
A formal speci�cation of the Kademlia distributed hash table

Isabel Pita

Dept. Sistemas Informáticos y Computación

Universidad Complutense de Madrid

ipandreu@sip.ucm.es

Resumen

Kademlia is a peer-to-peer distributed hash
table (DHT) currently used in the P2P eDon-
key �le sharing network. The most popular
clients used to connect to the Kad network are
eMule, aMule and BitTorrent. As other DHT,
Kademlia look-up algorithm takes logn steps,
which can be reduced to log2b n by increas-
ing the node's routing table size. It also o�ers
a number of desirable features not o�ered by
any previous DHT, which makes it the only
DHT used in real networks. These features re-
sult from the use of a notion of distance be-
tween objects introduced by Kademlia. Both
nodes and shared �les are represented by n-
bit keys, and their relation depend on the dis-
tance between their keys. In this sense, nodes
keep information about �les close or near to
them in the key space and the search algo-
rithm is based on looking for the closest node
(or almost closest node, if the information is
replicated) to the �le key.
This paper explains the speci�cation of the

behaviour of a P2P network that uses the
Kademlia DHT in the formal speci�cation lan-
guage Maude. We use the initial description of
the Kademlia DHT and �ll some open issues
with the eMule real implementation. We allow
peers to connect to the network and leave it by
simulating time using the Real Time Maude
facilities.

1. Introduction

Peer-to-peer (P2P) systems have seen a
great growth in the last few years mainly due

to �le sharing applications. There are two ba-
sic approaches for searching contents in P2P
networks: the unstructured approach is based
on �ooding the network and was used in the
�rst implementations of P2P networks, like
Gnutella. The structured approach uses a dis-
tributed hash table (DHT) and is the one cur-
rently in use in most P2P networks. A large
number of DHTs have been studied through
theoretical simulations and analysis over the
last years, such as Chord [18], CAN [14] or
Pastry [15]. But, despite the large e�ort de-
voted to the topic only Kademlia [8] is being
used in real P2P networks through the eMule
[6] and aMule [1] clients which give access to
millions of users. Also BitTorrent has intro-
duced a Kademlia DHT in its P2P network [5],
although it is not compatible with the eMule,
or aMule one.

The large number of users involved in cur-
rent P2P networks and the lack of a central
authority that certi�cates the trust of the par-
ticipating nodes imply that the system must
be able to operate even though some partici-
pants are malicious. DHT security, in particu-
lar, the problem of ensuring e�cient and cor-
rect peer discovery despite adversarial interfer-
ence, has been addressed in a number of works
[17, 20, 11]. However, the majority of these
studies examine the types of problems, draw-
ing examples from existing systems, or exper-
imentally evaluate the attacks over the net-
works. Despite the great success formal meth-
ods have had in the analysis of distributed net-
works and protocols, their contribution to P2P
networks is scarce. In [9], Mühl gives formal
semantics of publish/subscribe systems based



on sequential traces using the syntax of linear
temporal logic. The work formalizes and stud-
ies the correctness of several routing con�gura-
tions: �ooding, simple routing, identity-based
routing, . . . However, it does not include DHT
based routing algorithms. Borgströn et al. in
[3], prove correctness of the lookup operation
of the DHT-based DKS system, developed in
the context of the EU-project [7], for a stat-
ic model of the network using value-passing
CCS. Finally, Bakhshi and Gurov, in [2] give
a formal veri�cation of Chord's stabilization
algorithm using the π-calculus. But, as it is
said in [11], the question is whether the P2P
approach is mature enough to step outside of
its comfort zone of �le sharing and related ap-
plications. In particular, not much is known
about the ability of DHTs to meet critical se-
curity requirements (as those required nowa-
days, e.g., for domain name servers) and its
ability to withstand attacks.

Our goal is to study the possibilities o�ered
by formal methods to prove the correctness
of the dynamic aspects of P2P networks and
�nd possible attacks to them. We start with
the Kademlia network, as it is the one already
implemented and in use, and focus our work
on the routing algorithms. We use the initial
description of the Kademlia DHT [8] and �ll
some open issues with the eMule real imple-
mentation. See [10] for a thorough analysis of
the source code of eMule version 0.47a and
[6] for the source code (v0.50a). We are us-
ing the Maude formal speci�cation language
based on rewriting logic [4, 12] as it has been
successfully applied in similar problems, like
network communication protocol analysis [19]
and it o�ers simple an elegant time simulation
resources.

The paper is organized as follows: Section 2
gives a short overview of the Kademlia DHT,
focused on the aspects we have considered for
the moment. Next, we explain the formaliza-
tion of the di�erent parts of the network and
the interaction among them. Then, we intro-
duce the notion of time and show the formal-
ization of the processes of looking for a �le and
publishing �les. Finally some open issues are
outlined.

