
Reflection in Membership Equational Logic,
Many-Sorted Equational Logic, Horn Logic with

Equality, and Rewriting Logic?
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Abstract. We show that the generalized variant of formal systems where the underly-
ing equational specifications are membership equational theories, and where the rules
are conditional and can have equations, memberships and rewrites in the conditions
is reflective. We also show that membership equational logic, many-sorted equational
logic, and Horn logic with equality are likewise reflective. These results provide logical
foundations for reflective languages and tools based on these logics.

1 Introduction

Reflection is a very powerful and useful feature of rewriting logic. Intuitively, from a logical
viewpoint reflection consists in the capacity of a system for reasoning about important aspects
of its own metalanguage; from a computational viewpoint, it means that programs can become
data that can be manipulated and executed by other programs. Classical examples where re-
flection (in this intuitive sense) can be seen in action are the coding of first-order arithmetic
in itself by Gödel and the universal machine of Turing. More recently, many computer sci-
entists have recognized the power and usefulness of reflection in areas such as programming
languages [51, 49, 31, 30, 1], theorem proving [6, 44, 28], as well as metalevel architectures, dis-
tributed computation, program transformation, and databases [37, 18, 52, 19, 8].

The study of reflection in logics with good computational properties is particularly inter-
esting since both aspects of reflection—the logical and the computational one—are involved.
Rewriting logic [39] is a logic of concurrent change that can naturally deal with state and
with highly nondeterministic concurrent computations. Rewriting logic is parameterized with
respect to the version of an underlying equational logic, which can be unsorted, many-sorted,
order-sorted, or the recently developed membership equational logic [41]. The signature of a
rewrite theory describes the structure for the states of a system, and the rewrite rules (that
may be conditional) describe which elementary local transitions are possible in the distributed
state. The rewriting logic research program has shown good signs of vitality, including five
international workshops [40, 32, 25, 27, 33] and three programming language implementations
efforts, namely ELAN [4] in France, CafeOBJ [26] in Japan, and Maude [12] in the USA.

With respect to reflection, Clavel and Meseguer have formerly given detailed proofs for
increasingly general fragments of rewriting logic, namely: (1) unsorted and unconditional [10],
(2) unsorted conditional [17]; and (3) many-sorted conditional [17]. This paper generalizes
these previous results to the case of conditional rewrite theories whose underlying equational
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specifications are theories in membership equational logic [41]. Conditional rules in this latter
case are very general, since they can involve not only other rewrites, but also equations and
memberships as conjuncts. The work presented here is also related to Palomino’s own research
on rewriting logic reflection [43].

But what about other logics? What about membership equational logic itself? What
about many-sorted equational logic? What about Horn logic with equality? We have for long
conjectured that these logics are also reflective, and that the same methods developed for
rewriting logic can be used to obtain reflection theorems for these new logics. The present
work establishes the truth of these conjectures. Furthermore, our constructions shed light on
the question of how the universal theories of related logics are themselves related. For example,
membership equational logic is itself a sublogic of rewriting logic, and this sublogic relation is
expressed at the reflective level by the fact that the universal theory of membership equational
logic is itself a subtheory of the universal theory for the more general version of rewriting logic
where the underlying equational specifications are membership equational theories.

Therefore, our results make clear that reflection is available as a very powerful feature not
only for this more general variant of rewriting logic, but also for other computational logics of
great importance in formal specification and declarative programming, such as membership
equational logic, many-sorted equational logic, and Horn logic with equality. This can then
serve as a basis for the theoretically-grounded design of declarative reflective programming
languages in those logics.

In particular, this work provides solid foundations for many useful applications of reflection
in Maude [12, 13], which implements the most general variant of rewriting logic. As explained
in [14], reflection and the flexible uses of rewriting logic as a logical and semantic framework
[34] have been fruitfully exploited by a large number of authors to develop in Maude a wide
range of applications, which include, among many others (see [35]):

– Full Maude [20, 21], an extension of Maude written in Maude itself, endowing the language
with a very expressive module algebra of parameterized modules and module composition
with important extensions to support object-oriented modules.

– Internal strategies to guide the rewrite engine in the application of rules [36, 22].
– A tool to automatically check an abstract interpretation against user-given properties

[24].
– A Church-Rosser checker that analyzes order-sorted equational specifications in Maude

to check whether they satisfy the Church-Rosser property [23].
– Real-Time Maude [42], an execution and analysis environment for the specification of

real-time and hybrid systems based on a notion of real-time rewrite theories that has a
straightforward transformation into an ordinary rewrite theory.

– An inductive theorem prover [11] that can be used to prove inductive properties of mem-
bership equational specifications in Maude. This tool can be extended with reflective
reasoning principles to reason about the metalogical properties of a logic represented in
rewriting logic [3, 15].

– A proof assistant built by Stehr for the Open Calculus of Constructions, which extends
Coquand and Huet’s calculus of constructions [47].

– Executable specifications of models of computation [2, 50, 48, 9].

The paper is organized as follows. First, in Section 2, we summarize the axioms character-
izing the notion of a reflective logic. Then, in Sections 3, 4, 5, and 6, we prove, respectively,
that membership equational logic, many-sorted equational logic, many-sorted Horn logic with
equality, and rewriting logic are reflective in our axiomatic sense. Finally, in Section 7 we com-
pare these results with previous work, and in Section 8 we draw conclusions.
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2 Reflection in General Logics

The concept of reflection, although studied and exploited to a great extent in the context of
rewriting logic, it is certainly not specific of this logic. Indeed, the concept of reflection can
be expressed in such a way that it applies to arbitrary logics [16].

We present below in summarized form the axiom characterizing the notion of a reflective
logic. We introduce first the notions of syntax and of entailment system, used in our axioma-
tization. These notions are defined using the language of category theory, but do not require
any acquaintance with categories beyond the basic notions of category and functor.

Syntax. Syntax can typically be given by a signature Σ providing a grammar on which to build
sentences. For first-order logic, for example, a typical signature consists of a set of function
symbols and a set of predicate symbols, each with a prescribed number of arguments, which
are used to build up the usual sentences. We assume that for each logic there is a category
Sign of possible signatures for it, and a functor sen : Sign −→ Set assigning to each signature
Σ the set sen(Σ) of all its sentences. We call the pair (Sign, sen) a syntax.

Entailment systems. For a given signature Σ in Sign, entailment (also called provability) of
a sentence ϕ ∈ sen(Σ) from a set of axioms Γ ⊆ sen(Σ) is a relation Γ `Σ ϕ which holds
if and only if we can prove ϕ from the axioms Γ using the rules of the logic. We make this
relation relative to a signature.

In what follows, |C| denotes the collection of objects of a category C.

Definition 1. [38] An entailment system is a triple E = (Sign, sen,`) such that

– (Sign, sen) is a syntax,
– ` is a function associating to each Σ ∈ |Sign| a binary relation `Σ ⊆ P(sen(Σ))×sen(Σ),

called Σ-entailment, that satisfies the following properties:
1. reflexivity: for any ϕ ∈ sen(Σ), {ϕ} `Σ ϕ,
2. monotonicity: if Γ `Σ ϕ and Γ ′ ⊇ Γ then Γ ′ `Σ ϕ,
3. transitivity: if Γ `Σ ϕ for all ϕ ∈ ∆, and Γ ∪∆ `Σ ψ, then Γ `Σ ψ,
4. `-translation: if Γ `Σ ϕ, then for any H : Σ → Σ′ in Sign we have sen(H)(Γ ) `Σ′

sen(H)(ϕ).

The entailment relation ` induces a function mapping each set of sentences Γ to the set
Γ • = {ϕ | Γ ` ϕ}. We call Γ • the set of theorems provable from Γ .

Definition 2. [38] Given an entailment system E, its category Th of theories has as objects
pairs T = (Σ,Γ ) with Σ a signature and Γ ⊆ sen(Σ). A theory morphism H : (Σ,Γ ) →
(Σ′, Γ ′) is a signature morphism H : Σ → Σ′ such that if ϕ ∈ Γ , then Γ ′ `Σ′ sen(H)(ϕ).

Note that we can extend the functor sen to a functor sen : Th −→ Set by taking
sen(Σ,Γ ) = sen(Σ).

