
Maude strategy‑aware, external, and
quantitative model checkers

USER MANUAL

March 25, 2025

Maude [7] lets users specify concurrent and complex systemsbymeansof terms, equa‑
tionsand rules, the languageof rewriting logic [18]. Thesemodels canbedirectly executed
or simulated by the interpreter, or analyzed by various tools. One of such tools is a built‑in
model checker [12] for linear temporal logic (LTL) properties. Since rewriting is just the ap‑
plication of rules one after the other, in any order and anywhere, a strategy language [10,
8, 11, 21, 19]wasproposedand incorporated to the interpreter inorder togain someglobal
control on the process. It is designed as a new specification layer on top of equations and
rules, so that the samemodel can exhibit different behaviors when controlled by alterna‑
tive strategies. These composed systems can be model checked with the strategy‑aware
model checker described in this document, which supports LTL properties as an exten‑
sion of the Maude LTLmodel checker [22, 23], and CTL, CTL* and μ‑calculus using external
tools [27, 26]. These tools can also be applied to classical models. Moreover, by assigning
probabilities on top of the Maude specifications, probabilistic properties can be checked
and quantitative results calculated by probabilistic and statistical methods [24].

Thismanual startswith short explanationsonhowstandard, strategy‑aware, andprob‑
abilisticmodels are specified. The procedure for strategy‑controlled systems does not dif‑
fer much from the way it is done in the standard model checker described in [7, §12]. The
extended LTL model checker can be used within Maude and a unified utility is provided
to uniformly access the model checkers for all the supported logics. It also provides re‑
sources tobetter analyze its results, and it is described inSection5.5. Usersonly interested
in branching‑time model checking can jump to Section 5. Those only interested in quan‑
titative verification can jump to Sections 3, 5.2, 5.3 and 6. The Maude version including
the model checkers, along with the unified model‑checking utility, related documenta‑
tion and examples can be found at maude.ucm.es/strategies.

https://maude.ucm.es/strategies

1

2 3

4 5.4 5.2 5.3 6B5.1A

5.5 5.6

Contents
1 Standard Maudemodels 3

1.1 Problem preparation . 3

2 Strategy‑controlledmodels 6
2.1 Finite traces . 7
2.2 Parallel subterm rewriting . 8
2.3 Opaque strategies . 8
2.4 Model preparation . 8

3 Probabilistic models 9

4 The strategy‑aware LTLmodel checker within Maude 13
4.1 Understanding the model checker output . 14
4.2 Running the model checker at the metalevel . 16

5 The unified Maudemodel‑checking utility 18
5.1 Standard model checking with check . 19
5.2 Probabilistic model checking with pcheck . 21
5.3 Statistical model checking with scheck . 23
5.4 Graph generation with graph . 26
5.5 A graphical interface . 27
5.6 External model checkers and their installation . 28

6 The statistical simulator for MultiVeStA 29

A The Maude language extension for LTSmin 31

B The Kleene‑star semantics of the iteration 32

2

1 Standard Maudemodels
Models in model checking are formalized as annotated state and transition systems known as Kripke
structures. Rewriting systems can be naturally viewed as Kripke structures by identifying terms with
states and adding a transition from one state to another if the first can be rewritten to the second by
a rule. Like this, the executions of the model are sequences of rule applications. However, since tem‑
poral properties are usually only defined on infinite executions, the one‑step rewrite relation should
be completed by adding self‑loops to all deadlock states, where no transition leaves. This is how the
standard Maude LTLmodel checker works [7, §12].

Let us introduce an example for explaining, in the following sections, how Maude specifications
are prepared for model checking. The classical problem of the dining philosophers is specified in the
followingmodules: a group of 𝑛 philosophers is gathered around a table to have dinner, for what they
have to take the forks at both their sides. However, the table is round and there are only 𝑛 forks, so
they cannot eat all at the same time.

fmod PHILOSOPHERS-TABLE is *** functional module
protecting NAT .

sorts Obj Phil Being List Table .
subsorts Obj Phil < Being < List .

op (_|_|_) : Obj Nat Obj -> Phil [ctor] .
ops o ψ : -> Obj [ctor] .
op empty : -> List [ctor] .
op __ : List List -> List [ctor assoc id: empty] .
op <_> : List -> Table [ctor] .

var L : List .
ceq < ψ L > = < L ψ > if L =/= empty .
op initial : -> Table .
eq initial = < (o | 0 | o) ψ (o | 1 | o) ψ (o | 2 | o) ψ > .

endfm

mod PHILOSOPHERS-DINNER is *** system module
protecting PHILOSOPHERS-TABLE .
var Id : Nat .
var X : Obj .
var L : List .
rl [left] : ψ (o | Id | X) => (ψ | Id | X) .
rl [right] : (X | Id | o) ψ => (X | Id | ψ) .
rl [left] : < (o | Id | X) L ψ > => < (ψ | Id | X) L > .
rl [release] : (ψ | Id | ψ) => ψ (o | Id | o) ψ .

endm
The philosophers can try three different moves: taking their left fork, their right fork, or release
both of them at once. Doing it at their sole discretion may lead to some unwanted situations, like the
starvation of some of them, or worse, of all of them. Strategies can prevent some of these problems
by imposing additional restrictions, as explained in Section 2.

1.1 Problem preparation
In this section,wesummarize theprocedure forpreparinganyMaudespecification formodel checking.
The following ingredients should be supplied:

3

SATISFACTIONQIDLTL

BOOL

MODEL-CHECKER

M-PREDS

M

M-CHECK

Figure 1: Structure of the model checker modules

• A model specified by a systemmodule Mwith a designated sort of states.

• A set of atomic propositions and a satisfaction relation ⊨ that specifies which are satisfied in
each state.

• A temporal formula built on top of the previous atomic propositions.

• An initial term.

For instance, in the dining philosophers example, the rewriting model is given by the system module
PHILOSOPHERS-DINNER, whose sort Table should be designated as the state sort. The initial term can be
the initial symbol, where all the forks are on the table.

The procedure involves some predefined and user‑defined modules respectively depicted in the
left and right sides of Figure 1. For the predefinedmodules, the model-checker.maude file in theMaude
standard distribution should be loaded. The state sort is selected together with the declaration of the
atomic propositions and their satisfiability. This is usually done in a new systemmodule, say M-PREDS,
that includes M and the predefined module SATISFACTION, where the State and Prop sorts, and the
satisfaction relation symbol _|=_ are declared.
fmod SATISFACTION is
protecting BOOL .
sorts State Prop .
op _|=_ : State Prop -> Bool [frozen] .

endfm
The sort of states is selected bymaking it a subsort of State. M-PREDSmust be a protected extension of
M to ensure that themodel is not altered in any way (although this is not checked by Maude). Finally, a
systemmodule M-CHECKmerges the specification of themodel and properties in M-PREDSwith the pre‑
defined MODEL-CHECKER module. This module gives access to the modelCheck symbol and transitively
imports the LTLmodule where the syntax for this temporal logic is defined.

*** primitive LTL operators
ops True False : -> Formula [...] .
op ~_ : Formula -> Formula [prec 53 ...] .
op _/_ : Formula Formula -> Formula [comm prec 55 ...] .
op _\/_ : Formula Formula -> Formula [comm prec 59 ...] .
op O_ : Formula -> Formula [prec 53 ...] .
op _U_ : Formula Formula -> Formula [prec 63 ...] .
op _R_ : Formula Formula -> Formula [prec 63 ...] .

*** defined LTL operators
op _->_ : Formula Formula -> Formula [prec 65 ...] .
op _<->_ : Formula Formula -> Formula [prec 65 ...] .
op <>_ : Formula -> Formula [prec 53 ...] .
op []_ : Formula -> Formula [prec 53 ...] .

4

op _W_ : Formula Formula -> Formula [prec 63 ...] .
op _|->_ : Formula Formula -> Formula [prec 63 ...] . *** leads-to
op _=>_ : Formula Formula -> Formula [prec 65 ...] .
op _<=>_ : Formula Formula -> Formula [prec 65 ...] .
An optional LTL-SIMPLIFIERmodule can be included to simplify the LTL formula. In practice, there is
no need to follow thismodule structure and M, M-PREDS, and M-CHECK can bewritten as a singlemodule,
but this is the usual convention.

Comingback to thedining philosophers problem, Mwouldbe PHILOSOPHERS-DINNER and the follow‑
ing PHIOSOPHERS-PREDSmodule can be its M-PREDS:
mod PHILOSOPHERS-PREDS is
protecting PHILOSOPHERS-DINNER .
including SATISFACTION .

subsort Table < State .
op eats : Nat -> Prop [ctor] .

var Id : Nat .
vars L M : List .

eq < L (ψ | Id | ψ) M > |= eats(Id) = true .
eq < L > |= eats(Id) = false [owise] .

endm
A single parametric proposition eats is defined, all whose ground instances are the atomic proposi‑
tions in the formal sense. The satisfaction relation is equationally defined to make eats(𝑛) hold in
any state where the 𝑛‑th philosopher has both forks, and so is able to eat. Finally, the module collect‑
ing all the specification components is defined, playing the role of M-CHECK.
mod PHILOSOPHERS-CHECK is
protecting PHILOSOPHERS-PREDS . *** atomic propositions
protecting PHILOSOPHERS-FORMULAE .
including MODEL-CHECKER .

endm
In this module, we will be able to use the model checker as explained in Sections 4 and 5.1. We have
imported anothermodule, PHILOSOPHERS-FORMULAE, that has not been explained yet. Since LTL formu‑
lae are represented by terms in Maude, the user can construct and manipulate formulae within the
language. For example, we can declare two formulae someoneEats and allEat, generic on the number
of philosophers, to express that at least a philosopher or every philosopher can eat.

mod PHILOSOPHERS-FORMULAE is
protecting PHILOSOPHERS-PREDS .
protecting LTL .

*** Parameterized formulae for a given number of philosophers
ops someoneEats allEat : Nat -> Formula .

var L : List .
var X Y : Obj .
var Id N : Nat .

eq someoneEats(0) = False .
eq someoneEats(s(N)) = someoneEats(N) \/ eats(N) .

5

eq allEat(0) = True .
eq allEat(s(N)) = allEat(N) /\ <> eats(N) .

endm
According to theequations, someoneEats(𝑛) is theLTL formula⋁𝑛−1

𝑘=0 eats(𝑘)andallEat(𝑛) is⋀𝑛−1
𝑘=0 ◇ eats(𝑘).

Summing up, the script for preparing a problem to bemodel checked is:

1. Specify the model in a systemmodule M.
2. Inaprotectingextensionof M including thepredefinedSATISFACTIONmodule (sayM-PREDS) choose

the sort of themodel states bymaking it a subsort of the predefined State sort. Declare asmany
atomic propositions as desired as operators of range Prop, and define the satisfaction relation
|= for all of them.

3. Write a system module (say M-CHECK) combining the specification of the model and properties
in M-PREDSwith the predefined MODEL-CHECKERmodule. Optionally, the LTL-SIMPLIFIERmodule
may be included for LTL simplification.

2 Strategy‑controlledmodels
The evolution of strategy‑controlled rewriting systems does not only depend on the rules but also on
the strategies that limit their application. States in those systems are not univocally associated to
terms and their transitions are those rule rewrites allowed by the strategy. We also consider some
special options for specific situations, but before describing themwewill illustrate the normal behav‑
ior with an example.

Remember that unwanted situations may appear in the dining philosophers problem introduced
in Section 1. Strategies can prevent some of them by imposing additional restrictions.

smod PHILOSOPHERS-PARITY is
protecting PHILOSOPHERS-DINNER .

strat parity @ Table .
sd parity := (release

*** The even take the left fork first
| (amatchrew L s.t. ψ (o | Id | o) := L /\ 2 divides Id

by L using left)
| left[Id <- 0]
*** The odd take the right fork first
| (amatchrew L s.t. (o | Id | o) ψ := L /\ not (2 divides Id)

by L using right)
*** When they already have one, they take the other fork
| (amatchrew L s.t. (ψ | Id | o) ψ := L by L using right)
| (matchrew M s.t. < L (o | Id | ψ) L' > := M

by M using left[Id <- Id])
) ? parity : idle .

endsm
With the parity strategy, even philosophers are compelled to take the left fork before the right one,
and the odd should do the opposite. These additional rewriting restrictions produce a differentmodel
in which different properties are satisfied. For example, thanks to the parity strategy, the situation in
which no philosopher can eat is avoided.

