabbeek. In this way we will have
proved that our new logical characterizations are indeed correct. But one of the
intended goals of our unification of the semantics was the possibility of obtaining
direct and natural proofs. This will be illustrated in Section 5 by showing the
equivalence between each of our logical semantics and the corresponding obser-
vational semantics in [dFGP09b]. This provides a new proof of the correctness of
these new characterizations without having to resort to the individual original
proofs of correctness for each of the semantics.



8

In Figure 3 we recall the semantics that are more “popular” due to their
“simplicity” and interest, then we start our unification work with them, as it was
done in [dFGP09a]. We prefer to postpone the deterministic branched semantics
in the figure, that is possible worlds, because its definition is a bit more complex.

RS PW RT
FT

R
F- - ��*HHj ��*

HHj

Fig. 3. More Popular Semantics

Definition 10 (The new logical characterizations).We start with the char-
acterization of ready simulation semantics, where, as already mentioned in the
introduction, its branching character will be reflected by the unrestricted use of
the

∧
operator. Next, we consider the linear semantics at the level of ready simu-

lation in the spectrum, that is, ready traces, failure traces, readiness and failures
semantics.

• Ready Simulation semantics(RS): we define the set of formulas L′RS
for ready simulation semantics by
• σ ∈ LI ⇒ σ ∈ L′RS;
• σ ∈ LI ⇒ ¬σ ∈ L′RS;
• ϕi ∈ L′RS ∀i ∈ I ⇒

∧
i∈I ϕi ∈ L′RS;

• ϕ ∈ L′RS , a ∈ Act⇒ aϕ ∈ L′RS.
where LI = {a>/a ∈ Act}.
• Ready traces semantics (RT): we define the set of formulas L′RT for
ready trace semantics by
• > ∈ L′RT ;
• ϕ ∈ L′RT , X1, X2 ⊆ L′I ⇒ (

∧
a∈X1

a> ∧
∧
b∈X2

¬b>) ∧ ϕ ∈ L′RT ;
• ϕ ∈ L′RT , a ∈ Act⇒ aϕ ∈ L′RT .

• Failure traces semantics (FT): we define the set of formulas L′FT for
failure traces semantics by
• > ∈ L′FT ;
• ϕ ∈ L′FT , X1 ⊆ L′I ⇒ (

∧
a∈X1

¬a>) ∧ ϕ ∈ L′FT ;
• ϕ ∈ L′FT , a ∈ Act⇒ aϕ ∈ L′FT .

• Readiness semantics (R): we define the set of formulas L′R for readiness
semantics by
• > ∈ L′R;
• X1 ⊆ L′I X2 ⊆ L′I ⇒ (

∧
a∈X1

a> ∧
∧
b∈X2

¬b>) ∈ L′R;
• ϕ ∈ L′R, a ∈ Act⇒ aϕ ∈ L′R.

• Failures semantics (F): we define the set of formulas L′F for failures
semantics by
• > ∈ L′F ;
• X1 ⊆ L′I ⇒ (

∧
a∈X1

¬a>) ∈ L′F ;



9

• ϕ ∈ L′F , a ∈ Act⇒ aϕ ∈ L′F .

In the definition above, we avoid introducing new operators which are in fact
just syntactic sugar, as done instead by van Glabbeek in [vG01]. As a conse-
quence, it is not necessary to use new definitions for the notion of satisfaction,
and we automatically obtain that all these logics define semantics coarser than
bisimulation semantics.

Proposition 2 L′RS ⊆ LB.

Now we can prove that each of the above logics, L′X , are supersets of the corre-
sponding logics, LX , defined by van Glabbeek in [vG01] forX ∈ {RS,RT, FT,R, F}.
For the cases of failure traces and failures semantics we obtain in fact that the
two logics are the same once the syntactic sugar used by van Glabbeek is re-
moved.

Proposition 3 1. L′RS ⊇ LRS. We also have LRS  L′RS.
2. L′RT ⊇ LRT . We also have LRT ( L′RT .
3. L′FT=desugared(LFT ), where the desugaring function removes the syntactic

sugar used in LFT .
4. L′R ⊇ LR. We also have LR  L′R.
5. L′F=desugared(LF ), where the desugared function removes the syntactic sugar

used in LF .

Proof. • 1| To prove that L′RS ⊇ LRS , it is sufficient to show that each formula
X =

∧
a∈X a>∧

∧
b/∈X ¬b> corresponding to X ⊆ Act belongs to L′RS . Both

a> and ¬b> are in L′RS , and the combination of these formulas with the
operator ∧ is also in the set L′RS . To prove that LRS  L′RS , it is sufficient
to see that the formula ¬b> belongs to L′RS . However, this formula does not
belong to the set LRS .

• 2| Similarly as we did in the case of ready simulation semantics, to prove
that L′RT ⊇ LRT it is sufficient to show that for every X ⊆ Act and any
ϕ ∈ LRT , the formula (

∧
af∈X a>∧

∧
b/∈X ¬b>)ϕ belongs to L′RT . Note that

the condition b /∈ X is equivalent to b ∈ X, so takingX1 = X andX2 = X we
have that the considered formula belongs to L′RT . To prove that LRT ⊂ L′RT ,
it is sufficient to note that the formula (¬b>)∧ϕ belongs to L′RT by simply
taking X1 = ∅ and X2 = {b}, but it does not belong to LRS .

• 3| In this case the result is trivial, since the definitions of LFT and L′FT are
indeed the same, once the syntactic sugar is removed.

• 4| To prove that L′R ⊇ LR, it is sufficient to show that for every X ⊆ Act

the formula (
∧
a∈X a>∧

∧
b/∈X ¬b>) belongs to L′R. Note that the condition

b /∈ X is equivalent to b ∈ X, so taking X1 = X and X2 = X we have that
the considered formula belongs to L′R. To check that LR  L′R, it is sufficient
to note that the formula (¬b>) belongs to L′R by simply taking X1 = ∅ and
X2 = {b}, while it does not belong to LR.
• 5| Trivial, the definitions of LF and L′F are indeed the same, except for the

fact that van Glabbeek uses some syntactic sugar that we preferred to omit.



10

We have seen in Section 1 that our logics intend to be as large as possible, to
obtain more natural characterizations. This is why, in most of the cases, we have
obtained a logic larger than that proposed by van Glabbeek. In order to prove
the equivalences between ours and van Glabbeek’s logics, we have to show that
the new formulas that we included in our logics are in fact redundant. Therefore,
they could be removed without modifying the expressive power of the logics.

Proposition 4 We have that (1) LRS ∼ L′RS; (2) LRT ∼ L′RT ; (3) LFT ∼
L′FT ; (4) LR ∼ L′R and (5) LF ∼ L′F .

Proof. • 1| Just observe that any conjunction of formulas in LI and negations
of formulas in LI can be obtained as the disjunction of the formulas X de-
scribing all the “compatible” offers. These are those including the positive and
negative information in the corresponding conjunction, i.e., a> ∼

∨
a∈X X;

¬a> ∼
∨
a/∈X X. Then by applying Prop. 1, we obtain L′RS ∼ LRS .

• 2|We have seen that the formulas in LRT are particular cases of the formulas
in L′RT , those that define the offers at the states along a computation (when
we apply the second clause in the definition of L′RT taking X2 = X1) and
define these computations by means of the prefix operator (when we apply
the third clause in the definition of L′RT ). Instead, our more general formulas
(
∧
a>∈X1

a>∧
∧
b>∈X2

¬b>)∧ϕ, where ϕ ∈ L′RT , could give us some partial
information, combining both positive information a> ∈ X1 and negative
information b> ∈ X2, which tell us that we are in an arbitrary state X,
satisfying X1 ⊆ X ⊆ X2. But as we did for the ready simulation semantics,
we can replace these formulas by the disjunction of all the formulas describing
any of these possible offers X. By repeating this procedure at each level of
the formula, we finally obtain a disjunction of formulas in LRT . To conclude,
it is enough to apply Prop. 1.