2.1 Reflective Logics

A reflective logic is a logic in which important aspects of its metatheory can be represented at
the object level in a consistent way, so that the object-level representation correctly simulates
the relevant metatheoretic aspects. Two obvious metatheoretic notions that can be so reflected
are theories and the entailment relation `. This leads us to the notion of a universal theory
and, more generally, to the notion of a universal theory relative to a class C of representable
theories introduced in Definition 3 below.
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Typically, for a theory to be representable at the object level it must have a finitary
description in some way—say, being recursively enumerable—so that it can be represented as
a piece of language. In the terminology of Shoenfield’s axiomatic approach to computability
[45], we should require that theories T in C are finite objects; that is, in Shoenfield’s own
words, “object(s) which can be specified by a finite amount of information”; whereas the
class of theories C should be a space, that is, a class X of finite objects such that, given a
finite object x, we can decide whether or not x belongs to X. Computer scientists typically call
such finite objects data structures, and such spaces data types. Of course, in typical finitary
logics, if the signature of a theory T is a finite object, then the set sen(T ) of its sentences is
also a space in the above sense; that is, such sentences are finite objects, and we can effectively
determine when they are legal sentences in T . Given spaces X and Y , Shoenfield’s notion of
a recursive function f : X −→ Y is then a (total) function that can be computed by an
algorithm, i.e., by a computer program when we disregard space and time limitations.

Definition 3. Given an entailment system E and a set of theories C ⊆ |Th|, a theory U is
C-universal if there is a function, called a representation function,

` :
⋃

T∈C
{T} × sen(T ) −→ sen(U)

such that for each T ∈ C, ϕ ∈ sen(T ),

T ` ϕ ⇐⇒ U ` T ` ϕ.

If, in addition, U ∈ C, then the entailment system E is called C-reflective.
To take into account computability considerations, we should further require that the repre-

sentation function ` is recursive.3 Finally, to rule out unfaithful representations, we should
require that the function ` is injective.

Note that in a reflective entailment system, since U itself is representable, representation
can be iterated so that we immediately have a “reflective tower”:

T ` ϕ ⇐⇒ U ` T ` ϕ ⇐⇒ U ` U ` T ` ϕ . . .

3 Reflection in Membership Equational Logic

Membership equational logic—in short, mel—is an expressive version of equational logic.
A full account of its syntax and semantics can be found in [5, 41]; here we define the basic
notions needed in this paper.

A signature in mel is a triple Ω = (K,Σ, S), withK a set of kinds, Σ aK-kinded signature
Σ = {Σw,k}(w,k)∈K∗×K , and S = {Sk}k∈K a pairwise disjoint K-kinded family of sets. We
call Sk the set of sorts of kind k. The pair (K,Σ) is what is usually called a many-sorted
signature of function symbols; however we call the elements of K kinds because each kind k
now has a set Sk of associated sorts, which in the models will be interpreted as subsets of the
carrier for the kind. The kind of a sort s is denoted with [s]. As usual, we denote by TΣ the
K-kinded algebra of ground Σ-terms, and by TΣ(X) the K-kinded algebra of Σ-terms on the
K-kinded set of variables X.
3 Note that, under the assumptions mentioned before,

S
T∈C{T}×sen(T ) is a space, since its elements

must be pairs of finite elements of the form (T, ϕ), where we can first decide if T is in the space C,
and then decide whether ϕ is in the space sen(T ).
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The atomic formulae of mel are either equations t = t′, where t and t′ are Σ-terms of
the same kind, or membership assertions of the form t : s, where the term t has kind k and
s ∈ Sk. Sentences are Horn clauses on these atomic formulae, i.e., sentences of the form

(∀X)A0 if A1 ∧ . . . ∧An ,

where each Ai is either an equation or a membership assertion, and X is a K-kinded set
of variables. A theory in membership equational logic is a pair (Ω,E), where E is a set
of sentences—(conditional) equations or (conditional) membership axioms—in mel over the
signature Ω. We refer to [5, 41] for the semantics notions of Ω-algebra, and initial and free
models.

To simplify the definition of the universal theory for mel in Section 3.1 we will work with
theories with nonempty kinds, that is, for each kind, the elements of that kind in the initial
algebra form a nonempty set. This is a relatively minor restriction that avoids the well-known
complications with quantification in many-sorted equational deduction [29].4 Thus, from now
on, we can omit the quantifiers in all sentences. Also, in what follows we will only deal with
finitely presentable theories in mel.

Before we present the rules of deduction for mel, we need to introduce our notions for
contexts and substitutions. Given a signature Ω = (K,Σ, S), a K-kinded set of variables
X, and a K-kinded set of new constants {ık}k∈K , a context is a term Ck, k ∈ K, which
contains exactly one subterm ık, called its “hole.” We define Cı

Σ(X) to be the set of contexts.
Given a context Ck and a term t ∈ TΣ(X) of kind k, Ck[t] ∈ TΣ(X) is the term that
results from replacing the “hole” ık in Ck by t. When not needed, we omit mentioning the
kind of the “hole” in the context. Given a signature Ω = (K,Σ, S) and a set of variables
X = {x1, . . . , xn}, we define S(Σ,X) to be the set of substitutions5

S(Σ,X) = {(x1 7→ w1, . . . , xn 7→ wn) | xi 6= xj if i 6= j, and xi and wi have the same kind}.

Given a term t and a substitution σ = (x1 7→ w1, . . . , xn 7→ wn), we denote by σ(t) the term
t(w1/x1, . . . , wn/xn) obtained from t by simultaneously substituting wi for xi, i = 1, . . . , n.

The Rules of mel. We now introduce the rules of deduction of mel. Our formulation is
slightly different from that in [41], but equivalent to it and simpler for our purposes, in that
the congruence rule is removed and is taken into account as part of the (Replacement) rule.

Given a membership equational theory T = (Ω,E), we say that T entails a sentence φ if
and only if T ` φ can be obtained by finite application of the following rules of deduction. If
T is clear from the context we will simply say that there exists a derivation of φ.

1. Reflexivity. For every t ∈ TΣ(X),

T ` t = t
.

2. Replacement. For each equation t = t′ if Cmb ∧ Ceq in E, with t, t′ of kind k, context
Ck ∈ Cı

Σ(X), and substitution σ, where Cmb , (u1 : s1 ∧ . . . ∧ uj : sj) and Ceq , (v1 =
v′1 ∧ . . . ∧ vk = v′k),

T ` σ(u1) :s1 · · · T ` σ(uj) :sj T ` σ(v1) = σ(v′1) · · · T ` σ(vk) = σ(v′k)
T ` Ck[σ(t)] = Ck[σ(t′)]

.

4 The specification and proof of correctness of a universal theory in the presence of empty kinds
follows very similar lines. The main difference is that the universal quantifiers need to be metarep-
resented in sentences and the inference rules must keep track of such quantifiers.

5 Conceptually, a substitution is a function from variables to terms. For technical convenience, we
choose to define substitutions as a special case of lists of pairs formed by variables and terms.
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Similarly, for each membership axiom t : s if Cmb ∧ Ceq in E, and substitution σ, where
Cmb and Ceq are as before,

T ` σ(u1) :s1 · · · T ` σ(uj) :sj T ` σ(v1) = σ(v′1) · · · T ` σ(vk) = σ(v′k)
T ` σ(t) :s

.

3. Symmetry. For every t, t′ ∈ TΣ(X),

T ` t = t′

T ` t′ = t
.

4. Transitivity. For every t, t′, t′′ ∈ TΣ(X),

T ` t = t′′ T ` t′′ = t′

T ` t = t′
.

5. Membership. For every t, u ∈ TΣ(X),

T ` t = u T ` u :s
T ` t :s

.

3.1 A Universal Theory for mel

In this section we introduce the universal theory Umel and a representation function ` that
encodes pairs consisting of a theory and a sentence over its signature as a sentence in Umel.

The Signature of Umel. The signature of the theory Umel contains operators to represent
terms, contexts, substitutions, kinds, sorts, signatures, axioms, and theories. To ease read-
ability we present the signature of Umel as a Maude specification, using “mixfix” syntax. For
example, the conjunction operator is specified with infix syntax and where the underbars
indicate the place of the two arguments. In what follows we enumerate the operators in the
signature of Umel; its kinds are those that appear in the operator declarations and no sorts
are used.

