
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

On The Unification of Process Semantics:

Operational Semantics

David de Frutos Escrig1 ,3 Carlos Gregorio Rodŕıguez 2 ,4

Miguel Palomino 1 ,5

Departamento de Sistemas Informáticos y Computación
Universidad Complutense de Madrid

Madrid, Spain

Abstract

The complexity of parallel systems has produced a large collection of semantics for processes, a classifi-
cation of which is provided by Van Glabbeek’s linear time-branching time spectrum; however, no suitable
unified definitions were available. After several years of studying these semantics, looking for homogeneous
presentations like those we have provided using (bi)simulations up-to, we have discovered the way to unify
all of them, first in an observational and in an equational framework, and now also in an operational way.
We have shown that all the semantics in the spectrum are governed by a simulation part in which we make
some additional identifications to obtain a linear semantics. As a consequence of these identifications, it is
not clear how to obtain an operational semantics which characterizes any of those semantics in the usual
coinductive manner. We have found a way to obtain these operational semantics by moderately enlarging
the original semantics with the introduction of additional transitions which correspond to the application
of the axiom that makes the extra identifications, but only at the roots of the corresponding processes.
Thus we obtain a characterization of the orders defining any of the semantics in the spectrum by means
of the corresponding constrained simulation order. This would be, for instance, ready simulation for fail-
ures or readiness semantics, plain simulation for traces, complete simulation for complete traces, or trace
simulation for possible or impossible futures. It is interesting to observe that such a characterization by
means of bisimulations would not be possible, which shows us that mutual similarity can be a more flexible
coinductive way to capture equivalences. We conclude with a simple application to illustrate the interest of
our operational characterizations.

Keywords: processes, semantic preorders, linear time-branching time spectrum.

1 Introduction

The classic linear semantics of processes (e.g. traces, failures, readiness, . . .) are

defined by means of decorated traces. Although these could be obtained from the

computations defined by their ordinary operational semantics, the semantics of each

process has to be calculated as a whole, by collecting together all its traces, so that no

1 Partially supported by the MCyT project DESAFIOS TIN2006-15660-C02-02 and the project
PROMESAS-CAM S-0505/TIC/0407.
2 Partially supported by the MCyT project WEST TIN2006-15578-C02.
3 Email:defrutos@sip.ucm.es
4 Email:cgr@sip.ucm.es
5 Email:miguelpt@sip.ucm.es

c©2008 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
mailto:defrutos@sip.ucm.es
mailto:cgr@sip.ucm.es
mailto:miguelpt@sip.ucm.es

De Frutos Escrig, Gregorio Rodŕıguez, Palomino

simple coinductive characterization in terms of that original operational semantics

is possible.

Instead, the classic way of defining an (abstract) operational semantics for pro-

cesses, based on their transition systems, is by means of bisimulations. This im-

mediately gives us a coinductive characterization of the corresponding semantic

equivalence. An alternative way to obtain these coinductive characterizations is by

means of simulations, or more in general constrained simulations [dFG08] that al-

low us to characterize the corresponding semantic preorder instead of the generated

equivalence.

Some of the most recent work of our group has been devoted to looking for

coinductive characterizations of semantics. In [dFG05] we characterised process

equivalences by using bisimulations up-to and in [dFG07] we defined simulations

up-to and we showed how to use them to characterize process preorders, including

those in the linear time-branching time spectrum [Gla01]. In the second paper,

simulations up-to were used to achieve a uniform treatment of different semantics.

With their help we have proved some general results for a wide class of process

semantics, such as the existence of a canonical preorder defining a given process

equivalence, for which we have provided a correct and complete axiomatization

obtained from that of the corresponding equivalence.

The existence of such an indirect coinductive characterization for, in particular,

the linear semantics of processes begs the question of whether it is posible to obtain

the preorders defining them directly as a constrained simulation order corresponding

to an alternative operational description of processes.