2. The Kademlia DHT

Nodes in a P2P network realize two basic
tasks: they put their �les at the disposal of oth-
er users and access the �les shared by the oth-
ers. The networks that use a DHT table have
similar approaches for solving these problems;
they identify both nodes and �les with n-bit
quantities, and keep the information of shared
�les in the nodes with an ID close to the �le
ID. Then, the look-up algorithm is based on lo-
cating successively closer nodes to any desired
key. The DHTs di�er on the notion of close to
they applied. In particular, Kademlia de�nes
the distance between two IDs as the bitwise
exclusive (XOR) of the n-bit quantities.

Each node stores contact information about
others. In Kademlia, every node keeps a list
of: IP address, UDP port and node ID, for
nodes of distance between 2i and 2i+1 from
itself, for i = 1 . . . n and n the ID length. In
the Kademlia paper [8] these lists, called k-
buckets, have at most k elements, where k is
chosen such that any given k nodes are very
unlikely to fail within an hour of each other.
k-buckets are kept sorted by time last seen.
When a node receives any message (request or
reply) from another node, it updates the ap-
propriate k-bucket for the sender's node ID. If
the sender node exists, it is moved to the tail
of the list. If it does not exist and there is free
space in the appropriate k-bucket it is inserted
at the tail of the list. Otherwise, the k-bucket
has not free space, the node at the head of the
list is contacted and if it fails to respond it is
removed from the list and the new contact is
added at the tail. In the case the node of the
head of the list responds, it is moved to the
tail, and the new node is discarded. This pol-
icy gives preference to old contacts, and it is
due to the analysis of Gnutella data collect-
ed by Saroiu et al. [16] which states that the
longer a node has been up, the more likely it
is to remain up another hour.

k-buckets are organized in a binary tree
called the routing table. Each k-bucket is iden-
ti�ed by the common pre�x of the IDs it con-
tains. Internal tree nodes are the common pre-
�x of the k-buckets, while the leaves are the



Figura 1: A routing table example for node

00000000

k-buckets. Thus, each k-bucket covers some
range of the ID space, and together the k-
buckets cover the entire ID space with no over-
lap. Figure 1 shows a routing table for node
00000000 and a k-bucket of length 5. IDs have
8 bits.
The Kademlia protocol consists of four Re-

mote Procedure Calls (RPCs):

• PING probes a node to see if it is online.

• STORE instructs a node to store a �le ID
together with the contact of the node that
shares the �le.

• FIND-NODE takes an ID as argument and
the recipient returns the contacts of the k
nodes it knows about closest to the target
ID.

• FIND-VALUE takes an ID as argument. If
the recipient has information about the
argument, it returns the contact of the
node that shares the �le, otherwise, it re-
turns a list of the k contacts it knows
about closest to the target.

In the following we summarize the processes
of looking for a value and publishing a shared
�le from the Kademlia paper [8].

Looking for a value. To �nd a �le ID, a
node starts by performing a look up to �nd

the k nodes with closest IDs to the �le ID.
First, the node sends a FIND-VALUE RPC to
the α nodes it knows with an ID closer to
the �le ID, where α is a system concurrency
parameter. As nodes reply, the initiator sends
new FIND-VALUE RPCs to nodes it has learned
about from previous RPCs, maintaining α ac-
tive RPCs. Nodes that fail to respond quickly
are removed from consideration. If a round of
FIND-VALUE RPCs fails to return a node any
closer than the closest already seen, the ini-
tiator resends the FIND-VALUE to all of the k
closest nodes it has not already queried. The
process terminates when any node returns the
value or when the initiator has queried and
gotten responses from the k closest nodes it
has seen.

Publishing a shared �le. Publishing is
performed automatically whenever a �le needs
it. To maintain persistence of the data, �les are
published by the node that shares them every
24 hours. Nodes that know about a �le publish
it every hour.
To publish a �le, a peer locates the k clos-

est nodes to the key, as it is done in the
looking for a value process, although it uses
the FIND-NODE RPC. Once it has located the
nodes, the initiator sends the �rst ten a STORE

RPC.

3. Network representation

The Kademlia network is modeled as a
Maude con�guration of objects and messages.
The objects represent the peers.

class Peer | RT : RoutingTable ,

Files : TFileTable ,

Publish : TPublishFile ,

SearchFiles : TSearchFile ,

SearchList : TemporaryList ,

Life : TimeInf ,

Reconnect : TimeInf .

where the object identi�cation consists of:
the peer IP address; its UDP port; and its node
ID. It is de�ned of sort Triple.
The attributes related to the Kademlia net-

work are:



• RT keeps the information of the routing
table.

• Files keeps the information of the �les
the peer is responsible for. It includes the
�les ID and the identi�cation of the peer
that shares the �le.

