
A predicate abstraction tool for Maude

Miguel Palomino
Sistemas Informáticos y Programación, UCM

1 Introduction

Rewriting logic [7], through its executable Maude implementation [2], has proved to be a
very flexible framework for the specification of concurrent systems. Designing such systems is
hard and error-prone and thus studying whether the final design indeed satisfies the expected
properties becomes an unavoidable task.

Model checking [1] is a verification technique that can be used efficiently to prove proper-
ties of finite systems in an automatic way, essentially by exhaustively enumerating all states.
Unfortunately, many interesting systems are infinite and therefore not amenable to the con-
venience of model checking. In those cases, a possible way of dealing with the difficulty
consists in computing a finite system that simulates the concrete system at hand, in the
sense that if a certain property holds in the simpler one then it must be true also of the
original; since the new system is finite, the validity of that property can be studied using
model checking. As one would expect, finding such finite systems is not a straightforward
task and some techniques have been proposed to construct them. These notes contain a brief
description of the most popular such technique, predicate abstraction, an its realization in
the Maude language.

2 What is predicate abstraction?

Predicate abstraction is a technique to automatically compute finite systems that simulate
more complex one. More precisely, assume a system with states a, b, c, . . . , belonging to a
set S, and with transitions given by a relation → ⊆S × S. Then, a predicate abstraction is
defined by a set of predicates φ1, . . . , φn over the set of states in the following manner:

• The set of states of the abstract system is the set of n-tuples of Boolean values, where
n is the number of predicates.

• A concrete state a is mapped to the tuple α(a) = 〈φ1(a), . . . , φn(a)〉.

The transition relation in the abstract system is then determined in a standard way:

• There is a transition from the abstract state 〈b1, . . . , bn〉 to 〈b′1, . . . , b′n〉 iff there are
concrete states a and b such that α(a) = 〈b1, . . . , bn〉, α(b) = 〈b′1, . . . , b′n〉, and a → b.

Computing the abstract state associated to a concrete a, though dependent on the com-
plexity of the predicates, is usually straightforward. It is in the computation of the abstract
transition relation where the difficulty really lies, since a single transition step potentially
depends on an infinite number of concrete states. In practice there are two approaches to
the construction of the abstract transition relation. In the first one, that we follow, each
predicate or rule used to define the transition relation of the concrete system is directly

1

transformed into a different predicate or rule that is then used to define a transition rela-
tion in the abstract system. This relation does not usually coincide with the exact abstract
transition relation as defined above but it is just a good enough approximation. In the sec-
ond one, called implicit predicate abstraction in [5], the abstract transition system is not
explicitly computed; instead, the initial state is abstracted and all states reachable from it
are computed.

3 How are rules abstracted?

To illustrate the use of these functions, and of predicate abstraction in general, we will use
the following simple example adapted from Das’s thesis [5].

mod SD-EXAMPLE is

protecting NAT .

sort Config .

subsort Nat < Config .

op init : -> Config .

eq init = 0 .

var N : Nat .

crl N => s(N) if (N < 10) = true .

rl N => N * 2 .

rl s(s(N)) => N .

endm

This module specifies a system with the natural numbers as the set of states, and with an
infinite number of states reachable from the initial one. (The sort Config and the operator
init are necessary because the tool described in these notes assumes that these are the names
of the sort of the states and of the initial state, respectively.) Because of this infinite number,
model checking cannot be directly used to prove that, say 151, is not reachable from 0. A
possible alternative to verify the property, that we present, is to compute an abstraction of
the system and apply model checking to it.

We use two predicates to create the abstract system:

• φ1(n) ⇐⇒ n ≤ 10.

• φ2(n) ⇐⇒ n is even.

φ1 arises as a slight modification of the first rule’s condition; this form is preferred because
it produces a more precise abstract system. If a certain state satisfies φ1, it will still satisfy
it after applying the rule to it; however, had we directly used the condition this might not
longer be the case, which would introduce additional undeterminism in the abstract system.
The predicate φ2 is motivated by the “condition” (as a pattern) of the third rule. Used
in conjunction with φ1, it would allow us to prove the desired property if we were able to
prove that at any time at least one of them holds. Thus, the set of abstract states consists
of the four different ordered pairs of Boolean values and the initial state 0 is mapped to
〈true, false〉.

To construct the transition relation, let us consider the first rule. We will describe its
abstraction by means of a predicate λ(b1, b2, b

′
1, b

′
2) that determines a transition step

〈b1, b2〉 → 〈b′1, b′2〉

2

iff λ(b1, b2, b
′
1, b

′
2) is true.