That is the main goal of the present paper: to define for each of the linear

semantics (traces, complete traces, failures, readines, failure traces, ready traces,

and so on) an structured operational semantics over the syntactic terms of a simple

process algebra such as BCCSP, generating a labelled transition system in such a

way that the corresponding order can be characterized by the adequate simulation

order that transition system. As a consequence of our unification of the axiomatic

semantics of processes, those SOS exist and besides can be defined in a quite similar

manner for all the linear semantics in the spectrum.

It is true that already fifteen years ago Cleaveland and Hennessy [CH93] pre-

sented their characterization of testing semantics as a bisimulation semantics. This

was indeed an important first step in the same direction. Even if we will present later

a more detailed comparison between their work and ours, let us advance here that

the main virtue of our approach is its genericity, covering all the linear semantics

in an uniform way. This has been obtained as a final result of our unification work

[dFGP08a,dFGP08b], covering all the semantics for processes in van Glabbeek’s

spectrum [Gla01]. Another important property of the operational semantics that

we have obtained is that they can be presented as SOS, what is related to the fact

that they can be defined in a “local” way from the original operational semantics

of processes. Instead, the transition system in [CH93] has to be defined as a whole

since their states and transitions are derived from the acceptation trees defining

the (denotational model of the) testing semantics, far removed from the original

operational semantics.

The rest of the paper is structures as follows. In Section 2 we introduce some

2

De Frutos Escrig, Gregorio Rodŕıguez, Palomino

simple technical preliminaries. In Section 3 we recall our previous results on the

coinductive characterization of semantics by means of simulations up-to and the

generic axiomatizations of all the semantics in the spectrum that, combined, allow us

to obtain a new characterization in terms of so-called local simulations up-to. Next

we present in Section 4 our operational characterization of the semantics coarser

than ready simulation, that is, of the diamond formed by failures, readiness, failure

traces, and ready traces semantics. These are probably the most important linear

semantics in the spectrum and by focusing on the case of ready simulation, which

corresponds to our I-constrained simulations, we expect to facilitate the presenta-

tion and understanding of our main results here. Section 5 contains the extension

to other constraints and a brief discussion on trace semantics. Finally, we present

an application in Section 6 and some conclusions.

2 Preliminaries

Labelled transition systems, or LTS for short, introduced by Plotkin twenty five

years ago (reprinted in [Plo04]), are the usual way to describe the behaviour of

processes in an operational way.

Definition 2.1 A labelled transition system is an structure T = (P,Act,) where

P is a set of processes, agents or states; Act is a set of actions; and ⊆ P×Act×P
is a transition relation. A rooted LTS is a pair (T , p0) with p0 ∈ P.

The set Act denotes the alphabet of actions that processes can perform and the

relation describes the process transitions after the execution of actions. Any

triple 〈p, a, q〉 in the transition relation is represented by p
a
 q, indicating that

process p performs action a and evolves into process q. A rooted LTS describes the

semantics of a concrete process: that corresponding to its initial state p0.

Some usual notations on LTSs are used along the paper. We write p
a
 if there

exists a process q such that p
a
 q. The function I calculates the set of initial

actions of a process with respect to a given LTS, I (p) = {a | a ∈ Act and p
a
 };

we omit the superscript if no confusion arises.

LTS’s for finite processes are directed graphs which become finite trees 6 if ex-

panded. These finite trees can be syntactically described by the basic process alge-

bra BCCSP, which was also used, for instance, in [Gla01,dFG05].

Definition 2.2 Given a set of actions Act, the set of BCCSP processes is defined

by the following BNF-grammar:

p ::= 0 | ap | p + q

where a ∈ Act. 0 represents the process that performs no action; for every action

in Act, there is a prefix operator; and + is a choice operator.

In the rest of the paper we mix finite processes, corresponding to BCCSP terms,

and arbitrary transition systems. Thanks to the fact that all the semantics that we

consider and the characterizations we use are continuous, as proved for instance in

6 We obtain directly a tree if we generate the states on the fly introducing a new state for each transition
generated by the application of the rules defining the operational semantics, see for instance [Mil89].