The main operators in Umel are the following. First of all, the signature of Umel contains
a small subset of the basic Boolean operators.

op true : -> [Bool] .

op false : -> [Bool] .

op _and_ : [Bool] [Bool] -> [Bool] .

op _or_ : [Bool] [Bool] -> [Bool] .

Lists of ASCII characters preceded by a quote, built with the operators nilM and consM,
are used to represent the symbols of a mel theory. There are also two equality predicates that
return true when two such characters or lists are syntactically equal, and false otherwise.

ops ’a ’b ’c ... : -> [ASCII] .

op equalASCII : [ASCII] [ASCII] -> [Bool] .

op nilM : -> [MetaExp] .

op consM : [ASCII] [MetaExp] -> [MetaExp] .

op equalM : [MetaExp] [MetaExp] -> [Bool] .

To represent kinds, lists of kinds, and an equality predicate for kinds we use the following
operators:
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op k : [MetaExp] -> [Kind] .

op nilK : -> [KindList] .

op consK : [Kind] [KindList] -> [KindList] .

op equalK : [Kind] [Kind] -> [Bool] .

Variables, arbitrary terms, and lists of terms are represented using

op v : [MetaExp] [Kind] -> [Term] .

op _[_] : [MetaExp] [TermList] -> [Term] .

op nilTL : -> [TermList] .

op consTL : [Term] [TermList] -> [TermList] .

Note that the kind of a variable is metarepresented together with its name. During the rest
of the proof, since the metarepresentation always needs both the the name x and the kind k,
we will also refer to variables at the object level as pairs x : k.

For example, the term x : [Nat ] + (y : [Nat ]− 0) is metarepresented in Umel as

consM(’_,consM(’+,consM(’_,nilM)))

[consTL(v(’x,k(consM(’N,consM(’a,consM(’t,nilM))))),

consTL(consM(’_,consM(’-,consM(’_,nilM)))

[consTL(v(’y,k(consM(’N,consM(’a,consM(’t,nilM))))),

consTL(’0[nilTL],nilTL))],nilTL))]

Sorts and operators in a signature are represented using the following operators:

op s : [MetaExp] [Kind] -> [Sort] .

op _:_->_ : [MetaExp] [KindList] [Kind] -> [Operator] .

Substitutions are represented with the following operators, where ‘-’ represents the empty
substitution that acts as the identity over terms.

op - : -> [Substitution] .

op v(_,_)->_ : [MetaExp] [Kind] [Term] -> [Assignment] .

op consS : [Assignment] [Substitution] -> [Substitution] .

For contexts, we have the following operators:

op * : -> [Context] .

op _[_] : [MetaExp] [CTermList] -> [Context] .

op consCTL1 : [Context] [TermList] -> [CTermList] .

op consCTL2 : [Term] [CTermList] -> [CTermList] .

The kind [CTermList] is introduced to represent lists of terms such that there is only one
“hole” among them, that is, only one of the terms is a context. Due to this, there exist
two different cons operators to build these lists: one to append arbitrary terms to the left
and another one to append a context when there is none yet. For example, the context
0 + (ı− x : [Nat ]) is metarepresented as

consM(’_,consM(’+,consM(’_,nilM)))

[consCTL2(’0[nilTL],

consCTL1(consM(’_,consM(’-,consM(’_,nilM)))

[consCTL1(*,

consTL(v(’x,k(consM(’N,consM(’a,consM(’t,nilM))))),

nilTL))],

nilTL))]
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To represent (possibly conditional) equations and membership axioms, the signature of
Umel includes the operators

op _=_ : [Term] [Term] -> [Atom] .

op _:_ : [Term] [Sort] -> [Atom] .

op none : -> [Condition] .

op _/\_ : [Atom] [Condition] -> [Condition] .

op _if_ : [Atom] [Condition] -> [Axiom] .

where the constant none is used to represent the lack of conditions. The operators

op (_,_,_) : [KindSet] [OperatorSet] [SortSet] -> [Signature] .

op (_,_) : [Signature] [AxiomSet] -> [MelTheory] .

are the ones used to represent signatures and theories, respectively. Finally, the signature of
Umel contains the Boolean operator

op _|-_ : [MelTheory] [Axiom] -> [Bool] .

to represent entailment of sentences in a given membership equational theory; the main axioms
of Umel, including those in Figure 1, define the behavior of this operator.

In addition, the signature of Umel contains operators for sets of kinds, axioms, sorts, and
operators.

op emptyK : -> [KindSet] .

op unionK : [Kind] [KindSet] -> [KindSet] .

op emptyA : -> [AxiomSet] .

op unionA : [Axiom] [AxiomSet] -> [AxiomSet] .

op emptyS : -> [SortSet] .

op unionS : [Sort] [SortSet] -> [SortSet] .

op emptyOp -> [OperatorSet] .

op unionOp : [Operator] [OperatorSet] -> [OperatorSet] .

In the signature of Umel we also have some Boolean operators parse to decide whether
a term is well-formed with respect to a many-kinded signature, and operators applyC and
applyS to apply a context and a substitution respectively to a term.

op parse : [Term] [Signature] -> [Bool] .

op parse : [Term] [Signature] [Kind] -> [Bool] .

op parse : [TermList] [Signature] [KindList] -> [Bool] .

op applyC : [Context] [Term] -> [Term] .

op applyC : [CTermList] [Term] -> [TermList] .

op applyS : [Substitution] [Term] -> [Term] .

op applyS : [Substitution] [TermList] -> [TermList] .

Finally, the operators

op satisfyC : [MelTheory] [Condition] [Substitution] -> [Bool] .

op satisfyA : [MelTheory] [Atom] [Substitution] -> [Bool] .

are used to decide, given a theory T , a condition C, and a substitution σ, whether all atomic
formulae in σ(C) can be proved in T .
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The Representation Function. We next define the representation function ` . For all
membership equational theories T and sentences φ over the signature of T ,

T ` φ , (T|-φ) = true ,

where ( ) is a representation function defined recursively in the following way:

1. For a theory T = (Ω,E),
T , (Ω,E) .

2. For E a set of sentences {ϕ1, . . . , ϕn},

E , unionA(ϕ1, . . . ,unionA(ϕn,emptyA) . . . ) .

3. For atomic formulae ϕ and ψ of the form t = t′ and t : s respectively,

ϕ , t = t
′ and ψ , t:s .

4. For Cond a conjunction of atomic formulae A1 ∧A2 ∧ . . . ∧An,

Cond , A1 /\ (A2 /\ . . . /\ (An /\ none) . . .) .

5. For a sentence ϕ = A0 if A1 ∧ . . . ∧An,

ϕ , A0 ifA1 ∧ . . . ∧An .

6. For a l a nonempty string (a1, . . . , an) of ASCII characters,

l , consM(’a1, . . . ,consM(’an,nilM) . . . ) .

7. For a variable x of kind k,
x : k , v(x,k) .

8. For t a term of the form f(t1, . . . , tn),

t , f [t1, . . . , tn] .

9. For tl a list of terms (t1, . . . , tn),

tl , consTL(t1, . . . ,consTL(tn,nilTL) . . . ) .

10. For σ a substitution x1 : k1 7→ w1, . . . , xn : kn 7→ wn,

σ , consS(v(x1,k1) -> w1,. . .,consS(v(xn, kn) -> wn,-). . .) .

And analogously for the rest of the elements: contexts, signatures, and sets of kinds, sorts
and operators.

Notice that, as they stand, some of the definitions are ambiguous. For example, in item 2,
depending on how we order the elements in the set we may get different metarepresentations.
This problem will disappear in the next section after we introduce appropriate equations for
all the set operators.
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The Axioms of Umel. We now define the axioms of Umel, which include equations that
correspond to the inference rules of mel, along with equations that define the previously pre-
sented operators: parse, applyC, satisfyC, . . . To ease the understanding of these equations,
we replace the usual variable notation by the corresponding representations of the entities
to be placed in such variable positions. For example, Ω is a normal variable, but the nota-
tion suggests that the terms that the variable will match will typically be representations of
signatures.

We start by giving the obvious equations for the Boolean operators:

eq true and B = B .

eq false and B = false .

eq true or B = true .

eq false or B = B .

