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Abstract. Basin, Clavel, and Meseguer showed in [1] that membership
equational logic is a good metalogical framework because of its initial
models and support of reflective reasoning. A development and an appli-
cation of those ideas was presented later in [4]. Here we further extend
the metalogical reasoning principles proposed there to consider classes
of parameterized theories and apply this reflective methodology to the
proof of different parameterized versions of the deduction theorem for
minimal logic of implication.

1 Motivation

A reflective logic is a logic in which important aspects of its metalogic can
be represented at the object level in a consistent way, so that the object-level
representations correctly simulate the relevant metalogical aspects. As a conse-
quence, in a reflective logic, metatheorems involving families of theories can be
represented and logically proved as theorems about its universal theory. Basin,
Clavel, and Meseguer showed in [1] that logical frameworks can be good metalog-
ical frameworks when their theories always have initial models and they support
reflective and parameterized reasoning; they also showed that membership equa-
tional logic is a particular logical framework that satisfies these requirements.
In this paper, we extend their ideas and apply them to the (parameterized)
deduction theorem.

Basin and Matthews have shown in [2] how metatheories based on inductive
definitions can be used to formalize metatheorems that are parameterized with
their scope of application. As a case study, they formalize different parameterized
versions of the deduction theorem in the theory FS0 [8]; we will use the same
case study to motivate the developments of the following sections.

We can use membership equational logic (described in more detail in Sec-
tion 2) to represent theoremhood in a logic as a sort in a theory. Conditional
membership axioms then directly support the representation of rules as schemas,
which is typically used in presenting logics and formal systems. Similarly, we can
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represent theoremhood in a parameterized family of logics as a sort in a param-
eterized theory. A sort in a parameterized membership equational theory can
be used to represent theoremhood in a family of logics if and only if there is a
correspondence between logics in the family and instances of the parameterized
theory. Moreover, this correspondence has to be such that theoremhood in a logic
in the family can be represented as membership in this sort in the corresponding
instance of the parameterized theory.

We shall now illustrate the above idea using minimal logic (of implication)
as a running example. Representing minimal logic in membership equational
logic entails defining a theory T that conservatively represents minimal logic’s
theoremhood. The formulae of minimal logic correspond to members of the set
built from the binary connective → (written infix, associating to the right) and
sentential constants. Theorems correspond to members of a second set, and are
either instances of the standard Hilbert axiom schemas K,

A→ B → A,

fth MINIMAL is

kind Symbol[].

kind Expression[SentConstant Formula Theorem].

****************************************************** kinds

*** *** Symbol

op <ASCII-identifiers> : -> Symbol .

*** *** Expression

op <integer> : -> Expression .

op [_,_,_] : Symbol Expression Expression -> Expression .

vars A B C : Expression .

****************************************************** sorts

*** *** SentConstant

mb <integers> : SentConstant .

*** *** Formula

cmb A : Formula if A : SentConstant .

cmb [->, A, B]: Formula if A : Formula /\ B : Formula .

*** *** *** Theorem

cmb [->, A, [->, B, A]] : Theorem

if A : Formula /\ B : Formula .

cmb [->, [->, A, B], [->, [->, [A, [->, B, C]]], [->, A, C]]] : Theorem

if A : Formula /\ B : Formula /\ C : Formula .

cmb B : Theorem

if A : Formula /\ B : Formula

/\ A : Theorem /\ [->, A, B]: Theorem .

endfth

Fig. 1. The theory MINIMAL.
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and S,
(A→ B)→ (A→ B → C)→ (A→ C),

or are generated by applying the modus ponens rule,

A A→ B

B
.

Then, the deduction theorem for minimal logic is a metatheorem that states that

if `A B then ` A→ B,

where ` denotes that a formula can be deduced in minimal logic from the rules
above and `A is provability when A is considered to be an additional axiom.
Since A is arbitrary, this result is a statement about a family of logics (or the-
ories); actually, the result is also parametric in another sentence since it holds
for extensions of minimal logic with additional connectives, like the standard
conjunction.

The theory MINIMAL—in short, ML—in Figure 1 represents minimal logic in
membership equational logic using the above idea. The lines starting with kind

declare the kinds and their associated sorts; for the time being, kinds can be
safely ignored. The sort Formula represents the well-formed formulae in minimal
logic, in the sense that any formula in minimal logic can be represented as a
term of this sort and vice versa. For example, if A,B are sentential constants
represented respectively by 1 and 2, then (A → B) is represented by the term
[->, 1, 2] of sort Formula. Similarly, the sort Theorem represents the theorems
in minimal logic, so that any theorem in minimal logic can be represented as a
term of this sort, and vice versa.

Consider now the task of representing not just minimal logic, but the family of
logics that includes any extension of minimal logic with respect to its language—
connectives and syntactic rules—and proof system—axioms and inference rules.
A solution to this is given by the parameter theory EXTENDED-MINIMAL—in short,
EML—in Figure 2. The parametric sort @NewSynRule allows us to capture the
extensions of minimal logic’s language with new binary connectives. For example,
the extension of minimal logic’s language with the ∧-operator corresponds to the
instantiation of EML with the following membership axiom Ax(@NewSynRule)
associated to @NewSynRule:

mb [[/\, A, B], A, B]: @NewSynRule .

Similarly, the parametric sorts @NewAxiom and @NewInfRule allow us to cap-
ture the extensions of minimal logic’s proof system with new axioms and/or new
inference rules of two premises. For example, the extension of minimal logic’s
proof system with the axiom schemas for the binary connective ∧ corresponds
to the instantiations of EML with the following membership axioms associated to
@NewAxiom:

mb [->, A, [->, B, [/\, A, B]]]: @NewAxiom .

mb [->, [/\, A, B], A]: @NewAxiom .

mb [->, [/\, A, B], B]: @NewAxiom .
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fth EXTENDED-MINIMAL is

including MINIMAL .

kind Expression[@NewAxiom] .

kind Rule[@NewSynRule @NewInfRule] .

****************************************************** kinds

*** *** Rule

op [_,_,_] : Expression Expression Expression -> Rule .

vars A B C : Expression .

****************************************************** sorts

*** *** Formula

cmb A : Formula

if [A, B, C] : @NewSynRule

/\ B : Formula /\ C : Formula .