Due to its condition, if the first rule can be applied to a number n then it must be the
case that φ1(n) is true. This means that the abstract predicate λ has to be of the form

λ(b1, b2, b
′
1, b

′
2) = b1 ∧ λ′(b1, b2, b

′
1, b

′
2) .

Likewise, the resulting number n + 1 also satisfies φ1, and with this piece of information λ
can be further refined to

λ(b1, b2, b
′
1, b

′
2) = b1 ∧ b′1 ∧ λ′′(b1, b2, b

′
1, b

′
2) .

The same argument does not carry over to φ2. However, note that if the rule is applied to a
number n that satisfies φ2, then the resulting number n + 1 always satisfies the negation of
φ2; analogously, if n satisfies the negation of φ2 then n + 1 satisfies φ2. Putting all together
we end up with

λ(b1, b2, b
′
1, b

′
2) = b1 ∧ b′1 ∧ (b2 → ¬b′2) ∧ (¬b2 → b′2) ∧ λ′′′(b1, b2, b

′
1, b

′
2) .

Other than these, and the ones that can be derived from them, like ¬b1 → b′2, there are no
more relations among the Boolean variables defining λ; its value is

λ(b1, b2, b
′
1, b

′
2) = b1 ∧ b′1 ∧ (b2 → ¬b′2) ∧ (¬b2 → b′2) ∧

(¬b1 → b′2) ∧ (¬b1 → ¬b′2) ∧ (b2 → b′1) ∧ (¬b2 → b′1) .

Of course, the last four conjuncts are unnecessary and could be removed to simplify λ.
The same procedure is also followed to construct the abstract predicates that correspond

to the other rules.
Actually, the only Boolean expressions which are checked when computing an abstrac-

tion with n predicates are those in B, B′, and B → B′, where B = {bi,¬bi}1≤i≤n, B′ =
{b′i,¬b′i}1≤i≤n, and B → B′ = {x → x′ | x ∈ B, x′ ∈ B′}. The concrete algorithm as imple-
mented by our tool is described in [4], where these expresions are called test points. Here we
will not give the details of how it works because it is not needed in what follows; a detailed
discusion, besides that in the previous reference, can also be found in Uribe’s thesis [8].

4 Using the tool

The goal of this section is to introduce, both from a user and an implementator point of
view, a tool for computing predicate abstractions in Maude. A high-level description of how
to use it would be:

1. Write a module containing the specification of the systems one is interested in.

2. Extend this module wit the predicates that will be used for the abstraction, and load
it into Maude’s database.

3. Load the file pa-prototype.maude tool which contains the tool’s code. This module
imports the files model-checher.maude and itp-tool.maude, which must therefore be
in the current directory.

4. Run one of the functions computeAbsModule, abstractionGround, or abstractionGen,
to get one of the three different representations of the abstract module.

3

4.1 Predicate abstraction in Maude

Currently the tool assumes some requirements about the module for which the abstraction
will be computed:

1. The sort of the states is Config.

2. There is an initial state named init.

3. The predicates defining the abstraction are included in the same module.

4. The module is Config-encapsulated (Config only appears in a single operator, and as
its codomain) and the conditions of the rules only contain equations.

Except for the last one, these requirements are likely to be eventually removed.
In our running example, we then have to extend the module SD-EXAMPLE with the speci-

fication of the two predicates, which in turn need an auxiliary function that checks whether
a number is even or not.

--- Predicates used for the abstraction and their auxiliary functions.

ops phi1 phi2 : Config -> Bool .

op isEven? : Nat -> Bool .

eq phi1(N) = (N <= 10) .

eq phi2(N) = isEven?(N) .

eq isEven?(0) = true .

eq isEven?(s(N)) = not(isEven?(N)) .

eq isEven?(N * 2) = true . --- redundant, but necessary for ITP

Notice the last equation used in the specification of isEven?. In order to prove the
implications needed to construct the abstract predicate, the tool calls the ITP theorem
prover [3]. Like with all similar provers, it could happen that a certain formula is valid but
nevertheless the ITP fails to prove it. Actually, this situation is not uncommon, and results
in coarser abstract predicates because some of the relations among the Boolean variables are
not discovered. But in general the ITP does a decent job, and sometimes when it fails it can
be helped with additional equations like the one for isEven?.

Once the module containing the specification of both the system and the predicates is
loaded into Maude’s database, we can run the tool and obtain the abstract module with the
help of the function

op computeAbsModule : Qid QidList -> Module .