• Publish keeps the information of the
shared peer �les. The information in-
cludes the �les ID and the �le's location
in the peer.

• SearchFiles keeps the �les a peer is look-
ing for. A peer may look for many �les.

• SearchList is a temporary list used in the
search process.

The attributes used for the Maude simula-
tion are:

• Life, is the time the peer will remain con-
nected. The value is updated as time pass-
es. When it is set to zero it means that
the peer has left the network. It is set to
a random value when the peer is connect-
ed.

• Reconnect, is the time to be connected
again. It is set to a random value when a
node leaves the network.

The messages represent the RPCs. There is
a message for each RPC de�ned in the Kadem-
lia protocol. The �rst two parameters of the
message are the peer that sends the message
and the peer that receives it. The last two pa-
rameters are used to control the course of time.
The last but one controls the messages that are
not attended because the receiver has left the
network. When a message is sent it is assigned
a time, and when this time passes the mes-
sage is removed from the con�guration. The
last parameter is the time it takes in the Real-
Time-Maude system the RPC. For the time
being, each RPC is assigned one time unit.
The PING RPC syntax is:

msg PING :

Triple Triple TimeInf TimeInf -> Msg .

msg PING-REPLY :

Triple Triple TimeInf TimeInf -> Msg .

The STORE message has an aditional param-
eter that represents the �le ID to be stored
by the node and the identi�cation of the node
that shares the �le.

msg STORE :

Triple Triple TFileTable TimeInf TimeInf

-> Msg .

msg STORE-REPLY :

Triple Triple TimeInf TimeInf -> Msg .

The FIND-NODEmessage has an aditional pa-
rameter that represents the key the sender is
looking for. The reply has an additional pa-
rameter that keeps a list of the k nodes the
peer knows about closest to the target, where
k is the bucket dimension. The information is
obtained from the routing table of the node
that receives the RPC.

msg FIND-NODE :

Triple Triple BitString TimeInf TimeInf

-> Msg .

msg FIND-NODE-REPLY :

Triple Triple List{Triple} TimeInf

TimeInf -> Msg .

The FIND-VALUE message has an addition-
al parameter that represents the �le ID the
sender is looking for. The message has two
possible replies. If the receiver has information
about the �le in its Files table it returns the
contact of the node that shares the �le. If the
receiver has not information about the �le, it
returns the closest nodes to the �le ID, like the
FIND-NODE message.

msg FIND-VALUE :

Triple Triple BitString TimeInf TimeInf

-> Msg .

msg FIND-VALUE-REPLY1 :

Triple Triple List{Triple} TimeInf

TimeInf -> Msg .

msg FIND-VALUE-REPLY2 :

Triple Triple BitString TimeInf TimeInf

-> Msg .

3.1. The routing table

Although the routing table is depicted in [8]
as a binary tree, it can be represented as a list
of k-buckets since for each internal tree node
the subtree whose pre�x does not match with



the peer ID is a leave. For the same reason
it is not worth representing it as a trie ADT.
The k-bucket's position in the list is given by
its pre�x so looking for a k-bucket is done se-
quentially following the pre�x. The steps are
the same as if we were looking for it in the
tree. Although it is proposed in [8] a routing
table optimization that allows more contacts
for IDs close to the peer ID, we haven't con-
sidered it yet in the speci�cation. Nevertheless
we expect it will not be necessary to build a
complete binary tree. The eMule routing ta-
ble [10] also has more k-buckets in each node
than the routing table considered in [8], since
the subtree whose pre�x does not match with
the peer ID may be a semi-complete tree of
height four. Again the modi�cation is local and
bounded so we expect to �nd a more e�cient
representation than a binary tree.
The empty routing table is represented by

an empty bucket that covers all the ID space.

subsort Bucket < RoutingTable .

op _||_ :

Bucket RoutingTable -> RoutingTable [ctor] .

The information about nodes stored in the
routing table includes the IP address of the
node, the UDP port and the node ID. In the
following we call them contacts.
k-buckets are a list of contacts, which can

be empty. The order in which identi�ers are
allocated in the list is important, since the
most recent identi�ers are removed �rst, in
this sense its behaviour is similar to a queue.
k-buckets are de�ned as follows:

subsort Triple < Bucket .

op empty-bucket : -> Bucket [ctor] .

op _|_ : Bucket Bucket -> Bucket

[assoc id: empty-bucket ctor] .

The k-bucket number of elements is set by
the constant:

op bucketDim : -> Nat .

The routing table o�ers the following oper-
ations:

• op move-to-tail :

Triple Triple RoutingTable

-> RoutingTable .

Moves a contact to the tail of its k-bucket.

• op add-entry :

Triple Triple RoutingTable

-> RoutingTable .

Adds an entry to a routing table.