• 4| Note that van Glabbeek allowed in LR only “normal form” formulas from
L′R, which can give us information about the offers at the final state in a
computation (when we apply the second clause in the definition of L′R) or
simply define these computations by means of the prefix operator (when we
apply the third clause in the definition of L′R). However, our more general
formulas (

∧
a>∈X1

a>∧
∧
b>∈X2

¬b>), could also give us some partial infor-
mation about the final state, which could be both positive a> ∈ X1 and
negative b> ∈ X2. In the (allowed) case X1

⋂
X2 6= ∅ we have that the for-

mula is unsatisfiable. Otherwise, we are offering the actions a corresponding
to formulas a> in any X ⊆ LI , that satisfies X1 ⊆ X and X ⊆ X2, and we
can replace again the corresponding formula by a disjunction of formulas in
LR.

In the following, when we consider a logic LZ and the index Z refers to some
concrete semantics, as it is the case with RS, RT , FT , R, F above, by abuse of
notation we will simply write v′Z instead of vL′Z , when referring to the preorder
induced by the logic L′Z .



11

Theorem 2. 1. The logical semantics defined by v′RS is equivalent to the ob-
servational branching semantics defined by ≤bI , generated by the set of branch-
ing general observations BGOI .

2. The logical semantics v′RT induced by the logic L′RT is equivalent to the
observational linear semantics defined by the domain of linear general obser-
vations LGOI , ordered by the preorder ≤lI , defined at Def. 7.

3. The logical semantics v′FT induced by the logic L′FT is equivalent to the
observational linear semantics defined by the domain of linear general obser-
vations LGOI , ordered by ≤l⊇I .

4. The logical semantics v′R induced by the logic L′R is equivalent to the obser-
vational linear semantics defined by LGOI , ordered by ≤lfI .

5. The logical semantics v′F induced by the logic L′F is equivalent to the obser-
vational linear semantics defined by LGOI , ordered by ≤lf⊇I .

Proof. It is an immediate consequence of Th. 1, Prop. 4 and the results by van
Glabbeek collected in Table 1.

• 1|We have seen that our formulas are equivalent to van Glabbeek’s formulas,
L′RS ∼ LRS . It is easy to show that once we have eliminated the unsatisfiable
formulas in L′RS (those that simultaneously make two different offers, or
perform an action that was not included in the corresponding offer) the rest
of formulas in L′RS admit a normal form in the language N (LRS), which we
define as follows:
• X ⊆ Act, {ai/i ∈ I} ⊆ X, ϕi ∈ N (LRS) ⇒ (

∧
b∈X b>∧

∧
b/∈X ¬b>)∧∧

i∈I aiϕi ∈ N (LRS),
• {ai/i ∈ I} ⊆ Act, ϕi ∈ N (LRS) ⇒

∧
i∈I aiϕi ∈ N (LRS).

Within this set, consider the subset of formulas CN (LRS), which can be
generated using the first clause in the above definition. Therefore we can es-
tablish a isomorphism between this set of formulas CN (LRS) and the set of
possible branching general observations BGOI . Moreover, it is easy to prove
that if for every formula ϕ ∈ CN (LRS), we define bgoϕ as the corresponding
observation, we have ϕ |= p⇔ bgoϕ ∈ BGOI(p), from which it immediately
follows that CN (LRS) characterizes the ready simulation semantics defined
via BGOI .
Now, to conclude the proof is sufficient to show that N (LRS) and CN (LRS)
are equivalent. Note that whenever we use the second clause in the definition
of N (LRS), we are ignoring the possibility of specifying the offer X at the
state we are. As a consequence, the offer could be any satisfying {ai/i ∈
I} ⊆ X, for the corresponding set {ai/i ∈ I}. Then we can complete the
associated formula

∧
i∈I aiϕi adding the disjunction

∨
{ai/i∈I}⊆X(

∧
b∈X b>∧∧

b/∈X ¬b>). Floating all the disjunctions we obtain a disjunction of formulas
in N (LRS), which ends the proof.

• 2| We know that L′RT ∼ LRT . It is easy to show that eliminating all the
unsatisfiable formulas (those that simultaneously offer two different sets of
actions, or perform an action a that is not included in the corresponding



12

offer X) the rest of formulas in L′RT admit a normal form in the language
N (LRT ), which we define as follows:
• X ⊆ Act ⇒ (

∧
b∈X b> ∧

∧
b/∈X ¬b>) ∈ N (LRT ),

• X ⊆ Act, a ∈ X, ϕ ∈ N (LRT ) ⇒ (
∧
b∈X b> ∧

∧
b/∈X ¬b>) ∧ aϕ ∈

N (LRT ),
• > ∈ N (LRT ),
• a ∈ Act, ϕ ∈ N (LRT ) ⇒ aϕ ∈ N (LRT ).

As we did for the case of ready simulation, we could define the correspond-
ing language of complete formulas CN (LRT ). The formulas in L′RT that we
obtained in the proof of Prop. 4, for the case of RT, are indeed in CN (LRT ),
because any sub-formula give us some partial information about the offers at
the corresponding state, which in the worst case could be empty. Therefore,
when we translate this information to the language L′RT we obtain a disjunc-
tion between complete formulas in CN (LRT ). Easily we can establish the
isomorphism between this set of formulas CN (LRT ) and the domain LGOI ,
and it is easy to prove that for every formula ϕ ∈ CN (LRT ), if we define
lgoϕ as the corresponding observation, we have ϕ |= p ⇔ lgoϕ ∈ LGOI(p)
, from which it follows immediately that CN (LRT ) characterizes the ready
simulation semantics defined via LGOI . To conclude the proof we need to
show that N (LRT ) ≡ CN (LRT ), but this is proved in an analogous way as
it was done for N (LRS) and CN (LRS) above.

• 3| ⇒| Let p and q such that p v′FT q. We will show that p ≤l⊇I q.
Given an observation X0a1X1 . . . anXn ∈ LGOI(p), we have a failure trace
for the process p ∈ P, X0a1X1 . . . anXn. Now, we consider the formulas
ϕn =

∧
a∈X ¬a>; ϕi =

∧
a∈Xi

¬a> ∧ ai+1ϕi+1 with i ∈ 0 . . . n − 1, and we
have that p |= ϕ0. Therefore q |= ϕ0, which means that X0a1X1 . . . anXn

is a failure trace of q. Then, there is some Y0a1Y2 . . . anYn ∈ LGOI(p) with
Yi

⋂
Xi = ∅ ∀i = 0 . . . n, or equivalently Xi ⊇ Yi ∀i = 0 . . . n. As a result,

LGOI(p) ≤l⊇I LGOI(q), which means p ≤l⊇I q.
⇐| Let us suppose that for all X0a1X1 . . . anXn ∈ LGOI(p) there exists
Y0a1Y1 . . . anYn ∈ LGOI(q) such that Xi ⊇ Yi ∀i = 0 . . . n. We want to
show that if p |= ϕ then q |= ϕ, for all ϕ ∈ L′FT .
Let p |= ϕ, we can decompose ϕ by means of a sequence of formulas, taking
ϕ = ϕn, ϕi =

∧
a∈Xi

2
¬a> ∧ aiϕi−1 for i ∈ 1 . . . n and ϕ0 =

∧
a∈X0

2
¬a> .