This function takes as its arguments the module’s name preceded by a quote and a list of
quoted identifiers with the names of the predicates used for the abstraction, and returns the
metarepresentation of the abstract module containing the specification of the predicates that
define the abstract transition relation.

Maude> red computeAbsModule(’SD-EXAMPLE, ’phi1 ’phi2) .

result FModule: fmod ’SD-EXAMPLE-ABS is

including ’BOOL .

sorts none .

none

4

op ’absInit : ’Bool ’Bool -> ’Bool [none] .

op ’lambda1 : ’Bool ’Bool ’Bool ’Bool -> ’Bool [none] .

op ’lambda2 : ’Bool ’Bool ’Bool ’Bool -> ’Bool [none] .

op ’lambda3 : ’Bool ’Bool ’Bool ’Bool -> ’Bool [none] .

none

eq ’absInit[’B1:Bool,’B2:Bool] = ’_and_[’B1:Bool,’B2:Bool] [none] .

eq ’lambda1[’B1:Bool,’B2:Bool,’B*1:Bool,’B*2:Bool] = ’_and_[’B*2:Bool,’_and_[

’_implies_[’B1:Bool,’B*2:Bool],’_and_[’_implies_[’B2:Bool,’B*2:Bool],

’_and_[’_implies_[’not_[’B1:Bool],’B*2:Bool],’_and_[’_implies_[’not_[

’B1:Bool],’not_[’B*1:Bool]],’_implies_[’not_[’B2:Bool],’B*2:Bool]]]]]] [

none] .

eq ’lambda2[’B1:Bool,’B2:Bool,’B*1:Bool,’B*2:Bool] = ’_and_[’_implies_[

’B1:Bool,’B*1:Bool],’_and_[’_implies_[’B2:Bool,’B*2:Bool],’_implies_[’not_[

’B2:Bool],’not_[’B*2:Bool]]]] [none] .

eq ’lambda3[’B1:Bool,’B2:Bool,’B*1:Bool,’B*2:Bool] = ’_and_[’B1:Bool,’_and_[

’B*1:Bool,’_and_[’_implies_[’B1:Bool,’B*1:Bool],’_and_[’_implies_[’B2:Bool,

’B*1:Bool],’_and_[’_implies_[’B2:Bool,’not_[’B*2:Bool]],’_and_[’_implies_[

’not_[’B1:Bool],’B*1:Bool],’_and_[’_implies_[’not_[’B1:Bool],’B*2:Bool],

’_and_[’_implies_[’not_[’B1:Bool],’not_[’B*1:Bool]],’_and_[’_implies_[

’not_[’B1:Bool],’not_[’B*2:Bool]],’_and_[’_implies_[’not_[’B2:Bool],

’B*1:Bool],’_implies_[’not_[’B2:Bool],’B*2:Bool]]]]]]]]]]] [none] .

endfm

To ease its understanding, we also include the object module that corresponds to the
above metarepresentation.

fmod SD-EXAMPLE-ABS is

including BOOL .

op absInit : Bool Bool -> Bool .

op lambda1 : Bool Bool Bool Bool -> Bool .

op lambda2 : Bool Bool Bool Bool -> Bool .

op lambda3 : Bool Bool Bool Bool -> Bool .

vars B1 B2 B*1 B*2 : Bool .

eq absInit(B1,B2) = B1 and B2 .

eq lambda1(B1,B2,B*1,B*2) = B*2 and (B1 implies B*2) and (B2 implies B*2) and

(not(B1) implies B*2) and

(not(B1) implies not(B*1)) and

(not(B2) implies B*2) .

eq lambda2(B1,B2,B*1,B*2) = (B1 implies B*1) and (B2 implies B*2) and

(not(B2) implies not(B*2:Bool)) .

eq lambda3(B1,B2,B*1,B*2) = B1 and B*1 and (B1 implies B*1) and

(B2 implies B*1) and (B2 implies not(B*2)) and

(not(B1) implies B*1) and (not(B1) implies B*2) and

(not(B1) implies not(B*1)) and

(not(B1) implies not(B*2)) and

(not(B2) implies B*1) and

(not(B2) implies B*2) .

endfm

Note that the initial abstract state is also expressed as a predicate. Also, due to the way
Maude internally handles the metarepresentation of modules, the order of the predicates in
the abstract system does not follow that of the rules in the original one; here, note that it is
lambda3 that corresponds to the first rule.

5

4.2 Two more functions

The function computeAbsModule solves the problem of computing the abstract system but
presents the important drawback of not being directly executable: transitions are not ex-
pressed by means of rules. To remedy this situation the tool includes the following two
functions:

op abstractionGround : Qid QidList -> Module .

op abstractionGen : Qid QidList -> Module .