• op free-bucket :

Triple BitString RoutingTable -> Bool .

Checks if a k-bucket is full.

• op closest-nodes :

BitString RoutingTable Nat

-> List{Triple} .

Returns the list of the n closest contacts
to a given node in the routing table.

3.2. Shared �les

There are two di�erent concepts concerning
shared �les. On the one hand, a node shares
some �les. Each node has a table with infor-
mation about these �les, the key is the �le ID,
while the value includes the �le's name and the
time to republish it. The Maude speci�cation
is.

sort KeyPublishFile .

sort InfoPublishFile .

subsort BitString < KeyPublishFile .

op __ : String TimeInf -> InfoPublishFile

[ctor] .

Operations on this abstract data type
(ADT) include the typical operations for ta-
bles plus an operation to handle the time. The
generic de�nition of the table is:

sort InfoTable{X,Y} .

sort Table{X,Y} .

subsort InfoTable{X,Y} < Table{X,Y} .

op <__> : X$Elt Y$Elt -> InfoTable{X,Y}

[ctor] .

op empty-table : -> Table{X,Y} [ctor] .

op __ : Table{X,Y} Table{X,Y}

-> Table{X,Y}

[assoc comm id: empty-table ctor] .

op store : X$Elt Y$Elt Table{X,Y}

-> Table{X,Y} .

op _in_ : X$Elt Table{X,Y} -> Bool .

op remove : X$Elt Table{X,Y}

-> Table{X,Y} .

op find : X$Elt Table{X,Y} -> Y$Elt .

op _monus_ : Table{X,Y} Time

-> Table{X,Y} .



op key? : InfoTable{X,Y} -> X$Elt .

op value? : InfoTable{X,Y} -> Y$Elt .

The concrete table used to represent the �les
a peer publishes is:

TABLE{KeyPublishFile,InfoPublishFile} *

(sort

Table{KeyPublishFile,InfoPublishFile}

to TPublishFile) .

On the other hand, each node keeps infor-
mation of the �les that have a key value close
to its own key identi�cation. This information
includes the �le ID, the ID of the node that
stores the �le and a time value. The informa-
tion about the �le ID and the node ID is used
in the search process. In [8] it is not speci-
�ed the number of nodes that keep informa-
tion about a �le, we use the value de�ned in
the eMule paper [10] which set it to ten. The
time information is used to republish the �les
to ensure data persistence. The table speci�-
cation is:

sort KeyFileTable .

sort InfoFileTable .

subsort BitString < KeyFileTable .

op __ : Triple TimeInf -> InfoFileTable

[ctor] .

The table is

TABLE{KeyFileTable,InfoFileTable} *

(sort

Table{KeyFileTable,InfoFileTable}

to TFileTable) .

To publish a �le, a node has to �nd the k
nodes with the closest key to the �le ID. As the
information in the node's routing table may
not include the closest nodes, it should search
for them. Now, we follow the eMule implemen-
tation of the process. The node looks in the
routing table for contacts that are as near as
possible to the �le key and keeps them, ordered
by distance to the �le key, in a temporary list.
The information for each contact in the tem-
porary list is its key, and the time passed since
the RPC was sent. In this version of the speci-
�cation we admit only one search-publish pro-
cess at a time. To admit more searches we need
to de�ne a map of temporary lists to keep the
information about each search.

sort Node-Time .

sort TemporaryList .

subsort Node-Time < TemporaryList .

--- 1 param : Node ID (key, IP port and UDP)

--- 2 param : Distance to the search key

--- 3 param : Time since the RPC was send

--- 4 param : Flag

--- 0 indicates the RPC was not sent,

--- 1 the RPC was sent,

--- 2 the RPC has responded,

--- 3 the store message is sent

op <____> : Triple Nat TimeInf Nat

-> Node-Time [ctor] .

op empty-list : -> TemporaryList [ctor] .

op insert : Node-Time TemporaryList

-> TemporaryList [ctor] .

3.3. Searched �les

One of the tasks a node performs in a P2P
network is searching for information. Each
node keeps a table of the �les a peer is look-
ing for. The key is the �le ID and the value
includes the �le name and the time for expira-
tion.

sort KeySearchFile .

sort InfoSearchFile .

subsort BitString < KeySearchFile .

--- Time for expiration:

--- 0 has already been searched and found.

--- > 0 < 50 is ready to be searched.

--- > 50 the file is waiting.

op _;_ : String TimeInf -> InfoSearchFile

[ctor] .

The table is

TABLE{KeySearchFile,InfoSearchFile} *

(sort

Table{KeySearchFile,InfoSearchFile}

to TSearchFile.