Therefore, XnanXn−1 . . . a1X0 is a failure trace for the process p, so there
exists ZnanZn−1 . . . a1Z0 ∈ LGOI(p) with Zi

⋂
Xi = ∅, and applying that

p ≤l⊇I q, there exists some YnanYn−1 . . . a1Y0 ∈ LGOI(q) with Yi ⊆ Zi, so
that Yi

⋂
Xi = ∅ and then we get q |= ϕn.

• 4| Using the result in the proof of Prop. 4, for the case of R, it is enough to
show the result for the set of “normal form” formulas N (LR) defined by
• X ⊆ Act, ⇒ (

∧
b∈X b> ∧

∧
b/∈X ¬b>) ∈ N (LR),

• > ∈ N (LR),
• a ∈ Act, ϕ ∈ N (LR) ⇒ aϕ ∈ N (LR).



13

⇒| Let p and q such that p v′R q. We will show p ≤lfI q.
Given an observation X0a1X1 . . . anXn ∈ LGOI(p), it corresponds to the
readiness information a1 . . . anXn of p. Now, we consider the formulas ϕn =∧
a∈X a> ∧

∧
a/∈X ¬a>; ϕi−1 = aiϕi with i ∈ 1 . . . n − 1, and we have that

p |= ϕ0. Therefore q |= ϕ0, and a1 . . . anXn is a readiness information of q,
as a consequence, there is an observation Y0a1Y2 . . . anYn ∈ LGOI(q) with
Yn = Xn, proving p ≤lfI q.
⇐| Let us suppose that for all X0a1X1 . . . anXn ∈ LGOI(p) there exists
some Y0a1Y1 . . . anYn ∈ LGOI(q) such that Xn = Yn. We want to show that
if p |= ϕ then q |= ϕ for all ϕ ∈ CN (LR).
Let p |= ϕ, we can decompose ϕ taking ϕ = ϕn, ϕi = aiϕi−1, for all i ∈
1 . . . n, and ϕ0 =

∧
a∈X0

a>∧
∧
a/∈X0

¬a>. Then we have that anan−1 . . . a1X0

is a readiness information of p, so there exists some ZnanZn−1 . . . a1X0 ∈
LGOI(p), and then exists some YnanYn−1 . . . a1Y0 ∈ LGOI(q) with Y0 = X0,
from which we conclude that q |= ϕn.

• 5| ⇒| Let p and q such that p v′F q. We will show p ≤lf⊇I q.
Given an observationX0a1X1 . . . anXn ∈ LGOI(p), it generates a (maximal)
failure a1 . . . anXn of the process p. Now, we consider the formulas ϕn =∧
a∈X ¬a>; ϕi+1 = ai+1ϕi with i ∈ 0 . . . n − 1, and we have that p |= ϕ0.

Therefore, q |= ϕ0, so a1 . . . anXn is a failure information of q, and then
there is some Y0a1Y2 . . . anYn ∈ LGOI(q) with Yn

⋂
Xn = ∅, or equivalently

Xn ⊇ Yn, proving that p ≤lf⊇I q.
⇐| Let us suppose that for all X0a1X1 . . . anXn ∈ LGOI(p) there exists
some Y0a1Y1 . . . anYn ∈ LGOI(q) such that Xn ⊇ Yn. We want to show that
if p |= ϕ then q |= ϕ for all ϕ ∈ L′F .
Let p |= ϕ, we can decompose ϕ taking ϕ = ϕn, ϕi = aiϕi−1, with i ∈ 1 . . . n,
and ϕ0 =

∧
a∈X0

¬a>. From p |= ϕ we infer that anan−1 . . . a1X0 is a failure
information of the process p, so there exists ZnanZn−1 . . . a1Z0 ∈ LGOI(p)
with Z0

⋂
X0 = ∅, and then there is some YnanYn−1 . . . a1Y0 ∈ LGOI(q)

with Yn ⊆ Zn, so that Yn
⋂
Xn = ∅ obtaining q |= ϕn.

Example 1. Figure 2 shows the relationship between all the semantics in the
“level” of RS. Figure 4 shows a collection of paradigmatic examples to illustrate
differences between these semantics. These examples are “borderline”, presenting
pairs of processes that are equivalent w.r.t. any semantics in the spectrum that
is coarser than the considered one. All these facts can be checked by taking any
arbitrary formula from the logic characterizing each of the semantics. Moreover,
in all the cases but the third and last ones, the two processes are ordered from
left to right by vL′Z for the coarsest preorder for which the equivalence fails.
For readability, we omit the last > in all sub-formulas. Besides, ∼X, (resp. �X)
, where X is a set of indexes, represents any ∼Z ( resp. �Z), with Z ∈ X.

• P1 �F P2, and as a consequence P1 �{R, FT, RT, RS} P2; we can check it
using the fact that P1 |= ac(¬d ∧ ¬e), but P2 2 ac(¬d ∧ ¬e).



14

P1 P2 P5 P6

•
a

wwooooooooooooooo

a
��

a

''OOOOOOOOOOOOOOO

•
b

��~~
~~

~~
~

c
��

•
b

��~~
~~

~~
~
c

��

f
��@

@@
@@

@@
•
c

��

f
��@

@@
@@

@@

• •
d

��

• • • •
e

��

•

• •

•
a

wwooooooooooooooo

a
��

a

''OOOOOOOOOOOOOOO

•
b

��~~
~~

~~
~

c
��

•
b

��~~
~~

~~
~
c

��

f
��@

@@
@@

@@
•
c

��

f
��@

@@
@@

@@

• •
d

��

• •
d

wwooooooooooooooo
e

''OOOOOOOOOOOOOOO • •
e

��

•

• •

•
a
��~~

~~
~~

~
a

��

a
��@

@@
@@

@@

•
b

��

•
b

��

•
b

��•
c

��

•
c

��~~
~~

~~
~ d

��@
@@

@@
@@
•
d

��• •

•
a
��~~

~~
~~

~ a
��@

@@
@@

@@

•
b

��

•
b

��•
c

��

•
d

��• •

P3 P4 P7 P8

•
a
��~~

~~
~~

~ a
��@

@@
@@

@@

•
b

��~~
~~

~~
~

c
��

•
c

��

f
��@

@@
@@

@@

• •
d

��

•
e

��

•

• •

•
a
��~~

~~
~~

~ a
��@

@@
@@

@@

•
b

��~~
~~

~~
~

c
��

•
c

��

f
��@

@@
@@

@@

• •
e

��

•
d

��

•

• •

•
a

��•
b

��~~
~~

~~
~ b

��@
@@

@@
@@

•
c

��

•
d

��• •

•
a
��~~

~~
~~

~ a
��@

@@
@@

@@

•
b

��~~
~~

~~
~ b

��@
@@

@@
@@

•
b

��•
c

��

•
d

��

•
c

��• • •

Fig. 4. Example to show the strength of the different logics

• P2 ∼F P3; however, P2 �{R, RT, FT, RS} P3, using that P2 |= a(b ∧ c ∧ f),
but P3 2 a(b ∧ c ∧ f).

• P3 ∼{F, R} P4; however, P3 �{RT, FT, RS} P4, using that P3 |= a(¬b)c(¬d),
but P4 2 a(¬b)c(¬d).

• P5 ∼{F, FT} P6; however, P5 �{R, RT, RS} P6, using that P5 |= ab(c∧ d), but
P6 2 ab(c ∧ d).

• P6 ∼{F, R, RT, FT} P7; however, P6 �RS P7, using that P7 |= a(bc ∧ bd), but
P6 2 a(bc ∧ bd).

• P7 ∼{F, R, RT, FT, RS} P8.

4 Our new unified logical characterizations of the
semantics

Inspired by the concrete representative examples presented in the previous sec-
tion, now we can define the general format for the logical characterization of each
of the semantics in the new spectrum. We start by enlarging the spectrum a bit
more to include all the elements needed to characterize the rest of the semantics
in a very systematic way.