*** *** Theorem

cmb A : Theorem if A : @NewAxiom /\ A : Formula .

cmb A : Theorem

if [A, B, C] : @NewInfRule

/\ A : Formula /\ B : Formula /\ C : Formula

/\ B : Theorem /\ C : Theorem .

****************************************************** parameters

op @A : -> Expression .

mb @A : Formula .

endfth

Fig. 2. The theory EXTENDED-MINIMAL.

fth EXTENDED-MINIMAL-DT[EXTENDED-MINIMAL] is

including EXTENDED-MINIMAL .

mb @A : Theorem .

endfth

Fig. 3. The theory EXTENDED-MINIMAL-DT[EXTENDED-MINIMAL].

Now, let @A be the parametric constant that appears (as a subscript of `)
in the deduction theorem. The parameterized theory in Figure 3—in short,
DT[EML]—can be used to represent any extension of minimal logic with respect
to its language and proof system.

With this example in mind, our objectives in this paper move at two differ-
ent levels. First, we want to design a metareasoning principle over parameterized
theories in membership equational logic; a concrete application of this principle
would be a proof of the fact that the deduction theorem holds for every pos-
sible instantiation of DT[EML]. Secondly, and foremost, we intend to reify both
parameterized theories and the metareasoning principle in the universal theory
UMEL of membership equational logic [6]; that is, our goal is to define repre-
sentation functions to reify parameterized theories as terms in UMEL and the
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metareasoning principle as a formula over UMEL. As a concrete application, we
will show that the parameterized deduction theorem can be proved by showing
that a certain formula holds in UMEL.

2 Membership Equational Logic

Membership equational logic is an expressive version of equational logic. A full
account of the syntax and semantics of membership equational logic can be found
in [3, 10]. Here we define the basic notions needed in this paper.

A signature in membership equational logic is a triple Ω = (K,Σ, S) with
K a set of kinds, Σ a K-kinded signature Σ = {Σk1...kn,k}(k1...kn,k)∈K∗×K , and
S = {Sk}k∈K a pairwise disjoint K-kinded family of sets. We call Sk the set of
sorts of kind k and write [s] for the kind of a sort s. The pair (K,Σ) is what is
usually called a many-sorted signature of function symbols; however we call the
elements of K kinds because each kind k now has a set Sk of associated sorts,
which in the models will be interpreted as subsets of the carrier for the kind.

The atomic formulae of membership equational logic are equations t = t′,
where t and t′ are Σ-terms of the same kind, and membership assertions of the
form t : s, where the term t has kind k and s ∈ Sk. Sentences are Horn clauses
on these atomic formulae, i.e., sentences of the form

∀(x1, . . . , xm). A0 if A1 ∧ . . . ∧An

where each Ai is either an equation or a membership assertion, and each xj is
a K-kinded variable. A theory in membership equational logic is a pair (Ω,E),
where E is a finite set of sentences in membership equational logic over the
signature Ω. We write (Ω,E) ` φ to denote that (Ω,E) entails the sentence φ.

We employ standard semantics concepts from many-sorted logic. Given a
signature Ω = (K,Σ, S), an Ω-algebra A is a many-kinded Σ-algebra (that is, a
K-indexed-set A = {Ak}k∈K together with a collection of appropriately kinded
functions interpreting the operators in Σ) and an assignment that associates
to each sort s ∈ Sk a subset As ⊆ Ak. As usual, we denote by TΩ the K-
kinded algebra of ground (K,Σ)-terms, and by TΩ(X) the algebra of (K,Σ)-
terms on the K-kinded set of variables X. An algebra A and a valuation σ,
assigning to variables of kind k values in Ak, satisfy an equation (∀X) t = t′

iff σ(t) = σ(t′), where we overload notation by identifying σ with its unique
homomorphic extension to terms. We write A, σ |= (∀X) t = t′ to denote such a
satisfaction. Similarly, A, σ |= (∀X) t :s holds iff σ(t) ∈ As.

Note that an Ω-algebra is a K-kinded first-order model with function symbols
Σ and a kinded alphabet of unary predicates {Sk}k∈K . We can then extend the
satisfaction relation to Horn and first-order formulae φ over the atomic formulae
in the standard way. We write A |= φ when the formula φ is satisfied for all
valuations σ, and then say that A is a model of φ. As usual, we write (Ω,E) |= φ
when all the models of the set E of sentences are also models of φ.

Theories in membership equational logic have initial models [10]. This pro-
vides the basis for reasoning by induction. In the initial model of a membership
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equational theory, sorts are interpreted as the smallest sets satisfying the axioms
in the theory, and equality is interpreted as the smallest congruence satisfying
those axioms. Given a theory (Ω,E), we denote its initial model by TΩ/E . In
particular, when E = ∅ we obtain the term algebra TΩ . We write (Ω,E) |' φ
to denote that the initial model of the membership equational theory (Ω,E) is
also a model of φ, that is, that the satisfaction relation TΩ/E |= φ holds.

2.1 Reflection in Membership Equational Logic

A reflective logic is a logic in which important aspects of its metalogic can be
represented at the object level in a consistent way, so that the object-level repre-
sentation correctly simulates the relevant metalogical aspects. More concretely,
a logic is reflective when there exists a universal theory in which we can rep-
resent and reason about all finitely presentable theories in the logic, including
the universal theory itself [5]. As a consequence, in a reflective logic, metathe-
orems involving families of theories can be represented and proved as theorems
about its universal theory [1]. A universal theory UMEL for membership equa-
tional logic is described in [6], along with a representation function ( ` ) that
encodes pairs, consisting of a finitely presentable membership equational theory
with nonempty kinds and a sentence in it, as sentences in UMEL. The signature of
UMEL contains constructors to represent operators, variables, terms, kinds, sorts,
signatures, axioms, and theories. In particular, the signature of UMEL includes
the kinds [Op], [Var], [Term], [TermList], [Kind], [Sort], and [Theory] for
terms representing, respectively, operators, variables, terms, lists of terms, kinds,
sorts, and theories. In addition, it contains three Boolean operators1

op _::_in_ : [Term] [Kind] [Theory] -> [Bool] .

op _:_in_ : [Term] [Sort] [Theory] -> [Bool] .

op _=_in_ : [Term] [Term] [Theory] -> [Bool] .

to represent, respectively, that a term is a ground term of a given kind in a
membership equational theory, and that a membership assertion or an equation
holds in a membership equational theory.