4. Modeling time

Simulating the behaviour of a P2P network
requires a notion of time. In the current speci-
�cation, time passes when some action occurs,
in particular since the only actions are the
RPCs, we assume that each of them takes a
unit time.
We use Maude's REAL-TIME-MAUDE module

with discrete time units to model time. Rules



are divided into tick rules, that model the
elapse of time on the system, and instanta-
neous rules, that model changes in (part of)
the system and are assumed to take zero time.
The tick rule has the form:

crl [tick] : { C } => { delta(C,mte(C)) }

in time mte(C)

if mte(C) =/= INF and mte(C) =/= 0 .

where

• op mte : Configuration

-> TimeInf [frozen (1)] .

calculates the number of time units that
occur as the minimum of the con�gura-
tion messages and objects time units, and

• op delta : Configuration TimeInf

-> Configuration [frozen (1)] .

de�nes the e�ect of time elapse on a con-
�guration. For connected peers (Life >
0), it changes the time to republish a �le
(attributes Files and Publish), the time
left to obtain a response in the temporary
search list (attribute SearchList) and the
time left to disconnect the peer (attribute
Life). For disconnected peers, only the
time to reconnect is changed.

eq delta

(< P1 : Peer | RT : R1 ,

Files : FT1 , Publish : PF,

SearchFiles : SF , SearchList : SL,

Life : K1 , Reconnect : INF >,TM)

=

< P1 : Peer | RT : R1 ,

Files : FT1 monus TM ,

Publish : PF monus TM ,

SearchFiles : SF monus TM,

SearchList : SL monus TM,

Life : K1 monus TM ,

Reconnect : INF > .

Respect to messages, only the time to attend
the message is changed. If time is set to zero
the message is removed from the system.

eq delta(

PING(SENDER,RECEIVER,TM1,1),TM) =

PING(SENDER,RECEIVER,TM1 monus TM, 0) .

5. Network processes

We present two processes:

5.1. Looking for a �le

The searching process starts automatically
when there are IDs in the SearchFiles at-
tribute of some peer that we will call the initia-
tor. In this version we permit only one search
per node at a time. The life time of the ini-
tiator, K1, should be greater than zero; other-
wise, the node is supposed to be disconnected.
The expiration time, TM1, should be greater
than zero since the zero value indicates that
the search has �nished or no peer has found
the �le. It should also be less that n, set to
50 at this time, since a greater value indicates
that the �le has been already searched for but
it was not found and now is waiting to repeat
the search.

crl [lookfor-file1] :

< SENDER : Peer | RT : R1 ,

SearchFiles : < I1 (S1 ; TM1) > SF ,

SearchList : empty-list , Life : K1 >

=>

< SENDER : Peer | RT : R1 ,

SearchFiles : < I1 (S1 ; INF) > SF ,

SearchList : create-search-list(

closest-nodes(I1,R1,10), I1) ,

Life : K1 >

if K1 > 0 /\ K1 =/= INF /\ TM1 > 0 /\

TM1 < 50 .

The expiration time of the search �le is set
to INF to indicate that the process is initiat-
ed. The search list is �lled with the closest
nodes the initiator has in its routing table. The
closest-nodes operation returns the n closest
nodes to the key I1 in the routing table R1. We
set the number of initial nodes to ten due to
the size of our testing network. The list is cre-
ated with the operation create-search-list,
which inserts the nodes ordered by its distance
to the key.
The process continues by sending

FIND-VALUE RPCs to the �rst nodes of
the list to �nd closer nodes to the �le ID.
We may have up to three active RPCs at the
same time.



crl [lookfor-file21] :

< SENDER : Peer | RT : R1 ,

SearchFiles : < I1 (S1 ; INF) > SF ,

SearchList : SL , Life : K1 >

=>

< SENDER : Peer | RT : R1 ,

SearchFiles : < I1 (S1 ; INF) > SF ,

SearchList : set-flag-process(Tr,SL) ,

Life : K1 >

FIND-VALUE(SENDER,Tr, I1, K1, 1)

if K1 > 0 /\ K1 =/= INF /\

not all-done(SL) /\

Tr := first-not-sent(SL) /\

messages-in-process(SL) < 3 .

Once the RPC is sent, a �ag is activated
in the search list that marks this node as in
process. The RPC is only sent if the initiator is
active and if there are still nodes in the search
list to which no RPC has been sent. Notice
that we have to ask as many nodes as possible,
because there can be nodes not so close to the
objective than others but that have in their
routing tables information of the closest ones.
The receiver may �nd the value, or it may

return the closest nodes it knows about. If the
message is not attended, it is removed from
the system.

crl [find-value1] :

< RECEIVER : Peer | RT : R2 ,

Files : FT2 , Life : K2 >

FIND-VALUE(SENDER, RECEIVER, P3, TM,0)