Notice that the strategy above is recursive and non‑terminating. Even though non‑terminating
executions cannot be observed with the srewrite commands [7, §10.4], non‑terminating strategies

6

are meaningful and useful to specify the behavior of non‑stopping and reactive systems, which are
the typical targets of model checking. Non‑terminating rewriting paths are not an obstacle for the
decidability of model checking as long as they repeat a finite number of states; in other words, as long
as they are caused by a loop. The model checker is able to detect cycles also when strategies have
parameters.

smod PHILOSOPHERS-TURNS is
protecting PHILOSOPHERS-DINNER .

strat turns @ Table .
strat turns : Nat Nat @ Table .

sd turns := matchrew M s.t. < L (o | Id | o) ψ > := M
by M using turns(0, s(Id)) .

sd turns(K, N) := left[Id <- K] ; right[Id <- K] ;
release ; turns(s(K) rem N, N) .

endsm
The turns strategy in themodule abovemakes the philosophers eat in turns. With 3 philosophers, the
strategies turns(0,3), turns(1,3), turns(2,3) follow continuously in a loop. This is not a convenient
solution to the philosophers problem due to the absence of parallelism, but it ensures that all of them
eat infinitely often.

Strategies always select a subset of the model executions. Hence, all linear temporal properties
satisfied by the unrestrictedmodel will be satisfied by the model controlled by nomatter which strat‑
egy. However, themodel checker also allows considering some explicitly selected strategies as atomic
steps, as described hereafter, breaking this rule.

2.1 Finite traces
Strategies are commonly used to specify finite rewriting sequences, those whose results are observed
using the srewrite commands. Finite executions do not exactly fit in the model‑checking setting,
where properties are defined for infinite traces. However, they can be assimilated to infinite traces
extending their last state forever. Intuitively, the modeled system has stopped after completing its ex‑
ecution and so it will continue in its idle state in perpetuity. Coming back to the philosophers example
and considering the recursive strategy sd free := all ? free : idle . that coincides with the free
execution of the rewriting rules, some finite traces are found:

< (o | 0 | o) ψ (o | 1 | o) ψ (o | 2 | o) ψ >
→right[Id <- 0] < (o | 0 | ψ) (o | 1 | o) ψ (o | 2 | o) ψ >
→right[Id <- 1] < (o | 0 | ψ) (o | 1 | ψ) (o | 2 | o) ψ >
→right[Id <- 2] < (o | 0 | ψ) (o | 1 | ψ) (o | 2 | ψ) >

This is a finite trace because the strategy all, the application of any rule, cannot be executed in the
last state. Then, the conditional operator will execute is negative idle branch and terminate. The
philosophers, unable to do any other movement, will remain like this indefinitely.

The interpretation of finite traces is equivalent to that of terminating or deadlocked rewriting se‑
quences in the standard model checker. In fact, the finite execution above is a deadlocked one, but
this is not true in general. Suppose freeweredefined all ; free instead. Then, the trace abovewould
be discarded since the strategy commits to execute all again in the fourth state, which is impossible.
Conversely, the strategy all* admits all finite rewriting sequences, extendedby repeating the last state
forever, even if they can be continued otherwise with a genuine rule transition.

7

2.2 Parallel subterm rewriting
The semantics of a subterm rewriting combinator like the following (or its variants xmatchrew and
amatchrew),

matchrew 𝑃(𝑋1, … , 𝑋𝑛) by 𝑋1 using 𝛼1, …, 𝑋𝑛 using 𝛼𝑛
is the parallel rewriting of its 𝑛 subterms against their corresponding strategies [28]. When looking to
the state evolution as a sequence of rewriting steps, this means that the next stepmay come from any
of the subterms. In other words, the execution traces of the matchrew are all possible interleavings of
all possible combinations of the execution traces of its subterms.

In general, generating all these combinations is computationally expensive. So, an optional and
alternative form of partial order reduction is offered, which analyzes only those traces where the sub‑
terms are rewritten in order, i.e. the rewrites within the subterm 𝑘 always occur before the rewrites
within the subterm 𝑘 + 1. It is the user responsibility to ensure by other means that this is enough to
prove the correctness of the system.

2.3 Opaque strategies
The model transitions are fundamentally rule applications, both for the strategy‑aware and the stan‑
dard model checker, but sometimes having strategies as transitions is useful and convenient. We call
these strategies opaque since the intermediate states occurring during its execution are invisible. In‑
stead, a single transition is seen from the term where the strategy is applied to each of its results. An
example of model checking with opaque strategies can be seen in Section 4.1.

2.4 Model preparation

SATISFACTIONQIDLTL

BOOL

STRATEGY-MODEL-CHECKER

M-PREDS SM

M

SM-CHECK

Figure 2: Structure of the strategy model checker modules

The problem setting and the usage of the strategy‑aware model checker does not differ much of
the standard procedures described in Section 1.1. The only difference is that, as part of the model
specification, a strategy must be provided. The model is now specified by

• a Maude systemmodule M, and
• a named strategy, defined in a strategy module SM that controls M. If using the interfaces of Sec‑
tions 4.2, 5 and 6, an arbitrary strategy expression can be used instead of a named strategy, and
the strategy module may be omitted for simple ones.

For instance, in the dining‑philosophers examples, the base rewriting model M is the system mod‑
ule PHILOSOPHERS-PREDS, and the controlling strategy can be either parity in PHILOSOPHERS-PARITY or
turns in PHILOSOPHERS-TURNS.

As illustrated in Figure 2, the collection of predefined and user‑definedmodules for strategy‑aware
model checking is very similar to that for standard model checking in Figure 1. In the typical setting,
the rule‑based model is specified in a system module M, one or more strategies controlling M are de‑
fined in an extension of this module that we will call SM, its atomic propostions and state are speci‑
fied in a protected extension of M called M-PREDS that includes the predefined SATISFACTION module,

8

and everything is combined in a strategymodule SM-CHECK. This latter module imports the predefined
STRATEGY-MODEL-CHECKERmodule to allow access to the strategy‑aware model checker. The standard
MODEL-CHECKERmodule is compatible with the strategy‑aware version and both can be imported and
used at the same time. The model setup does not change when model checking using external tools
in Section 5.1.

As a final summary, the script for preparing a problem to bemodel checked with strategies is:

1. Specify themodel in a systemmodule M, and define one ormore named strategy strategieswith‑
out parameters to control M in a strategy module SM. In the interfaces of Sections 4.2 and 5, an
arbitrary strategy expression can be used instead of a named strategy without parameters.

2. In a protecting extension of M, say M-PREDS, choose the sort of the model states by making it
a subsort of the State sort declared in SATISFACTION. Declare as many atomic propositions as
desired as operators of range Prop, and define the satisfaction relation |= for all of them.

3. Declare a strategymodule, say SM-CHECK, to combine themodel Mwith the property specification
in M-PREDS and the strategies SM. Import the STRATEGY-MODEL-CHECKERmodule too, andoptionally
the LTL-SIMPLIFIERmodule for LTL simplification.

3 Probabilistic models
Maude specifications, both standard and strategy‑controlled, are intrinsically nondeterministic. How‑
ever, this nondeterminism can be quantified to yield probabilistic systems that can be analyzed by
probabilistic and statistical model‑checking methods (see Sections 5.2 and 6). The tools described in
thismanual offer different alternatives to specify probabilities on top of rewriting systems specified in
Maude. In the simplest case, uniform probabilities on the successors are considered for every state. In
themost expressive one, probabilities are assignedwith arbitrary complex programs in a probabilistic
extension of the Maude strategy language. These probability assignment methodswill be described in
this section and illustrated with the following example of a simple coin.

mod COIN is
sort Coin .
ops head tail : -> Coin [ctor] .

vars C C' L R : Coin .

rl [thead] : C => head [metadata "8"] .
rl [ttail] : C => tail [metadata "5"] .

op inertia : Coin Coin -> Nat .
eq inertia(C, C') = if C == C' then 2 else 1 fi .

endm
Coins can be either in head or tail state, and they can change from one to the other by the rules thead
and ttail. Other aspects of this module will be explained in due time. The standard rewrite graph of
this model is this:

head tail
ttail

thead
ttailthead

Theprobability assignmentmethodsare uniform, metadata, term, uaction, mdp-uniform, mdp-meta-
data, mdp-term, and strategy for the extension of the strategy language. Someof themderive discrete‑
timeMarkov chains (DTMC) out of the rewritingmodel and others produce Markov decision processes

9

(MDP), which combine nondeterministic and probabilistic behavior. Continuous‑time Markov chains
(CTMC) can also be derivedwith themethods ctmc-uniform, ctmc-metadata, ctmc-term, ctmc-uaction,
and ctmc-strategy. All methods except strategy are local, in the sense that they distribute the prob‑
ability among the successors of every state separately. Most use weights to quantify the likeliness of
the successors that are later normalized to obtain probabilities.

• uniform assigns the same probability to every successor of a term, i.e. successors are chosen
uniformlyat random. For example, the COINmodulebecomes the followingDTMCunderuniform
probabilities:

head tail
1/2

1/2
1/21/2

• uaction(𝑎1=𝑤1, …, 𝑎𝑛=𝑤𝑛) receives an assignment of weights to rule labels or actions of the
rewriting system. First, theprobability isdistributedamong the labelsaccording to theirweights.
Then, for each rule label, the successors get an equal share of the assigned probability, in other
words, they are then chosen uniformly at random. Instead of weights, actions can be assigned
fixed probabilities with 𝑎𝑘.p=𝑝𝑘 instead of 𝑎𝑘=𝑤𝑘. Fixed probabilities and weights for different
actions can be combined, but fixed probabilities should never summore than 1. In case no spec‑
ification is given for an action, a unitary weight is assumed.

On top of the COIN example, the method uaction(ttail=3, thead=2) produces the following
discrete‑time Markov chain:

head tail
3/5

2/5
3/52/5

However, since there is a single successor for each action, the uniform distribution of probabil‑
ities per action is trivial in this case. The same result is obtained using a fixed probability with
the uaction(ttail.p=0.4)method.

• metadata distributes the probability among the successors according to the weights written in
the free‑text metadata attributes of the rules that caused their transitions. The content of the
metadata attribute must be a numeric literal or a Maude term of sort Nat or Float depending on
the variables of the rule. A weight of 1 is assumed in case the attribute is missing. Whenever a
successor has been generated bymultiple rule applications, theweight of one of them is chosen
in an implementation‑defined way.

In the rules of the COINmodule, we can see an example of this kind of specification, where thead
is assigned a weight of 8 and ttail is given a weight of 5. The DTMC produced by this method is
the following:

head tail
5/13

8/13
5/138/13

• term(𝑡) is given aMaude term 𝑡 to calculateweights for every transition on a state and distribute
the probabilities according to them. This term must reduce to a literal of numerical sort (Nat
or Float) and it may contain the variables L, R, and A to be instantiated respectively with the
left‑ and right‑hand side of the transition, and the label of the rule that caused it, as a term of

10

sort Qidwith 'unknown for unlabeled rules. Whenever differently labeled rules produce the same
transition, one label is chosen in an implementation‑defined way.
In the COINmodule, we have already defined a function inertia that gives twice asmuchweight
to thecurrent faceas to theotherone. Theequivalentmethodsterm(inertia(L, R))andterm(if
L == R then 2 else 1 fi) produce the following probabilistic model:

head tail
1/3

1/3
2/32/3

Since the variables L and Rhave already beendeclared in themodule, we candirectlywrite them
in the term. Otherwise, we should have written L:Coin and R:Coin.