The representation function ( ` ) is defined in [6] as follows: for all finitely
presentable membership equational theories with nonempty kinds R, and atomic
formulae φ over the signature of R,

R ` φ ,

{
(t : s in R) = true if φ = (t :s)

(t = t′ in R) = true if φ = (t = t′),

where ( ) is a representation function defined recursively over theories, signa-
tures, axioms, and so on. In particular, to represent terms the signature of UMEL

contains the constructors

1 The operator declarations have been changed slightly from those in [6] to better
match their use in this work.
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op _[_] : [Op] [TermList] -> [Term] .

op nil : -> [TermList] .

op _,_ : [TermList] [TermList] -> [TermList] .

and the representation function ( ) is defined as follows:

t ,


c if t = c is a constant

x if t = x is a variable

f[t1, . . . ,tn] if t = f(t1, . . . , tn).

(1)

For example, the term s(0) of kind Num is represented in UMEL as the term s[0]
of kind [Term]. Constants, operators, variables, kinds, and sorts are represented
using strings of ASCII characters preceded by a quote. For example, s(0) can be
represented in UMEL as the term ’s[’0]. It is convenient to represent variables
along with their kinds using a binary constructor

op _|_ : [Var] [Kind] -> [Term] .

For example, s(N) is represented in UMEL as the term ’s[’N|’Num].
The following results state the main properties of UMEL as a universal theory

and are proved in [6]. We assume a finitely presentable membership equational
theory R = (Ω,E) with nonempty kinds, and with Ω = (K,Σ, S).

Proposition 1. For all terms t in TΩ, and kinds k in K,

t ∈ (TΩ)k ⇐⇒ UMEL ` (t :: k in R) = true.

Furthermore, for all ground terms u of kind [Term], if

UMEL ` (u :: k in R) = true ,

then there is a term t ∈ (TΩ)k such that t = u.

Proposition 2. For all terms t, t′ in (TΩ)k and sorts s in Sk,

R ` t : s ⇐⇒ UMEL ` (t : s in R) = true

R ` t = t′ ⇐⇒ UMEL ` (t = t′ in R) = true.

Note that this proposition says that there exists a logical proof of t : s
(resp. of t = t′) in a membership equational theory R if and only if there exists
also a logical proof of (t : s in R) = true (resp. of (t = t′ in R) = true) in the
universal membership equational theory UMEL.

Finally, not only can the theory UMEL represent and reason about the en-
tailment relation of any other theory but also about their own structure. In
particular, we can define an operator

op _spec_in_ : [AxiomSet] [Sort] [Signature] -> [Bool] .

that distinguishes those axioms that specify a sort in a signature, in the following
sense:
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Proposition 3. For any membership equational signature Ω = (K,Σ, S), any
set of sentences Ax, and any sort s in some Sk, the following are equivalent:

– UMEL ` (Ax spec s in Ω) = true.
– Ax is a set of sentences over Ω that specify the sort s.

Proposition 4. For any ground terms u, z, and M in UMEL, if

UMEL ` (u spec z in M) = true,

then there is a membership equational signature Ω, a sort s over Ω, and a set
of sentences Ax in Ω specifying s, such that Ω = M , Ax = u, and s = z.

The proofs for these results would follow easily by mimicking the techniques
for Propositions 1 and 2.

2.2 Reflecting an Inductive Principle

We need to introduce here some additional notation. For all terms t ∈ TΩ(X),
we denote by t

[X]
the reflective representation of t defined in (1), except that

now variables x ∈ X are replaced by variables x[X] = x of the kind [Term], and

we denote by X
[X]

the set X
[X]

, {x[X] | x ∈ X}. The key difference between t
and t

[X]
is that t is a ground term, whereas t

[X]
is a term of kind [Term] with

variables of the kind [Term].
In addition, for all membership assertions t :s, with t in TΩ(X) and s in some

Sk,
t :s

[R,X]
, (t

[X]
: s in R) = true,

and, similarly, for all equations t = t′, with t, t′ in TΩ(X),

t = t′
[R,X]

, (t
[X]

= t′
[X]

in R) = true.

Now we can define a representation function for metalogical statements that
satisfies the expected property. Let {R1, . . . , Rp} be a set of membership equa-
tional theories, {k1, . . . , kn} a finite multiset of kinds in {R1, . . . , Rp}, ~x =
{x1, . . . , xn} a finite set of variables, with each xi of kind ki, and τ a meta-
logical statement of the form

∀t1 ∈ (TΩ1
)k1 . . . . ∀tn ∈ (TΩn

)kn . bexp(R1 ` φ1(~t), . . . , Rp ` φp(~t)), (2)

where each φl(~x) is an atomic Ωl-formula with free variables in ~x and bexp is a
Boolean expression. Then,

τ , ∀x1. . . .∀xn. (((x1 :: k1 in R1) = true ∧ · · · ∧ (xn :: kn in Rn) = true)

=⇒ bexp(φ1(~x)
[R1,~x]

, . . . , φp(~x)
[Rp,~x]

)) ,

where {x1, . . . , xn} are now variables of the kind [Term]. Now, the main result
in [4] was:

Theorem 1. Let τ be a metalogical statement of the form (2). Then, τ holds
iff UMEL |' τ .
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3 Parameterization

In the previous section we have recalled an inductive principle to reason about
terms in a family of theories, which constitutes both an application of the ideas
introduced in [1] as well as a generalization.2 In this section we turn our attention
to parameterization, which was already studied in [1] using the deduction theo-
rem as a case study. Here we consider a generalization of the parameter theories
and of the corresponding inductive principle, and we use them to formalize two
versions of the deduction theorem not expressible in the formalisms presented
in [1, 4].

3.1 (Some) Parameterized Membership Equational Theories

As pointed out by Goguen and Burstall [9], a parameterized theory can be defined
for logics in general as a pair of theories: the parameter P and the body T , that
are related by a theory map J : P → T which is typically a theory inclusion.
To instantiate such a parameterized theory, the key data needed is a theory
morphism H : P → Q from the parameter theory to another theory Q. The
instantiation by H is then defined as the pushout commutative diagram

T
HT
// T [H]

P

J

OO

H
// Q

JQ

OO

in the category Th of theories and theory maps [9], when such a pushout exists.
Now we employ an instance of the previous construction to define, for each

appropriate parameter theory P , a class PP of membership equational theories
parameterized by P and a class VP of theory morphisms that instantiate param-
eterized theories in PP . For that, given two membership equational signatures
Ω and Ω′, we will write Ω ∪ Ω′ for the signature whose set of kinds is the set-
theoretic union of those of Ω and Ω′, and whose operators and sorts are those
of Ω and Ω′.