Both receive the same arguments as the function computeAbsModule, which is invoked in
a first step. Then, the function abstractionGround enumerates all possible tuples

〈b1, . . . , bn, b′1, . . . , b
′
n〉

of Boolean values and checks, for each of them, whether they satisfy any of the predicates that
define the abstract transition relation. It returns the metarepresentation of a new module in
which every such satisfying tuple has been transformed into a ground rule

〈b1, . . . , bn〉 −→ 〈b′1, . . . , b′n〉

Besides, this module also includes a rule that defines the value of the constant initial
representing the initial state.

For our running example, we get:

Maude> red abstractionGround(’SD-EXAMPLE, ’phi1 ’phi2) .

result Module: mod ’SD-EXAMPLE-ABS-RULES is

including ’BOOL .

sorts ’AbsState .

none

op ’initial : nil -> ’AbsState [none] .

op ’st : ’Bool ’Bool -> ’AbsState [none] .

none

none

rl ’initial.AbsState => ’st[’true.Bool,’true.Bool] [none] .

rl ’st[’false.Bool,’false.Bool] => ’st[’false.Bool,’false.Bool] [none] .

rl ’st[’false.Bool,’false.Bool] => ’st[’false.Bool,’true.Bool] [none] .

rl ’st[’false.Bool,’false.Bool] => ’st[’true.Bool,’false.Bool] [none] .

rl ’st[’false.Bool,’true.Bool] => ’st[’false.Bool,’true.Bool] [none] .

rl ’st[’false.Bool,’true.Bool] => ’st[’true.Bool,’true.Bool] [none] .

rl ’st[’true.Bool,’false.Bool] => ’st[’false.Bool,’true.Bool] [none] .

rl ’st[’true.Bool,’false.Bool] => ’st[’true.Bool,’false.Bool] [none] .

rl ’st[’true.Bool,’false.Bool] => ’st[’true.Bool,’true.Bool] [none] .

rl ’st[’true.Bool,’true.Bool] => ’st[’false.Bool,’true.Bool] [none] .

rl ’st[’true.Bool,’true.Bool] => ’st[’true.Bool,’false.Bool] [none] .

rl ’st[’true.Bool,’true.Bool] => ’st[’true.Bool,’true.Bool] [none] .

endm

Therefore, the result returned by abstractionGround is already an executable Maude
(meta-)specification. Note, however, that the procedure is very expensive since 22n Boolean
combinations are tried, where n is the number of predicates used for the abstraction.

The more economical alternative offered by abstractionGen consists in transforming the
functional module returned by computeAbsModule into a system module and adding for each

6

predicate λ a single rule of the form

〈b1, . . . , bn〉 −→ 〈b′1, . . . , b′n〉 if cBool −→ b′1 ∧ . . . ∧ cBool −→ b′n ∧
λ(b1, . . . , bn, b′1, . . . , b

′
n)

where cBool is a constant that can be rewritten to true and false. This way, the actual
generation of the transitions is postponed until the phase of exploration of the state graph
and the overall performance can be expected to improve because many of the rules produced
previously only apply to unreachable states and are thus unnecessary.

For our particular example, abstractionGen extends the specification on page 4 with the
rules:

rl ’cBool.Bool => ’false.Bool [none] .

rl ’cBool.Bool => ’true.Bool [none] .

crl ’initial.AbsState => ’st[’B*1:Bool,’B*2:Bool] if ’cBool.Bool => ’B*1:Bool

/\ ’cBool.Bool => ’B*2:Bool /\ ’absInit[’B*1:Bool,’B*2:Bool] = ’true.Bool [

none] .

crl ’st[’B1:Bool,’B2:Bool] => ’st[’B*1:Bool,’B*2:Bool] if ’cBool.Bool =>

’B*1:Bool /\ ’cBool.Bool => ’B*2:Bool /\ ’lambda1[’B1:Bool,’B2:Bool,

’B*1:Bool,’B*2:Bool] = ’true.Bool [none] .

crl ’st[’B1:Bool,’B2:Bool] => ’st[’B*1:Bool,’B*2:Bool] if ’cBool.Bool =>

’B*1:Bool /\ ’cBool.Bool => ’B*2:Bool /\ ’lambda2[’B1:Bool,’B2:Bool,

’B*1:Bool,’B*2:Bool] = ’true.Bool [none] .

crl ’st[’B1:Bool,’B2:Bool] => ’st[’B*1:Bool,’B*2:Bool] if ’cBool.Bool =>

’B*1:Bool /\ ’cBool.Bool => ’B*2:Bool /\ ’lambda3[’B1:Bool,’B2:Bool,

’B*1:Bool,’B*2:Bool] = ’true.Bool [none] .