• strategyuses a probabilistic extensionof the strategy language toboth control and assignprob‑
abilities to the base rewriting system. This method produces a discrete‑time Markov chain, a
Markov decision process, or even an error depending on howmuch unquantified nondetermin‑
ism is left by the strategy. The new probabilistic combinators of the strategy language are:

– choice(𝑤1 : 𝛼1, …, 𝑤𝑛 : 𝛼𝑛) that selectsoneof thestrategies𝛼𝑘 according to theirweights
𝑤𝑘. These weights are terms in the Nat or Float sorts that may contain variables if they
are defined in the outer scope. This is an evolution of the nondeterministic choice opera‑
tor 𝛼1 | ⋯ |𝛼𝑛, and similar constructs exist in a probabilistic extension of ELAN [3] and in
Porgy [13].

– sample 𝑋 := 𝜋(𝑡1, …, 𝑡𝑛) in 𝛼 that samples the variable 𝑋 from a probabilistic distribu‑
tionwith parameters 𝑡1, … , 𝑡𝑛 thatmay contain variables defined in the outer contexts. The
new variable 𝑋 can be freely used in 𝛼. Both the variable 𝑋 and the parameters must be of
sort Float. The available distributions are bernouilli(𝑝), uniform(𝑎, 𝑏), exp(𝜆), norm(𝜇,
𝜎), and gamma(𝛼, 𝛽).

– An extension of the matchrew, xmatchrew, and amatchrew combinators of the standard strat‑
egy language to allow specifying the weight of every match and select one according to
these weights. Syntactically, an optional infix with weight 𝑤 is added to the original op‑
erators, like in

matchrew 𝑃(𝑋1, … , 𝑋𝑛) s.t. 𝐶 with weight 𝑤 by 𝑋1 using 𝛼1, …, 𝑋𝑛 using 𝛼𝑛,

where theweight𝑤 is a termof sort Nator Float thatmaycontain variables fromthematch‑
ing, the condition, and the outer scope.

The sample operator is not intended for discrete probabilistic model generation, since it sam‑
ples continuous probabilistic distributions, but it can be used for statistical model checking and
simulation.
For example, the strategy (choice(2 : ttail, 1 : thead) ; choice(1 : ttail, 3 : thead))
* specifies the following discrete‑time Markov chain if the initial term is head:

head tail

head tail

2/3

1/3 3/4
1/4

3/4
1/4

1/3

2/3

11

Notice that the probabilities are now non‑local and the graph is made more complex since this
strategy hasmemory. Probabilistic and nondeterministic behavior can bemixed in (choice(2 :
ttail, 1 : thead) ; (ttail | thead)) * yielding a Markov decision process:

head tail

head tail

2/3

1/3 thead, 1
ttail, 1

thead, 1
ttail, 1

1/3

2/3

When the localmethodsareapplied in a strategy‑controlledmodel, theproceduredoesnot change
except that it is applied on the rewrite graph controlled by the strategy. The mdp- variants of the local
assignment methods produce a Markov decision process where probabilities are only assigned once
the rule label is nondeterministically chosen. There is no mdp-uactionmethod since it would notmake
any sense. These assignmentmethods are used for probabilisticmodel checking in Section 5.2 and for
statistical model checking in Section 6.

For the ctmc- variants of the methods, weights are interpreted as firing rates of the correspond‑
ing transitions instead of unnormalized probabilities. In the ctmc-uniform method, the firing rate of
every transition is unitary. In the case of ctmc-uaction, each transition is given the rate specified for
its label, but weights are normalized if a fixed probability .p is given. For the ctmc-strategymethod,
the strategy must be free of unquantified nondeterminism, i.e. strategy should be able to generate a
DTMC.

In addition to the previous general methods, there are some more for statistical model checking
only. They can be used with the builtin statistical model checker in Section 5.3 and the simulator for
MultiVeSta in Section 6.

• step considers the given probabilistic strategy as the atomic step of the model, i.e., the (𝑛 + 1)th
state of an execution is a solution of the strategy applied on the 𝑛th state. For a sound statisti‑
cal analysis, this strategy should not contain unquantified nondeterminism. In other words, it
should provide a single (random) solution in every execution.

For example, the step method with the strategy choice(2 : ttail, 1 : thead) yields the fol‑
lowing discrete‑time Markov chain, even though it will not be explicitly constructed.

head tail
2/3

1/3
2/31/3

Sample operators can also be used.

• pmaude assigns probabilities to an APMaude model according to the conventions of that frame‑
work [1]. In particular, theMaude specificationmust define a function tick on the state sort and
a function getTime from the state sort to Float. Every execution (𝑡𝑛)∞𝑛=0 starts by rewriting the ini‑
tial termwith the rules of themodule to obtain 𝑡0, and then 𝑡𝑛+1 is obtainedby rewriting tick(𝑡𝑛)
exhaustively with the rules of themodule. Randomness relies on the PMaude infrastructure and
the random and counter operators in the Maude prelude, and random seeds are refreshed on
each execution. If a strategy expression is provided, it will be ignored.

12

4 The strategy‑aware LTLmodel checker within Maude
Once in a module that gathers all the required information, like SM-CHECK in Section 2.4, the model
checker canbe invokedby the modelCheckoperator introduced in STRATEGY-MODEL-CHECKER. Its first two
parameters are sharedwith the standardmodel checker: they are the initial term and the LTL formula.
The third one is a quoted identifier with the name of the desired strategy, which can be chosen among
the strategies without arguments defined in the current module.

op modelCheck : State Formula Qid QidList Bool
-> ModelCheckResult [special(...)] .

The last two parameters are optional, because the modelCheck symbol is overloaded to give them de‑
fault values. The fourthparameter is a list of opaque strategynames. All strategiesnamedhere, regard‑
less of their signature, will be considered opaque for the model checker as described in Section 2.3.
The fifth parameter is a Boolean flag to activate the partial order reduction for the parallel matchrew
described in Section 2.2. Their default values are the empty list and true respectively.

Once model checking is completed, the modelCheck operator reduces to true if the formula holds
for thegivenmodel, or a counterexampleof sort ModelCheckResult in case themodel violates theprop‑
erty. A detailed description of the results is outlined in the Section 4.1, but first we will test the model
checker in the known philosophers problem.

Maude> red modelCheck(initial,
[] (<> eats(0) \/ <> eats(1) \/ <> eats(2)), 'parity) .

rewrites: 170 in 32ms cpu (50ms real) (5187 rewrites/second)
result Bool: true
This property says that at any moment one of the philosophers will eventually eat, i.e. that there are
no deadlocks. The reader can check with the standard model checker (or with another strategy) that
the property does not hold in the unrestrictedmodel. However, not all desired properties are satisfied
using this strategy.

Maude> red modelCheck(initial,
[] (<> eats(0) /\ <> eats(1) /\ <> eats(2)), 'parity) .

rewrites: 139 in 22ms cpu (23ms real) (6054 rewrites/second)
result ModelCheckResult: counterexample(nil,

{< (o | 0 | o) ψ (o | 1 | o) ψ (o | 2 | o) ψ >, 'left}
{< (o | 0 | o) ψ (o | 1 | o) (ψ | 2 | o) ψ >, 'right}
{< (o | 0 | o) ψ (o | 1 | o) (ψ | 2 | ψ) >, 'release})

Alternatively to the modelCheck operator, the command‑line and graphical interface described in Sec‑
tion 5.5, and the meta‑level entry point explained in Section 4.2 can be used.

Model checking is decidable when themodel is finite and the transition relation is decidable itself.
Both conditionsmay fail due to the base rewriting systemor on account of the strategy. Strategiesmay
be used to explore a finite portion of an infinite base model, but they may also make a finite system
infinite usingnon‑terminating recursive functions. Thedecidability requirements, adapted from those
listed in Section 12.3 of the Maudemanual, are:

1. The set of states that are reachable from the initial term following the strategy is finite.

States refers to composed states, including both the term and the strategy execution progress.
Clearly, if such composed states are finitely many, the base system terms are finite too. The
converse depends on the concrete strategy, but different sufficient conditions are given in [28].

2. The rewrite theory 𝑅 = (Σ, 𝐸, 𝜙, 𝑅) specified by M plus the equations 𝐷 defining the predicates Π
are such that:

13

• both 𝐸 and 𝐸 ∪ 𝐷 are (ground) Church‑Rosser and terminating, modulo axioms if any, with
(Σ, 𝐸) ⊆ (Σ ∪ Π, 𝐸 ∪ 𝐷) a protecting extension, and

• 𝑅 is (ground) coherent with regard to 𝐸, module axioms if any.

4.1 Understanding themodel checker output
The model checker output is a term of sort ModelCheckResult. When the model checker concludes
that the property holds, the term reduces to the constant true of sort Bool. Otherwise, the property
has been refuted and a counterexample trace is returned as witness, described by a loop and a path
to it from the initial state in the rewrite graph. Like in the standard model checker, this is presented
as a binary operator counterexample(path, loop). Each of its components is a list of pairs {state,
trans}whose first entry is the state term and whose second one is the description of a transition that
connects it with the next state. Transition descriptions, of sort RuleName, are extended respect to the
standard model checker according to what was told in Section 1:

• Rule applications are themost common transitions, and they are represented by its rule label as
aquoted identifier, except in caseof unlabeled rules that are signaledby the constant unlabeled.

• Solution transitions appear to signal the repetition of the last state in finite traces. They are
written as solution and always occur at the end of the cycle. This is similar to the deadlock
transition of the standard model checker, which is not used here.

• Opaquestrategiesare representedbya termopaque(name)wherename is thenameof the strategy
as a quoted identifier.

In the second example execution of the previous section, we observe a cycle‑only counterexample in
which only the second philosopher is able to eat, because it repeatedly takes both forks and releases
them in a loop. The transitions are the rules left, right and release.

To see other kinds of transitions, let us introduce another example:

mod RIVER is
sort River Side Group .
subsort Side < Group .

op _|_ : Group Group -> River [ctor comm] .
ops left right : -> Side [ctor] .
ops shepherd wolf goat cabbage : -> Group [ctor] .
ops __ : Group Group -> Group [ctor assoc comm prec 40] .

op initial : -> River .
eq initial = left shepherd wolf goat cabbage | right .

vars G G' : Group .

rl [wolf-eats] : wolf goat G | shepherd G' => wolf G | shepherd G' .
rl [goat-eats] : cabbage goat G | shepherd G' => goat G | shepherd G' .

rl [alone] : shepherd G | G' => G | shepherd G' .
rl [wolf] : shepherd wolf G | G' => G | shepherd wolf G' .
rl [goat] : shepherd goat G | G' => G | shepherd goat G' .
rl [cabbage] : shepherd cabbage G | G' => G | shepherd cabbage G' .

endm
The RIVER-CROSSINGmodule specifies the well‑known river crossing puzzle: a shepherd must conduct
a wolf, a goat, and a cabbage to the other side of a river using a boat in which only two passengers fit.