Then, we consider parameter theories P of the form

P = (Ω ∪ V ∪ Z,E ∪Mb(V ));

that is, P ’s signature is built from

– a finite signature Ω = (K,Σ, S),
– a finite signature of parameters V = (K, {Vλ,k}k∈K , ∅), consisting of a pair-

wise disjoint K-kinded family of constants which satisfies that, for all k ∈ K,
Σλ,k ∩ Vλ,k = ∅, and

2 The result proved in [4] also allowed to reason about equivalence classes of terms,
which were not considered in [1].
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– a finite signature of parameters Z = (K, ∅, {Zk}k∈K), consisting of a pairwise
disjoint K-kinded family of sets which satisfies that, for all k ∈ K, Sk∩Zk =
∅;

and P ’s axioms consist of

– a finite set of sentences E on terms in TΩ(X), and
– a finite set of membership assertions Mb(V ) that specify a sort (possibly in
Z) for each v in V .

Moreover, we consider theory maps P −→ T which are theory inclusions and,
for this reason, we usually denote parameterized theories by T [P ]. Specifically,
we define PP as the class of parameterized theories T [P ] of the form

T [P ] = (Ω′ ∪ V ∪ Z,E ∪G ∪Mb(V )),

where Ω ⊆ Ω′ and G is a finite set of additional axioms (which extend P ’s
axioms). Note that for all parameter theories P there is a trivial extension P [P ]
of P , namely, P [P ] = P .

Now, let Inst(P ) be the class of theories

Q = (Ω ∪ V ∪ Z,E ∪ Eq(V ) ∪Ax (Z)),

where

– Eq(V ) is a finite set of equations of the form

v = t (v ∈ V ),

assigning to each constant v ∈ V a ground term t ∈ TΩ such that Q ` t : s,
where s is the sort assigned to v in Mb(V ), and

– Ax (Z) is a finite set of membership axioms of the form

∀(x1, . . . , xm). t : z if A1 ∧ . . . ∧An,

where z ∈ Zk for some kind k ∈ K, t is a term over the signature Ω, and Ai
is an atomic formula over the same signature, for i = 1, . . . , n. We collect all
the axioms specifying a sort z ∈ Zk in a set Ax (z).

We define VP as the class of theory morphisms β : P −→ Q such that Q ∈
Inst(P ) and β is the identity signature morphism. Note that the set VP is in
bijective correspondence with the set Inst(P ).

The above defines a notion of instantiation for parameterized theories that,
for any T [P ] ∈ PP and β ∈ VP , specializes the pushout construction to

T [P ] // T [β]

P

OO

β
// Q

OO
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where T [β] = (Ω′ ∪ V ∪ Z,E ∪G ∪ Eq(V ) ∪Ax (Z)).
One of the key ideas behind our use of theory morphisms is the following.

Although β is the identity morphism on signatures, it identifies terms in Q,
and hence in T [β], by adding equations of the form v = t. This has an effect
equivalent to mapping constants to terms. More formally, suppose T [P ] ∈ PP
and β ∈ VP . For all terms t ∈ TΩ∪V (X), we denote by tβ the term in TΩ(X) that
results from replacing all parameters v in t by their instantiations in Eq(V ). We
can extend this notion of term replacement to atomic formulae in the standard
way: (t : s)β , tβ : s and (t = t′)β , tβ = t′β . Note then that for all atomic
formulae φ over the signature of T [β], and due to the equations in Eq(V ), it
holds that

T [β] ` φ ⇐⇒ T [β] ` φβ . (3)

4 Induction Principles for Parameterized Theories

We next introduce an inductive metareasoning principle over parameterized the-
ories. First, we need the following definition.

Definition 1. Let P = (Ω ∪ V ∪ Z,E ∪ Mb(V )) be a parameter theory with
Ω = (K,Σ, S), let P = {R1[P ], . . . , Rp[P ]} be a finite multiset of parameterized
theories in PP , and e ∈ [1..p]. We say that P is coherent modulo Re[P ] if

1-a. every term t of kind k ∈ K in Re[P ] is also a term of kind k in Rl[P ] for
1 ≤ l ≤ p, and

1-b. for all theory morphisms β : P −→ Q in VP , all terms t and t′ of kind k ∈ K
in Re[P ], and all 1 ≤ l ≤ p, it holds that

Re[β] ` t = t′ =⇒ Rl[β] ` t = t′.

That is, we assume that among the parameterized theories in P there is one
that is “equationally generic” in the sense that, if an equation holds in any of
its instances, then it also holds in the corresponding instance of any of the rest
of the parameterized theories in P. We can then use this distinguished theory
to reason inductively about the whole family.

Proposition 5. Let P = {R1[P ], . . . , Rp[P ]} be a finite multiset of parameter-
ized theories in PP that is coherent modulo Re[P ]. Let Re[P ] = (Ω′e∪V ∪Z,E ∪
Ge ∪Mb(V )), let s be a sort in some Sk, and let C[Re[P ],s] = {C1, . . . , Cn} be
those sentences in E ∪Ge that specify the sort s, i.e., those Ci of the form

∀(x1, . . . , xri). A0 if A1 ∧ . . . ∧Aqi ,

where, for some term w of kind k, A0 is w :s.
Then, for all finite multisets of atomic formulae {φl(x)}l∈[1..p] with free vari-

able x of kind k, and Boolean expressions bexp, the following metalogical state-
ment holds:

∀β ∈ VP .(ψ1 ∧ · · · ∧ ψn)
=⇒
∀β ∈ VP .

(
∀t ∈ TΩ .(Re[β] ` t : s =⇒ bexp(R1[β] ` φ1(t)β , . . . , Rp[β] ` φp(t)β))

)
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where, for 1 ≤ i ≤ n and Ci in C[Re[P ],s], ψi is

∀t1 ∈ (TΩ)ki1 . . . .∀tri ∈ (TΩ)kiri
.[A1]# ∧ · · · ∧ [Aqi ]

# =⇒ [A0]#

and, for 0 ≤ j ≤ qi,

[Aj ]
] ,

{
bexp

(
R1[β] ` φ1(u(~t)), . . . , Rp[β] ` φp(u(~t))

)
if Aj = u :s

Re[β] ` Aj(~t) otherwise.