4.3 Proving properties

Now it is due time to think again of the question that motivated all the discussion in the
previous sections, namely, whether the state 151 is reachable from the initial 0. To prove that
this is not the case it is enough to show that for all reachable states 〈b1, b2〉 in the abstract
system, either b1 or b2 is equal to true. This can be done by applying the metaSearch
command to the result returned by either abstractionGround or abstractionGen, to search
for a state 〈b1, b2〉 such that b1 ∨ b2 = false. By the way the abstract transition relation has
been defined (see page 1) and the fact that our approximation contains it, this would prove
that all reachable numbers in the original system are either less than or equal to 10, or even;
in particular, 151 would not be reachable.

Maude> red metaSearch(abstractionGround(’SD-EXAMPLE, ’phi1 ’phi2),

’initial.AbsState,

’st[’B1:Bool,’B2:Bool],

’_or_[’B1:Bool,’B2:Bool] = ’false.Bool,’*,unbounded,0) .

result ResultTriple?: (failure).ResultTriple?

What the metaSearch operation does is to search, in the abstract system returned by
abstractionGround, for a state st[B1, B2] reachable from initial in which the condi-
tion B1 or B2 is false. The result obtained, failure, implies the negation of the condition
for all reachable states: this establishes that it is always the case that either b1 or b2 holds.

4.4 Some examples

Readers and writers. To illustrate the use of the tool we first consider the following
specification of a readers/writers system:

7

mod R&W is

protecting NAT .

sort Config .

op <_,_> : Nat Nat -> Config . --- readers/writers

vars R W : Nat .

rl < 0, 0 > => < 0, s(0) > .

rl < R, s(W) > => < R, W > .

rl < R, 0 > => < s(R), 0 > .

rl < s(R), W > => < R, W > .

endm

States are represented by pairs < R, W > that indicate the number R of readers and the
number W of writers accesing the critical resource. Readers and writers can leave the resource
at any time, but writers can only access it if none else is using it, and readers only whenever
there are no writers.

We wish to prove that there are never both readers and writers simultaneously using the
resource, and never more than a writer. Using this as a guide, we come up with the following
predicates:

ops phi1 phi2 phi3 : Config -> Bool .

eq phi1(< R, W >) = (R <= 0) .

eq phi2(< R, W >) = (W <= 0) .

eq phi3(< R, W >) = (W < 2) .

The purpose of the first two predicates is to recognize if the natural numbers R and W are
equal to 0, and the operator <= (which can be handled by the ITP’s decision procedures)
is used for that instead of the double equal == . This is necessary because this last operator
is not a logical one but predefined in Maude and returns unsound results when applied to
non-ground terms. Therefore, its use in conjunction with the ITP to prove arbitrary formulas
can lead to false results.

Once the predicates for the abstraction are specified together with the system, the prop-
erty can be checked by means of the following command:

Maude> red metaSearch(abstractionGen(’R&W, ’phi1 ’phi2 ’phi3),

’initial.AbsState,

’st[’B1:Bool,’B2:Bool, ’B3:Bool],

’_and_[’_or_[’B1:Bool,’B2:Bool],

’B3:Bool] = ’false.Bool, ’+, unbounded, 0) .

The initial state in the abstract system returned by abstractionGen is also called initial,
and metaSearch checks whether it is possible to reach a state st[B1, B2, B3] in which the
condition (B1 or B2) and B3 is false. That is, metaSearch tries to find a state in which
neither of the predicates hold (so that there would be both readers and writers in the system)
or in which the third one is false (so that there would be at least two writers). The result

result ResultTriple?: (failure).ResultTriple?

shows that it is not possible.