14

The risks are that, unless the presence of the shepherd hinders it, the wolf would eat the goat or the
goat would eat the cabbage. These animals will attack itsmeal as soon as they are left alonewith it, so
the wolf-eats and goat-eats rules should be applied with higher priority than the crossing ones. This
is enforced using a strategy:

smod RIVER-CROSSING-STRAT is
protecting RIVER-CROSSING .

strats eating oneCrossing cross&eat eagerEating @ River .

sd eating := wolf-eats | goat-eats .
sd oneCrossing := alone | wolf | goat | cabbage .
sd cross&eat := oneCrossing ; eating ! .

sd eagerEating := match left | right shepherd wolf goat cabbage
? idle : (cross&eat ; eagerEating) .

endsm
In the RIVER-CROSSING-STRAT strategy module, four strategies are defined: eating applies the eating
rules until it cannot be applied further, oneCrossing runs any of the crossing rules, and cross&eat
makes a single crossing followed by all necessary eating. Finally, the eagerEating strategy iterates
cross&eat indefinitely. River is selected as the model‑checking state and some atomic propositions
are declared in the following module:

mod RIVER-CROSSING-PREDS is
protecting RIVER-CROSSING .
including SATISFACTION .

subsort River < State .
ops bad goal : -> Prop [ctor] .

vars G G' : Group . var R : River .

eq left | right shepherd wolf goat cabbage |= goal = true .
eq R |= goal = false [owise] .

eq G cabbage | G' goat |= death = false .
eq G cabbage goat | G' |= death = false .
eq R |= death = true [owise] .

endm
A state is bad if an animal is left alone with its prey. These states may appear during the river crossing,
but theymust not bepassedbywithout eating. A state is a goal if all the characters are on the right side
of the river. We can use the model checker to find a solution to the puzzle by checking the property
□ ¬𝑔𝑜𝑎𝑙. First, we gather all the components in the module

smod RIVER-CROSSING-SCHECK is
protecting RIVER-CROSSING-STRATS .
protecting RIVER-CROSSING-PREDS .
including STRATEGY-MODEL-CHECKER .

endsm
Then, we reduce the modelCheck operator:
Maude> red modelCheck(initial, [] ~ goal, 'eagerEating) .
rewrites: 204 in 33ms cpu (36ms real) (6170 rewrites/second)

15

result ModelCheckResult: counterexample(
{left shepherd wolf goat cabbage | right,'goat}
{left wolf cabbage | right shepherd goat,'alone}
{left shepherd wolf cabbage | right goat,'wolf}
{left cabbage | right shepherd wolf goat,'goat}
{left shepherd goat cabbage | right wolf,'cabbage}
{left goat | right shepherd wolf cabbage,'alone}
{left shepherd goat | right wolf cabbage,'goat},
{left | right shepherd wolf goat cabbage,solution})

The counterexample is a finite trace, whose cycle is a self‑loop by a solution transition. This is a so‑
lution of the problem, and we are sure it is since no bad states are visited because eating always hap‑
pens before moving again. This precedence can also be achieved with equations, but probably at the
expense of coherence. Moreover, it is an optimal solution in length, although this may have not hap‑
pened.

Becauseof the eagerEating strategy,wedonotpassbybadstates, but theyare still visitedandseen
as a proper state by themodel checker. Hence, the property□ ¬𝑏𝑎𝑑 does not hold. If wemake opaque
the cross&eat strategy, by passing its name as the fourth argument of modelCheck, the transitions like

s(left) w(left) g(left) c(left)

s(right) w(left) g(left) c(right)

s(right) w(left) c(right)
cabbage wolf-eats

cross&eat

will be seen as a single action and the bad states will be hidden. Now□ ¬𝑏𝑎𝑑 does hold,

Maude> red modelCheck(initial, [] ~ bad, 'eagerEating, 'cross&eat) .
rewrites: 108 in 0ms cpu (2ms real) (~ rewrites/second)
result Bool: true
and cross&eat transitions are printed instead of the particular rules that the strategy applies.

Maude> red modelCheck(initial, <> goal, 'eagerEating, 'cross&eat) .
rewrites: 40 in 0ms cpu (0ms real) (~ rewrites/second)
result ModelCheckResult: counterexample(

{left shepherd wolf goat cabbage | right, opaque('cross&eat)}
{left wolf cabbage | right shepherd goat, opaque('cross&eat)}
{left shepherd wolf cabbage | right goat, opaque('cross&eat)}
{left cabbage | right shepherd wolf goat, opaque('cross&eat)}
{left shepherd goat cabbage | right wolf, opaque('cross&eat)},
{left goat | right shepherd wolf cabbage, opaque('cross&eat)}
{left shepherd goat | right wolf cabbage, opaque('cross&eat)})

The ModelCheckResult lacks information about the strategy execution, like the next strategy to be
executed from each state, that is available via the umaudemc utility described in Section 5.

4.2 Running themodel checker at themetalevel
To use the modelCheck operator, a named strategy without parameters must be defined in a strategy
module. Thismaynot be comfortablewhenmodel checking against a strategywith parameters, which
may need to be adjusted. An alternative model‑checking operator receiving a strategy expression at
the metalevel is proposed in the META-MODEL-CHECKERmodule.

op metaModelCheck : Module Term Term Strategy QidList Bool ~> Term .

16

This operator does the same as modelCheck, but its arguments are the meta‑representations of the
module where to model check, the initial term, the LTL formula, and the controlling strategy. Only
the list of opaque strategies and the biased‑matchrew flag are given at the object level. Its result is the
meta‑representation of the ModelCheckResult produced by the model checker.

This function is indeed defined in Maude itself by adding the parameter strategy in an extension of
the givenmodule, and then reducing the usual model‑checking operator.

op addStrategy : Module Qid Strategy -> Module .
op downResult : ResultPair -> ModelCheckResult .
op upQidList : QidList -> Term .

eq addStrategy(M, Q, S) = smod getName(M) is
including 'STRATEGY-MODEL-CHECKER . getImports(M)
sorts getSorts(M) .
getSubsorts(M) getOps(M) getMbs(M) getEqs(M) getRls(M)
(strat Q : nil @ 'State [none] . getStrats(M))
(sd Q[[empty]] := S [none] . getStratDefs(M))

endsm .

eq metaModelCheck(M, T, F, S, L, B) = getTerm(metaReduce(
addStrategy(M, '%metaModelCheck, S),
'modelCheck[T, F, ''%metaModelCheck.Qid, upQidList(L),

if B then 'true.Bool else 'false.Bool fi]))
The function upQidList is also defined in themodule to raise the list of opaque strategies to themeta‑
level1. Unlike in the object‑level model checker, the META-MODEL-CHECKERmodule does not need to be
included in an extension of the module under review. For instance, resuming the dining philosophers
problem, we can execute

Maude> red in META-MODEL-CHECKER : metaModelCheck(
upModule('DINNER-MCS, false),
'initial['s_^7['0.Zero]],
'`[`]_['allEat['s_^7['0.Zero]]],
'turns[['0.Zero, 's_^7['0.Zero]]],
nil, true) .

rewrites: 2092 in 29ms cpu (29ms real) (70041 rewrites/second)
result Constant: 'true.Bool
where allEat(𝑛) is a function that produces the LTL formula◇ 𝑒𝑎𝑡𝑠(0) ∧ ⋯ ∧ ◇ 𝑒𝑎𝑡𝑠(𝑛 − 1). If we try
the same commandwith 'parity[[empty]] as its fourth argument, we obtain themetarepresentation
of a counterexample term.

Maude> red in META-MODEL-CHECKER : metaModelCheck(
upModule('DINNER-MCS, false),
'initial['s_^7['0.Zero]],
'`[`]_['allEat['s_^7['0.Zero]]],
'parity[[empty]],
nil, true) .

rewrites: 164 in 3ms cpu (2ms real) (49190 rewrites/second)
result GroundTerm: 'counterexample[
'`{_`,_`}['<_>['__['_|_|_['o.Obj,'0.Zero,'o.Obj],'ψ.Obj,...]],''left.Qid],
'__['`{_`,_`}['<_>['__['_|_|_['ψ.Obj,'0.Zero,'o.Obj], ...],''right.Qid],

...,
1The predefined upTerm cannot be used in this case because META-LEVEL defines subsorts of Qid that may not be defined in

the target module.

17

'`{_`,_`}['<_>['__['_|_|_['ψ.Obj,'0.Zero,'o.Obj], ...]],
''release.Qid]]]

5 The unified Maudemodel‑checking utility
The unified Maudemodel‑checking utility umaudemc is a uniform command‑line, graphical, and pro‑
gramming interface to differentmodel checkers operating onMaude specifications. On both standard
and strategy‑controlled Maude specifications, umaudemc can be used for

• checking LTL, CTL, CTL*, and μ‑calculus properties (see Section 5.1),

• applying probabilistic model‑checking methods (see Section 5.2), and

• exporting the rewrite graphs in different formats (see Section 5.4).

This program can be obtained alternatively from

• the strategy‑aware model checker packages at maude.ucm.es/strategies,

• its source code repository at github.com/fadoss/umaudemc,

• or installed from the Python Package Index (PyPI) with pip install umaudemc.
The umaudemc tool requires Python 3.7 or newer towork and themaudepackage [20], which can also
be installed with pip install maude (this is done automatically when installing umaudemc with pip).
Moreover, some alternative external backends are required for checking branching‑time (LTSmin [15],
pyModelChecking [5], NuSMV [6], or Spot [9]) and probabilistic (PRISM [16] or Storm [14]) properties.
Instructions for installing these backends are available in Section 5.6.

Thecommand‑line interface isorganized in subcommands: check (Section5.1), pcheck (Section5.2),
graph (Section5.4), and gui (Section5.5). Their syntaxandoptionsare listedbypassing the --help flag.
Every command except gui starts with the following arguments

umaudemc ⟨subcommand⟩ ⟨Maude filename⟩ ⟨initial term⟩

Somemore options allow amore precise selection of the input Maudemodel:

--module ⟨name⟩ Selects the module specifying the system to be model checked. By default, as in
the Maude interpreter, the last module will be used unless a module is explicitly selected with a
select command in the file.

--metamodule ⟨term⟩ Selects themeta‑moduledescribedby itsargumentas themodulewhere tomodel
check. The termwill be reduced in themodule indicated by the module option or selected by de‑
fault.

--opaque ⟨list⟩ Indicates a comma‑separated list of strategies to be considered opaque, as described
in Section 2.3 (for strategy‑controlled models).

--full-matchrew Enables the generation of the full set of traces for the rewriting of subterms opera‑
tors, as described in Section 2.2 (for strategy‑controlled models).

Moreover, the following arguments may be inserted between umaudemc and the subcommand:

-v Select the verbose mode so that more information is printed by the tool.

--no-advise Suppress debug advisories from Maude, like the -no-advise option of the Maude inter‑
preter.

18

https://maude.ucm.es/strategies
https://github.com/fadoss/umaudemc
https://www.python.org/
https://pypi.org/project/maude/

5.1 Standardmodel checking with check
The check command checks LTL, CTL, CTL*, and μ‑calculus properties on standard and strategy‑con‑
trolled Maude specifications. Several alternative backends can be used to check the satisfaction of
the given formula, but the problem data is introduced and the verification result is shown in the same
format for all of them. The basic syntax of the command is:

umaudemc check ⟨filename⟩ ⟨initial state⟩ ⟨formula⟩ [⟨strategy⟩]

The strategy argument can be anywell‑defined strategy expression, but it can also be omitted ifmodel
checking without strategies. Formulae are written in the language of the LTLmodule (see Section 1.1)
extended with path quantifiers for CTL* and μ‑calculus operators.

sorts @MCVariable@ @Action@ @ActionSpec@ @ActionList@ .
subsort @MCVariable@ < Formula .

*** CTL and CTL*
op A_ : Formula -> Formula [prec 53 …] .
op E_ : Formula -> Formula [prec 53 …] .

*** mu-calculus
op <.>_ : Formula -> Formula [prec 53 …] .
op [.]_ : Formula -> Formula [prec 53 …] .
op <_>_ : @ActionSpec@ Formula -> Formula [prec 53 …] .
op [_]_ : @ActionSpec@ Formula -> Formula [prec 53 …] .
op mu_._ : @MCVariable@ Formula -> Formula [prec 64 …] .
op nu_._ : @MCVariable@ Formula -> Formula [prec 64 …] .

subsorts @Action@ < @ActionList@ < @ActionSpec@ .
op opaque : @Action@ -> @ActionList@ [ctor] .
op ~_ : @ActionList@ -> @ActionSpec@ [ctor prec 50] .
op __ : @ActionList@ @ActionList@ -> @ActionList@ [ctor assoc] .

A and E are the universal and existential path quantifiers on CTL and CTL* formulae. The language of μ‑
calculus includes the existential modalities <.> and <_>, the universal modalities [.] and [_], and the
fixed‑point operators muand nu, aswell as all otherpropositional‑logic operatorsdefined in LTL.Modal‑
ities taking an @ActionSpec@ as argumentmust include a space‑separated list of rule labels, which can
be prefixed by the ~ symbol to indicate its complement. For opaque strategies (see Section 2.3), their
names should be specifiedwith the opaque constructor. The steps described by themodality are those
labeled with one of these symbols, as usual.