Actually, this proposition is a particular case of the following, more general
one, that will be needed for the deduction theorem.

Proposition 6. Let P = {R1[P ], . . . , Rp[P ]} be a finite multiset of parameter-
ized theories in PP that is coherent modulo Re[P ]. Let Re[P ] = (Ω′e∪V ∪Z,E ∪
Ge ∪Mb(V )), let s be a sort in some Sk, and let C[Re[P ],s] = {C1, . . . , Cn} be
those sentences in E ∪Ge that specify the sort s, i.e., those Ci of the form

∀(x1, . . . , xri). A0 if A1 ∧ . . . ∧Aqi ,

where, for some term w of kind k, A0 is w :s.
Then, for all finite multisets of atomic formulae {φl(x)}l∈[1..p] with free vari-

able x of kind k, and Boolean expressions bexp, the following metalogical state-
ment holds:

∀β ∈ VP .(UMEL |' β(γ) =⇒ ψ1) ∧ · · · ∧ ∀β ∈ VP .(UMEL |' β(γ) =⇒ ψn)
=⇒
∀β ∈ VP .

(
UMEL |' β(γ) =⇒

∀t ∈ TΩ .(Re[β] ` t : s =⇒ bexp(R1[β] ` φ1(t)β , . . . , Rp[β] ` φp(t)β))
)

where, for 1 ≤ i ≤ n and Ci in C[Re[P ],s], ψi is

∀t1 ∈ (TΩ)ki1 . . . .∀tri ∈ (TΩ)kiri
.[A1]# ∧ · · · ∧ [Aqi ]

# =⇒ [A0]#

and, for 0 ≤ j ≤ qi,

[Aj ]
] ,

{
bexp

(
R1[β] ` φ1(u(~t)), . . . , Rp[β] ` φp(u(~t))

)
if Aj = u :s

Re[β] ` Aj(~t) otherwise.

Proof. Let β ∈ VP be such that UMEL |'β(γ) and let t be such that Re[β] ` t : s.
Then, we have to show that bexp(R1[β] ` φ1(t)β , . . . , Rp[β] ` φp(t)β) is true.

We proceed by structural induction on the derivation of Re[β] ` t : s. There
exists a sentence Ci in C[Re[P ],s] and a substitution σ : {x1, . . . , xri} −→ TΩe

,
such that

– Re[β] ` t = σ(w), and
– Re[β] ` σ(Aj), for 1 ≤ j ≤ qi.

12



By hypothesis, UMEL |'β(γ) =⇒ ψi, and since we are assuming UMEL |'β(γ),
ψi must hold. But then, in particular, it also holds [A1]]σ ∧ . . .∧ [Aqi ]

]
σ =⇒ [A0]]σ,

where, for 0 ≤ j ≤ qi,

[Aj ]
]
σ ,

{
bexp (R1[β] ` φ1([σ(u)]Re

), . . . , Rp[β] ` φp([σ(u)]Re
)) if Aj = u :s

Re ` σ(Aj) otherwise.

Note now that, for 1 ≤ j ≤ qi,

– If Aj = (u :s), then [Aj ]
]
σ holds by induction hypothesis, since Re[β] ` σ(u) :

s.
– If Aj 6= (u :s), then [Aj ]

]
σ holds by assumption.

Hence, [A0]]σ, that is, bexp(R1[β] ` φ1(σ(w)), . . . , Rp[β] ` φp(σ(w)), also holds.
Finally, since Re[β] ` t = σ(w) and P is coherent modulo Re[P ], we have that
bexp(R1[β] ` φ1(t), . . . , Rp[β] ` φp(t)) as required. ut

We will be mainly interested in those γ such that UMEL |'β(γ) is equivalent
to imposing some restrictions on the instances β at the object level. This will be
illustrated in Section 6.

5 Reflected Parameterized Induction

In this section we explain how the inductive principle for reasoning about param-
eterized theories introduced in Section 4 can be reflected. To accomplish this,
the key ideas are the following.

– Parameterization is reflected as quantification over (meta)variables repre-
senting the parameters. In particular, parameterized atomic formulae are
represented as atomic formulae which contain free (meta)variables repre-
senting the parameters.

– Instantiation requirements are reflected as a formula (γ), which contains
also free (meta)variables representing the parameters. The idea is that all
substitutions of the (meta)variables representing the parameters must satisfy
this formula.

5.1 Representing Parameterized Theories

We first need to further extend the notation introduced in Section 2.2 to deal
with parameters. Let P = (Ω ∪ V ∪ Z,E ∪Mb(V )) be a parameter theory with
Ω = (K,Σ, S). For all terms t ∈ TΩ∪V (X), we will denote by t

[V,X]
its reflective

( )-representation except that now parameters v ∈ V and variables x ∈ X are
replaced by (meta)variables v and x of the kind [Term]. For t a ground term,
we shall simply write t

[V ]
. Similarly, if t ∈ TΩ∪Z(X) we shall write t

[X]
as we

did in Section 2.2. Also, for any sort z in Zk, k ∈ K, we will denote by z[Z] a

(meta)variable of the kind [AxiomSet]. In addition, we will denote by V
[V ]

the

13



set V
[V ]

, {v[V ] | v ∈ V }, and by Z
[Z]

the set Z
[Z]

, {z[Z] | z ∈ Zk, k ∈ K}, and
assume that they are disjoint.

Finally, for any theory morphism β : P −→ Q in VP , with Q = (Ω∪V ∪Z,E∪
Eq(V )∪Ax (Z)), we will denote by β the ground substitution β : V

[V ]∪Z [Z] −→
TUMEL , defined as follows: β(v[V ]) , t, if (v = t) ∈ Eq(V ), and β(z[Z]) , Ax (z),
if z ∈ Zk.

Proposition 7. For all theory morphisms β : P −→ Q in VP and all terms
t ∈ TΩ∪V (X),

β(t
[V,X]

) = tβ
[X]
.