Next, the equations for the set operators; for sets of axioms:

eq unionA(ϕ, unionA(ψ,AS)) = unionA(ψ, unionA(ϕ,AS)) .

eq unionA(ϕ, unionA(ϕ,AS)) = unionA(ϕ,AS) .

and analogously for sets of kinds, sorts, and operators, and for the _/\_ operator that builds
conditions:

eq ϕ /\ (ψ /\ Cond) = ψ /\ (ϕ /\ Cond) .

eq ϕ /\ (ϕ /\ Cond) = ϕ /\ Cond .

In particular, we have the following result and (2) above becomes unambiguous.

Proposition 1. For every set E of sentences and ϕ ∈ E,

Umel ` E = unionA(ϕ,E \ {ϕ}) .

Throughout this section, several auxiliary results of this form will be stated. Their proofs
are usually straightforward, but tedious inductions and therefore will be omitted unless they
require an additional explanation.

To define the equality predicate for ASCII characters we just have to consider all possi-
bilities:

eq equalASCII(’a, ’a) = true .

eq equalASCII(’a, ’b) = false .

eq equalASCII(’a, ’c) = false .

...

and its extension to lists of characters is straightforward:

eq equalM(nilM, nilM) = true .

eq equalM(nilM, consM(c,cl)) = false .

eq equalM(consM(c,cl), nilM) = false .

eq equalM(consM(c,cl), consM(c′,cl′)) = equalASCII(c,c′) and equalM(cl,cl′) .

The specification of the equality predicate for kinds is now immediate:

eq equalK(k(cl), k(cl′)) = equalM(cl,cl′) .

Then it can be proved by structural induction on terms that:
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Proposition 2. For all terms w,w′ in Umel of kind, respectively, [ASCII], [MetaExp], and
[Kind], and for f equal to, respectively, equalASCII, equalM, and equalK:

– w and w′ are syntactically equal iff Umel ` f(w,w′) = true, and
– w and w′ are syntactically different iff Umel ` f(w,w′) = false.

Proof. It is enough to note that the operators are free (no equations have been given, nor will
be given, between terms of these kinds) and that the equality predicates only identify terms
that have been constructed in the same way. ut

Next we introduce the equations that define the applications of contexts and substitutions
to terms. We first treat contexts.

eq applyC(*,t) = t .

eq applyC(f[ctl], t) = f[applyC(ctl,t)] .

eq applyC(consCTL1(C,tl), t) = consTL(applyC(C,t),tl) .

eq applyC(consCTL2(t
′
,ctl), t) = consTL(t

′
,applyC(ctl,t)) .

Proposition 3. For all terms t ∈ TΣ(X) and contexts C ∈ Cι
Σ, it holds that

Umel ` applyC(C,t) = C[t] .

Similarly, we give the equations that define the application of a substitution to a given term.

eq applyS(-,t) = t .

eq applyS(consS(v(x,k)-> w,σ), v(x,k)) = w .

ceq applyS(consS(v(x′,k
′
)-> w,σ), v(x,k)) = applyS(σ, v(x,k))

if equalM(x,x′) and equalK(k,k
′
) = false .

eq applyS(σ,f[tl]) = f[applyS(σ,tl)] .

eq applyS(σ, nilTL) = nilTL .

eq applyS(σ, consTL(t,tl)) = consTL(applyS(σ,t), applyS(σ,tl)) .

Proposition 4. For all terms t ∈ TΣ(X) and substitutions σ, it holds that

Umel ` applyS(σ,t) = σ(t) .

To check if a term is well-formed we introduce the following equations:

ceq parse(t,(K,Σ,S)) = true

if K = unionK(k,K) /\ parse(t, (K, Σ,S),k) = true .

eq parse(v(x, k), Ω, k) = true .

ceq parse(f[tl], (K,Σ,S), k) = true

if Σ = unionOp(f : kl -> k, Σ) /\ parse(tl, (K,Σ,S), kl) = true .

eq parse(nilTL, Ω, nilK) = true .

ceq parse(consTL(t, tl), Ω, consK(k, kl)) = true

if parse(t, Ω, k) = true /\ parse(tl, Ω, k) = true .

The following proposition is then a straightforward consequence.

Proposition 5. For all terms t ∈ TΣ(X),

Umel ` parse(t,Ω) = true .

Furthermore, for all terms w in Umel of kind [Term], it holds that if

Umel ` parse(w,Ω) = true ,

then there is a term t ∈ TΣ(X) such that Umel ` w = t.

11



Proof. The first part is immediate by structural induction on t. For the second part, which
is much more tedious and has to carefully consider the derivations that arise from using
(Transitivity), note that we cannot conclude that w is t due to the operators applyC and
applyS. ut

The auxiliary operator satisfyC checks whether a condition holds in a theory under a
given substitution. The equations simply iterate through all the atoms in the condition and
leave the hard work of checking whether they are satisfied to ( |- ).

eq satisfyC(T,none,σ) = true .

eq satisfyC(T,A /\ C,σ) = satisfyA(T,A,σ) and satisfyC(T,C,σ) .

eq satisfyA(T,t = t
′
,σ) = (T |- applyS(σ, t) = applyS(σ, t

′
) if none) .

eq satisfyA(T,t : s,σ) = (T |- applyS(σ, t) : s if none) .

Proposition 6. For all atomic formulae A1, . . . , An and substitutions σ, the following are
equivalent:

1. Umel ` T ` σ(Ai) for each i; that is, for each Ai of the form ti = t′i,

Umel ` (T |-σ(ti) =σ(t′i) if none) = true ,

and for each Ai of the form ti :si,

Umel ` (T |-σ(ti) : si if none) = true .

2. It holds that
Umel ` satisfyC(T,A1 ∧ . . . ∧An,σ) = true .

Proof. It can be easily shown by induction on n that (2) is equivalent to: for each Ai of the
form ti = t′i,

Umel ` (T |- applyS(σ,ti) = applyS(σ,ti
′
) if none) = true ,

and for each Ai of the form ti : si,

Umel ` (T |- applyS(σ,ti) : si if none) = true .

The result now follows from Proposition 4. ut

The specification in Umel of the inference rules of mel is now immediate and they appear
listed in Figure 1.

3.2 The Correctness of the Universal Theory Umel

The theory Umel presented in the previous sections is universal in the precise sense of Defini-
tion 3.

Theorem 1. For all terms t ∈ TΣ(X) and sorts s in the signature Ω of a theory T ,

T ` t : s ⇐⇒ Umel ` T ` t : s .

Similarly, for all sentences t, t′ ∈ TΣ(X) over the signature Ω of T ,

T ` t = t′ ⇐⇒ Umel ` T ` t = t′ .

12



*** reflexivity

eq ((Ω,E) |- t = t if none) = true .

*** replacement

ceq ((Ω,E) |- applyC(C, applyS(σ,t)) = applyC(C, applyS(σ,t
′
)) if none) = true

if E = unionA(t = t
′
if Cond,E

′
)

/\ satisfyC((Ω,E), Cond, σ) = true .

*** replacement

ceq ((Ω,E) |- applyS(σ,t) : s if none) = true

if E = unionA(t : s if Cond,E
′
)

/\ satisfyC((Ω,E), Cond, σ) = true .

*** symmetry

ceq ((Ω,E) |- t = t
′
if none) = true

if ((Ω,E) |- t
′
= t if none) = true .

*** transitivity

ceq ((Ω,E) |- t = t
′
if none) = true

if parse(t
′′
, Ω) = true

/\ ((Ω,E) |- t = t
′′

if none) = true

/\ ((Ω,E) |- t
′′

= t
′
if none) = true .

*** membership

ceq ((Ω, E) |- t : s if none) = true

if parse(u, Ω) = true

/\ ((Ω,E) |- t = u if none) = true

/\ ((Ω,E)|- u : s if none) = true .

Fig. 1. The universal theory Umel (fragment).
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Proof. The (⇒)-direction corresponds to Theorem 2 below, whereas the implication in the
other direction follows from Theorem 3. ut

Let us start with the (⇒)-direction of the theorem.