3

De Frutos Escrig, Gregorio Rodŕıguez, Palomino

[dFG05], we can indeed prove all our results only for BCCSP processes and then

apply them to arbitrary processes.

Definition 2.3 The operational semantics for the BCCSP terms is given by the

LTS (P,Act,−→) where the transition relation is defined by the rules in Figure 1.

ap
a
−→ p

p
a
−→ p′

p + q
a
−→ p′

q
a
−→ q′

p + q
a
−→ q′

Fig. 1. Operational Semantics for BCCSP Terms

Trailing occurrences of the constant 0 are omitted: we write a instead of a0. As

usual (see for instance [Gla01]), since the operational semantics of choice defines it

as a commutative and associative operator, and any other semantics in which we

are interested is based on that, we can use the n-ary choice operator
∑

to write any

process as
∑

a

∑
i api

a. This corresponds to the transition tree of each process, and

the fact that we use sets as indices makes that operator commutative and associative

by definition.

A process aq′ is an a-summand of the process q if and only if q
a
−→ q′. We

define p|a as the (sub)process we get by adding all the a-summands of p. That is,

if p =
∑

a

∑
i api

a, then p|a =
∑

i api
a.

Preorders are reflexive and transitive relations that we represent by ⊑. For the

sake of simplicity, we use the symbol ⊒ to represent the preorder relation ⊑−1.

Every preorder induces an equivalence relation that we denote by ≡, that is p ≡ q

if and only if p ⊑ q and q ⊑ p.

Definition 2.4 A preorder relation ⊑ over processes is a behaviour preorder if

• it is weaker than the bisimulation equivalence, i.e. p ≡B q ⇒ p ⊑ q,

• and it is a precongruence with respect to the prefix and choice operators, i.e. if

p ⊑ q then ap ⊑ aq and p + r ⊑ q + r.

3 Local simulations up-to

In [dFG07,dFG08] starting from I-simulations, which are just the classic ready sim-

ulations, we have generalized them to obtain arbitrary constrained N -simulations.

In order to characterize all the reasonable behavior preorders in a coinductive way

we have introduced N -simulations up-to an order ⊑, which are defined as follows:

Definition 3.1 Let ⊑ be a behaviour preorder, and N a relation over processes.

We say that a binary relation S over processes is an N -simulation up-to ⊑ if S ⊆
N (that is, pSq ⇒ pNq) and S is a simulation up-to ⊑. Or equivalently, in a

coinductive way, whenever we have pSq we also have:

• For every a, if p
a
−→ p′a there exist q′, q′a such that q ⊒ q′

a
−→ q′a and p′aSq′a;

• pNq.

We say that process p is N -simulated up-to ⊑ by process q, or that process q N -

simulates process p up-to ⊑, written p ⊏∼
N

⊑
q, if there exists an N -simulation up-to

4

De Frutos Escrig, Gregorio Rodŕıguez, Palomino

⊑, S, such that pSq.

We often just write ⊏∼
N

, instead of ⊏∼
N

⊑
, when the behaviour preorder is clear

from the context.

We proved in [dFG07] that all the preorders defining the semantics in the linear

time-branching time spectrum can be characterised as N -simulations up-to the cor-

responding equivalence relation ≡, where N is the constraint defining the coarsest

simulation semantics finer than the given semantics. For instance, the result for the

semantics between failures semantics and ready simulation was the following:

Theorem 3.2 ([dFG07]) For every behaviour preorder ⊑ verifying the axiom (RS)

and ⊑ ⊆ I, we have p ⊑ q if and only if p ⊏∼
I

⊑
q.

Table 1 shows the constraints defining the adequate constrained simulation order

finer than each of the semantics in the linear time-branching time spectrum.