Definition 11. 1. Universal semantics (U): We define the set of Universal
formulas, L′U , that characterizes the trivial semantics that identifies all the
processes, by > ∈ L′U .

2. Complete semantics (C): The Complete semantics is that defined by vC ,
taking p vC q ::= (p a→ ⇒ ∃ b ∈ Act q b→). That is, it only distinguishes
terminated processes (equivalent to 0) from non-terminated ones. We define
the set of Complete formulas L′C characterizing it, by >, ¬0 ∈ L′C .



15

3. Initial offer semantics (I): The Initial offer semantics is that defined by
vI , taking p vI q ::= I(p) ⊆ I(q). That is, it only observes the set of initial
actions of each process, I(p) = {a | a ∈ Act ∧ p

a→}. We define the set of
Initial offer formulas L′I characterizing it, , by >, ¬0 ∈ L′I ; a> ∈ L′I for all
a ∈ Act.

In the definition above the sub-formula ¬0 is just syntactic sugar for the
formula ¬(

∧
a∈Act ¬a>), which can also be written as

∨
a∈Act a>. Therefore, all

these new logics are indeed sub-logics of LB , and so we do not need to define
their semantics.

Note that when studying the particular case N = I in Section 3, we already
introduced, in Def. 10, a set of formulas LI , which is indeed equivalent to the
(unified) logic L′I . This is so because the formula ¬0 that we now include in L′I
is actually redundant. The main reason for which we prefer the larger logic L′I is
that we are trying to find in all the cases the largest possible logics. In fact, as a
consequence of our choice, we immediately obtain that the Complete semantics
is coarser than the Initial offer semantics, because L′C ⊆ L′I . Based on this result
we will also easily obtain later, that the complete simulation is coarser than the
ready simulation.

4.1 The simulation semantics

As discussed in [dFGP09b], the simulation semantics constitute the spine of the
new spectrum. Moreover, all of them are defined in a homogeneous way using
the notion of constrained simulation in [dFEGR08].

We can obtain the five simulation semantics in the new spectrum by con-
sidering the constraint in the set {U,C, I, T, S}. Therefore, we have that SU is
equivalent to the classical simulation (S), SC is equivalent to the complete sim-
ulation (CS), SI is equivalent to the ready simulation (RS), ST is equivalent to
the trace simulation (TS), and SS is equivalent to the 2-nested simulation(2S)
(see [dFGP09b] for the details of the used notation).

Definition 12. We define the set of formulas L′SN
associated to N-constrained

simulation, where N ∈ {U,C, I, T, S}, by

• σ ∈ L′N ⇒ σ ∈ L′SN
;

• σ ∈ L′N ⇒ ¬σ ∈ L′SN
;

• ϕi ∈ L′SN
∀i ∈ I ⇒

∧
i∈I ϕi ∈ L′SN

;
• ϕ ∈ L′SN

, a ∈ Act⇒ aϕ ∈ L′SN
.

Next we will check the equivalence between our logical characterizations and
those presented by van Glabbeek in [vG01].

Proposition 5 We have L′S = LS.

Proof. We can see that the clauses defining L′S and LS produce the same set of
formulas. Although in L′S we have the clauses σ ∈ L′U ⇒ σ ∈ L′S ; σ ∈ L′U ⇒
¬σ ∈ L′S , they produce two trivial formulas > and ¬>, because in L′U we only
have the formula >.



16

Proposition 6 We have (1) L′CS = LCS and (2) L′2S = L2S.

Proof. • 1| Once again, the logical sets of formulas produced by L′CS and LCS
are the same. Although in L′CS , we have the clauses σ ∈ L′C ⇒ σ ∈ L′CS ,
σ ∈ L′C ⇒ ¬σ ∈ L′CS , from L′C ={>,¬>} we can only generate >, ¬>, 0 and
¬0. We need in fact 0 to reflect the second clause in the definition of LCS ,
while ¬0 ≡

∨
a∈Act a> so ¬0 is a disjunction of formulas from LCS , therefore

any formula including it can be rewritten into a disjunction of formulas in
LCS .

• 2| Another time, the logical sets of formulas produced by L′2S and L2S are
the same. Although in L′2S , we have the clause: σ ∈ L′S ⇒ σ ∈ L′2S it does
not generate new logical formulas, because we have LS ⊆ L2S , since the
formulas in LS are exactly those that we could produce using only the last
two clauses in the definition of L2S .

Remark 1. Note that we can use both affirmative formulas in L′C and their
negations. It comes from the fact that C -constrained simulation can be defined
using an equivalence relation as constraint. However, it is also true that we could
use vC as a constraint, then we could remove the clause σ ∈ L′C ⇒ σ ∈ L′SC

,
which generates ¬0 ∈ LSC

, getting the same complete simulation semantics. It
is important to note instead, that the other clause, which generates 0 ∈ L′SC

, is
crucial and cannot be removed from the definition.
These two facts appear also at the other simulation semantics in the extended
spectrum, for which we also present a logic characterization including the two
clauses above, but another equivalent characterization by removing one of those
two clauses (but not the other!).

4.2 Logical characterization of the linear semantics

We start by defining the closure operators, by means of which we will be able to
make precise to which extent conjunction can be used at the logical characteri-
zations of each of the linear semantics.

Definition 13. Given a logical set L′N with N ∈ {U,C, I, T, S}, we define:

1. Its symmetric closure L≡N by: σ ∈ L′N ⇒ σ ∈ L≡N ; σ ∈ L′N ⇒ ¬σ ∈ L≡N ;
σi ∈ L≡N ∀i ∈ I ⇒

∧
i∈I σi ∈ L≡N .

2. Its negative closure L¬N by: σ ∈ L′N ⇒ ¬σ ∈ L¬N ; σi ∈ L¬N ∀i ∈ I ⇒∧
i∈I σi ∈ L¬N .

3. Its positive closure L
√

N by: σ ∈ L′N ⇒ σ ∈ L
√

N ; σi ∈ L
√

N ∀i ∈ I ⇒∧
i∈I σi ∈ L

√

N .

Remark 2. Obviously these closures can be defined for any given logic L, but we
prefer to use the particular case of L′N since it will be enough for our goals here
and it allows to use a simpler notation.

Now we can describe in a generic way all the linear semantics in the new
spectrum.



17

Definition 14. 1. Based on the order ≤lN we define the set of formulas L′≤l
N
,

by:
• > ∈ L′≤l

N
;

• ϕ ∈ L′≤l
N
, σ ∈ L≡N ⇒ σ ∧ ϕ ∈ L′≤l

N
;

• ϕ ∈ L′≤l
N
, a ∈ Act⇒ aϕ ∈ L′≤l

N
.

2. Based on the order ≤l⊇N we define the set of formulas L′
≤l⊇

N

, by:

• > ∈ L′
≤l⊇

N

;

• ϕ ∈ L′
≤l⊇

N

, σ ∈ L¬N ⇒ σ ∧ ϕ ∈ L′
≤l⊇

N

;

• ϕ ∈ L′
≤l⊇

N

, a ∈ Act⇒ aϕ ∈ L′
≤l⊇

N

.

3. Based on the order ≤lfN we define the set of formulas L′
≤lf

N

, by:

• > ∈ L′
≤lf

N

;

• σ ∈ L≡N ⇒ σ ∈ L′
≤lf

N

;

• ϕ ∈ L′
≤lf

N

, a ∈ Act⇒ aϕ ∈ L′
≤lf

N

.

4. Based on the order ≤lf⊇N we define the set of formulas L′
≤lf⊇

N

, by:

• > ∈ L′
≤lf⊇

N

;

• σ ∈ L¬N ⇒ σ ∈ L′
≤lf⊇

N

;

• ϕ ∈ L′
≤lf⊇

N

, a ∈ Act⇒ aϕ ∈ L′
≤lf⊇

N

.