Theorem 2. For all terms t, t′ ∈ TΣ(X), and sorts s in Ω,

T ` t = t′ =⇒ Umel ` (T |- t = t
′
if none) = true

and
T ` t :s =⇒ Umel ` (T |- t : s if none) = true .

Proof. By structural induction on the derivation of T ` t = t′ or T ` t : s. According to the
last rule of deduction used in reasoning with T , we have:

– (Reflexivity). The result follows by using (Replacement) in reasoning with Umel,
applied to the equation reflexivity in Figure 1.

– (Symmetry). By induction hypothesis, Umel ` (T |- t
′
= t if none) = true, and we can

then use (Replacement) applied to the symmetry equation.
– (Transitivity). In case

T ` t = t′′ T ` t′′ = t′

T ` t = t′
,

we have, by induction hypothesis, Umel ` (T |- t = t
′′
if none) = true and Umel `

(T |- t
′′
= t

′
if none) = true, and by Proposition 5, Umel ` parse(t

′′
,Ω) = true, so

we can apply (Replacement) to the transitivity equation to get the result.
– (Membership). If

T ` t = t′ T ` t′ :s
T ` t :s

,

we have, by induction hypothesis, Umel ` (T |- t = t
′
if none) = true and Umel `

(T |- t
′
: s if none) = true, and by Proposition 5, Umel ` parse(t

′
,Ω) = true, and

the result follows applying (Replacement) to the membership equation.
– (Replacement). Suppose that t = t′ if Cmb∧Ceq ∈ E, where Cmb , (u1 :s1∧ . . .∧uj :sj)

and Ceq , (v1 = v′1∧. . .∧vk = v′k), and that we have, for some context C and substitution
σ,

T ` σ(u1) :s1 · · · T ` σ(uj) :sj T ` σ(v1) = σ(v′1) · · · T ` σ(vk) = σ(v′k)
T ` C[σ(t)] = C[σ(t′)]

.

By induction hypothesis, Umel ` (T |-σ(ui) : si if none) = true, for i = 1, . . . , j, and
Umel ` (T |-σ(vi) =σ(v′i) if none) = true, for i = 1, . . . , k. Therefore, by Proposition 6
we can use the first replacement equation to get

Umel ` (T |- applyC(C,applyS(σ,t)) = applyC(C,applyS(σ,t
′
)) if none) = true .

And then the result follows since, by Propositions 3 and 4,

Umel ` applyC(C,applyS(σ,t)) = C[σ(t)]

and
Umel ` applyC(C,applyS(σ,t

′
)) = C[σ(t′)] .

In case the equation in E that was applied had been of the form t : s if Cmb ∧ Ceq, the
argument would be the same but now we would use the second replacement equation. ut
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To prove the (⇐)-direction of the main theorem we need the auxiliary Lemma 1. Essen-
tially, it will allow us to work with “normalized” derivations of minimum depth and to discard
those spurious ones that arise through the use of the (Transitivity) rule. More precisely, note
that once derivations for the equations T1 ` t1 = t′1 = true and T2 ` t2 = t′2 = true have been
obtained, (Transitivity) can be used to first get T1 ` t1 = t′1 = T2 ` t2 = t′2 and thereafter
to combine them to get an infinite number of uninteresting derivations of arbitrary depth for
the same equations; these last derivations are the ones we want to avoid.

Given a proof δ in mel of an equation or membership assertion, we denote by depth(δ) its
depth, defined in the usual way.

Lemma 1. For all terms t1, t2 and atomic formulae A1, . . . , An over a membership theory
T , and terms w1, w2 of kind [Term], w3 of kind [Condition], and w4 of kind [MelTheory]
in Umel such that Umel ` t1 = w1, Umel ` t2 = w2, Umel ` A1 ∧ . . . ∧An = w3, and
Umel ` T = w4, whenever there is a proof δ in Umel of

(w4 |-w1 =w2 if w3) = m

or of
m = (w4 |-w1 =w2 if w3)

for some term m of kind [Bool] over the signature of Umel, one of the following alternatives
holds:

1. m is (w′
4 |-w

′
1 =w

′
2 if w′

3), for terms w′
1, w

′
2, w

′
3, and w′

4 such that Umel ` t1 = w′
1,

Umel ` t2 = w′
2, Umel ` A1 ∧ . . . ∧An = w′

3, and Umel ` T = w′
4; or

2. there exists a proof δ′ of (w4 |-w1 =w2 if w3) = true, or of true = (w4 |-w1 =w2 if w3),
such that depth(δ′) ≤ depth(δ).

An analogous result holds when (w4 |-w1 =w2 if w3) is replaced with (w4 |-w1 : s if w3).

Proof. By structural induction on the proof δ; we consider the last rule of deduction employed.

– (Reflexivity). Then (1) must hold.
– (Symmetry). The result follows by induction hypothesis.
– (Membership). It is not possible.
– (Replacement). It must be the case that either:

• one of the equations corresponding to the rules of deduction in mel has been used
(Figure 1), in which case m is true and thus (2) holds taking δ itselft as the proof δ′,
or

• an equation has been applied to w1, w2, w3, or w4 (or to one of their subterms,
through an operator like vars or applyS), and (1) holds.

– (Transitivity). Suppose that δ proves (w4 |-w1 =w2 if w3) = m (the symmetric case
is analogous). There is a term n such that

Umel ` (w4 |-w1 =w2 if w3) = n Umel ` n = m

Umel ` (w4 |-w1 =w2 if w3) = m
.

Applying the induction hypothesis to the proof δ′ of (w4 |-w1 =w2 if w3) = n, we have
one of the following possibilities:
• n is (w′

4 |-w
′
1 =w

′
2 if w′

3), with derivations for Umel ` t1 = w′
1, Umel ` t2 = w′

2,
Umel ` A1 ∧ . . . ∧An = w′

3, and Umel ` T = w′
4. In this case we apply the induction

hypothesis to the proof δ′′ of n = m, and distinguish the following cases:
- m is w′′

4 |-w
′′
1 =w

′′
2 if w′′

3 , with Umel ` t1 = w′′
1 , Umel ` t2 = w′′

2 , Umel `
A1 ∧ . . . ∧An = w′′

3 , and Umel ` T = w′′, and (1) holds.
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- There is a proof δ′′′ of n = true such that depth(δ′′′) ≤ depth(δ′′). But then

Umel ` (w4 |-w1 =w2 if w3 = n Umel ` n = true

(w4 |-w1 =w2 if w3) = true

is a proof of Umel ` (w4 |-w1 =w2 if w3) = true whose depth is equal to 1 +
max(depth(δ′), depth(δ′′′)) ≤ 1 + max(depth(δ′), depth(δ′′)) = depth(δ), and we
have (2).

• There exists a proof of (w4 |-w1 =w2 if w3) = true whose depth is less than, or
equal to, that of δ′ and, therefore, less than that of δ, and (2) holds. ut

Theorem 3. Let t1 and t2 be terms over a membership theory T , and w1, w2, w3, and w4

be terms in Umel such that Umel ` t1 = w1, Umel ` t2 = w2, Umel ` none = w3, and
Umel ` T = w4. If

Umel ` (w4 |-w1 =w2 if w3) = true

or
Umel ` true = (w4 |-w1 =w2 if w3) ,

then
T ` t1 = t2 .

An analogous result holds when (w4 |-w1 =w2 if w3) is replaced with (w4 |-w1 : s if w3).

Proof. By structural induction on the proof in mel. According to the last rule of deduction
used, we have:

– (Reflexivity) and (Membership). They are not possible.
– (Symmetry). By the induction hypothesis.
– (Transitivity). Suppose we have Umel ` (w4 |-w1 =w2 if w3) = true (the symmetric

case is analogous). There is a term m over the signature of Umel such that

Umel ` (w4 |-w1 =w2 if w3) = m Umel ` m = true

Umel ` (w4 |-w1 =w2 if w3) = true
.

By Lemma 1 applied to the proof δ of (w4 |-w1 =w2 if w3) = m we have one of the
following alternatives:
1. m is w′

4 |-w
′
1 =w

′
2 if w′

3, with derivations for Umel ` t1 = w′
1, Umel ` t2 = w′

2,
Umel ` none = w′

3, and Umel ` T = w′
4: the result follows by applying induction

hypothesis to the proof of m = true.
2. There is a proof of (w4 |-w1 =w2 if w3) = true whose depth is less than or equal to

that of δ and thus less than that of the original derivation, and we apply the induction
hypothesis again.