8

The bakery protocol. The bakery protocol [6] is an infinite state protocol that achieves
mutual exclusion between processes competing for a critical resource; processes are assigned
a number and are attended sequentially starting with that with the least number. A Maude
specification for the case of two processes is as follows:

mod BAKERY is

protecting NAT .

sorts Mode State .

ops sleep wait crit : -> Mode .

op <_,_,_,_> : Mode Nat Mode Nat -> State .

op initial : -> State .

vars P Q : Mode .

vars X Y : Nat .

eq initial = < sleep, 0, sleep, 0 > .

rl [p1_sleep] : < sleep, X, Q, Y > => < wait, s Y, Q, Y > .

rl [p1_wait] : < wait, X, Q, 0 > => < crit, X, Q, 0 > .

crl [p1_wait] : < wait, X, Q, Y > => < crit, X, Q, Y > if not (Y < X) .

rl [p1_crit] : < crit, X, Q, Y > => < sleep, 0, Q, Y > .

rl [p2_sleep] : < P, X, sleep, Y > => < P, X, wait, s X > .

rl [p2_wait] : < P, 0, wait, Y > => < P, 0, crit, Y > .

crl [p2_wait] : < P, X, wait, Y > => < P, X, crit, Y > if Y < X .

rl [p2_crit] : < P, X, crit, Y > => < P, X, sleep, 0 > .

endm

States are tuples <_,_,_,_> ; the first two components describe the condition of the first
process (its current mode and its priority, as given by its assigned number) and the remaining
two the condition of the second. The rewrite rules (four for each process) describe how a
process evolves from sleep to wait, from waiting to the critical resource (crit) and back to
sleep.

We use the following predicates for the abstraction:

eq phi1(< P, X, Q, Y >) = equal(P, wait) .

eq phi2(< P, X, Q, Y >) = equal(P, crit) .

eq phi3(< P, X, Q, Y >) = equal(Q, wait) .

eq phi4(< P, X, Q, Y >) = equal(Q, crit) .

eq phi5(< P, X, Q, Y >) = (X <= 0) and (0 <= X) .

eq phi6(< P, X, Q, Y >) = (Y <= 0) and (0 <= Y) .

eq phi7(< P, X, Q, Y >) = (Y < X) .

The fact that two processes cannot be at the same time in the critical section is proved by
checking that no state in which the second and fourth components are true is reachable.

Maude> red metaSearch(

abstractionGen(’BAKERY,’phi1 ’phi2 ’phi3 ’phi4 ’phi5 ’phi6 ’phi7),

’initial.AbsState,

’st[’B1:Bool,’true.Bool,’B3:Bool,’true.Bool,’B5:Bool,’B6:Bool,

’B7:Bool],

nil, ’+, unbounded, 0) .

result ResultTriple?: (failure).ResultTriple?

9

So far, all properties illustrated have been safety properties that state that a certain
undesirable state cannot be reached. Sometimes, however, we are interested in checking
more general properties like liveness, that guarantee that if a certain state can be reached
then eventually some other state will also be reached. In particular, this is the case for another
property that the bakery protocol satisfies: a process in waiting mode will eventually access
the critical resource.

The abstract system returned by the prototype can also be used to check if these kinds
of properties hold in the original one, but that requires the use of the model checker instead
of simply the function metaSearch. This gives rise to a problem, since the model checker
works with modules at the object level whereas the prototype returns metarepresentations.
Currently, the prototype does not support this situation; the simplest solution consists in
manually editing the abstract module and modifying the representation (essentially, removing
the backquotes and replacing brackets with parenthesis) until a module at the object level is
obtained.

In our running example, the representation at the object level of the module returned by
abstractGround is

mod BAKERY-ABS-RULES is

including BOOL .

sorts AbsState .

op initial : -> AbsState .

op st : Bool Bool Bool Bool Bool Bool Bool -> AbsState .

rl initial => st(false,false,false,false,true,true,false) .

rl st(false,false,false,false,false,false,false) =>

st(false,false,true,false,false,false,false) .

rl st(false,false,false,false,false,false,false) =>

st(true,false,false,false,false,false,true) .

...

endm

It can then be extended with the definitions for the state predicates needed to express the
liveness property:

mod BAKERY-ABS-RULES-CHECK is

inc BAKERY-ABS-RULES .

inc MODEL-CHECKER .

subsort AbsState < State .

ops 1wait 1crit 2wait 2crit : -> Prop .

vars B1 B2 B3 B4 B5 B6 B7 : Bool .

eq st(B1,B2,B3,B4,B5,B6,B7) |= 1wait = B1 .

eq st(B1,B2,B3,B4,B5,B6,B7) |= 1crit = B2 .

eq st(B1,B2,B3,B4,B5,B6,B7) |= 2wait = B3 .

eq st(B1,B2,B3,B4,B5,B6,B7) |= 2crit = B4 .

endm

Finally, the property is proved by using the following command:

Maude> red modelCheck(initial, (1wait |-> 1crit) /\ (2wait |-> 2crit)) .

result Bool: true

10

5 Implementation and technicals observations

Though we are not going to describe the implementation in detail since most of it is unin-
teresting, we do believe it appropriate to give a brief overview of the tool’s design and main
functions. To begin with, the prototype mainly deals with with metaobjects and makes ex-
tensive use of reflection through the META-LEVEL module. Also, as explained below, it relies
on the ITP theorem prover and the Maude’s model checker.