Note that for the coarsest semantics (e.g. those corresponding to plain refusals
and plain readiness when N = I) we only observe N at the end of the formula.
This is because we have no conjunctions in the formulas of the corresponding
languages L′

≤lf
N

and L′
≤lf⊇

N

, out those coming from the corresponding closures
L≡N and L¬N . Instead, the other two logics introduce new conjunctions that allow
the observation of N all along the computations. Moreover, we have used the
negative closure at the “failures based” semantics, and the symmetric closure at
the “readies based” semantics.

Definition 15. We can use the positive closure to define two new semantics
that were not studied in [dFGP09a,dFGP09b] nor elsewhere, as far as we know.

1. The semantics of minimal trace offers is that defined by the logic L′mto
with
• > ∈ L′mto;
• ϕ ∈ L′mto, σ ∈ L

√

N ⇒ σ ∧ ϕ ∈ L′mto;
• ϕ ∈ L′mto, a ∈ Act⇒ aϕ ∈ L′mto.

2. The semantics of minimal offers is that defined by the logic L′mo with
• > ∈ L′mo;
• σ ∈ L

√

N ⇒ σ ∈ L′mo;
• ϕ ∈ L′mo, a ∈ Act⇒ aϕ ∈ L′mo.



18

Although for each constraint N we have originally presented four different
linear semantics, all of them collapse whenever the corresponding constraint is
too simple, thus providing several characterizations of the same semantics. This
is the case for N = {U,C} which produces the trace semantics and the complete
traces semantics, respectively. In these two cases it is easy to prove that the four
logics are indeed equivalent. Therefore, we can use any of them to describe the
trace semantics, in particular we will use the simplest characterizations to prove
the following results.

Proposition 7 We have (1) L′
≤lf

U

= LT and (2) L′
≤lf⊇

C

= LCT .

Proof. • 1| Trivial, since the sets of clauses defining L′
≤lf

U

and LT are nearly
the same. Although we have in our definition the clause: σ ∈ L≡U ⇒ σ ∈ L′

≤lf
U

it does not add new logical formulas, because L≡U = {>}.
• 2| Trivial, since the sets of clauses defining L′

≤lf⊇
C

and LCT are nearly the
same. The only difference is that we use the general clause: σ ∈ L¬C ⇒ σ ∈
L′
≤lf⊇

C

instead of adding directly the formula 0, but since 0 ∈ L¬C , ¬0 ∈ L¬C
we have 0 ∈ L′

≤lf⊇
C

.

Corollary 1. L′
≤lf

U

∼ LT and L′
≤lf⊇

C

∼ LCT .

In order to illustrate the genericity of our characterizations it is interesting to
consider one of the finest semantics in the classic spectrum. We are talking about
the Possible Future semantics (PF). We find PF in Figure 1 below 2S, probably
because the more accurate simulation semantics TS, was not (still) included in
the spectrum. This is corrected in the new spectrum in Figure 2. Considering
N = T , we have indeed the following result.

Proposition 8 We have L′
≤lf

T

= LPF .

Proof. Trivial, since the sets of clauses defining L′
≤lf

T

and LPF are nearly the
same. The only difference is that in our definition we have the clause > ∈ L′

≤lf
T

,
but in the definition of LPF did not explicitly appear, although it corresponds
to the conjunction of an empty set of formulas.

Corollary 2. L′
≤lf

T

∼ LPF .

4.3 Logical characterization of the deterministic branching
semantics

Next we consider the case of the deterministic branching semantics. In the classic
spectrum the only such semantics is possible worlds (PW), but there is one such
semantics for each level of the new spectrum.



19

In order to capture the determinism, we need to consider formulas which in-
clude conjunction to express the desired branching, but only when it corresponds
to a choice between different actions. This leads us to the following scheme:

X ⊆ Act, ϕa ∈ LDN
∀a ∈ X ⇒

∧
a∈X

aϕa ∈ LDN

Definition 16. For each N ∈ {U,C, I, T, S}, we define the formulas of L′DN
,

by:

• > ∈ L′DN
;

• ϕ ∈ L′DN
, σ ∈ L≡N ⇒ σ ∧ ϕ ∈ L′DN

;
• X ⊆ Act, ϕa ∈ L′DN

∀a ∈ X ⇒
∧
a∈X aϕa ∈ L′DN

.

ForN = I we obtain the unified logical characterization of the PW semantics.

Proposition 9 We have L′DI
⊇ LPW .

Proof. Analogous to the case of ready simulation semantics.

By the way, L′DI
and LPW are not equivalent, but this is caused by the fact

that the original logical characterization LPW was wrong. It can be checked, for
instance, that taking p = abc + a(bc + d) + ab and q = a(bc + d) + ab we have
p �PW q, but p ∼LPW

q, since LPW cannot “observe” the intermediate offer
that makes the possible world abc different from those of q. Instead, the formula
ϕ ≡ a(¬d∧ bc) ∈ LDI

is enough to distinguish p and q, since we have p |= ϕ and
q 2 ϕ.

Corollary 3. L′DI
∼ LPW .

```````````Formulas
Constraints (N) U C I T S B

> ∈ L′N • • • • ν ν

¬0 ∈ L′N • • ν ν ν

a ∈ Act⇒ a> ∈ L′N • ν ν ν

ϕ ∈ L′N , a ∈ Act⇒ • • •
aϕ ∈ L′N

ϕi ∈ L′N ∀i ∈ I ⇒ • •∧
i∈I ϕi ∈ L′N
ϕ ∈ L′N ⇒ •¬ϕ ∈ L′N

Table 2. Logical characterizations of the semantics used as constraints in the main
N-constrained semantics

In Tables 2 and 3, we present schematically all our results in a three-dimensional
way: Table 3, presents the rules defining the logics characterizing each of the se-
mantics at some level of the new spectrum, while Table 2 contains the logics
that characterize the constraint governing each of these “levels”.

20

```````````Formulas
Semantics (YN ) ≤lf⊇

N ≤lf
N ≤l⊇

N ≤
l
N DN SN N ∈ {U,C, I, T, S}

F R FT RT PW RS N = I

> ∈ L′YN • • • • • ν
ϕ ∈ L′YN , a ∈ Act⇒ • • • • ν •

aϕ ∈ L′YN
ϕ ∈ L¬N ⇒ • ν ν ν ν ν
ϕ ∈ L′YN
ϕ ∈ L≡N ⇒ • ν ν ν
ϕ ∈ L′YN

ϕ ∈ L′YN , σ ∈ L
¬
N ⇒ • ν ν ν

σ ∧ ϕ ∈ L′YN
ϕ ∈ L′YN , σ ∈ L

≡
N ⇒ • • ν

σ ∧ ϕ ∈ L′YN
X ⊆ Act, ϕa ∈ L′YN ∀a ∈ X ⇒ • ν∧

a∈X aϕa ∈ L′YN
ϕi ∈ L′YN ∀i ∈ I ⇒ •∧

i∈I ϕi ∈ L′YN
ϕ ∈ LN ⇒ •
ϕ ∈ L′YN
ϕ ∈ LN ⇒ •¬ϕ ∈ L′YN

Table 3. Our new logical characterizations for the semantics at each level of the ltbt-
spectrum

5 Relating the unified logical characterizations and the
unified observational model

In this section we will prove directly the equivalence between our unified logical
characterizations and the unified observational semantics developed in [dFGP09b].
As we indicated in Section 2 we have to restrict ourselves to finite image pro-
cesses to obtain the result. As a byproduct, we obtain for this kind of processes
that the finite parts of each of the corresponding languages, that are obtained
by intersection with LfHM , give us a pure finite logical characterization of the
semantics.