Proof. By structural induction on t. ut

We now define a generic representation function ( )
P

for parameterized mem-
bership equational theories. Let P = (Ω ∪ V ∪ Z,E ∪Mb(V )) be a parameter
theory with Ω = (K,Σ, S), K = {k1, . . . , km} and Mb(V ) = {v1 :s1, . . . , vn :sn}.
Then, for any parameterized theory T [P ] = (Ω′ ∪V ∪Z,E ∪G∪Mb(V )) in PP ,

T [P ]
P
, (Ω′ ∪ V ∪ Z,E G Mb(V )

P
Z
P

),

where

– Mb(V )
P

is the term

Mb(V )
P
, (eq v1 = v1

[V ] . · · · eq vn = vn
[V ] .),

and
– Z

P
is the term

Z
P
, (Zk1

P
. . . Zkm

P
)

where, for any ki ∈ K, if Zki = {zi1, . . . , ziqki
}, then Zki

P
is the term

Zki
P
, (zi1

[Z] . . . ziqki

[Z]).

Intuitively, Z
P

is a term representing all possible instantiations of the set of
axioms defining the sorts in Z.

Proposition 8. For any parameterized membership equational theory T [P ] ∈
PP , T [P ] = (Ω′∪V ∪Z,E∪G∪Mb(V )), and any theory morphism β : P −→ Q
in VP , it holds that

β(T [P ]
P

) = T [β].

Proof. By definition of substitution application and β we have

β(T [P ]
P

) = (Ω′ ∪ V ∪ Z,E G β(Mb(V )
P

) β(Z
P

))

= (Ω′ ∪ V ∪ Z,E G (eq v1 = t1 . · · · eq vn = tn .)

(Ax (z11) · · ·Ax (zmqkm
)))

which, by the definition of T [β], yields the desired result. ut
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5.2 Representing Parameterized Atomic Formulae

We now define a generic representation function ( )
[ , ]

for atomic formulae over
parameterized membership equational theories. Note that we use the same no-
tation as in Section 2.2.

For P = (Ω ∪ V ∪ Z,E ∪ Mb(V )) with Ω = (K,Σ, S), any parameterized
theory T [P ] ∈ PP , and any membership assertion t :s,

t :s
[T [P ],X]

, (t
[V,X]

: s in T [P ]
P

) = true.

Similarly, for any equation t = t′,

t = t′
[T [P ],X]

, (t
[V,X]

= t′
[V,X]

in T [P ]
P

) = true.

Proposition 9. For all ground atomic formulae φ over the signature of the
parameterized theory T [P ] and all theory morphisms β : P −→ Q in VP ,

UMEL |' β(φ
[T [P ],∅]

) ⇐⇒ T [β] ` φβ .

Proof. Let φ = t :s (the proof is analogous for φ = (t = t′)). Notice that by the
definition of substitution application and Propositions 7 and 8,

β(t :s
[T [P ],∅]

) = (β(t
[V ]

: s in T [P ]
P

) = true)

= (β(t
[V ]

) : s in β(T [P ]
P

) = true)

= (tβ : s in T [β] = true).

Thus, since (tβ : s in T [β] = true) is a ground atomic formula, due to the
soundness and completeness of membership equational logic we can reduce the
problem to proving that

UMEL ` (tβ : s in T [β]) = true⇐⇒ T [β] ` φβ ,

which holds by Proposition 2. ut

Corollary 1. For P a parameter theory with Mb(V ) = {v1 :s1, . . . , vn :sn}, and
β : P −→ Q in VP ,

UMEL |' β(vi :si
[P,∅]) (1 ≤ i ≤ n).

Proof. Notice that in this case the parameterized theory T [P ] is P [P ] = P , and
hence T [β] is Q. Then, by Proposition 9,

UMEL |'β(vi :si
[P,∅])⇐⇒ Q ` (vi :si)β , (1 ≤ i ≤ n)

and the righthand side entailments hold by definition of Q. ut
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5.3 Representing Requirements

We will need to impose, at the metalevel, that the parameters in the theory P
are correctly instantiated. For that, if Mb(V ) = {v1 :s1, . . . , vn : sn}, we define

Mb(V )
C(P )

, ((v1
[V ] :: k1 in P ) = true ∧ · · · ∧ (vn

[V ] :: kn in P ) = true ∧
v1 :s1

[P,∅] ∧ · · · ∧ vn :sn
[P,∅]),

where ki is the kind of si for i = 1, . . . , n. It immediately follows from Proposi-
tion 1 and Corollary 1 that

Proposition 10. For P = (Ω ∪ V ∪ Z,E ∪ Mb(V )) a parameter theory, and
β : P −→ Q in VP ,

UMEL |' β(Mb(V )
C(P )

).

The formula Mb(V )
C(P )

will be used to impose that the parameters in V are
instantiated with ground terms of the appropriate sort. Analogously, we will also

require that the variables in Z
[Z]

are correctly instantiated (that is to say, with
membership axioms specifying the sorts in Z), and for that we will use a new

representation function ( )
D(P )

, defined over sorts in Z as follows:

zD(P ) , (z[Z] spec z in Ω ∪ Z) = true (z ∈ Zk).

Proposition 11. For P = (Ω ∪ V ∪ Z,E ∪Mb(V )), any sort z ∈ Zk for some
kind k, and β : P −→ Q in VP ,

UMEL |' β(zD(P )).

Proof. By definition of substitution application and β,

β(zD(P )) = (β(z[Z]) spec z in Ω ∪ Z = true)

= (Ax (z) spec z in Ω ∪ Z = true),

and hence the result follows from Proposition 3 by soundness of membership
equational logic. ut

The representation function ( )
D(P )

is extended to Z in the obvious way by

Z
D(P )

,
∧
z∈Zk

zD(P ).