=>

< RECEIVER : Peer |

RT : move-to-tail(SENDER,RECEIVER,R2) ,

Files : FT2 , Life : K2 >

FIND-VALUE-REPLY1(RECEIVER,SENDER,

closest-nodes(P3,R2,bucketDim), K2,1)

if K2 > 0 /\ K2 =/= INF /\

not (P3 in FT2) .

crl [find-value2] :

< RECEIVER : Peer | RT : R2 ,

Files : FT2 , Life : K2 >

FIND-VALUE(

SENDER, RECEIVER, P3, TM,0)

=>

< RECEIVER : Peer |

RT : move-to-tail(SENDER,RECEIVER,R2) ,

Files : FT2 , Life : K2 >

FIND-VALUE-REPLY2(RECEIVER,

SENDER,ID?(first?(find(P3,FT2))), K2,0)

if K2 > 0 /\ K2 =/= INF /\ (P3 in FT2) .

rl [find-value3] :

FIND-VALUE(

SENDER, RECEIVER, P3, 0, 0)

=>

none .

If the initiator receives the node that shares
the �le, the process ends.

crl [lookfor-file3] :

< RECEIVER : Peer | RT : R2 ,

SearchFiles : < I1 (S1 ; INF) > SF ,

SearchList : SL , Life : K2 >

FIND-VALUE-REPLY2(

SENDER,RECEIVER,P3,TM1,TM2)

=>

< RECEIVER : Peer |

RT : move-to-tail(SENDER,RECEIVER,R2) ,

SearchFiles : < I1 (S1 ; 0) > SF ,

SearchList : empty-list , Life : K2 >

FIND-VALUE-REPLY2(

SENDER,RECEIVER,P3,TM1,TM2)

if K2 > 0 /\ K2 =/= INF .

If it receives the list of the closest nodes, it
changes its search list, adding the nodes or-
dered by the distance to the objective. Only
nodes closer than the one which proposes them
are added. The initiator also updates its rout-
ing table, as it is always done when an RPC
is received. When the full list is treated, a �ag
is activated to mark this node as done in the
search list.

crl [lookfor-file41] :

< RECEIVER : Peer | RT : R2 ,

SearchFiles : < I1 (S1 ; INF) > SF ,

SearchList : SL , Life : K2 >

FIND-VALUE-REPLY1(

SENDER,RECEIVER,Tr L,TM1,TM2)

=>

< RECEIVER : Peer |

RT : move-to-tail(SENDER,RECEIVER,R2) ,

SearchFiles : < I1 (S1 ; INF) > SF ,

SearchList : insertOrd(

< Tr distance(ID?(Tr),I1) 100 0 >,SL) ,

Life : K2 >

FIND-VALUE-REPLY1(

SENDER,RECEIVER,L,TM1,TM2)

if K2 > 0 /\ K2 =/= INF /\

distance(ID?(Tr),I1) <

distance(ID?(SENDER),I1) /\



SL =/= empty-list .

crl [lookfor-file42] :

< RECEIVER : Peer | RT : R2 ,

SearchFiles : < I1 (S1 ; INF) > SF ,

SearchList : SL , Life : K2 >

FIND-VALUE-REPLY1(

SENDER,RECEIVER,Tr L,TM1,TM2)

=>

< RECEIVER : Peer |

RT : move-to-tail(SENDER,RECEIVER,R2) ,

SearchFiles : < I1 (S1 ; INF) > SF ,

SearchList : SL , Life : K2 >

FIND-VALUE-REPLY1(

SENDER,RECEIVER,L,TM1,TM2)

if K2 > 0 /\ K2 =/= INF /\

distance(ID?(Tr),I1) >=

distance(ID?(SENDER),I1) /\

SL =/= empty-list .

---

crl [lookfor-file43] :

< RECEIVER : Peer | RT : R2 ,

SearchFiles : < I1 (S1 ; INF) > SF ,

SearchList : SL , Life : K2 >

FIND-VALUE-REPLY1(

SENDER,RECEIVER,nil,TM1,TM2)

=>

< RECEIVER : Peer |

RT : move-to-tail(SENDER,RECEIVER,R2) ,

SearchFiles : < I1 (S1 ; INF) > SF ,

SearchList : set-flag-done(SENDER,SL) ,

Life : K2 >

if K2 > 0 /\ K2 =/= INF /\

SL =/= empty-list .

If the FIND-VALUE RPC is not attended be-
cause the receiver has left the network, the
node remains in the search list blocking other
searches. When this happens the node should
be removed from the search list. To detect
these cases, each node in the search list has
a time to reply. When this time is set to 0 the
node is removed from the list.

crl [lookfor-file5] :

< SENDER : Peer | RT : R1 ,

SearchFiles : < I1 (S1 ; INF) > SF ,

SearchList : SL , Life : K1 >

=>

< SENDER : Peer | RT : R1 ,

SearchFiles : < I1 (S1 ; INF) > SF ,

SearchList : remove-time0(SL) ,

Life : K1 >

if K1 > 0 /\ K1 =/= INF /\

messages-time0(SL) > 0 .