We start by considering the following concept of normal formula.

Definition 17 (Normal formula N (L∗)).

1. Given a set of formulas L∗, whose outermost operator is not the conjunction,
we define the set of induced normal formulas, N (L∗), as those generated by
the clause: If Γ1, Γ2 ⊆ L∗, {ai | i ∈ I} ⊆ Act, ϕi ∈ N (L∗) then

(
∧
σ∈Γ1

σ ∧
∧
σ∈Γ2

¬σ) ∧
∧
i∈I

aiϕi ∈ N (L∗).

2. Now, for each N ∈ {U,C, I, T, S} and each YN ∈ {SN ,≤lN ,≤
l⊇
N ,≤

lf
N ,≤

lf⊇
N ,

DN} in the spectrum, we define the set of normal formulas, NYN (L∗N ) ⊆ L′YN

simply as: NYN (L∗N ) = N (L∗N )
⋂
L′YN

where L∗N is the set of formulas in
L′N whose outermost operator is not the conjunction.



21

Remark 3. By abuse of notation when some of the elements that appear in our
normal formulas do not appear in the corresponding set L′YN

, we assume that
these formulas have been extended by conjunction with >, using the fact that∧
σ∈∅ σ is another syntactic form to express >.
Note that in these new sets of normal formulas, we admit the use of infinite

conjunction. As a consequence, these formulas could also have infinite depth, if
we consider the depths of the formulas in L′N . However, if we define the normal
depth of formulas in N (L∗N ) as that obtained by counting the recursive nesting
in the application of Def. 17, then any normal formula has finite normal depth,
and the set they form can be explored by structural induction.

Theorem 3. The set of normal formulas NYN (L∗N ) associated to each of the
semantics in the spectrum is equivalent to the full set of formulas L′YN

.

Proof. It is easy to see, by structural induction, that all the formulas in L′YN

admit a normal formula in the sense of Def. 17, that is obtained by regrouping
the subformulas in the given formula and applying Prop. 1.

Definition 18. We define the set of complete normal formulas CN (L∗) (re-
spectively, the set of complete normal formulas associated to each semantics in
the spectrum CNYN (L∗N )) as the set of normal formulas (respectively the set
of normal formulas associated to each semantics in the spectrum) that satisfy
recursively the condition Γ2 = Γ1.

The next theorem proves that we can “approximate” any such infinite con-
junction using finite conjunction and thus “real” formulas.

Theorem 4. If we restrict ourselves to the class of finite image processes that
are those that do not allow infinitely branching for any action a ∈ Act, any
complete normal formula ϕ ∈ CN (L∗) can be approximated by a set of finite
normal formulas {ϕk | k ∈ N} ⊆ FN (L∗) that only use finite conjunction, that
is, we have p |= ϕ⇔ p |= ϕk ∀k.

Proof. We define the sequence ϕn by structural induction on the normal depth
of ϕ:

• ϕ = (
∧
σ∈Γ1

σ ∧
∧
σ∈Γ1

¬σ) We consider a fixed enumeration of the set L∗ =
{σk|k ∈ N}, and we define L∗6k = {σj ∈ L∗|j 6 k}. Then, for each n ∈ N,
we define

ϕn =
∧

σ∈Γ1∩L∗6n

σ ∧
∧

σ∈Γ1∩L∗6n

¬σ

It is clear that each ϕn informs us about σn ∈ L∗ and then the result is
immediate.

• ϕ = (
∧
σ∈Γ1

σ ∧
∧
σ∈Γ1

¬σ) ∧
∧
i∈I aiϕi By structural induction we can as-

sume that the result is true for any sub-formula ϕi. Then we define ϕn =∧
σ∈Γ1∩L∗6n σ ∧

∧
σ∈Γ1∩L∗6n ¬σ ∧

∧
i∈I aiϕ

n
i . Now, if we decompose ϕ as



22

ϕI ∧ϕII (taking ϕII =
∧
i∈I aiϕi, and analogously for the set of approxima-

tions) we have that p |= ϕn ⇔ p |= ϕnI ∧ p |= ϕnII . If p |= ϕn then we have
p |= ϕnI ∀n ∈ N, and arguing as in the base case above, we conclude p |= ϕI .
Any finite image process p can be decomposed as: p =

∑
ai∈Act

∑mi

j=1 a
j
ip
j
i ,

and we have p |= ϕnII ⇔ ∀i ∃j ai = aji ∧ p
j
i |= ϕni . Then if we have p |= ϕnII

∀n ∈ N, for each i there exists some j ∈ 1 . . .mi such that pji |= ϕni , for
infinitely many n’s, but this means that pji |= ϕni , for all n ∈ N, and then by
applying the induction hypothesis we have pji |= ϕi, thus getting p |= ϕ.

Theorem 5. We can define a natural correspondence between the set of com-
plete normal formulas associated to a semantics CNYN (L∗N ) and the correspond-
ing domain of observations that defines its observational semantics. That corre-
spondence ↔ satisfies that ϕ ↔ θ ⇒ (p |= ϕ ⇔ θ ∈ Obss(p)). Moreover, this
correspondence produces the following results for each of the semantics in the
spectrum:

1. The set of complete normal formulas CNSN (L∗N ) and the domain of branch-
ing general observations GBON are isomorphic.

2. The set of complete normal formulas CN≤l
N
(L∗N ) and the domain of linear

general observations LGON are isomorphic.
3. The set of complete normal formulas CN≤l⊇

N
(L∗N ) and the domain of linear

general observations LGON are isomorphic.
4. The set of complete normal formulas CN≤lf

N
(L∗N ) and the quotient domain

LGON/'lf
N

are isomorphic.
5. The set of complete normal formulas CN≤lf⊇

N
(L∗N ) and the quotient domain

LGON/'lf⊇
N

are isomorphic.
6. The set of complete normal formulas CNDN (L∗N ) and the domain of deter-

ministic branching general observations dBGON are isomorphic.

Proof. • 1| As we can see in Figure 5, a branching observation is a bi-labelled
tree, whose nodes are local observations and whose arcs are labelled by ac-
tions.

l ∈
LN (p)

ln ∈
LN (pn)

l1 ∈
LN (p1)

a1
ak

an

. . .

. . .

. . .

. . .&%
'$
��	

?
@@R

&%
'$
�	

?
@R&%

'$
�	

?
@R

Fig. 5. General diagram of a bgo



23

The general form of any complete normal formula in CNSN (L∗N ) is (
∧
σ∈Γ σ∧∧

σ/∈Γ ¬σ) ∧
∧
i∈I aifi, with fi ∈ CNSN (L∗N ) ∀i ∈ I. Since the language

L′N characterizes the semantics used to get the local observations we can
associate to each complete formula (

∧
σ∈Γ σ ∧

∧
σ/∈Γ ¬σ) the corresponding

local observation l ∈ LN and then, by applying structural induction, we
obtain the observation associated to each formula fi ∈ CNSN (L∗N ), thus
getting the branching general observation BGON associated to the given
formula. It is easy to see that this correspondence is indeed a bijection.

• 2| Analogous to Case 1, but in this case the obtained (degenerated) tree is
just a single branch, thus corresponding to a lgo in LGON .

• 3| In this Case, the general form of a complete normal formula in CN≤l⊇
N
(L∗N ),

is f = (> ∧
∧
σ/∈Γ ¬σ) ∧ af ′, with f ′ ∈ CN≤l⊇

N
(L∗N ). If we close the set Γ

by derivability obtaining Γ ′ and then consider its complement Γ ′, we can
consider the local observation l that satisfies all the formulas in Γ ′ and none
in Γ ′. The linear general observation lgo corresponding to f, is then recur-
sively defined as 〈l, {(a, lgo′)}〉 where lgo′ is the linear general observation
corresponding to f ′.
To proceed in the opposite direction, we just need to take as Γ the comple-
ment of the set of formulas in L′N satisfied by the local observation l at the
root of the given LGON , and then we proceed in a recursive way.