– (Replacement). Note that the context C used for this rule must have been the empty
one. Thus, the only equations that can have been applied are the ones corresponding to
the rules of deduction of mel in Figure 1; let us consider each case separately:
• reflexivity. Trivial.
• replacement. By Proposition 6, there is an axiom t = t′ if Cond (resp. t :s if Cond)

in E such that all atomic formulae in σ(Cond) can be proved in T . In this case, w1 is
applyC(C,applyS(σ,t)), w2 is applyC(C,applyS(σ,t

′
)), and w3 is none, and, by

Propositions 3 and 4, t1 is C[σ(t)] and t2 is C[σ(t′)]. But then T ` t1 = t2 follows by
(Replacement).

• symmetry. By induction hypothesis and (Symmetry).
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• transitivity. The result follows by Proposition 5, the induction hypothesis, and
(Transitivity).

• membership. The result follows by Proposition 5, the induction hypothesis, and (Mem-
bership). ut

As a corollary of the reflective results proved in this section, we will show in the next two
sections the reflective nature of two other related logics: many-sorted equational logic and
Horn logic with equality.

4 Reflection in Many-Sorted Equational Logic

Many-sorted equational logic—in short, msel—is a sublogic of mel, namely the sublogic
obtained by making the set of sorts empty [41] (and renaming “kind” as “sort”); in particular,
for all theories T in msel, and sentences φ over the signature of T , it holds that T `msel φ ⇐⇒
T `mel φ. Note that, since we have only used kinds and conditional equations not involving
any memberships in the definition of Umel, we have that Umel is a theory in msel, which
turns out to be reflective.

Theorem 4. Umel is a universal theory in msel for the class of finitely presentable theories
having nonempty sorts.

Proof. For all finitely presentable theories T in msel having nonempty sorts and sentences φ
over the signature of T ,

T `msel φ ⇐⇒ T `mel φ ⇐⇒ Umel `mel T ` φ ⇐⇒ Umel `msel T ` φ

since, by definition, T ` φ is a sentence in msel. ut

5 Reflection in Horn Logic with Equality

In [41] it is shown that mel is equivalent to many-sorted Horn logic with equality—in short,
mshorn=. It is not surprising then that the reflective results about mel can be translated
straightforwardly to mshorn=.

A signature in mshorn= is a triple (L,Σ,Π), with L a set of sorts, Σ = {Σw,l}(w,l)∈L∗×L

a family of sets of function symbols, and Π = {Πw}w∈L∗ a family of sets of predicate symbols.
A signature Ω = (K,Σ, S) in mel can then be mapped to a signature Ω? = (K,Σ, S?) in
mshorn= by taking S?

k to be the set Sk for k ∈ K, and S?
w = ∅ for any w ∈ K∗ \K. Thus,

if we adopt a postfix notation : s for each predicate in Ω?, corresponding to a sort s in
Ω, each sentence over Ω in mel can be seen as a sentence over Ω? in mshorn=. We will
write (Ω,E)? for (Ω?, E). Then, for all sentences φ over Ω it holds that (Ω,E) `mel φ ⇐⇒
(Ω,E)? `mshorn= φ.

Moreover, in [41] a translation from mshorn= to mel is also defined. A signature (L,Σ,Π)
in mshorn= is mapped to a theory J(L,Σ,Π) in mel whose signature consists of:

– a set of kinds K = L ] {p(w) | w ∈ L∗ \ L and Πw 6= ∅};
– for each kind k ∈ K, the set of sorts Sk is Πk if k ∈ L or Πw if k is p(w);
– a set of operators

∆ = Σ ∪ {〈 , . . . , 〉 : l1 . . . ln −→ p(l1, . . . , ln) | p(l1, . . . , ln) ∈ K \ L}
∪ {πi : p(l1, . . . , ln) −→ li | 1 ≤ i ≤ n, p(l1, . . . , ln) ∈ K \ L} .
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The idea is to represent the cartesian product of the kinds l1,. . . ,ln by means of the kind
p(l1, . . . , ln). Thus, the axioms of the theory J(L,Σ,Π) are

(∀x1 : l1, . . . , xn : ln) πi(〈x1, . . . , xn〉) = xi (1 ≤ i ≤ n)
(∀y : p(l1, . . . , ln)) y = 〈π1(y), . . . , πn(y)〉

for every p(l1, . . . , ln).
The translation α of sentences leaves each equation t = t′ unchanged and maps each

atomic formula P (t1, . . . , tn) to the membership assertion 〈t1, . . . , tn〉 : P , and each Horn
clause

(∀X) at ⇐ u1 = v1 ∧ . . . ∧ un = vn ∧ P1(w1) ∧ . . . ∧ Pm(wm)

to the sentence

(∀X)α(at) if u1 = v1 ∧ . . . ∧ un = vn ∧ 〈w1〉 : P1 ∧ . . . ∧ 〈wm〉 : Pm .

A theory T = (L,Σ,Π, Γ ) in mshorn= is then mapped to the theory J(T ) that re-
sults from adding to J(L,Σ,Π) the translation of the clauses in Γ . In [41] it is proven that
T `mshorn= φ ⇐⇒ J(T ) `mel α(φ) and we have the following result.

Theorem 5. U?
mel is a universal theory in mshorn= for the class of all finitely presentable

theories with nonempty sorts.

Proof. For all finitely presentable theories with nonempty sorts T in mshorn=, and sentences
φ over T ,

T `mshorn= φ ⇐⇒ J(T ) `mel α(φ)
⇐⇒ Umel `mel J(T ) `mel α(φ)
⇐⇒ U?

mel `mshorn= J(T ) `mel α(φ) .

ut

6 Reflection in Rewriting Logic

Rewriting logic—in short, rl—is parameterized with respect to an underlying equational
logic; here we use mel, which is the most general equational logic studied so far as parameter
of rewriting logic. Given a mel signature Ω = (K,Σ, S), the sentences of rewriting logic are
“sequents” of the form t −→ t′, where t and t′ are Ω-terms of the same kind possibly involving
some variables from a K-kinded set of variables X.

A rewrite theory T is a 3-tuple T = (Ω,E,R), where (Ω,E) is a mel theory and R is a
set of (conditional) rewrite rules of the form

t −→ t′ if
∧
i∈I

(ui :si) ∧
∧
j∈J

(vj = v′j) ∧
∧
l∈L

(wl −→ w′
l) ,

with pi = qi and wj : sj atomic formulae in membership equational logic for i ∈ I and j ∈ J ,
and for appropriate kinds k and kl, t, t′ ∈ TΣ,k(~x), and wl, w

′
l ∈ TΣ,kl

(~x) for l ∈ L. As in
Section 3, we assume that the underlying mel theory has nonempty kinds.
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The Rules of rl. We now introduce the rules of deduction of rl. Our formulation follows
that in [7], that generalizes [39] by giving an explicit rule of E-equality for rewrite sequents
t −→ t′ instead of absorbing such a rule in sequents [t] −→ [t′] between E-equivalence classes.
But as we did for membership equational logic, the congruence rule is removed and subsumed
in the (Replacement) rule.

Given a rewrite theory T = (Ω,E,R), we say that T entails a sequent t −→ t′ and write
T ` t −→ t′ if and only if t −→ t′ can be obtained by finite application of the following rules
of deduction :

1. Reflexivity. For every t ∈ TΣ(X),

t −→ t
.

2. Replacement. For each rewrite rule (t −→ t′ if Cmb ∧ Ceq ∧ Crl) in R, with t, t′ of
kind k, context Ck ∈ Cı

Σ(X), and substitution σ, where Cmb , (u1 : s1 ∧ . . . ∧ uj :sj),
Ceq , (v1 = v′1 ∧ . . . ∧ vk = v′k), and Crl , (w1 −→ w′

1 ∧ . . . ∧ wh −→ w′
h),

(Ω,E) ` σ(u1) :s1 · · · (Ω,E) ` σ(uj) :sj

(Ω,E) ` σ(v1) = σ(v′1) · · · (Ω,E) ` σ(vk) = σ(v′k)
σ(w1) −→ σ(w′

1) · · · σ(wh) −→ σ(w′
h)

C[σ(t)] −→ C[σ(t′)]
.