⟨ 𝑙1⋯ 𝑙𝑛 ⟩ 𝜑 ≔
𝑛

⋁
𝑖=1
⟨ 𝑙𝑘 ⟩ 𝜑 [𝑙1⋯ 𝑙𝑛] 𝜑 ≔

𝑛

⋀
𝑖=1
[𝑙𝑘] 𝜑

The dot version of the same operators considers all possible transitions, as if the whole list of rule
labels was written. Fixed‑point operators are followed by a variable name that should be used in the
nested subformula. Any identifier canbe a variable as long as it does not conflictwith other syntactical
elements of the formula. The program will parse the given formula in this grammar,2 and deduce the
logic in which they are expressed and all required information to call the appropriate model checker.
Formulae mixing μ‑calculus and CTL* operators are not valid.

In addition to these positional arguments, other optional parameters can be set up that are listed
when invoking the program with the --help flag. When branching‑time properties are checked, the

2The sorts @Action@ and @MCVariable@of the grammar are dynamically populatedwith the labels of the selectedmodule and
the candidate variables in the formula.

19

rewriting graph generated for LTLmodel checkingmust be applied some adaptations [27]. This utility
will automatically choose the appropriate ones according to the input problemdata, but the usermay
still overwrite the default settings. These options are meaningless without strategies, and so will be
ignored in that case.

--merge-states ⟨option⟩ Merges successor stateswithacommontermbutdifferent strategy continua‑
tions, if the option is state or edge. Moreover, with edge only successors by a common transition
label aremerged. Merging can be disabled completelywith no and umaudemc can be instructed
to set theappropriate configurationwith default (edge for μ‑calculuswith edge labels, no for LTL,
and state for the rest).

--purge-fails ⟨option⟩ Enables (on) or disables (off) the elimination of failed states. The default op‑
tion is off for LTL and on‑the‑fly model checking algorithms, and on otherwise.

Other options are used to control the format of counterexamples. The --slabel option is specially
useful to simplify counterexamples involving complex terms.

--show-strat Shows the next strategy to be executed from each state in the counterexample.

-c Prefers backends that provides counterexamples to those that do not provide them.

--slabel ⟨format⟩ Sets the format of state labels to a string that may contain special variables: %t
for the current term, %s for the immediate strategy continuation, and %i for the internal state
index. Moreover, arbitrary Maude terms containing %t can be written between curly brackets to
be evaluated and replaced by their results. For example, an atomic proposition can be checked
with {%t |= aprop}).

--elabel ⟨format⟩ Sets the format of edge labels to a string that may contain special variables: %s for
the transition statement (rule, strategy declaration…), %l for its label, %n for its line number, and
%o for opaque if the transition is caused by an opaque strategy.

--format ⟨format⟩ Determines how counterexamples are formatted. By default, they are printed as
colored text (text), but they can also be written in json and dot.

Special variables can be truncated to a specified length 𝑛 by writing .𝑛 between the % sign and the
letter.

For example, we can check the CTL formula A□E◇ eats(0)with the following command:

$ umaudemc check philosophers.maude initial 'A [] E <> eats(0)'
The property is not satisfied in the initial state
(27 system states, 2734 rewrites)
Theproperty isnot satisfied, butwearenot shownacounterexample. Among thesupportedbackends,
onlyNuSMVprovides counterexamples for CTLproperties, but it is not the first one in theordered list of
model‑checking backends. We can use the -c flag to prefer a backend that provides counterexamples,
if available.

$ umaudemc check philosophers initial 'A [] E <> eats(0)' -c
The property is not satisfied in the initial state
(27 system states, 98 rewrites)
| < (o | 0 | o) ψ (o | 1 | o) ψ (o | 2 | o) ψ >
∨ rl < (o | Id | X) L ψ > => < (ψ | Id | X) L > [label left] .
| < (ψ | 0 | o) ψ (o | 1 | o) ψ (o | 2 | o) >
∨ rl ψ (o | Id | X) => ψ | Id | X [label left] .
| < (ψ | 0 | o) ψ (o | 1 | o) (ψ | 2 | o) >
∨ rl ψ (o | Id | X) => ψ | Id | X [label left] .
O < (ψ | 0 | o) (ψ | 1 | o) (ψ | 2 | o) >

20

For branching‑timeproperties, a counterexample (or anexample for anexistential property) cannotbe
a full execution, but the execution prefixmatched by the first path quantifier can be obtained. For in‑
stance, the counterexample above shows a path to a statewhere no path satisfying <> eats(0) leaves.
However, this property is satisfied if the system is controlled by the parity strategy in Section 1.1.

$ umaudemc check philosophers initial 'A [] E <> eats(0)' parity
The property is satisfied in the initial state
(12 system states, 328 rewrites)
To alternatively see whether the release rule is eventually executed, we can check the following μ‑
calculus property:

$ umaudemc check philosophers initial \
'mu X . (< release > True \/ (<.> True /\ [.] X))' parity

The property is satisfied in the initial state
(18 system states, 104 rewrites, 129 game states)
Moreover, the tool can be used to verify linear‑time properties as well, like the onewe have checked in
Section 4. In this case, we add the elabel and slabel options to simplify the printed counterexample.

$ umaudemc check philosophers.maude initial \
'[] (<> eats(0) /\ <> eats(1) /\ <> eats(2))' parity \
--elabel %l --slabel 'eats(1) = {%t |= eats(1)}'

The property is not satisfied in the initial state
(5 system states, 136 rewrites, 4 Büchi states)
| | eats(1) = false
| ∨ left
| | eats(1) = false
| ∨ right
| | eats(1) = false
| ∨ release
< ∨
The strategy argument admits arbitrary strategy expressions to control the system, unlike the interface
in Section 4, which only accepts strategy names.

$ umaudemc check philosophers.maude initial '[] allEat(3)' 'turns(0, 3)'
The property is satisfied in the initial state
(10 system states, 128 rewrites, 4 Büchi states)

5.2 Probabilistic model checking with pcheck
Probabilistic model checking is available through the pcheck subcommand:

umaudemc pcheck ⟨filename⟩ ⟨initial state⟩ ⟨formula⟩ [⟨strategy⟩] [--assign ⟨method⟩]

The formula argument can be either @steady to calculate steady‑state probabilities, @transient(𝑛) for
the transient probabilities at the 𝑛‑th step, or a formula in LTL, CTL, or PCTL in the following syntax
extending the standard LTLmodule:

*** CTL
op A_ : Formula -> Formula [ctor prec 53] .
op E_ : Formula -> Formula [ctor prec 53] .

*** bounded step operators
op _U__ : Formula Bound Formula -> Formula [ctor prec 63 …] .
op _R__ : Formula Bound Formula -> Formula [ctor prec 63 …] .

21

op <>__ : Bound Formula -> Formula [prec 53 …] .
op []__ : Bound Formula -> Formula [prec 53 …] .
op _W__ : Bound Formula Formula -> Formula [prec 63 …] .

*** bounded probability operator (PCTL)
op P__ : Bound Formula -> Formula [ctor prec 65 …] .
A formula P𝐼 𝜑 in PCTL holds when the probability that𝜑 is satisfied is in the interval 𝐼 ⊆ [0, 1]. In the P
operator of the Maude‑based syntax, this interval is defined by a term of sort Bound built with
op <=_ : Float -> Bound [ctor] . op <=_ : Nat -> Bound [ctor] .
op <_ : Float -> Bound [ctor] . op <_ : Nat -> Bound [ctor] .
op >=_ : Float -> Bound [ctor] . op >=_ : Nat -> Bound [ctor] .
op >_ : Float -> Bound [ctor] . op >_ : Nat -> Bound [ctor] .

op [_,_] : Nat Nat -> Bound [ctor] .
op [_,_] : Float Float -> Bound [ctor] .
These bounds can also be attached to the temporal operators, although not all combinations are ad‑
mitted by the backends. In addition to the general options described at the beginning of Section 5,
some relevant modifiers are specific to this subcommand:

--assign ⟨method⟩ Sets the probability assignment method to one of those explained in Section 3.
Instead of the literal description of themethod, a filename prefixed by @may be entered to load
it from file. If the selectedmethod is strategy, the strategy argumentmust be filled. Otherwise,
this argument is optional and the strategy would control the system in the standard way.

--steps For a reachability formula, calculates the expected number of steps instead of its probability.

--reward ⟨term⟩ For a reachability formula, calculates the expected reward for the given term instead
of its probability. The sort of this term should be a numerical one (Int, Float, Integer, Real, …)
and it must contain at most one variable, which will be instantiated with every state to evaluate
the reward. The --steps option can be seen as a shortcut for --reward 1.

--raw-formula The formula argument is directly passed to the backend, although it is scanned to find
atomic propositions that should be evaluated in the model.

--fraction Results are printed as approximated fractions instead of decimal floating‑point numbers.

For example, we can calculate steady‑state probabilities for the philosophers example, which are
only non‑zero for the deadlock states.

$ umaudemc pcheck philosophers.maude initial '@steady' --backend storm
0.5 < (ψ | 0 | o) (ψ | 1 | o) (ψ | 2 | o) >
0.5 < (o | 0 | ψ) (o | 1 | ψ) (o | 2 | ψ) >

Wehave forcedStormasbackendbecause theprobabilitiesobtained fromPRISMare0.49999880…due
to approximation errors. Transient probabilities can also be obtained with

$ umaudemc pcheck philosophers.maude initial '@transient(1)' --fraction \
--assign 'uaction(left=2, right=3)'

1/5 < (o | 0 | o) ψ (o | 1 | o) ψ (o | 2 | ψ) >
1/5 < (o | 0 | ψ) (o | 1 | o) ψ (o | 2 | o) ψ >
1/5 < (o | 0 | o) ψ (o | 1 | ψ) (o | 2 | o) ψ >
2/15 < (ψ | 0 | o) ψ (o | 1 | o) ψ (o | 2 | o) >
2/15 < (o | 0 | o) ψ (o | 1 | o) (ψ | 2 | o) ψ >
2/15 < (o | 0 | o) (ψ | 1 | o) ψ (o | 2 | o) ψ >

22

The --fractionmodifier has beenused to see the probabilities as fractions, and --assignhas selected
the uactionmethod for assigning probabilities.

As examples of temporal properties, we can check the following:

$ umaudemc pcheck philosophers.maude initial '<> eats(0)'
Result: 0.4999996389661516 (relative error 7.3569252716515036e-06)
$ umaudemc pcheck philosophers initial '<> <= 3 eats(0)'
Result: 0.24999999999999997
The unbounded one holds with probability 1 under the parity strategy, so we can also compute the
expected number of steps until eats(0) is satisfied.
$ umaudemc pcheck philosophers initial '<> eats(0)' parity --steps
Result: 4.799996844606567 (relative error 5.952947354729354e-06)
Assuming a function eatCount has been defined that counts how many philosophers are eating in a
given state, we can also calculate the expected value of the reward:

$ umaudemc pcheck philosophers.maude initial '<> eats(0)' parity \
--reward '2 * eatCount(M)'

Result: 1.599999367157242 (relative error 7.855416516353985e-06)

5.3 Statistical model checking with scheck
Statistical model checking is available by means of the scheck subcommand:

umaudemc scheck ⟨filename⟩ ⟨initial state⟩ ⟨QUATEX file⟩ [⟨strategy⟩] [--assign ⟨method⟩]
The arguments shared with the pcheck subcommand specify the Maude model and the probabilistic
assignment method to be applied on it. Some particularities should be taken into account:

• Theassignmentmethods stepand pmaudedescribed inSection3areallowed inaddition to those
admitted by pcheck. However, methods starting with mdp- are not allowed since Monte Carlo
simulations do not make sense on Markov decision processes. Moreover, methods with ctmc-
behave exactly as their base methods.

• Failures in a strategy execution (either explicit with fail or implicit) may discard previous steps.
Hence, decidingwhether a rewrite is admissible under a strategy is undecidable andmay require
expanding its whole state space. Moreover, failed entries in choice or weighted matchrew com‑
binators are not taken into account for distributing the probability, so this is not possible until
every branch has been expanded. For all these reasons, the strategymethodmay be inefficient
and it is not suitable for infinite state systems. Under the assumption that the strategy is free
of failure, a newmethod strategy-fast is available to decide steps locally and irrevocably for a
greater efficiency. Warnings will be shown in case a nondeterministic construct or conditional
is used in the strategy, since their semantics may not be respected by this efficient execution
mode. However, failures are allowed in the condition of a conditional expression consisting of
tests only and the negative branch will be executed in that case.