Corollary 2. For P = (Ω ∪ V ∪ Z,E ∪ Mb(V )) a parameter theory and β :
P −→ Q in VP ,

UMEL |' β(Z
D(P )

).
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5.4 Reflecting Parameterized Induction Principles

We now define a representation function for metalogical statements. Let P =
{R1[P ], . . . , Rp[P ]} be a finite multiset of parameterized theories in PP that is
coherent modulo Re[P ], {k1, . . . , kn} a finite multiset of kinds, and τ a metalog-
ical statement of the form

∀β ∈ VP .
(
UMEL |'β(γ) =⇒

∀t1 ∈ (TΩ1)k1 . . . .∀tn ∈ (TΩn)kn .bexp(R1[β] ` (φ1(~t))β , . . . , Rp[β] ` (φp(~t))β)
)

where each φl(~x) is an atomic formula with free variables in ~x, each xi of kind
ki. Then, τ is defined as

∀V [V ]

.∀Z [Z]

.
(
(Mb(V )

C(P )

∧ ZD(P ) ∧ γ) =⇒
∀x1. . . .∀xn.((x1 :: k1 in R1[P ]) = true ∧ · · · ∧ (xn :: kn in Rn[P ]) = true)

=⇒ bexp(φ1(~x)
[R1[P ],~x]

, . . . , φp(~x)
[Rp[P ],~x]

)
)

where {x1, . . . , xn} are now variables of the kind [Term].
The following auxiliary result is needed in the proof of our main theorem.

Proposition 12. For P = (Ω ∪ V ∪ Z,E ∪ Mb(V )) a parameter theory with

Mb(V ) = {v1 : s1, . . . , vn : sn}, and any ground substitution h : V
[V ] ∪ Z [Z] −→

TUMEL
such that

UMEL |'h(Mb(V )
C(P )

∧ ZD(P )

),

there is a theory morphism β : P −→ Q in VP , with Q = (Ω∪V ∪Z,E∪Eq(V )∪
Ax (Z)), such that β is the ground substitution h.

Proof. By definition of substitution application, for 1 ≤ i ≤ n,

h(vi
[V ] :: ki in P = true) = (h(vi

[V ]) :: ki in P = true).

The hypothesis implies UMEL |'h(vi
[V ] :: ki in P = true) for each vi, 1 ≤ i ≤ n,

and by Proposition 1, using the completeness of membership equational logic
and the fact that h(vi

[V ] :: ki in P = true) is a ground atomic formula, it
follows that there are ground terms ti ∈ (TΩ)ki such that ti = h(vi

[V ]).

Similarly, from UMEL |'h(Z
D(P )

), by Proposition 4, it follows that there are
sets of axioms Ax (z) specifying z in Ω ∪ Z for each z ∈ Zk, k ∈ K, such that
h(z[Z]) = Ax (z).

Let Q = (Ω∪V ∪Z,E∪{v1 = t1, . . . , vn = tn}∪
⋃
z∈Zk

Ax (z)). By definition
of substitution application,

h(vi :si
[P,∅])

= (h(vi
[V,∅] : si in P

P
) = true)

= (h(vi
[V ]) : si in (Ω ∪ V ∪ Z,E eq v1 = h(v1

[V ]) . · · · eq vn = h(vn
[V ]) .

h(z11
[Z]) · · ·h(zmqkm

[Z])) = true)

= (ti : si in Q = true).
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Since h(vi :si
[P,∅]) is an atomic ground formula and UMEL |'h(vi :si

[P,∅]), by
Proposition 2 and completeness of membership equational logic we have Q `
ti : si, 1 ≤ i ≤ n. Then, the identity signature morphism β : P −→ Q satisfies
the requirements to be in VP . ut
Theorem 2. Let τ be a metalogical statement of the above form. Then, τ holds
iff UMEL |' τ .

Proof. Assume that τ holds and let h : V
[V ] ∪ Z [Z] −→ TUMEL be such that

UMEL |'h(Mb(V )
C(P )

∧ ZD(P ) ∧ γ). By Proposition 12 there is β ∈ VP with
β = h, so our task is reduced to proving that

∀x1. . . .∀xn.((x1 :: k1 in R1[P ]) = true ∧ · · · ∧ (xn :: kn in Rn[P ]) = true)

=⇒ β(bexp(φ1(~x)
[R1[P ],~x]

, . . . , φp(~x)
[Rp[P ],~x]

))

holds in the initial model of UMEL. So let σ : {x1, . . . , xn} −→ TUMEL be a
substitution such that

(σ(x1) :: k1 in R1[P ]) = true ∧ · · · ∧ (σ(xn) :: kn in Rn[P ]) = true

holds in TUMEL
; by Proposition 1 we know that, for i = 1, . . . , n, σ(xi) = wi for

some wi ∈ (TΩi
)ki . By the definition of substitution application and Proposi-

tions 7 and 8, for 1 ≤ l ≤ p and φl = (tl :sl) (similarly for φl = (tl = t′l)),

σ(β(φl(~x)
[Rl[P ],~x]

)) = σ(β(tl(~x) :sl
[Rl[P ],~x]

))

= σ(β(tl(~x)
[V,~x]

: sl in Rl[P ]
P

= true))

= (σ(β(tl(~x)
[V,~x]

)) : sl in β(Rl[P ]
P

) = true)

= (σ((tl(~x))β
[~x]

) : sl in Rl[β] = true)

= (σ((tl(~x))β) : sl in Rl[β] = true)

= ((tl(σ(~x)))β : sl in Rl[β] = true)

= (β(tl(~w)
[V ]

) : sl in β(Rl[P ]
P

) = true)

= β(tl(~w) :sl
[Rl[P ],∅]

)

= β(φl(~w)
[Rl[P ],∅]

).

Hence, by Proposition 9, UMEL |'σ(β(φl(~x)
[Rl[P ],~x]

)) iff Rl[β] ` φl(~w)β . But then,
since τ holds and we are assuming that UMEL |'β(γ), we have bexp(R1[β] `
(φ1(~t))β , . . . , Rp[β] ` (φp(~t))β) for all ~t, in particular for ~w, and the result follows.

We have just shown the implication from left to right. A careful examination
reveals that all the implications are in fact equivalences and hence this proves
the theorem. ut

In particular, Theorem 2 can be applied to the inductive principle

∀β ∈ VP .(UMEL |'β(γ) =⇒ ψ1) ∧ · · · ∧ ∀β ∈ VP (UMEL |'β(γ) =⇒ ψn)
=⇒
∀β ∈ VP .

(
UMEL |'β(γ) =⇒

∀t ∈ TΩ .(R0[β] ` t : s =⇒ bexp(R1[β] ` φ1(t)β , . . . , Rp[β] ` φp(t)β))
)
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by replacing each metalogical statement φ by its logical representation φ to get
an inductive principle for UMEL.