As mentioned before, to prove the validity of formulas the prototype uses the ITP the-
orem prover. Logical inference in the ITP is specified by means of rules, so it is not im-
mediately available to be used in equational definitions; a hack out of this problem is to
call Maude’s model checker function modelCheck, that allows the integration of rule-based
functions into equational definitions. This is the reason why the prototype loads the file
model-checker.maude in addition to itp-tool.maude; this dependency may be removed in
the future.

The main function behind the computation of the abstraction is computeAbsModule,
which is then used by abstractionGround and abstractionGen.

op computeAbsModule : Qid QidList -> Module .

eq computeAbsModule(QMod, QIL) =

(fmod qid(string(QMod) + "-ABS") is

including ’BOOL .

sorts none .

none

computeOps(cardRS(getRls(upModule(QMod, false))),

lengthQidList(QIL))

none

computeInit(QMod,QIL)

computeRules(QMod,QIL)

endfm) .

Given the names of the module to be abstracted and the predicates to be used, this func-
tion builds the metarepresentation of the abstract module with the help of three auxiliary
functions in charge, respectively, of declaring the module’s operators, computing the initial
abstract state, and abstracting the rules. This last task is performed by computeRules; after
a series of transformations, it calls the function abstractRule for each rule Rl in the module
QMod being abstracted.

op abstractRule : Qid QidList Rule AbsSpaceList Nat -> Equation .

ceq abstractRule(QMod, QIL, Rl, ASL, N) =

(eq qid("lambda" + string(N,10))

[generateBoolList("B",M), generateBoolList("B*",M)] =

abs2MetaAbsVar(abstractRuleAux(QMod, QIL, computePreFormula(Rl),

computePreVariables(Rl),ASL)) [none] .)

if M := lengthQidList(QIL) .

Again, the specific details are irrelevant. Note that this function builds the skeleton of the
abstract rule, naming it with the corresponding lambda label (see the output on page 4.1). It
also generates the list of its arguments before calling the function abstractRuleAux which,
together with tryRulePredicate, is really responsible of the bulk of the job.

op abstractRuleAux : Qid QidList Formula VarList AbsSpaceList -> AbsSpace .

eq abstractRuleAux(QMod, QIL, F, VL, AS) =

tryRulePredicate(QMod, QIL, F, VL, AS) .

eq abstractRuleAux(QMod, QIL, F, VL, (AS, ASL)) =

11

aAnd(tryRulePredicate(QMod, QIL, F, VL, AS),

abstractRuleAux(QMod, QIL, F, VL, ASL)) .

Finally, the function abstractRuleAux studies the possible relations among the Boolean
variables in the predicate that defines the abstract rule. For each such relation, say b1 → b′2,
stored as part of the last argument, it calls tryRulePredicate, which in its turn invokes the
ITP to check if the relation holds in the original module: if so, it is added to the predicate
being built; otherwise, it returns true, so that no new information is added.

Logical inference is specified in the ITP by means of rewrite rules. Hence, it is not
immediately available for use in equational definitions (the condition of an equation cannot
include rewrites). A way out of the problem without the overhead that would imply the
use of the metalevel and metaSearch consists in calling the function modelCheck of Maude’s
model checker. This is a built-in function that uses the module’s rules for its computation
and that can be employed in the equational specification of operations, thus allowing the
integration of definitions based on rules. This is the reason why the prototype loads the file
model-checker.maude besides itp-tool.maude; this dependency could be removed in the
future.

The interaction between the ITP and the model checker, and actually the only place in
the code where any of them is used (besides the function tryInitPredicate that similarly
computes the initial abstract state) is reflected in the first of the two equations that define
tryRulePredicate.

op tryRulePredicate : Qid QidList Formula VarList AbsSpace -> AbsSpace .

ceq tryRulePredicate(QMod, QIL, PreF, VL, AS) = AS

if F := AQuantification(’C@0:Config : ’C@1:Config : VL,

implication(PreF,

abs2XitpPredicate(AS,QIL)))

/\

modelCheck(state(attrs(

db : createNewGoalModule(QMod, ’abs$0),

input : (’auto*‘..Input),

output : nil,

proofState : < prove("abs$0", 0, 0, ’abs$0, F, nilTermList) ;

nil ; lemma(’abs, F, QMod, "abs$0") >,

defaultGoal : "abs$0")),

<> isProved?) .

eq tryRulePredicate(QMod, QIL, F, VL, AS) = aTrue [owise] .