• Strategies used in simulation are supposed to be free of unquantified nondeterministic choices.
Nevertheless, if they are present, they would be resolved in an implementation‑defined way for
the strategy-fast and stepmethods. The strategywill shownan errormessage if unquantified
nondeterministic behavior is detected.

The third argument specifies the path of a file including one or more queries in the language of Quan‑
titative Temporal Expressions (QUATEX) of the Vesta tool family [1]. Those general options at the be‑
ginning of Section 5 can also be given. Each query in the input file will be estimated an expected value
and confidence interval by the Monte Carlo method on the executions of the probabilistic model. The
simulation is controlled by the following parameters:

23

--alpha ⟨number⟩ Required significance level for the confidence interval, i.e., the long‑run proportion
of computed intervals that would not contain the true value of desired parameter. Its comple‑
ment 1 − 𝛼 is known as the confidence level of the interval and it must satisfy 0 ≤ 𝛼 ≤ 1.

--delta ⟨number⟩ Maximum admissible radius for the confidence interval around the mean.

--nsims ⟨range⟩ Fixed number or bounds for the number of single simulations or samples. It can be
either a single number, a pair𝑚‑𝑀 of a minimum𝑚 and maximum 𝑀 number of executions, or
a half‑opened range. When the number of simulations is bounded above, the confidence level
and interval radius in the previous arguments may not be attained. Its default value is 30-.

--block ⟨number⟩ Number of simulations before checking the confidence interval again. The first
round of samples can be larger if theminimum number of simulations is greater than this block
size, and the last roundmay be shorter if the maximum number of simulations is reached.

--seed ⟨number⟩ Seed for the random number generator. The default value is 0.

--jobs ⟨number⟩ Number of parallel simulation processes. By default, a single process will be used
and --jobs 0will start as many jobs as CPU units in the machine.

--format ⟨name⟩ Output format for the simulation result, either text (the default) or json.
--assign ⟨number⟩ The probability assignmentmethod, as explained above. Instead of the literal de‑

scription of themethod, a filename prefixed by @may be entered to load it from file. The default
method is stepwhen a strategy is provided and uniform otherwise.

--plot Plots the results of all parametric queries in the input file: a line chart will display themean of
each parametric query for the input value with the radius of the confidence interval highlighted
around that line. Matplotlib is required for using this option.

Short versions of every option are defined with their first letter, like -a for --alpha. Simulations will
be executed until the radius of the confidence interval with significance level 𝛼 is below 𝛿 or when the
maximum number of simulations is reached. If the SciPy package is installed, the reference distribu‑
tion for computing the confidence interval will be the Student’s t with as many degrees of freedom as
the number of simulations less one. Otherwise, Python 3.8 is required and a normal distribution will
be used. When the statistical model checker finishes, the estimated mean, variance, and confidence
interval radius will be printed for each query. The temporary values of these parameters after each
simulation block can be shown with the verbose -v flag.

For example, the following fragment defines a function StepsFor in QUATEX that calculates the
number of steps until the given number of heads have appeared. Two queries are introduced with
eval for the expected value of this function under 10 and 20 steps.

StepsFor(n) = if (n == 0) then s.rval("steps")
else if (s.rval("C␣==␣head") == 1) then #StepsFor(n - 1)
else #StepsFor(n) fi fi;

eval E[StepsFor (10)];
eval E[StepsFor (20)];

The next operator # evaluates the function in the next step of the simulation, and s.rval reduces the
given string as a Maude term of sorts Int, Float, Integer, Real, or Bool and returns the result as a
floating‑point number, where true and false are respectively converted to 1 and0.3 This term is called
anobservation andmay contain a single variable, nomatterwhosename, thatwill be instantiatedwith
the current state term. Moreover, the strings time and stepswill be directly interpreted as the current
time and number of steps. The current time is calculated as in a CTMC, regardless of whether the

3For the pmaudemethod, integer arguments 𝑛 to s.rval are admitted as equivalent to the observation val(𝑛, C).

24

https://matplotlib.org

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

Figure 3: Plots of the confidence intervals, generated by scheck.

prefix ctmc- is used, for all methods but strategy, step (where time behaves like steps), and pmaude.
Assuming the previous QUATEX query is stored in a file coin.quatex, the following command evaluates
that expression with scheck.
$ umaudemc scheck coin head coin.quatex -a 0.01
Number of simulations = 990
Query 1 (line 5:1)
μ = 18.94242424242424 σ = 4.044209454647704 r = 0.3317202659896303

Query 2 (line 6:1)
μ = 39.977777777777774 σ = 6.012416467669121 r = 0.49315951912519634

The exact expected values are 20 and 40.
Parametric queries are also supported using the syntax of MultiQuaTEx [29]. For example, instead

of the two eval statements of the previous coin.quatex file, a parametric query can be written

eval parametric(E[StepsFor(x)], x, 1, 2, 40);
to evaluate StepsFor every two units in the interval [1, 40]. In the command below, we use the choice
strategy for assigning probabilities to the model with the default stepmethod, and fix the maximum
admissible radius to 5 steps.

$ umaudemc scheck coin.maude head coin.multiquatex \
'choice(2 : ttail, 3 : thead)' -d 5 --plot

Number of simulations = 30
x = 1.0 μ = 1.0 σ = 0.0 r = 0.0
x = 3.0 μ = 4.3 σ = 1.7449434335263 r = 0.651572586374

...
x = 37.0 μ = 61.13333333333 σ = 6.009953429926 r = 2.244153492364
x = 39.0 μ = 64.13333333333 σ = 6.600592101618 r = 2.464701596981

In addition to the text output, the --plot flag causes the confidence intervals to be represented graph‑
ically using Matplotlib, as shown in Figure 3. Moreover, the option --format json can be useful to ob‑
tain the model‑checking results in a reusable format for more advanced analyses and visualizations.

The following is the grammar of the QUATEX language admitted by scheck, where Id represents an
identifier, Var is a variable name, and Lit a floating‑point, integer, Boolean, or string literal.

25

Figure 4: Model selection screen

Q ⩴ Def * E +
E ⩴ eval E[PExp]; | eval parametric(E[PExp], Var, Lit, Lit, Lit);

Def ⩴ Id(Var, …, Var) = PExp ;
PExp ⩴ SExp | # Id(SExp, …, SExpr) | if SExp then PExp else PExp fi
SExp ⩴ Lit | SExp Op SExp | Var | s.rval(SExp)
Op ⩴ + | - | * | == | > | >= | < | <= | ! | && | ||

Line comments are introduced with //. Admissible PExp expressions should represent floating‑point
or integer values.

5.4 Graph generation with graph
The program umaudemc can also be used to output the rewrite graph and strategy‑controlled rewrite
graph used for model checking in GraphViz’s DOT format with the subcommand graph.

umaudemc graph ⟨filename⟩ ⟨initial state⟩ [⟨strategy⟩]

The common arguments for selecting modules, merge-states, purge-fails, the formatting options
elabel and slabel can be passed too. Moreover, the subcommand has some specific arguments:

--depth ⟨depth⟩ Limits the graph to the states that are reachable from the initial state by at most the
given number of steps.

--passign ⟨method⟩ Specifies a probability assignmentmethod for generating graphs of probabilistic
models. This is equivalent to the assign option of pcheck (see Section 5.2).

--aprops ⟨list⟩ Comma‑separated list of atomic propositions to be written as state annotations in the
output file (for SMV, PRISM, and JANI output only).

--format ⟨name⟩ Selects the output format of the graph, among dot, tikz, nusmv, spin, prism, and
jani.

-o ⟨filename⟩ Outputs the graph to a file instead of the standard output. If the file extension is pdf, the
dot command will be called if available to directly produce the PDF file. If the extension is smv,
pm, pml, or jani, a SMV, PRISM, Spin (Promela), or JANI model will be generated instead of DOT,
respectively. If --format is present, the output format will not be guessed.

26

Figure 5: Counterexample view screen

5.5 A graphical interface
Alternatively to the command‑line interfaces described in the previous sections, the model checker
can be used from a graphical user interface, included in the umaudemc program4.

umaudemc [gui [--web] [--backends=⟨list of backends⟩]]

When executing umaudemc as above, a local server will start and a web‑browser window will be
opened in its home page. As depicted in Figure 4, users should select the source file and Maudemod‑
ule they want to verify. Relevant information about the state sort, the atomic propositions, and the
available strategies is shown. An initial state and a formula in any supported logic must be entered
in their corresponding fields. The strategy field can be filled not only with a strategy name but with
an arbitrary strategy expression, and it can also be left blank for model checking without strategies.
Opaque strategies are introduced as a space‑separated list of names. Syntax errors will be reported
when theModel check button is activated.

A message will indicate that model checking has started, offering the possibility of cancelling the
operation. As soon as the model checker finishes, the result will appear in place of that message.
In case a counterexample is available, it will be shown as in Figure 5. By hovering over any of the
states,more information is printed, like the current termand the next strategy to be executed from the
state. Various configuration options like the precedence ofmodel‑checking backends can be set in the
command‑line invocation, as described with umaudemc gui --help.

Probabilistic model checking is also available within the web interface, under the advanced op‑
tions panel that can be expanded with the + sign button above the Model check button. The leftmost
dropdown list in the panel allows choosing between qualitative and quantitativemodel checking, and
another dropdown list will enumerate all possible assignment methods once the quantitative variant
is selected. Instructions are shown for filling the probabilistic data.

Notice that the web‑based interface is intended for local use, and it will be attached to a local
address by default. However, the server address and port can be changed with the --address flag.
Anyone opening the webpage will be able to access the whole filesystem and initiate model‑checking
tasks. An option --rootdir is available to limit filesystem access to a specific directory, but neither the
builtin Python server nor this interface actively try to prevent non‑legitimate use.

4Thegraphical interface included inumaudemc is basedonapreviousdiscontinuedprogramcalled smcviewwithout support
for branching‑time properties.

27

https://github.com/ningit/smcview

Backend LTL CTL CTL* μ‑calculus

Maude on‑the‑fly
LTSmin on‑the‑fly ✓ ✓ ✓

pyModelChecking tableau ✓ ✓
NuSMV tableau ✓

Spot automata
Spin automata

umaudemc’s ✓ ✓

Table 1: Temporal logics supported by each backend

5.6 External model checkers and their installation
The umaudemc utility does model checking by alternatively calling the builtin Maudemodel checker,
somealgorithms implementedaspart of it, and someexternalmodel checkers. Without anything else,
LTL, CTL and μ‑calculus properties can be directly checked using the first two options. However, for
using othermodel checkers like LTSmin andNuSMV their corresponding programs have to be installed
or downloaded in a location where the utility is able to find them.

• For LTSmin, download the model checker at ltsmin.utwente.nl, extract the package, and set
the environment variable LTSMIN_PATH to its binary directory. The environment variable MAUDE-
MC_PATH should also be set to the full path of theMaude‑LTSmin plugin included in the download
package. However, for model checking μ‑calculus properties containing both atomic proposi‑
tions and rule labels, a modified version of LTSmin is required as well as the pbespgsolve tool
from mCRL2 [4]. A ready‑to‑use package5 can be downloaded from maude.ucm.es/strategies.
More details are given in Appendix A.

• For NuSMV, download this model checker from nusmv.fbk.eu, extract the package, and set the
environment variable NUSMV_PATH to the path where the NuSMV binary resides.

• For pyModelChecking, install this Python library with pip install pyModelChecking or equiva‑
lent method.

• For Spot, download this library from spot.lrde.epita.fr. There are installation instructions in its
website. Once the Python package is installed, it will be available for umaudemc.

• For Spin, download this tool fromwww.spinroot.com, extract the package, and set the environ‑
ment variable SPIN_PATH to the path containing the spin binary. Alternatively, there are Spin
packages that can be directly installed in the repositories of Debian/Ubuntu, MacPorts, etc.