T S CT CS F R FT RT PW RS PF 2N

CO U U C C I I I I I I W Z

pUq ⇐⇒ true pWq ⇐⇒ p ≡T q

pCq ⇐⇒ (p = 0⇔ q = 0) pZq ⇐⇒ p ≡S q

pIq ⇐⇒ I(p) = I(q)

Table 1
Constraints for the Semantics in the ltbt Spectrum

(B1) x + y ≃ y + x

(B2) (x + y) + z ≃ x + (y + z)

(B3) x + x ≃ x

(B4) x + 0 ≃ x

Fig. 2. Axiomatization of the Bisimulation Equivalence

In addition, we have also recently proved in [dFGP08b] that the linear semantics

in the spectrum can be axiomatized by means of the set of axioms characterizing

bisimulation equivalence (see Figure 2) plus the adequated instances of the axioms

(NS) xNy =⇒ x � x + y

(ND≡) M(x, y,w) =⇒ ax + a(x + y) + a(y + w) ≃ ax + a(y + w)

5

De Frutos Escrig, Gregorio Rodŕıguez, Palomino

For instance, for the four semantics in the diamond under ready simulations

semantics (failures, readiness, failure traces and ready traces semantics) we have:

MF (x, y,w) ⇐⇒ BCCSP3

MR(x, y,w) ⇐⇒ I(x) ⊇ I(y)

MFT (x, y,w) ⇐⇒ I(w) ⊆ I(y)

MRT (x, y,w) ⇐⇒ I(x) = I(y) and I(w) ⊆ I(y)

The proof of this result uses the adequate notion of head normal form which,

roughly, are defined by applying repeatedly to any term p the axiom (ND≡) from

right to left, for as long as possible, thus adding to the set of summands of p

some new summands. By definition of these hnf’s we clearly have that from

{B1–B4, (NS), (NDX
≡)} we can infer hnf X(p) ≃ p. Besides, whenever we have

p =
∑

a

∑
i api

a and p ⊑x q for hnf X(q) =
∑

a

∑
j ah

j
a, we have that for all i there

exists j such that pi
a ⊑x q

j
a. This was the key result to complete the proof of com-

pleteness of our new axiomatizations, and also for introducing now the new notion

of local I-simulation up-to.

Definition 3.3 For X ∈ {F,R,FT,RT} and p =
∑

a

∑
i api

a, whenever we have

a pair of indices i, j and a decomposition p
j
a = r

j
a + s

j
a with MX(pj

a, r
j
a, s

j
a) we say

that p is 1-locally X-equivalent to p + a(pi
a + r

j
a), and we write p ≡l1

X q. We say

simply that p and q are locally X-equivalent when they are related by the reflexive

and transitive closure of ≡l1
X , and then we write p ≡l

X q.

For X ∈ {F,R,FT,RT} we call local I-simulations up-to ≡X to the I-simulations

up-to ≡l
X . We say that process p is locally I-simulated up-to ≡X by process q, or

that process q locally I-simulates process p up-to ≡X , written p ⊏∼
I

≡l

X

q, if there

exists a local I-simulation up-to ≡X S, such that pSq.

Local I-simulations up-to are enough to characterize the four linear semantics

in {F,R,FT,RT}.

Proposition 3.4 For X ∈ {F,R,FT,RT} we have p ⊑X q if and only if p ⊏∼
I

≡l

X

q.

Proof. The implication from right to left is an immediate consequence of Theo-

rem 3.2. For the other, we observe that {(p, q) | p ⊑X q} is a local I-simulation

up-to ≡X . Indeed, for any p
a
−→ pi

a we have q ≡l
X hnf X(q) and taking hnf X(q) =

∑
a

∑
i ah

j
a there exists some j such that hnf X(q)

a
−→ h

j
a and pi

a ⊑X h
j
a. 2

Example 3.5 Let us consider the two processes p = abc + abd and q = a(bc + bd).

We have p ≡F q and we can check that p ⊏∼
I

≡l

F

q since p ⊑RS q. In order to prove

that also q ⊏∼
I

≡l

F

p, we have to apply ≡l
F to p to obtain p ≡l

F p+ q and then we have

q ⊑RS p.