6 The Deduction Theorem Revisited

6.1 Formalizing the Deduction Theorem

The parameterized versions of the deduction theorem can now be expressed as
metatheoretic statements relating the initial models of all the different instan-
tiations of DT[EML] and EML that satisfy certain requirements. In its standard
form, the deduction theorem can be formalized as follows:

∀β ∈ V1
EML.∀t ∈ TEML. (DT[β] ` t :Theorem⇒ EML[β] ` [->,@A,t]β :Theorem),

(4)
where

V1
EML = {β ∈ VEML |Ax (@NewAxiom)∪Ax (@NewSynRule)∪Ax (@NewInfRule) = ∅} .

Note that {DT[EML], EML[EML]} is coherent module DT[EML].

However, the deduction theorem also holds for all extensions of minimal
logic’s language and minimal logic’s axioms, which can be formalized as follows:

∀β ∈ V2
EML.∀t ∈ TEML. (DT[β] ` t :Theorem⇒ EML[β] ` [->,@A,t]β :Theorem),

(5)
where V2

EML = {β ∈ VEML | Ax (@NewInfRule) = ∅}.
Furthermore, the deduction theorem can also be verified for all extensions of

minimal logic’s language, axioms, and two-premise rules (this can be generalized
to finitely many assumptions), provided that all new rules of the form

B C

D

are such that, for all formulae A, if (A→ B) and (A→ C) are theorems in the
corresponding extension of minimal logic, then (A → D) is also a theorem [2].
This version of the deduction theorem can be formalized as follows:

∀β ∈ V3
EML.∀t ∈ TEML. (DT[β] ` t :Theorem⇒ EML[β] ` [->,@A,t]β :Theorem),

(6)
where

V3
EML = {β ∈ VEML | ∀x1.∀x2.∀x3.∀x4. (DT[β] ` [x4,x2,x3] :@NewInfRule

⇒ EML[β] ` [->,x1,x2] :Theorem⇒ EML[β] ` [->,x1,x3] :Theorem

⇒ EML[β] ` [->,x1,x4] :Theorem)}.
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6.2 Proving the Deduction Theorem

In what follows, we denote by V-EM and Z-EM, respectively, the sets of parameters
{@A} and {@NewAxiom, @NewSynRule, @NewInfRule}, and by MB-V-EM the set of
axioms {mb @A : Formula .}. Using the results of Section 5 we can formalize
the different versions of the deduction theorem, (4), (5), and (6), as theorems
about UMEL. All these theorems have a common structure

∀V-EM[V-EM]
.∀Z-EM[Z-EM]

. ((MB-V-EM
C(EML) ∧ Z-EMD(EML) ∧ γ) =⇒ (7)

∀x. ((x :: Expression in EML = true) =⇒
(x :Theorem

[DT[EML],x] ⇒ [->,@A,x] :Theorem
[EML,x]

))),

but differ in the definition of γ. Note that this is in direct correspondence with
the fact that the metatheoretic statements (4), (5), and (6) only differ in the
requirements imposed over the instantiations β ∈ VEML. Concretely, for (4), (5),
and (6) the formula γ is defined, respectively, as:

γ1 , (@NewAxiom
[Z-EM]

= none ∧ @NewSynRule
[Z-EM]

= none ∧
@NewInfRule

[Z-EM]
= none),

γ2 , (@NewInfRule
[Z-EM]

= none),

γ3 , (∀x1.∀x2.∀x3.∀x4. [x4, x2, x3] :@NewInfRule
[DT[EML],~x]

⇒ [->,x1,x2] :Theorem
[EML,~x] ⇒ [->,x1,x3] :Theorem

[EML,~x]

⇒ [->,x1,x4] :Theorem
[EML,~x]

).

By Theorem 2, (7) implies, for each definition of γ, the corresponding param-
eterized version of the deduction theorem. The correctness of the above formal-
izations follows from the following remark: for all theory morphisms β ∈ VEML,

β ∈ ViEML ⇐⇒ UMEL |'β(γi) i = 1, 2, 3.

Finally, to prove each version of (7) in UMEL we apply the reflected version
of the induction principle for the sort Theorem in the parameterized theory
DT[EML]. The proofs mirror the standard proof of the deduction theorem: we
show A→ B by induction on the structure of possible derivations of B when A
is assumed as an axiom. Note, however, that to prove the deduction theorem for
all extensions of minimal logic’s language and minimal logic’s axioms we have
to consider as an additional base case of the inductive proof when B is one of
the new axioms. Moreover, to prove the deduction theorem for all extensions
of minimal logic’s language, axioms, and two-premise rules satisfying the above
mentioned requirement, we also have to consider as an additional step case of
the inductive proof when B follows by an application of one of the new rules.
By using the reflected version of the induction principle for the sort Theorem

in the parameterized theory DT[EML], all these considerations are appropriately
mirrored in our proofs.
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7 Conclusion

Based on the ideas introduced in [1] by Basin, Clavel, and Meseguer about
reflective metalogical frameworks, and about membership equational logic as
one of them, we have further explored the capabilities of membership equational
logic as a logic to reason about logics and about relationships between logics.

In this paper we have extended the notion of parameterized membership
equational theories and of reflected parameterized induction introduced in [1]. By
doing this, we are able to formalize and prove a wider class of metatheorems: for
example, the parameterized versions (5) and (6) of the deduction theorem cannot
be formalized in [1, 4]. Our experiments show that one can prove metatheorems
similar to those provable in logical frameworks based on parameterized inductive
definitions [2]. In essence, we can do this because the requirements that such
metatheorems pose on the metatheory—namely, that one can build families of
sets using parameterized inductive definitions and that one can reason about
their elements by induction—are realizable in membership equational logic using
parameterization and reflection.

This work can be extended in a number of directions, both theoretical and
practical. From the theoretical side, a research line would be to investigate how to
reflect induction principles other than structural induction, e.g., induction over
an arbitrary, user-definable well-founded order; also, our notion of parameter-
ized membership equational theories and of their instantiations could be further
generalized. From the practical side, the obvious application would be to extend
the ITP theorem prover [7] with reflected parameterized induction principles so
as to carry out inductive proofs of metatheorems; however, the development of
the tool has changed hands and gone undercover, so it is not clear how it will
evolve.

Acknowledgments. We thank David Basin and José Meseguer for many discus-
sions on using reflection for metareasoning.
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