Somebackends and their connectionsmaybemore efficient thanothers (in general, the builtinMaude
model checker and LTSmin should be the best choices), some easier to install, and not all of them
support all temporal logics, as shown in Table 1. In particular, the renowned model checkers NuSMV
and Spin do not have convenient interfaces to communicate the low‑level Kripke structure derived by
theMaudemodels, so they are likely less efficient and scalable thanothers. Givena temporal property,
umaudemc will choose the first supported backend available to model check it. They are chosen in
the order they appear in the table, which can nevertheless be modified with the following option:

--backend ⟨list⟩ Indicates a comma‑separated list of model‑checking backends that will be used to
check the given properties, among maude, ltsmin, pymc, nusmv, spin, and builtin.

All arguments passed to umaudemc after a pair -- of dashes will be passed directly to the backends,
in case they are external programs (LTSmin, NuSMV, and Spin).

For probabilistic model checking, either PRISM [16] or Storm [14] are required.
5Themodification has been proposed to be included in the upstream LTSmin.

28

https://ltsmin.utwente.nl
https://maude.ucm.es/strategies
https://nusmv.fbk.eu
https://spot.lrde.epita.fr
https://www.spinroot.com

• For PRISM, download it fromwww.prismmodelchecker.org and set the PRISM_PATH environment
variable to the path containing the prism binary. Since PRISM is partially written in Java and
starting its virtual machine takes a non‑negligible amount of time, themodel checker can alter‑
natively be executed in server mode with prism -ng and the client ngprism be called for every
subsequent verification task. Formakingumaudemccall ngprism, set PRISM_PATH to the full path
of ngprism.

• For Storm, read the installation instructions in www.stormchecker.org and set the STORM_PATH
enviroment variable to the path of the storm binary.

Again the --backend command receives a comma‑separated list of model‑checking backends, in this
case, among prism and storm. All arguments passed to umaudemc after a pair -- of dashes will be
passed directly to the backends.

6 The statistical simulator for MultiVeStA
MultiVeSta [29] is a statistical analysis tool that extends the earlier Vesta [1] and PVesta [2]. The tool
follows a client‑server architecture where discrete‑event simulators with a simple interface are exe‑
cuted by the statistical engine to estimate quantitative temporal expressions in the QUATEX language,
already introduced in Section 5.3. We have written a simulator for probabilistic Maude models spec‑
ified as in Section 3 and a helper script mvmaude to use MultiVeSta with a syntax similar to umaudemc
(see Section 5.3).

mvmaude ⟨filename⟩ ⟨initial state⟩ ⟨QUATEX file⟩ [⟨strategy⟩] [--assign ⟨method⟩]

In addition to the standard --module, --metamodule, and --opaque arguments, mvmaudemay be passed
an --assign option with the probability assignment method from those in Section 3 with the particu‑
larities of Section 5.2.

The QUATEX or MultiQUATEX file (third argument) defines the value to be estimated by the Monte
Carlo simulation. Moreover, the strings time, steps, and completed are directly interpreted by Multi‑
VeSta as the current simulation time, the number of steps, and whether the simulation is completed.

$ mvmaude coin.maude head coin.multiquatex -- -d1 0.5
MultiVeStA client: analysis completed.
Samples generated for query 0 (StepsFor(20.0)): 2370

MultiVeStA client: Results:
result of query 0 (StepsFor(20.0)):

39.017721518987344 [var: 37.98533376792006, ci/2: 0.24813149455606678]
The result is the computed expected value of the expression, the variance of the observations, and the
radius of a confidence interval for the value. This radius has been limited with the -d1 0.5 option that
is directly forwarded toMultiVeSta, as anyoptionbefore the first occurrenceof -- in the command line.
Parametric queries are also supported by MultiVeSta and plots are generated for them. For instance,
using the same StepsFor definition, the instruction
eval parametric(E[StepsFor(x)], x, 1, 2, 40);

evaluates StepFor in the partition of the interval [1, 40] whose steps are separated by 2 units. Figure 6
shows the result of this query for the coin example with the strategy choice(2 : ttail, 3 : thead)
and the default stepmethod.

For configuring the simulationparameters, as shownbeforewith the -d1option, anyoptionpassed
to mvmaude after its own arguments and two consecutive dashes --will be directly forwarded to Multi‑
VeSta. The most relevant parameters are the following:

29

https://www.prismmodelchecker.org
https://www.stormchecker.org

Figure 6: Plots of the confidence interval limits and variance, generated by MultiVeSta.

-a ⟨number⟩ The 𝛼 coefficient of the confidence interval (that is, the probability that the estimated
parameters falls outside the calculated interval).

-d1 ⟨number⟩ A 𝛿 bound for the diameter of the confidence interval (multiple distinct deltas may be
given with -dswhere there are multiple queries).

-l ⟨number⟩ Number of parallel simulation processes.

-bs ⟨number⟩ Number of simulations before checking the confidence interval.

-ms ⟨number⟩ Maximum number of simulations.

-sots ⟨number⟩ Seedof the generator of randomseeds for the simulator instances. Bydefault orwhen
passing ‑1, the current time is used.

-op ⟨path⟩ Output path for the CSV and plot files produced by MultiVeSta.

-help Show the help message with the enumeration of these andmore command‑line options.

More information on MultiVeSta can be found in its repository github.com/andrea‑vandin/MultiVeStA
and in [29].

30

https://github.com/andrea-vandin/MultiVeStA

Appendices

A The Maude language extension for LTSmin
LTSmin [15] is a language‑independent model checker with support for a wide range of logics. Us‑
ing LTSmin and a language module that connects it with Maude, it is possible to check branching‑
time properties expressed in CTL* and μ‑calculus. The plugin, a shared library called libmaudemc.so
for Linux or libmaudemc.dylib for macOS, is shipped in the packages available at maude.ucm.es/‑
strategies. The recommendedwayof using thismodel checker is through the umaudemcutility, which
is simpler and avoids learning the concrete syntax of its temporal logics and other cumbersome con‑
figuration details. However, it is still possible to use LTSmin tools directly.

The Maude language module implements the Partitioned Next‑State Interface (PINS) that allows
LTSmin’s tools to communicate with Maude specifications. The suitable programs are pins2lts-seq
for sequential or pins2lts-dist for distributed explicit‑state model checking, and pins2lts-sym for
symbolic‑state model checking. The multi‑core tool pins2lts-mc only works with a single process
(--procs=1). The options of the different tools are described in their documentation [17] and can
be printed by the command with the --help option. They include flags to indicate the formulae to
be checked like invariant, ltl, ctl, ctl-star, mu and mucalc. These formulae may use the state la‑
bels (atomic propositions) and edge labels (rule labels) of the model, which are listed by passing the
--labelsoption to thecommand. Thepathof libmaudemc.somustbe indicatedwith the--loader=⟨path⟩
option.

Maude LTSmin

libmaude.so libmaudemc.so PINS

next_state
state_label
Edge labels

Figure 7: Architecture of the Maude LTSmin plugin

While not being recommended, because umaudemc facilitates these tasks, the LTSmin toolset can
be used directly if desired. A typical model‑checking invocation will have this form:

pins2lts-seq --loader=libmaudemc.so --initial=⟨term⟩ --strat=⟨sexpr⟩ \
--aprops=⟨atomic props⟩ --ctl=⟨formula⟩

where ctl should be replaced to any other supported logic. The appropriate tool for the required logic
must be chosen manually by changing the initial command suffix seq accordingly. In addition to the
parameters of the own LTSmin tools, these commands accept other options that are specific to our
languagemodule. They are also listed in a separate section if the --help option is present:

--module ⟨name⟩ As in umaudemc.

--metamodule ⟨term⟩ As in umaudemc.

--aprops ⟨list⟩ Provides a comma‑separated list of atomic propositions that would appear in the for‑
mulae. The full Maude term for the propositionmust be written unchanged here, but theymust
have all non‑alphanumeric characters escaped with a backslash when they appear in formulae.

Even though this information couldbeobtained in principle from the formula itself, it is not com‑
municated to language plugins. Since propositional terms inMaudemay take arguments and so
be infinitelymany, thoseused in the formulamustbeprovidedexplicitly here. Thisdisadvantage
is avoided by using umaudemc.

31

https://maude.ucm.es/\protect \discretionary {\char \hyphenchar \font }{}{}strategies
https://maude.ucm.es/\protect \discretionary {\char \hyphenchar \font }{}{}strategies

--merge-states ⟨option⟩ The same values that in umaudemc are admitted except default. The no op‑
tion is none here, and it is the default. This value will not be chosen automatically, and it should
be set manually to respect the expected semantics on branching‑time properties.

--purge-fails Enables the elimination of failed states, which is usually convenient for logics other
than LTL. These states do not lead to a solution or execution loop, so they are not considered
part of the allowed executions.

--biased-matchrew Activates the biased rewriting of subterms described in Section 2.2. Notice that it
is the opposite of the full-matchrew in umaudemc.

--opaque-strats ⟨list⟩ Indicates a comma‑separated list of strategies to be considered opaque, as de‑
scribed in Section 2.3.

Moreover, if the Maude prelude is not available in the plugin directory, its directory path should be
given with MAUDE_LIB.

B The Kleene‑star semantics of the iteration
The usual meaning of the star operator in formal languages and regular expressions is the Kleene clo‑
sure, in otherwords, all finite repetitions of the argument. On the contrary, the iteration operator𝛼* of
the strategy language also allows the infinite repetition of 𝛼, whichmay be denoted by 𝛼𝜔. Otherwise,
a system controlled by a strategy could not be represented in general by a plain transition system or
Kripke structure, since preventing infinite iterations imposes fairness‑like restrictions on the infinite
behavior of themodel that cannot be represented locally. However, these restrictions can be handled
byusingautomata‑basedalgorithmsorbypushing themto the temporal formulaebeing checked. As a
method for specifying fairness restrictions directly on the strategy, the umaudemc tool supports those
approaches [25].

The check command can be passed a flag --kleene-iteration or simply -k to make the itera‑
tion be interpreted as the Kleene star when checking LTL, CTL, or CTL* properties (μ‑calculus is not
supported). If the Spot backend is available, LTL properties will be handled by an extension of the
automata‑theoretic model‑checking approach where the model is a Streett automaton that captures
the finiteness restrictions of the iteration. Otherwise, and for all other supported logics, the tempo‑
ral formulae are extended with premises describing the aforementioned restrictions. Unless there
are no iterations, CTL properties become proper CTL* formulae after the transformation, so a model‑
checking backend for this more general logic is required and performance could be substantially af‑
fected.

The Kleene‑star semanticsmodel checker does not directly use the transition system produced by
Maude for the strategy‑controlled system, but relies on a Python‑based implementation of the strat‑
egy language included in umaudemc, where iterations can be effectively traced. At the moment, the
--full-matchrew option of the command is always enabled, and the --merge-states choice is not
properly respected by the LTSmin backend.

32

References
[1] G. A. Agha, J. Meseguer, and K. Sen. PMaude: rewrite‑based specification language for proba‑

bilistic object systems. In A. Cerone and H. Wiklicky, editors, Proceedings of the Third Workshop
on Quantitative Aspects of Programming Languages, QAPL 2005, Edinburgh, UK, April 2‑3, 2005,
volume153(2) ofElectronicNotes in Theoretical Computer Science, pages213–239. Elsevier, 2006.

[2] M. AlTurki and J. Meseguer. PVeStA: A parallel statistical model checking and quantitative anal‑
ysis tool. In A. Corradini, B. Klin, and C. Cîrstea, editors, Algebra and Coalgebra in Computer Sci‑
ence ‑ 4th International Conference, CALCO 2011, Winchester, UK, August 30 ‑ September 2, 2011.
Proceedings, volume 6859 of Lecture Notes in Computer Science, pages 386–392. Springer, 2011.

[3] O. Bournez and C. Kirchner. Probabilistic rewrite strategies. Applications to ELAN. In S. Tison,
editor, Rewriting Techniques and Applications, 13th International Conference, RTA 2002, Copen‑
hagen, Denmark, July 22‑24, 2002, Proceedings, volume 2378 of Lecture Notes in Computer Sci‑
ence, pages 252–266. Springer, 2002.