By contrast, if we wanted to apply our bisimulation up-to characterization to

prove directly p ≡F we would have to turn q into q + p to adequately simulate

the transition p
a
−→ bc. This would correspond to the local application of (NDF

≡)

6

De Frutos Escrig, Gregorio Rodŕıguez, Palomino

combined with that of

(RS≡) I(x) = I(y) =⇒ a(x + y) ≃ a(x + y) + ax .

But if we replaced the action a by a larger prefix a1 . . . an then we should also modify

the process q′ = a1 . . . an(bc + bd) in a non-local way in order to obtain q′′ = q′ + p′,

so that we could suitably simulate the transition p′ = a1 . . . anbc + a1 . . . anbd
a1−→

a2 . . . anbc. Certainly, this is not necessary when checking p′ ≡F q′ by means of

local simulations up-to.

Note then that we cannot get a local notion of bisimulation up-to equivalent to

our unrestricted notion of bisimulation up-to.

Therefore, the coinductive characterization of the semantics by means of simu-

lations up-to has at least two important advantages over that using bisimulations

up-to. First, we can characterize the orders defining the semantics and not just the

induced equivalences; and second, we can use a local variant of the notion so that

we only need to rely on the equivalence relation ≡l
X for the up-to part.

4 SOS for the linear semantics of processes

In Section 3 we have introduced and proved some results that establish the frame-

work from where to tackle our goal: to define an SOS over BCCSP terms in such

a way that we can use constrained simulations to characterize the classic linear

semantics. Let us consider for instance the failures preorder ⊑F . We are going to

define a new operational semantics for BCCSP terms (P,Act,⇒F) such that p ⊑F q

if and only if q ready simulates p in (P,Act,⇒F).

As we said in the introduction, we will concentrate first on the diamond of

linear semantics coarser than ready simulation. All these semantics are based on

the observation of the initial set of actions of each process, that can be obtained by

application of the SOS rules in Figure 3.

0 −→I ∅ ap −→I {a}
p −→I A, q −→I B
p + q −→I A ∪B

Fig. 3. Rules that compute the set of initial actions of a process

We want to stress the fact that although the rule for the sum of processes is a

compositional one that has to look at the initials of its arguments, this does not

mean that the observation of the initials is not local, since the sum of processes is

an static operation. By contrast, for the prefix operation (that is dynamic) we have

no premise to apply the rule. As a matter of fact, if we used the transition system

style grammar with the n-ary sum of prefixed processes
∑

apa, we would directly

obtain I(p) by collecting all the prefixes in the arguments of the sum.

The rules in Figure 4 define the transition relation =⇒ that will define the oper-

ational semantics to characterize each of the X-semantics. The transition relation

←→X is an auxiliary relation that captures the reiterated application of the axiom

(NDX
≡). Rules (RF) and (TR) define reflexivity and transitivity of the relation

←→X . Finally, the rule (CL) combines the auxiliar relation ←→x and the original

7

De Frutos Escrig, Gregorio Rodŕıguez, Palomino

operational transition relation −→ (see Definition 2.3), to define the new labelled

transitions =⇒X .

(ND)
p −→I Ap q −→I Aq r −→I Ar MX(Ap, Aq, Ar)
ap + a(q + r) + s←→X ap + a(q + r) + a(p + q) + s

(RF) p←→X p (TR)
p←→X q q ←→X r

p←→X r

(CL)
p←→X p′ p′

a
−→ q

p
a

=⇒X q

Fig. 4. Operational Semantics Characterizing the Linear Semantics

Definition 4.1 For X ∈ {F,R,FT,RT}, the operational semantics for BCCSP

terms is given by the LTS (P,Act,=⇒X) where the transition relation =⇒X is

defined by the rules in Figure 4.

By abuse of notation, we have written MX(Ap, Aq, Ar) to express that we check

MX(p, q, r) using the initials computed by −→I .

The relation =⇒X has some interesting properties. First, it is an extension of

the original transition system.

Proposition 4.2 For X ∈ {F,R,FT,RT}, p and q BCCSP processes, and α a

sequence of actions in Act, we have that p
α
−→ q implies p

α
=⇒X q.