The ITP works with states that store, in addition to other attributes, a database of
modules (db), the command being executed (input), and information about the current
goal (proofState) containing, in particular, the formula F being proved. Rewrite rules that
implement the logic’s proof calculus and the decision procedures are applied to these states;
a formula is proved when a state in which the field input is nilTermList is reached. This is
captures by the state predicate isProved?:

eq state(attrs(db : DB, input : nilTermList, output : QIL,

proofState : < emptyGoalSet ; PT ; L >,

defaultGoal : ST, Atts))

|= isProved? = true .

What the prototype does is to initialize the ITP’s internal state with the name QMod of
the module to be reasoned about, with the formula F we wish to prove (in an appropriate
format), and with the strategy auto to be used for the proof. Next, it calls the model checker

12

to verify if a state in which input is nilTermList is reachable, that is, a state in which the
formula has been proved.

Finally, let us take a look to the formulas the prototype sends to the ITP. As explained
in Section 3, for each rule we try to uncover relations of the form bi → b′j , meaning that if
φi holds in the current state then φj also holds in the state reached by using such rule. Let
us assume that the rule is of the form (∀X) t1 −→ t2 if C; the formula sent to the ITP to
check if bi → b′j holds is the universal quantification of the implication

x = t1 ∧ y = t2 ∧ C → (φi(x) → φj(y)) .

More precisely, the conjunction x = t1∧y = t2∧C is precomputed and sent to tryRulePredicate
through the variable PreF, whereas the substitution of the predicates for the Boolean vari-
ables in the expression bi → b′j is performed by abs2XitpPredicate.

6 By way of conclusion

The tool makes heavy use of the ITP, and both its accuracy and efficiency depend critically
on it. Obviously, the more valid formulas the ITP is able to prove, the better the abstract
system will be. Similarly, the ITP is invoked 4mn(n + 1) times, where m is the number of
rules in the original module and n the number of predicates used in the abstraction. Hence,
a high speed on the part of the ITP is crucial for the usefulness of the tool. Currently,
computing the abstraction for the bakery protocol, a system with 8 rules and 7 predicates,
took the tool almost 6 minutes in a 1.25Ghz G4; though manageable, this duration is already
too high. The cause does not lie in the inherent complexity of the problem but is related
to some difficulties with the ITP’s implementation that trigger many more rewritings than
necessary when proving a goal.

When compared to similar tools (for example, those described in [4, 5]), our prototype
comes out as significantly modest. Despite this, we believe it is important to stress that its
reflective design has allowed us to develop it very quickly and that, in any case and as the
word “prototype” indicates, the goal was not to achieve the highest performance possible
but to experiment with predicate abstraction in Maude. We hope to be able to use the
experience gained to improve the ITP and develop a more modern version of the present tool
comparable to other advanced research tools.

Acknowledgments. I warmly thank Manuel Clavel for all his help with the ITP.

References

[1] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT Press,
1999.

[2] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-Oliet, José
Meseguer, and Carolyn Talcott. Maude manual (version 2.1.1). http://maude.cs.uiuc.
edu/manual/, 2005.

[3] Manuel Clavel and Miguel Palomino. A quick ITP tutorial. In Francisco López-Fraguas,
editor, PROLE 2005, 2005. http:/maude.sip.ucm.es/∼miguelpt/bibliography.html.

[4] Michael A. Colón and Tomás E. Uribe. Generating finite-state abstractions of reactive
systems using decision procedures. In Alan J. Hu and Moshe Y. Vardi, editors, Computer
Aided Verification. 10th International Conference, CAV’98, Vancouver, BC, Canada,

13

June 28-July 2, 1998, Proceedings, volume 1427 of Lecture Notes in Computer Science,
pages 293–304. Springer-Verlag, 1998.

[5] Satyaki Das. Predicate Abstraction. PhD thesis, Department of Electrical Engineering,
Stanford University, December 2003.

[6] Leslie Lamport. A new solution of Dijkstra’s concurrent programming problem. Com-
munications of the ACM, 17(8):453–455, 1974.

[7] José Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical
Computer Science, 96(1):73–155, 1992.

[8] Tomás E. Uribe Restrepo. Abstraction-Based Deductive-Algorithmic Verification of Re-
active Systems. PhD thesis, Department of Computer Science, Stanford University, De-
cember 1998.

14