5.1.1. Publishing a �le

Publish is performed automatically. Even
more, to ensure the persistence of the infor-
mation, nodes periodically republish �les. In
[8] not only the node that shares the �le re-
publishes it, but also all the nodes which store
the �le ID. The process is done each hour but,
to avoid replication, when a node receives a
STORE RPC it will not republish the �le in the
next hour. As said in [8], since replication in-
tervals are not exactly synchronized, only one
node will republish the �le every hour, making
the process more e�cient.
A �le is published on the k nodes which have

the closest ID to the �le ID since the other
nodes will look for the �le there. The publish
process starts automatically when the time to
republish a �le is set to zero. It can be a node's
shared �le kept in the publish �les table or a
known �le shared by other node.

crl [publish11] :

< SENDER : Peer | RT : R1 ,

Publish : < I1 (S1 0) > PF ,

SearchList : empty-list ,

Life : K1 >

=>

< SENDER : Peer | RT : R1 ,

Publish : < I1 (S1 INF) > PF ,

SearchList : create-search-list(

closest-nodes(I1,R1,10), I1) ,

Life : K1 >

if K1 > 0 /\ K1 =/= INF .

In the following we only explain the process
that treats the shared �le process; the one for
the known �les is similar. First the initiator
should �nd the k closest nodes to the �le ID.
The initiator creates the temporary list and
sends FIND-NODE RPCs to the closest nodes.
Since the process is similar to the one ex-
plained for looking for a �le we only present
the rules once all nodes have replied or they
have been removed from the list because their
response time has expired. Then, a STORE mes-
sage is sent to the �rst three nodes of the list,
that are supposed to be the closest to the �le's
ID. When the three STORE messages have been
sent the time to republish the �le is set to k.



crl [publish51] :

< SENDER : Peer | RT : R1 ,

Publish : < I1 (S1 INF) > PF ,

SearchList : SL , Life : K1 >

=>

STORE(SENDER,first-not-stored(SL),

< I1 (SENDER 100) >,K1,1)

< SENDER : Peer | RT : R1 ,

Publish : < I1 (S1 INF) > PF ,

SearchList : set-flag-store(

first-not-stored(SL),SL) ,

Life : K1 >

if K1 > 0 /\ K1 =/= INF /\

all-done(SL) /\

number-messages-store(SL) < 3 .

crl [publish52] :

< SENDER : Peer | RT : R1 ,

Publish : < I1 (S1 INF) > PF ,

SearchList : SL , Life : K1 >

=>

< SENDER : Peer | RT : R1 ,

Publish : < I1 (S1 100) > PF ,

SearchList : empty-list ,

Life : K1 >

if K1 > 0 /\ K1 =/= INF /\

(number-messages-store(SL) == 3 or

length(SL) == number-messages-store(SL)) .

6. Open issues

We have shown a model of a P2P network
that uses a Kademlia DHT for searching �les
in the formal language Maude. The model will
permit us to execute the network speci�ca-
tion, analyze its behaviour and prove proper-
ties about it.
But there are still some open issues in the

model. There are more network processes, like
the one that automatically connects a node to
the network, that need to be re�ned. There
are also some eMule facilities that we have
not studied yet, like the modi�cation of the
routing table to keep more contacts in it or
the type and expire time attributes used to
keep the routing table up-to-date. It also al-
lows publishing keywords and notes related to
�les. There are some protections eMule imple-
ments to protect itself against possible attacks,
like the protection of hot nodes, that need a
deep study. It will also be useful to compare

the eMule implementation with the aMule and
BitTorrent ones.
We should re�ne the notion of time adjust-

ing the time it takes each action and the inter-
vals in which the automatic actions are taken
in order to make the system as realistic as pos-
sible.
The simulation will require: a process to cre-

ate random peers that could be connected and
disconnected from the network; stochastic pro-
cesses to simulate the behaviour of the peers;
and a system that automatically searches for
�les.
Finally, we have to de�ne the properties we

want to prove in the system and use the appro-
priate tools to prove them. The basic property
a P2P �le sharing network must meet is that:
under all circumstances, the data stored in a
hash table must be properly returned when
asked for. Di�erent circumstances may a�ect
the seaching process: peers joining and leav-
ing the network; publishing new �les; search-
ing for other �les; . . .. Real Time Maude pro-
vides some techniques for proving this type of
dynamic properties [12]. It admits a reachibili-
ty analysis from an initial state with a pattern
behaviour up to a certain time bound. It also
provides a temporal logic model checking that
may be very useful if we can �nd an appropi-
ate abstraction of the model that limits the
number of states [13].