Although usually some new transitions appear, the set of initial actions of any

process always remains the same.

Corollary 4.3 For X ∈ {F,R,FT,RT} and for any BCCSP process p, we have

I
→

(p) = I
⇒X (p).

It is also clear that, for any X ∈ {F,R,FT,RT}, the auxiliary relation ←→X

preserves the equivalence ≡X since the rule (ND) corresponds to the application of

axiom (I-NDX
≡), which is correct with respect to ≡I

x.

Proposition 4.4 For X ∈ {F,R,FT,RT} and BCCSP processes p and q, we have

p←→X q implies p ≡X q.

Next we will prove the main theorem of this paper, that asserts that for each of

the semantics in the diamond the corresponding operational semantics is defined as

in Figure 4.

Theorem 4.5 For X ∈ {F,R,FT,RT} and BCCSP processes p and q, we have

that

p ⊑X q ⇐⇒ p ⊑⇒X

RS q .

Proof. We will apply our characterization of the orders ⊑X by means of local I-

simulations up-to of Proposition 3.4; we will show that p ⊑⇒X

RS q implies p ⊏∼
I

≡l

X

q.

This is because any ready simulation over the transition system =⇒X is also a local

I-simulation up-to ≡X . Indeed, if R is a ready simulation over the transition system

8

De Frutos Escrig, Gregorio Rodŕıguez, Palomino

=⇒X , if pRq, whenever we have p
a
−→ p′ we also have p

a
=⇒X p′, and therefore

there is some q
a

=⇒X q′ with p′Rq′. By definition of the transition system =⇒X ,

there is some process q′′ such that q ←→X q′′ and q′′
a
−→ q′. Then we also have

q ≡l
X q′′, and thus R is indeed a local I-simulation up-to ≡X .

To prove that p ⊏∼
I

≡l

X

q implies p ⊑⇒X

RS q, we will check that the relation ⊏∼
N

≡l

X

is

a ready simulation over the transition relation =⇒X . If we have p ⊏∼
N

≡l

X

q, whenever

p
a

=⇒X p′ we have some process p′′ such that p ←→X p′′ and p′′
a
−→ p′. Then we

also have p ≡X p′′, and so p′′ ⊏∼
N

≡l

X

q. From p′′
a
−→ p′ we now obtain that there

are some q ≡l
X q′′, q′′

a
−→ q′, and therefore we also have q ←→X q′′ concluding the

proof. 2

As a consequence of our negative results of Section 3, it is not possible to obtain

an operational semantics locally defined from that which characterizes the linear

semantics by means of bisimilarity. However, this has been done using mutual

similarity.

Certainly, the fact that the characterizations in terms of bisimilarity cannot be

defined in a local way is related to the fact that the transition systems generated

by application of the algorithm in [CH93] will be larger than those generated by

our local transformation here. Unfortunately, it is true that this does not magically

lead (at least at the theoretical level) to more efficient algorithms to decide the

equivalences with respect to the linear semantics, that are known to be quite hard

to decide. Obviously, this is related to the fact that simulation is harder than

bisimulation [KM02]. Even so, these are mainly theoretical bounds and it is nice to

know that in practice we can apply a local transformation to generate the transition

systems characterizing those semantics by means of the simulation orders, that in

many real cases appearing in practice will be also not so difficult to decide.

5 Characterizing the semantics corresponding to other

constraints

Let us start by considering the case of the universal constraint U . As discussed in

[dFGP08b], if we also use U in the condition MX it is clear that all the semantics

in the corresponding diamond collapse into a single one: trace semantics.

We can immediately realize that the transition system to characterize it in terms

of plain simulations is the same transition system =⇒F that we can use to charac-

terize the failures semantics by means of ready simulations.

Theorem 5.1 The trace preorder ⊑T coincides with the simulation order on the

transition system =⇒F , that is, p ⊑T q iff p ⊑⇒X

S q.