• 4| In this case, the general form of a complete normal formulas in CN≤lf
N
(L∗N )

is f = >∧a1(. . . (>∧an−1(>∧an(
∧
σ∈Γ σ∧

∧
σ/∈Γ ¬σ) . . .). Now we establish

a correspondence between the set of local observations LN and the sets Γ ⊆
L∗N as done at Cases 1 and 2 above, and then we define the correspondence
↔ by ignoring the values of all the intermediate local observations at the
considered lgo, only considering the local observation at the end.

• 5| We only need to apply the same procedure as in Case 4, using now the
ideas in Case 3.

• 6| Analogous to Case 1, but now it is not allowed to have repeated actions
in the arcs leaving any node of an observation; this is obviously reflected at
the form of the formulas in the corresponding language.

Remark 4. It is a bit surprising to find that the lgo′s in LGON are related in a
bijective way both with the complete normal formulas in N≤l

N
(L∗N ) and those

in N≤l⊇
N
(L∗N ). Let us consider the case N = I to explain this fact. Then a

cnf in N≤l
I
(L∗I) specifies the set at the corresponding local observation I(p) ⊆

P(Act) by means of a formula (
∧
σ∈Γ σ ∧

∧
σ/∈Γ ¬σ). The formulas in Γ are just

the elements of the corresponding set I(p), while those in Γ correspond to its
complement (that gives redundant information here).

When considering the failure traces semantics, the formulas inN≤l⊇
I
(L∗I) only

contain the negative part
∧
σ/∈Γ ¬σ that defines the complement of the adequate

set I(p). Since when working with this semantics the considered sets of lgo′s
could be assumed to be closed w.r.t. the order N l⊇ define in Def. 7, then we
will not lose soundness when “assuming” that any formula

∧
σ/∈Γ ¬σ “generates”

the observation associated to Γ , although it could be the case that some of



24

the formulas σ ∈ Γ were also not saisfied since the corresponding state I(p) is
smaller. But under the failures and failure traces semantics we can proceed by
closing the set of offers upwards w.r.t. ⊆ and no new failure is introduced.

Theorem 6. The logical semantics v′YN
induced by the logic L′YN

, where YN ∈
{SN ,≤lN ,≤

l⊇
N ,≤

lf
N ,≤

lf⊇
N , DN}, is equivalent to the corresponding observational

semantics, defined at Def. 5 and Def. 6. In order to unify notation we will note
here by GON the corresponding semantic domain.

Proof. Using Th. 3 we get L′YN
∼ NYN (L∗N ). Applying Th. 5 we get the isomor-

phism between the set CNYN (L∗N ) and the corresponding set of general obser-
vations GON .

To conclude the proof, we just need to show that NYN (L∗N ) and CNYN (L∗N )
are equivalent. Any consistent formula in NYN (L∗N ) (Γ1

⋂
Γ2 = ∅), provides

only some partial information about the states in a computation, so that the
concrete values of these states are any characterized by a set Γ with Γ1 ⊆ Γ ⊆
Γ2. Therefore, we can replace Γ1 and Γ2 by Γ and Γ , respectively, adding the
disjunction over all the possible values of Γ , to characterize the set of processes
specified by the formula. Now it is enough to float the disjunction to obtain a
disjunction of formulas in CNYN (L∗N ), and applying Prop. 1 and Th. 4, we get
the equivalence between the two sets of formulas.

Corollary 4. 1. The unified logical semantic defined at Def. 12 is equivalent
to the N-simulation semantics.

2. The unified logical semantic defined at Def. 14.1 is equivalent to the N-ready
traces semantics.

3. The unified logical semantic defined at Def. 14.2 is equivalent to the N-failure
traces semantics.

4. The unified logical semantic defined at Def. 14.3 is equivalent to the N-
readiness semantics.

5. The unified logical semantic defined at Def. 14.4 is equivalent to the N-failure
semantics.

6. The unified logical semantic defined at Def. 16 is equivalent to the N-deterministic
branched semantics.

Proof. Since it was proved in [dFGP09b] that any observational semantics char-
acterize the corresponding (classical) semantics in the (extended) ltbt-spectrum,
we obtain as an immediate corollary the equivalence between our (unified) logical
characterizations and the those classical semantics.

6 The real diamond structure

Now we will explore in more detail the real structure of the extended spectrum,
as it was already done at the end of [dFGP09a]. One could think that each
diamond in that spectrum corresponds to a lattice structure. However, this is not
the case: there is another semantics coarser than both N -readiness and N -failure



25

RS
?

PW
?

RT
?

R ∧ FTXXXXz
����9

R ∨ FT
?
F

�
�
��+

FTPPPqQ
Q
Q
Qs

Q
Q
QQs

R���) �
�

�
�+

Fig. 6. The diamond below ready simulation

traces and finer than N -failures, and another finer than those two semantics and
coarser than N -ready traces. Focusing on the case N = I the obtained complete
structure is that shown in Figure 6, in which we include the new join semantics
R ∧ FT and the meet one R ∨ FT .

Since readiness semantics observes the ready set at the end of the trace, while
failure traces observes failures during the computation, it is natural to expect
that the join semantics R∧FT will observe both failures during the computation
and ready sets at the end. This is indeed the case. The corresponding observa-
tional characterization is obtained by means of a new order ≤l⊇∧fN on the set
LGOI . Next we directly give the generic definition for any constraint N.

Definition 19. Let ζ, ζ ′ ⊆ LGON , we define

ζ ≤l⊇∧fN ζ ′ ⇔ ∀ X0a1X1 . . . Xn ∈ ζ ∃ Y0a1Y1 . . . Yn ∈ ζ ′ (∀i ∈ 0..n− 1 Xi ⊇ Yi)
∧ Xn = Yn

It is easy to see that we can also obtain ≤l⊇∧fN as the conjunction of the
orders ≤l⊇N and ≤lfN , that is, ζ ≤l⊇∧fN ζ ′ ⇔ ζ ≤l⊇N ζ ′ and ζ ≤lfN ζ ′.

The observational characterization of the meet semantics R ∨ FT is a bit
more complicated.

Definition 20. Let ζ, ζ ′ ⊆ LGON , we define

ζ ≤l⊇∨fN ζ ′ ⇔ ∀ X0a1X1 . . . Xn ∈ ζ ∃ {Y0a1Y1 . . . Y jn |j ∈ J} ⊆ ζ ′ such that
Xn =

⋃
j∈J Y

j
n

By means of some simple algebraic manipulations we can get the following
equivalent expression:

ζ ≤l⊇∨fN ζ ′ ⇔ ∀ X0a1X1 . . . Xn ∈ ζ ∀a ∈ Xn ∃ Y0a1Y1 . . . Yn ∈ ζ ′ such that
(a ∈ Yn ∧ Yn ⊆ Xn)

Next we present the logical characterizations of these new semantics. Al-
though these semantics were already included in the extended spectrum at
[dFGP09b] to show the generality of our approach, and Roscoe has already stud-
ied the meet semantics R ∨ FT with the name of revivals semantics in [Ros09],
we think that their logical characterizations show in a very clear way the features
and properties of the new semantics. Since, obviously, the two new families of



26

semantics are in the linear side of the spectrum, the corresponding families of
formulas characterizing them will include both > and those formulas generated
by applying the prefix operator: > ∈ L≤Z

N
; ϕ ∈ L≤Z

N
, a ∈ Act ⇒ aϕ ∈ L≤Z

N
;

where the super-index Z ∈ {≤l⊇∧fN ,≤l⊇∨fN } will determine the two families of
semantics.