3. Transitivity. For every t, t′, t′′ ∈ TΣ(X),

t −→ t′ t′ −→ t′′

t −→ t′′
.

4. Equality. For every t, t′, u, u′ ∈ TΣ(X),

(Ω,E) ` t = u (Ω,E) ` t′ = u′ t −→ t′

u −→ u′
.

6.1 A Universal Theory for rl

Here, we introduce the universal theory Url and a representation function ` that encodes
pairs consisting of a theory T and a sentence over its signature as a sentence in Url, and
prove the universality of Url. The key observation is that Url is an extension of Umel, so that
we can use the universality of Umel in the proof of the universality of Url. In what follows,
we will be dealing with finitely presentable theories in rl.

The Signature of Url. The signature of the theory Url is an extension of the signature of
Umel. To represent (possibly conditional) rules, the signature of Url includes the operators:

op _=>_ : [Term] [Term] -> [AtomR] .

op noneR : -> [RuleCondition] .

op _/\_ : [Atom] [RuleCondition] -> [RuleCondition] .

op _/\_ : [AtomR] [RuleCondition] -> [RuleCondition] .

op _=>_if_ : [Term] [Term] [RuleCondition] -> [Rule] .

Theories are represented using:

op (_,_,_) : [Signature] [AxiomSet] [RuleSet] -> [RLTheory] .

Finally, the signature of Url contains a Boolean operator
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op _|-_ : [RLTheory] [AtomR] -> [Bool] .

to represent provability of sentences in a given rewrite theory; the main axioms of Url define
this operator.

As it happened with Umel, there are also a number of auxiliary operators. There are
operators for sets of rewrite rules

op emptyR : -> [RuleSet] .

op unionR : [Rule] [RuleSet] -> [RuleSet] .

as well as operations to check satisfaction of a condition in a given theory:

op satisfyRC : [RLTheory] [RuleCondition] [Substitution] -> [Bool] .

op satisfyR : [RLTheory] [Rule] [Substitution] -> [Bool] .

The Representation Function. We next define the representation function ` . For all
finitely presentable rewrite theories T with nonempty kinds, and sentences t −→ t′ over the
signature of T ,

T ` t −→ t′ , (T|- t => t′) −→ true .

where ( ) is an extension of the representation function for Umel, defined in the expected way.

1. For a theory T = (Ω,E,R),
T , (Ω,E,R) .

2. For R a set of rewrite rules {r1, . . . , rn},

R , consR(r1, . . . , consR(rn, emptyR) . . . ) .

3. For a rewrite t −→ t′,
t −→ t′ , t => t

′
.

4. For Cond a conjunction of equations, memberships, and rewrites A1 ∧A2 ∧ . . . ∧An,

Cond , A1 /\ (A2 /\ . . . /\ (An /\ noneR) . . .) .

5. For r a rewrite rule t −→ t′ if A1 ∧ . . . ∧An,

r , t => t
′
ifA1 ∧ . . . ∧An .

The Axioms of Url. Finally we define the axioms of Url, which include rules that corre-
spond to the inference rules of rl, and all the equations in Umel. The same remarks as in
page 10 apply to our notation for these rules.

In what follows, we assume a finitely presentable rewrite theory with nonempty kinds,
T = (Ω,E,R), where Ω = (K,Σ, S).

Again, we need equations between the set operators.

eq unionR(r, unionR(r′,AS)) = unionR(r′, unionR(r,AS)) .

eq unionR(r, unionR(r,AS)) = unionR(r,AS) .

And analogously for the operator _/\_ that builds conditions.
The equations for satisfyRC, like those for satisfyC, simply unfold the components of

a condition.
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eq satisfyRC(T,none,σ) = true .

eq satisfyRC(T,A /\ C,σ) = satisfyR(T,A,σ) and satisfyRC(T,C,σ) .

eq satisfyR(T,t => t
′
,σ) = (T|- applyS(σ,t) => applyS(σ,t

′
)) .

eq satisfyR(T,t = t
′
,σ) = (T |- applyS(σ,t) = applyS(σ,t

′
) if none) .

eq satisfyR(T,t : s,σ) = (T |- applyS(σ,t) : s if none) .

Proposition 7. For all atomic formulae and rewrites A1, . . . , An, and substitutions σ, the
following are equivalent:

1. Url ` T ` σ(Ai) for each i; that is, for each Ai of the form ti −→ t′i,

Url ` (T|-σ(ti) =>σ(t′i)) −→ true ,

for each Ai of the form ti = t′i,

Url ` (T |-σ(ti) =σ(t′i) if none) = true ,

and for each Ai of the form ti :si,

Url ` (T |-σ(ti) : si if none) = true .

2. It holds that
Url ` satisfyRC(T,A1 ∧ . . . ∧An,σ) = true .

Finally, the rules of deduction of rl are specified as shown in Figure 2.

*** reflexivity

rl ((Ω,E,R) |- t => t) => true.

*** replacement

crl ((Ω,E,R) |- applyC(C, applyS(σ,t)) => applyC(C, applyS(σ,t
′
))) => true

if R = unionR(t = t
′
if Cond,R)

/\ satisfyR((Ω,E,R),Cond,σ) = true .

*** transitivity

crl ((Ω,E,R) |- t => t
′
) => true

if parse(t
′′
,Ω) = true

/\ ((Ω,E,R) |- t => t
′′
) => true

/\ ((Ω,E,R) |- t
′′

=> t
′
) => true .

*** equality

crl ((Ω,E,R) |- u => u′) => true

if parse(t,Ω) = true

/\ parse(t
′
,Ω) = true

/\ ((Ω,E) |- t = u if none) = true

/\ ((Ω,E) |- t
′
= u′ if none) = true

/\ ((Ω,E,R) |- t => t
′
) => true .

Fig. 2. The universal theory Url (fragment).
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6.2 The Correctness of the Universal Theory rl.

We already have the necessary ingredients to show the correctness of the universal theory
Url. The proof is analogous to that of Theorem 1, using in key steps of the proof the fact
that Url is an extension of Umel, so we will not spell out all the details but focus on the most
complex, interesting cases.

As happened in the previous section, some auxiliary lemmas are needed before the main
result can be proven. In the following proofs we write Url ` w = w′ to denote that the
equation w = w′ can be derived in the equational subtheory of Url.

Lemma 2. For all terms w of kind [Bool], w1, w2 of kind [Term], and w3 of kind [RLTheory]
in Url such that

Url ` w = (w3|-w1 =>w2) or Url ` (w3|-w1 =>w2) = w ,

the term w must of the form w′
3|-w

′
1 =>w

′
2 for terms w′

1, w
′
2, and w′

3 such that Url ` wi = w′
i,

1 ≤ i ≤ 3.

Proof. By structural induction on the derivation. In the case of the (Replacement) rule
note that no equations apply to the operator |- => representing derivability; the other
cases are immediate. ut

The following lemma is analogous to Lemma 1; now, depth(δ) refers to the depth of a
derivation δ in rewriting logic.

Lemma 3. For all terms t1, t2 over a rewrite theory T , and terms w1, w2 of kind [Term], and
w3 of kind [RLTheory] in Url such that Url ` t1 = w1, Url ` t2 = w2, and Url ` T = w3,
whenever there is a proof δ in Url of the rewrite

(w3|-w1 =>w2) −→ m

for some term m of kind [Bool] over the signature of Url, one of the following alternatives
holds:

1. m is w′
3|-w

′
1 =>w

′
2 , for terms w′

1, w
′
2, and w′

3 such that Url ` t1 = w′
1, Url ` t2 = w′

2,
and Url ` T = w′

3; or
2. there exists a proof δ′ of the rewrite (w3|-w1 =>w2) −→ true such that depth(δ′) ≤

depth(δ).

Proof. As in Lemma 1, we proceed by structural induction on the proof δ. The only case
which is treated in a different way is the one that corresponds to the (Equality) rule; hence,
let us assume that the last step in the proof is

Url ` t = (w3|-w1 =>w2) Url ` t′ = u′ t −→ t′

(w3|-w1 =>w2) −→ u′
.