Even if this coincidence is a simple fact that reflects the relation between traces

and failures semantics, we think that such clear presentation will contribute to

clarify it. We can now say in plain words that failures semantics is just traces

semantics enriched by the observation of initials, so that the plain simulation order

that implies the trace order becomes the ready simulation order.

For other finer observers such as T we can also characterize the corresponding

9

De Frutos Escrig, Gregorio Rodŕıguez, Palomino

semantic orders, such as possible and impossible futures, in terms of local simula-

tions up-to. Therefore we can also use that result to justify that the corresponding

transition systems =⇒T
X would characterize the semantics orders ⊑T

X in terms of

T -simulations that preserve the set of traces of the simulated process. In this case

the corresponding SOS definition has to include rules for the computation of the

set of traces T (p) and this cannot be done for infinite processes. But except for the

computation of these sets, the rest of the rules for the generation of the correspond-

ing transition systems =⇒T
X are also valid, their local character is still present, and

the resemblance with the rule defining =⇒X (we just turn the conditions MX into

those using the observer T in place of I) will contribute once more to our unification

work, continuing that it [dFGP08a,dFGP08b].

6 Applications: trace deterministic normal forms

As a simple application we present the example used by Klin in [Kli04], that we

already used in [dFG05] to illustrate our coinductive characterization of the behavior

preorders by means of our bisimulations up-to.

Definition 6.1 For any process p =
∑

a

∑
i api

a the deterministic form of p is

defined as Det(p) =
∑

a aDet(
∑

i p
i
a).

We wish to prove that p and Det(p) are trace equivalent. We will do it by proving

that they are simulation equivalent over the transition system =⇒F .

Proposition 6.2 For any process p we have p ⊑F Det(p).

Proof. We will prove that p ⊑⇒X

S Det(p) by showing that R = {(p,Det(p + q)) |

p, q processes} is a simulation for the transition system =⇒F . For q =
∑

a

∑
j aq

j
a

we have Det(p + q) =
∑

a Det(
∑

i p
i
a +

∑
j q

j
a). Then, for any p

a
=⇒F p′ we have

p = pi
a +

∑
k rk

a, for some index i and pk
a = rk

a +sk
a a decomposition of any of the rest

of the summands of p. We have Det(p + q)
a
−→ Det(

∑
i api

a +
∑

j aq
j
a) = Det((pi

a +
∑

k rk
a)+(

∑
k rk

a +
∑

j q
j
a)), so that we also have Det(p+q)

a
=⇒F Det((pi

a +
∑

k rk
a)+

(
∑

k rk
a +

∑
j q

j
a)), with (pi

a +
∑

k rk
a ,Det((pi

a +
∑

k rk
a) + (

∑
k rk

a +
∑

j q
j
a))) ∈ R. 2

Proposition 6.3 For any process p we have Det(p) ⊑F p.

Proof. We will prove that Det(p) ⊑⇒X

S p by showing that R = {(Det(p), p)} is a

simulation for the transition system =⇒F . Since Det(p) is deterministic for each a ∈
Act there is a unique transition Det(p)

a
=⇒F Det(

∑
i pi

a). By applying the definition

of
a

=⇒F we have p
a

=⇒F

∑
i p

i
a, and clearly we have (Det(

∑
i pi

a),
∑

i p
i
a) ∈ R. 2

Certainly this is a very simple example, but even so it is interesting to compare

the proof above with that in [dFG05]. This proof is simpler and more natural,

mainly because the proof obligations to check bisimulations forced us to remove

the subterms that were not in the chosen transition when we had to simulate it.

Instead, this is not necessary for any of the two simulations that are needed to check

mutual simulation as above. Obviously this is also related with the impossibility

to obtain a notion of local bisimulation up-to characterizing the equivalence under

any of the linear semantics, as commented at the end of Section 3.

10

De Frutos Escrig, Gregorio Rodŕıguez, Palomino

7 Conclusions and future work

We have presented an operational characterization of all the linear semantics in the

spectrum. It uses the SOS approach to generate, for each such semantics, a transi-

tion system over which the adequate constrained simulation order characterizes the

order defining the given semantics.