Next we consider the case of the most popular semantics, i.e., those at the
level of ready simulation (RS). Therefore, we have to characterize the semantics
R ∧ FT and R ∨ FT . Obviously, the first corresponds to a semantics that is
finer than both R and FT, and therefore the set of formulas defining its logical
characterization will be bigger than those for these two semantics. In the second
case we just need to connect the clauses that define those two logics in the
adequate way.

Definition 21 (logical characterization of (R ∧ FT) and (R ∨ FT)).

1. We define the set of formulas L′
≤l⊇∧f

I

, as that generated by the clauses:

• > ∈ L′
≤l⊇∧f

I

;

• ϕ ∈ L′
≤l⊇∧f

I

, σ ∈ L¬I ⇒ σ ∧ ϕ ∈ L′
≤l⊇∧f

I

; σ ∈ L≡I ⇒ σ ∈ L′
≤l⊇∧f

I

;

• ϕ ∈ L′
≤l⊇∧f

I

, a ∈ Act⇒ aϕ ∈ L′
≤l⊇∧f

I

.

2. We define the set of formulas L′
≤l⊇∨f

I

as that generated by the clauses:

• > ∈ L′
≤l⊇∨f

I

;

• σ, σj ∈ L′I ∀j ∈ J ⇒ (σ ∧
∧
j∈J ¬σj>) ∈ L≤l⊇∨f

I
;

• ϕ ∈ L′
≤l⊇∨f

I

, a ∈ Act⇒ aϕ ∈ L′
≤l⊇∨f

I

.

Theorem 7. 1. The logical semantics induced by the logic L′
≤l⊇∧f

I

is equivalent
to that defined by the order v≤l⊇∧f

I
induced by the observational semantics

defined by LGOI , with the order ≤l⊇∧fI .
2. The logical semantics induced by the logic L′

≤l⊇∨f
I

is equivalent to that defined

by the order v′
≤l⊇∨f

I

induced by observational semantics defined by LGOI ,

with the order ≤l⊇∨fI .

By the way, we just need to replace the constraint I by the generic constraint
N to obtain the definitions and results for the general case.

7 Conclusions and future work

We have concluded in this paper the work on unification of all the strong process
semantics by considering here the logic approach, while [dFGP09a,dFGP09b]
considered the observational and the equational approaches. As in the previous
cases, our main goal was to clarify the relationships between all the process
semantics, that initially were classified in a slightly confused way in [vG01]. Our
starting point has been the Henessy-Milner Logic [HM85]: we have looked for



27

clearly structured parts of it, that characterize each of the semantics. Once more,
the difference between branching-time semantics and linear-time semantics is
the key point to isolate the components that generate that structure. Moreover,
the formulas defining the constraint corresponding to each of the simulations
semantics also appear in the definition of the languages characterizing each of
the semantics at the same level in the spectrum.

We had expected that our unified logical semantics would be closer to the
unified observational semantics than what we have finally found. This is because
logical formulas do not have a natural structure, and then we have to impose
it by introducing the adequate notions of normal forms. At the same time, this
lack of structure allows to consider formulas defining approximation properties
that, even if redundant, we have preferred to maintain in our logics in order to
have simple syntactical ways to express those approximation properties.

Although we expected that our work would be mainly exploratory simply,
classifying the semantics previously introduced in other papers, we have had
at least a couple of surprises. First, we have “discovered” two new more linear
semantics at each of the levels of the spectrum. They correspond in fact to the
use of a part of the approximation properties discussed above. Additionally, we
found out that the classic logical characterizations of the Possible Worlds (PW)
semantics was wrong. We guess that this mistake was caused by a non-structured
definition of the rules defining the logic; at least, it was when we were trying
to unwrap the original characterization to look for the elements in our unified
characterizations that we discovered the mistake.

Once that we have available all the unified characterizations of the semantics
we will have a much clearer picture of the spectrum, and we can use the param-
eterized definitions to prove generic properties of all or a part of the semantics
in a generic way, without having to repeat similar proofs for each of them.

There are several directions in which we plan to extend our work. Weak se-
mantics are an obvious target: if there are indeed many strong process semantics,
once we introduce internal actions an explosion occurs [vG93] and the unification
work is even more necessary in order to clarify which are the most interesting
semantics, and what the differences between them are. Another interesting di-
rection comes from the combinations of logic and algebra as done by Luttgen
and Vogler [LV10,LV09]. Again, we are interested in studying if their proposal
is canonical or can be parameterized in some way in order to obtain other in-
teresting combinations. Finally, a couple of papers [BC10,Gut09] have appeared
recently, where the logical characterizations of the non-interleaving semantics
are developed. Again, it would be interesting to look at these works in order to
discover the key points that guide their characterizations and the possibility to
combine them with the key points establishing the hierarchies discussed above.

Acknowledgements This work was partially supported by the Spanish projects
TESIS (TIN2009-14312-C02-01), DESAFIOS10 (TIN2009-14599-C03-01) and PRO-
METIDOS S2009 / TIC-1465.



28

References

[BC10] P. Baldan and S. Crafa. A logic for true concurrency. In CONCUR LNCS,
volume 6269, pages 147–161. Springer, 2010.

[dFEGR08] D. de Frutos-Escrig and C. Gregorio-Rodríguez. Universal coinductive
characterisations of process semantics. In IFIP TCS, pages 397–412, 2008.

[dFGP09a] D. de Frutos, C. Gregorio, and M. Palomino. On the unification of process
semantics: equational semantics. ENTCS, 249:243–267, 2009.

[dFGP09b] D. de Frutos, C. Gregorio, and M. Palomino. On the unification of pro-
cess semantics: observational semantics. In SOFSEM 2009: TPCS, volume
5404/2009, pages 279–290. Springer Berlin / Heidelberg, 2009.

[Gut09] J. Gutierrez. Logics and bisimulation games for concurrency, causality and
conflict. In L. de Alfaro, editor, FOSSACS, volume 5504 of Lecture Notes
in Computer Science, pages 48–62. Springer, 2009.

[HM80] M. Hennessy and R. Milner. On observing nondeterminism and concur-
rency. In LNCS. Proceedings of the 7th Colloquium on Automata, Lan-
guages and Programming, volume 85, pages 299–309. Springer-Verlag, 1980.

[HM85] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and con-
currency. In Journal of the ACM (JACM), volume 32, pages 137–161.
ACM, 1985.

[LV09] G. Lüttgen and W. Vogler. Safe reasoning with logic lts. In Mogens Nielsen,
Antonín Kucera, Peter Bro Miltersen, Catuscia Palamidessi, Petr Tuma,
and Frank D. Valencia, editors, SOFSEM, volume 5404 of Lecture Notes
in Computer Science, pages 376–387. Springer, 2009.

[LV10] G. Lüttgen and W. Vogler. Ready simulation for concurrency: It’s logical!
Inf. Comput., 208(7):845–867, 2010.

[Ros09] A. W. Roscoe. Revivals, stuckness and the hierarchy of csp models. J. Log.
Algebr. Program., 78(3):163–190, 2009.

[vG93] R. J. van Glabbeek. The linear time - branching time spectrum ii. In Eike
Best, editor, CONCUR, volume 715 of LNCS, pages 66–81. Springer, 1993.

[vG01] R.J. van Glabbeek. The linear time-branching time spectrum I: the se-
mantics of concrete, sequential processes. In J. A. Bergstra, A. Ponse, and
S. A. Smolka, editors, Handbook of Process Algebra, chapter 1, pages 3–99.
Elsevier, 2001.