Referencias

[1] aMule homepage http://www.amule.org

[2] Bakhshi, R., and Gurov, D. Veri�ca-
tion of Peer-to-peer Algoritms: A case
Study. ENTCS 181, pages 35�47. Else-
vier, 2007.

[3] Borgström J., Nestmann U., Onana L.
and Gurov D. Verifying a Structured
Peer-to-peer Overlay Network: The Stat-
ic Case In Proceedings of Global Com-
puting 2004, LNCS 3267, pages 251-266.
Springer 2004

[4] Clavel, M., Durán, F., Eker, S., Lincoln,
P., Martí-Oliet, N., Meseguer, J., Tal-



cott, C. All About Maude - A High-
Performance Logical Framework. LNCS
4350. Springer, 2007.

[5] Crosby S. and Wallach D. An Analy-
sis of BitTorrent's Two Kademlia-Based
DHTs Technical Report TR-07-04, De-
partment of Computer Science, Rice Uni-
versity, Houston, TX, USA., 2007.

[6] eMule http://www.emule-project.net.

[7] EU-project PEPITO: IST-2001-33234.
Homepage: http://www.sics.se/pepito/

[8] Maymounkov, P., and David Mazieres,
D. Kademlia: A peer-to-peer Informa-
tion System Based on the XOR Met-
ric. In Proceedings of the 1st Interna-
tional Workshop on Peer-to Peer Systems
(IPTPS02), 2002.

[9] Mühl G. Large-Scale Content-Based Pub-
lish/Subscribe Systems. Master Thesis.
Darmstädter Dissertationen D17. Tech-
nischen Universität Darmstadt. 2002.

[10] Mysicka, D. Reverse Engineering of
eMule. An analysis of the implementation
of Kademlia in eMule. Semester thesis,
Dept. of Computer Science, Distributed
Computing group, ETH Zurich, 2006.

[11] Mysicka D. eMule Attacks and Measure-
ments. Master Thesis. Dept. of Comput-
er Science, Distributed Computing group,
(ETH) Zurich. 2007.

[12] Ölveczky, P., and Meseguer, J., Seman-
tics and pragmatics of Real-Time Maude,
Higher Order Symbol. Comput., volume
20, number 1-2, pages 161�196. Kluwer
Academic Publishers. 2007,

[13] Miguel Palomino Tarjuelo, Refexión, ab-
stracción y simulación en la lógica de
reescritura. PhD thesis, Dept. Sistemas
Informáticos y Programación, Universi-
dad Complutense de Madrid, Spain, Mar.
2005.

[14] Ratnasamy S, Francis P, Handley M,
Karp R, and Shenker S. A Scalable
Content-Addressable Network. In Pro-
ceedings of SIGCOMM, 2001.

[15] Rowstron A, and Druschel P. Pastry:
Scalable, distributed object location and
routing for large-scale peer-to-peer sys-
tems. Middleware 2001 : IFIP/ACM
International Conference on Distribut-
ed Systems Platforms Heidelberg, Ger-
many, November 12-16, 2001. Proceed-
ings In Middleware '01: Proceedings of the
IFIP/ACM International Conference on
Distributed Systems Platforms Heidelberg
(2001), pp. 329-350. 2001.

[16] Saroiu S, Gummadi P., and Gribble S.
A Measurement Study of Peer-to-Peer
File Sharing Systems. Technical Report
UW-CSE-01-06-02, Department of Com-
puter Science and Engineering, Universi-
ty of Washington, july 2001.

[17] Sit E. and Morris R. Security Consider-
ations for Peer-to-Peer Distributed Hash
Tables. In Proceedings of the 1st Interna-
tional Workshop on Peer-to-Peer Systems
(IPTPS '02), Cambridge, Massachusetts,
March 2002., LNCS 2429, pages 261-269.
Springer, 2002. In Proceedings of Middle-
ware, Heidelberg. 2001.

[18] Stoica I, Morris R, Karger D, Kaashoek
M, and Balakrishnan H. Chord: A scal-
able peer-to-peer lookup service for In-
ternet applications. IEEE/ACM Trans.
Netw., volume 11, number 1, pages 17�
32. 2003.

[19] Verdejo A., Pita I. and Martí-Oliet N.
Speci�cation and Veri�cation of the Tree
Identify Protocol of IEEE 1394 in Rewrit-
ing Logic. Formal Aspects of Comput-
ing. Volume 14, number 3, pages 228-246.
Springer, 2003. In Proceedings of SIG-
COMM, 2001.

[20] Wang P., Tyra J., Chan-Tin E., Malchow
T., Foo Kune D., Hopper N., and Kim Y.
Attacking the Kad Network. In Proceed-
ings of the 4th International Conference
on Security and Privacy in Communica-
tion Networks (SecureComm'08). 2008.