The main virtues of these characterizations are, on the one hand, their local

character, so that the corresponding transition systems are easily defined and seem

to be not too large for real applications. On the other hand, and most important,

the genericity of the definition, that is the same for all the semantics.

The genericity is a consequence of our unification work both in [dFGP08a] but

especially in [dFGP08b]. where we have presented a generic axiomatization of all

the semantics in the spectrum. From there we have obtained our characterization

in terms of local simulations up-to that have allowed us to prove the correctness of

the operational characterizations presented in this paper.

Therefore, it seems that our unification work extends to all the fields related to

the definition of process semantics, and by applying it we hope to be able to improve

our understanding of both the relations between the different semantics and those

between the different ways of defining them: observational, axiomatic, operational,

and logical. As a matter of fact, the logical framework in the only one we have not

explored yet and we plan to do it shortly, once we have found the basic pieces in

which to base such last unified study.

References

[CH93] Rance Cleaveland and Matthew Hennessy. Testing equivalence as a bisimulation equivalence.
Formal Aspects of Computing, 3:1–21, 1993.

[dFG05] David de Frutos-Escrig and Carlos Gregorio-Rodŕıguez. Bisimulations up-to for the linear
time-branching time spectrum. In CONCUR 2005 - Concurrency Theory, 16th International
Conference, volume 3653 of Lecture Notes in Computer Science, pages 278–292. Springer, 2005.

[dFG07] David de Frutos-Escrig and Carlos Gregorio-Rodŕıguez. Simulations up-to and canonical
preorders (extended abstract). In Structural Operational Semantics SOS 2007, volume 192
of Electronic Notes in Theoretical Computer Science, pages 13–28. Elsevier, 2007.

[dFG08] David de Frutos-Escrig and Carlos Gregorio-Rodŕıguez. Universal coinductive characterizations
of process semantics. In 5th IFIP International Conference on
Theoretical Computer Science, to appear in Springer Science and Business Media. Springer,
2008. http://maude.sip.ucm.es/∼miguelpt/papers/universal.pdf .

[dFGP08a] David de Frutos Escrig, Carlos Gregorio-Rodŕıguez, and Miguel Palomino. On the
unification of semantics for processes: observational semantics. Submitted. Available at
http://maude.sip.ucm.es/∼miguept/, 2008.

[dFGP08b] David de Frutos Escrig, Carlos Gregorio-Rodŕıguez, and Miguel Palomino. On
the unification of process semantics: axiomatic semantics. Submitted. Available at
http://maude.sip.ucm.es/∼miguept/, 2008.

[Kli04] Bartek Klin. A coalgebraic approach to process equivalence and a coinductive principle for
traces. In CMCS’04: 7th International Workshop on Coalgebraic Methods in Computer Science,
volume 106 of Electronic Notes in Theoretical Computer Science. Elsevier, 2004.

[KM02] Antońın Kucera and Richard Mayr. Why Is Simulation Harder than Bisimulation?
CONCUR’02: Proceedings of the 13th International Conference on Concurrency Theory,
volume 2421 of Lecture Notes in Computer Science, pages 594–610. Springer, 2002.

[Gla01] Rob J. van Glabbeek. Handbook of Process Algebra, chapter The Linear Time – Branching Time
Spectrum I: The Semantics of Concrete, Sequential Processes, pages 3–99. Elsevier, 2001.

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

11

http://maude.sip.ucm.es/~miguelpt/papers/universal.pdf
http://maude.sip.ucm.es/~miguept/
http://maude.sip.ucm.es/~miguept/

De Frutos Escrig, Gregorio Rodŕıguez, Palomino

[Plo04] Gordon D. Plotkin. A structural approach to operational semantics. Journal of Logic and
Algebraic Programming, 60-61:17–139, 2004.

12

	Introduction
	Preliminaries
	Local simulations up-to
	SOS for the linear semantics of processes
	Characterizing the semantics corresponding to other constraints
	Applications: trace deterministic normal forms
	Conclusions and future work
	References