By Lemma 2, t is of the form w′
3|-w

′
1 =>w

′
2, with Url ` wi = w′

i, 1 ≤ i ≤ 3. By the induction
hypothesis applied to the proof of (w′

3|-w
′
1 =>w

′
2) −→ t′, one of the following alternatives

holds:

– t′ is of the form w′′
3|-w

′′
1 =>w

′′
2 , with Url ` t1 = w′′

1 , Url ` t2 = w′′
2 , and Url ` T = w′′

3 .
But, again by Lemma 2, then u′ has the same form and (1) holds.
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– There is a proof of (w′
3|-w

′
1 =>w

′
2) −→ true whose depth is less than, or equal to, that

of the proof of (w′
3|-w

′
1 =>w

′
2) −→ t′. But then, if we modify the original derivation of

(w3|-w1 =>w2) −→ u′ by replacing the proof of t −→ t′ by that of (w′
3|-w

′
1 =>w

′
2) −→

true, and the proof of Url ` t′ = u′ by Url ` true = true, we obtain a proof that
satisfies (2). ut

The main theorem is now proved by mimicking the proof of Theorem 1.

Theorem 6. For all finitely presentable rewrite theories with nonempty kinds T = (Ω,E,R),
with Ω = (K,Σ, S), and terms t, t′ in TΣ(X)

T ` t −→ t′ ⇐⇒ Url ` (T|- t => t′) −→ true .

Proof. The proof in the (⇒)-direction follows the steps of that for the Theorem 2: it proceeds
by structural induction on the derivation of T ` t −→ t′ and the only new case is the one that
corresponds to the (Equality) rule. Thus, let us assume that the last step in the derivation
is of the form

(Ω,E) ` t = u (Ω,E) ` t′ = u′ t −→ t′

u −→ u′
.

Since Umel is universal we have Umel ` ((Ω,E) |- t =u if none) = true and also Umel `
((Ω,E) |- t′ =u′ if none) = true and by the induction hypothesis, Url ` (T|- t => t′) −→
true; by Proposition 5, since Url contains Umel we can apply (Replacement) with the
equality rule to obtain Url ` (T|-u =>u′) −→ true.

The (⇐)-direction follows from a generalization analogous to that in Theorem 3: for
all terms w1, w2, and w3 over the signature of Url such that they are provably equal to,
respectively, t1, t2, and T , if

Url ` (w3|-w1 =>w2) −→ true ,

then
T ` t1 −→ t2 .

Again, the proof follows the same steps as in Theorem 3. The case for the (Transitivity) rule
now relies on Lemma 3 and the one for (Replacement) introduces a new case, corresponding
to the equality rule. In this last situation we get the result from Proposition 5, the induction
hypothesis, and Theorem 3 itself. In addition, we also have to consider the case in which the
last rule applied has been (Equality):

Url ` t = (w3|-w1 =>w2) Url ` t′ = true t −→ t′

(w3|-w1 =>w2) −→ true
.

By Lemma 2, t has the form w′
3|-w

′
1 =>w

′
2 with Url ` wi = w′

i, 1 ≤ i ≤ 3, and Lemma 3 can
be applied to the proof of t −→ t′ to distinguish the following cases:

– t′ has the form w′′
3|-w

′′
1 =>w

′′
2 . This situation cannot happen due to Lemma 2, because

we have Url ` t′ = true.
– There is a proof of (w′

3|-w
′
1 =>w

′
2) −→ true whose depth is less than, or equal to, that

of t −→ t′ and therefore less than the original proof; the result is again obtained by the
induction hypothesis. ut
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7 Comparison with Previous Results

The work discussed in this paper generalizes and extends our previous work on reflection in
rewriting logic [10, 17, 43]. The results presented here generalize our previous results on reflec-
tion in rewriting logic to its more general variant, namely, to the case of conditional rewrite
theories whose underlying equational specifications are theories in membership equational
logic. To simplify the correctness proof of the universal theory, we have, however, adopted
a different approach for defining the universal theory. Essentially, in [10, 17], an entailment
of the form T ` t −→ t′ was reflected as U ` 〈T , t〉 −→ 〈T , t′〉. Accordingly, the “transi-
tivity” rule of deduction did not have to be explicitly reified in the universal theory since, if
T ` t1 −→ t3 was proved by transitivity from T ` t1 −→ t2 and T ` t2 −→ t3, then, of course,
U ` 〈T , t1〉 −→ 〈T , t3〉, would also be proved by transitivity from U ` 〈T , t1〉 −→ 〈T , t2〉
and U ` 〈T , t2〉 −→ 〈T , t3〉. In our current approach, however, an entailment of the form
T ` t −→ t′ is reflected as U ` (T|- t => t′) −→ true, and the “transitivity” rule (and also
the “symmetry” rule in the case of membership equational logic) has to be explicitly reflected
in the universal theory. The original approach corresponds to thinking of the universal theory
from a computational point of view, with the transitivity rule of deduction in charge of ap-
plying successive reductions; this complicated the proofs since we had no control about that
process. The new one, however, is more logical and results in a much simpler, easy to follow
scheme, with shorter and less tedious proofs.

In addition, the results presented here extend in a natural way our previous results on
reflection in rewriting logic to other related logics, namely, membership equational logic,
many-sorted equational logic, and Horn logic with equality. The extensions are very natural,
in the sense that the proposed universal theories are themselves related.

8 Conclusion

We have shown that the generalized variant of rewriting logic where the underlying equational
specifications are membership equational theories, and where the rules are conditional and can
have equations, memberships and rewrites in the conditions, is reflective. We have also shown
that membership equational logic, many sorted equational logic, and Horn logic with equality
are likewise reflective. These results provide logical foundations for reflective languages and
tools based on these logics, and in particular for the Maude language itself. The results
presented here can be further developed and generalized in several directions, including:

– giving proofs of reflection for other more restrictive but frequently used logics, such as
Horn logic without equality;

– further extending the rewriting logic results to theories where some of the operators are
frozen [7], so that no rewriting is allowed under them, and to theories where some kinds
can be empty;

– developing adequate strategies to execute the universal theories of rewriting logic and
of membership equational logic in Maude, so that proof objects can be associated to
reflective proofs when desired.

This work is one step further within a broader effort, whose first results appeared in [16],
to develop a general theory of reflection for logics and declarative languages. In this regard,
the results presented in this paper raise the issue of how the universal theories of related logics
are themselves related. To address in a precise and formalism-independent way this question,
we expect that the metalogical foundations provided by the theory of general logics [38], which
are at the base of our axiomatic approach to the study of reflection, can be very helpful. A
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different approach that we also intend to explore, and that was recently suggested to us by
Prof. Mario Rodŕıguez-Artalejo, consists in the use of Smullyan’s elementary formal systems
(EFS) [46]. The idea would is to build an entailment system of all EFSs and to use it as an
“intermediary” between the entailment systems of related logics, taking advantage of the fact
that all recursively enumerable sets can be recognized by EFSs and that the set of derivable
sentences in many sensible logics is in fact recursively enumerable.
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19. R. Douence and M. Südholt. A generic reification technique for object-oriented reflective lan-
guages. Higher-Order and Symbolic Computation, 14(1):7–34, 2001.

20. F. Durán. A Reflective Module Algebra with Applications to the Maude Language. PhD thesis,
Universidad de Málaga, Spain, June 1999. http://maude.cs.uiuc.edu/papers.

21. F. Durán. The extensibility of Maude’s module algebra. In T. Rus, editor, Algebraic Methodology
and Software Technology, 8th International Conference, AMAST 2000, Iowa City, Iowa, USA,
May 20–27, 2000, Proceedings, volume 1816 of Lecture Notes in Computer Science, pages 422–
437. Springer-Verlag, 2000.

22. F. Durán, S. Escobar, and S. Lucas. New evaluation commands for Maude within Full Maude.
In N. Mart́ı-Oliet, editor, Proceedings Fifth International Workshop on Rewriting Logic and its
Applications, WRLA’04, Barcelona, Spain, March 27–28, 2004, Electronic Notes in Theoretical
Computer Science, pages 245–266. Elsevier, 2004.

23. F. Durán and J. Meseguer. A Church-Rosser checker tool for Maude equational specifications.
http://maude.cs.uiuc.edu/tools, 2000.
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