[4] O. Bunte, J. F. Groote, J. J. A. Keiren, M. Laveaux, T. Neele, E. P. de Vink, W. Wesselink, A. Wijs,
and T. A. C. Willemse. The mCRL2 toolset for analysing concurrent systems ‑ improvements in
expressivity and usability. In T. Vojnar and L. Zhang, editors, Tools and Algorithms for the Con‑
struction and Analysis of Systems ‑ 25th International Conference, TACAS 2019, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Re‑
public, April 6‑11, 2019, Proceedings, Part II, volume 11428 of Lecture Notes in Computer Science,
pages 21–39. Springer, 2019.

[5] A. Casagrande. pyModelChecking. A simple Pythonmodel checking package, 2020.

[6] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, and A.
Tacchella. NuSMV 2: an opensource tool for symbolic model checking. In E. Brinksma and K. G.
Larsen, editors, Computer Aided Verification, 14th International Conference, CAV 2002, Copen‑
hagen, Denmark, July 27‑31, 2002, Proceedings, volume 2404 of Lecture Notes in Computer Sci‑
ence, pages 359–364. Springer, 2002.

[7] M. Clavel, F. Durán, S. Eker, S. Escobar, P. Lincoln, N. Martí‑Oliet, J. Meseguer, R. Rubio, and C.
Talcott.Maude Manual v3.4. March 2024.

[8] F. Durán, S. Eker, S. Escobar, N. Martí‑Oliet, J. Meseguer, R. Rubio, and C. Talcott. Programming
and symbolic computation in Maude. J. Log. Algebraic Methods Program., 110, 2020.

[9] A.Duret‑Lutz, A. Lewkowicz, A. Fauchille, T.Michaud, E. Renault, andL. Xu. Spot2.0 ‑ A framework
for LTL and ω‑automata manipulation. In C. Artho, A. Legay, and D. Peled, editors, Automated
Technology for Verification and Analysis ‑ 14th International Symposium, ATVA 2016, Chiba, Japan,
October 17‑20, 2016, Proceedings, volume 9938 of Lecture Notes in Computer Science, pages 122–
129, 2016.

[10] S. Eker, N. Martí‑Oliet, J. Meseguer, R. Rubio, and A. Verdejo. The Maude strategy language. J.
Log. Algebraic Methods Program., 134:100887, 2023.

[11] S. Eker, N. Martí‑Oliet, J. Meseguer, and A. Verdejo. Deduction, strategies, and rewriting. In M.
Archer, T. B. de la Tour, and C. Muñoz, editors, Proceedings of the 6th International Workshop
on Strategies in Automated Deduction, STRATEGIES 2006, Seattle, WA, USA, August 16, 2006, vol‑
ume 174(11) of Electronic Notes in Theoretical Computer Science, pages 3–25. Elsevier, 2007.

[12] S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL model checker. In F. Gadducci
and U. Montanari, editors, Proceedings of the Fourth International Workshop on Rewriting Logic
and its Applications, WRLA 2002, Pisa, Italy, September 19‑21, 2002, volume 71 of Electronic Notes
in Theoretical Computer Science, pages 162–187. Elsevier, 2004.

[13] M. Fernández, H. Kirchner, and B. Pinaud. Strategic port graph rewriting: an interactive mod‑
elling framework.Math. Struct. Comput. Sci., 29(5):615–662, 2019.

33

http://dx.doi.org/10.1016/j.entcs.2005.10.040
http://dx.doi.org/10.1016/j.entcs.2005.10.040
http://dx.doi.org/10.1007/978-3-642-22944-2_28
http://dx.doi.org/10.1007/978-3-642-22944-2_28
http://dx.doi.org/10.1007/3-540-45610-4_18
http://dx.doi.org/10.1007/978-3-030-17465-1_2
http://dx.doi.org/10.1007/978-3-030-17465-1_2
https://pypi.org/project/pyModelChecking
http://dx.doi.org/10.1007/3-540-45657-0_29
https://maude.lcc.uma.es/maude-manual
http://dx.doi.org/10.1016/j.jlamp.2019.100497
http://dx.doi.org/10.1016/j.jlamp.2019.100497
http://dx.doi.org/10.1007/978-3-319-46520-3_8
http://dx.doi.org/10.1007/978-3-319-46520-3_8
http://dx.doi.org/10.1016/j.jlamp.2023.100887
http://dx.doi.org/10.1016/j.entcs.2006.03.017
http://dx.doi.org/10.1016/S1571-0661(05)82534-4
http://dx.doi.org/10.1017/S0960129518000270
http://dx.doi.org/10.1017/S0960129518000270

[14] C. Hensel, S. Junges, J.‑P. Katoen, T. Quatmann, and M. Volk. The probabilistic model checker
STORM. Int. J. Softw. Tools Technol. Transf., 23(4):1–22, 2021.

[15] G. Kant, A. Laarman, J. Meijer, J. van de Pol, S. Blom, and T. van Dijk. LTSmin: high‑performance
language‑independent model checking. In C. Baier and C. Tinelli, editors, Tools and Algorithms
for the Construction and Analysis of Systems, 21st International Conference, TACAS 2015, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London,
UK, April 11‑18, 2015, Proceedings, volume9035 of LectureNotes in Computer Science, pages 692–
707. Springer, 2015.

[16] M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: verification of probabilistic real‑time
systems. In G. Gopalakrishnan and S. Qadeer, editors, Computer Aided Verification ‑ 23rd Inter‑
national Conference, CAV 2011, Snowbird, UT, USA, July 14‑20, 2011. Proceedings, volume 6806 of
Lecture Notes in Computer Science, pages 585–591. Springer, 2011.

[17] A. Laarman, M. Weber, J. Meijer, S. Blom, et al. LTSmin. Model checking and minimization of la‑
belled transition systems. URL: https://ltsmin.utwente.nl.

[18] J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theor. Comput. Sci.,
96(1):73–155, 1992.

[19] R. Rubio. An overview of the Maude strategy language and its applications. In K. Bae, editor,
Rewriting Logic and Its Applications ‑ 14th International Workshop, WRLA@ETAPS 2022, Munich,
Germany, April 2‑3, 2022, Revised Selected Papers, volume 13252 of Lecture Notes in Computer
Science, pages 65–84. Springer, 2022.

[20] R. Rubio. Maude as a library: an efficient all‑purpose programming interface. In K. Bae, editor,
Rewriting Logic and Its Applications ‑ 14th International Workshop, WRLA@ETAPS 2022, Munich,
Germany, April 2‑3, 2022, Revised Selected Papers, volume 13252 of Lecture Notes in Computer
Science, pages 274–294. Springer, 2022.

[21] R.Rubio.Model checkingof strategy‑controlled systems in rewriting logic. PhD thesis,Universidad
Complutense de Madrid, 2022.

[22] R. Rubio, N. Martí‑Oliet, I. Pita, and A. Verdejo. Model checking strategy‑controlled rewriting sys‑
tems. In H. Geuvers, editor, 4th International Conference on Formal Structures for Computation
and Deduction, FSCD 2019, June 24‑30, 2019, Dortmund, Germany, volume 131 of LIPIcs, 34:1–
34:18. Schloss Dagstuhl ‑ Leibniz‑Zentrum für Informatik, 2019.

[23] R. Rubio, N. Martí‑Oliet, I. Pita, and A. Verdejo. Model checking strategy‑controlled systems in
rewriting logic. Automat. Softw. Eng., 29(1), 2022.

[24] R. Rubio, N. Martí‑Oliet, I. Pita, and A. Verdejo. QMaude: quantitative specification and verifi‑
cation in rewriting logic. In M. Chechik, J.‑P. Katoen, and M. Leucker, editors, Formal Methods
‑ 25th International Symposium, FM 2023, Lübeck, Germany, March 6‑10, 2023, Proceedings, vol‑
ume 14000 of Lecture Notes in Computer Science, pages 240–259. Springer, 2023.

[25] R. Rubio, N. Martí‑Oliet, I. Pita, and A. Verdejo. Specifying fairness constraints andmodel check‑
ing with non‑intensional strategies. In K. Ogata and N. Martí‑Oliet, editors, Rewriting Logic and
Its Applications ‑ 15th International Workshop, WRLA 2024, Luxembourg City, Luxembourg, April 6‑
7, 2024, Revised Selected Papers, volume 14953 of Lecture Notes in Computer Science, pages 145–
162. Springer, 2024.

[26] R. Rubio, N. Martí‑Oliet, I. Pita, and A. Verdejo. Strategies, model checking and branching‑time
properties inMaude. In S. Escobar andN.Martí‑Oliet, editors,Rewriting Logic and Its Applications
‑ 13th International Workshop, WRLA 2020, Virtual Event, October 20‑22, 2020, Revised Selected
Papers, volume 12328 of Lecture Notes in Computer Science, pages 156–175. Springer, 2020.

[27] R. Rubio, N. Martí‑Oliet, I. Pita, and A. Verdejo. Strategies, model checking and branching‑time
properties in Maude. J. Log. Algebr. Methods Program., 123, 2021.

34

http://dx.doi.org/10.1007/s10009-021-00633-z
http://dx.doi.org/10.1007/s10009-021-00633-z
http://dx.doi.org/10.1007/978-3-662-46681-0_61
http://dx.doi.org/10.1007/978-3-662-46681-0_61
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1007/978-3-642-22110-1_47
https://ltsmin.utwente.nl
https://ltsmin.utwente.nl
https://ltsmin.utwente.nl
http://dx.doi.org/10.1016/0304-3975(92)90182-F
http://dx.doi.org/10.1007/978-3-031-12441-9_4
http://dx.doi.org/10.1007/978-3-031-12441-9_14
https://hdl.handle.net/20.500.14352/3553
http://dx.doi.org/10.4230/LIPIcs.FSCD.2019.31
http://dx.doi.org/10.4230/LIPIcs.FSCD.2019.31
http://dx.doi.org/10.1007/s10515-021-00307-9
http://dx.doi.org/10.1007/s10515-021-00307-9
http://dx.doi.org/10.1007/978-3-031-27481-7_15
http://dx.doi.org/10.1007/978-3-031-27481-7_15
http://dx.doi.org/10.1007/978-3-031-65941-6_8
http://dx.doi.org/10.1007/978-3-031-65941-6_8
http://dx.doi.org/10.1007/978-3-030-63595-4_9
http://dx.doi.org/10.1007/978-3-030-63595-4_9
http://dx.doi.org/10.1016/j.jlamp.2021.100700
http://dx.doi.org/10.1016/j.jlamp.2021.100700

[28] R. Rubio, N. Martí‑Oliet, I. Pita, and A. Verdejo. The semantics of the Maude strategy language.
Technical report 01/21, Departamento de Sistemas Informáticos y Computación, Universidad
Complutense de Madrid, 2021.

[29] S. Sebastio and A. Vandin. MultiVeStA: statistical model checking for discrete event simulators.
In A. Horváth, P. Buchholz, V. Cortellessa, L. Muscariello, and M. S. Squillante, editors, 7th Inter‑
national Conference on Performance Evaluation Methodologies and Tools, ValueTools ’13, Torino,
Italy, December 10‑12, 2013, pages 310–315. ICST/ACM, 2013.

35

https://hdl.handle.net/20.500.14352/5766
http://dx.doi.org/10.4108/icst.valuetools.2013.254377

	Standard Maude models
	Problem preparation

	Strategy-controlled models
	Finite traces
	Parallel subterm rewriting
	Opaque strategies
	Model preparation

	Probabilistic models
	The strategy-aware LTL model checker within Maude
	Understanding the model checker output
	Running the model checker at the metalevel

	The unified Maude model-checking utility
	Standard model checking with check
	Probabilistic model checking with pcheck
	Statistical model checking with scheck
	Graph generation with graph
	A graphical interface
	External model checkers and their installation

	The statistical simulator for MultiVeStA
	The Maude language extension for LTSmin
	The Kleene-star semantics of the iteration

