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Abstract

Intuitively, a strategy language is a way of taming the nondeterminism of a rewrite theory. We can think
of a strategy language S as a rewrite theory transformation such that S(R) provides a way of executing R
in a controlled way. One such theory transformation for the Maude strategy language is presented in detail
in this paper. This progress in the semantic foundations of the strategy language has led us to study some
general requirements for strategy languages. Some of these requirements, like soundness and completeness
with respect to the rewrites in R, are absolute requirements that every strategy language should fulfill.
Other more optional requirements, that we call monotonicity and persistence, represent the fact that no
solution is ever lost. We show that the Maude strategy language satisfies all the four requirements.

Keywords: strategies, rewriting semantics, rewriting logic, Maude, ELAN

1 Introduction

This paper has two main goals: one more concrete, and another more general.

Its first, more concrete goal is to advance the semantic foundations of the Maude

strategy language, which has already been prototyped in Full Maude using reflection

and the Maude META-LEVEL module [5], and whose built-in implementation in Core

Maude is partially completed [4]. We have, furthermore, a second, more general goal

in mind, namely, to articulate some general requirements for strategy languages.

We think that such requirements may be useful in comparing different strategy

languages, and in making design decisions about such languages. Although we

discuss how the requirements apply to our language, we also discuss how ELAN’s

design [1,?] is related to them; indeed, this second level is completely general.

1.1 Semantic foundations of Maude’s strategy language

Regarding our first goal, the specific way in which we advance the semantic founda-

tions of Maude’s strategy language in this paper is by giving a detailed operational

semantics by rewriting to Maude’s strategy language. This is most fitting, since

rewriting logic is a general semantic framework in which strategies themselves should

not be thought of as extra-logical constructs, but should instead be expressed inside

the logic. In our case, this takes the following concrete form. Given a rewrite theory
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specified as a Maude system module M , and given a strategy module SM in Maude’s

strategy language, where an algebra of strategy expressions for M is defined, we

specify the generic construction of a rewrite theory S(M,SM), which defines the

operational semantics of SM as a strategy module for M . Since this is done for

any system module M and any associated strategy module SM , the mapping

(M,SM) 7→ S(M,SM)

provides indeed a general operational semantics by rewriting for Maude’s strategy

language. The reason for making the operational semantics depend not only on

M but also on the strategy module SM is that Maude’s strategy language, while

providing for each system module M a core strategy language that we could denote

as SM0(M), allows also user-defined strategy definitions, in which quite expresive

recursive strategies can be defined by the user in different strategy modules SM .

What all such strategy modules for M have in common, is that they contain the

core strategy module SM0(M) without strategy definitions as a submodule.

The idea of giving an operational, rewriting semantics to a strategy language

S by means of a theory transformation R 7→ S(R) is not new. It was formalized

exactly in this way as the notion of an internal strategy language in [3], and has also

been elegantly articulated in two papers describing in detail the rewriting semantics

of ELAN’s strategy language [1,?]. Furthermore, all the strategy languages devel-

oped experimentally for Maude since [3] (see, e.g., [3,?,5]) have indeed been defined

by means of rewrite rules. What is new in this paper is that our rewriting semantics

(M,SM) 7→ S(M,SM) is not explicitly reflective. By contrast, all the semantics in

[3,?,5] are reflective and extend Maude’s META-LEVEL module. This is a conscious

tradeoff. On the one hand, since a lot of infrastructure for matching, rewriting,

and substitutions is provided for free by reflection in the META-LEVEL module, a

reflective rewriting semantics is typically more succint. On the other hand, how-

ever, a reflective semantics relies heavily on a host of reflective constructs, and

requires an explicit change of representation between terms and theories, and their

corresponding metaterms and metatheories. Our choice of giving a not explicitly

reflective semantics in this paper is motivated by two main goals: (i) the desire

of making the basic ideas more accessible without assuming familiarity with reflec-

tive concepts; and (ii) making it easier to discuss general requirements for strategy

languages without involving the orthogonal choice of a reflective vs. non-reflective

semantics.

An important, second contribution of this work is an explicit comparison between

the operational semantics of Maude’s strategy language defined by the transforma-

tion (M,SM) 7→ S(M,SM), and the mathematical, set-theoretic semantics of the

language defined in [4] and recapitulated here in Section 3. If we compare this work

to the so-called functional semantics of ELAN in [1], the main difference is that in

[1] what we here call the set-theoretic and the operational semantics of the strategy

language are in a sense developed together. In our case, there are two main reasons

for choosing to have two separate levels of semantics. The first is that the set of

terms returned by a strategy applied to a term in our strategy language is in gen-

eral an infinite set, which can only be viewed as an infinite limit of the operational

semantics. The second reason is that several of the constructs in our language re-

quire the use of tasks and continuations, which are not themselves sets, but should
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instead be thought of as encapsulated, and possibly nested, set generators.

1.2 Requirements for strategy languages

At a more general level, we try to articulate in this work several general requirements

on a strategy language that, to avoid being too abstract, are directly illustrated by

means of the concrete strategy language that we present, but are, nevertheless, of

general interest. Some similar requirements were discussed in [3]; but we think that

it is worth revisiting this issue with the benefit of the richer experience about strate-

gies for rewriting languages that has been collectively accumulated since that time.

We want to emphasize that some of these requirements are absolute requirements;

while others are very much a matter of choice. However, the second, more optional

requirements have important consequences in a strategy language design and should

therefore be a matter of conscious choice.

The paper is organized as follows. We begin with a more detailed discussion

of such requirements in Section 2. Maude’s strategy language and its set-theoretic

abstract semantics are summarized in Section 3. We then define its operational,

rewriting semantics in Section 4. The agreement of the mathematical and opera-

tional semantics and other related results are then treated in Section 5. We conclude

the paper in Section 6. Finally, Appendix A discusses some implementation issues,

including the reflective implementation of the rewriting semantics; Appendix B gives

a simple example illustrating the use of Maude’s strategy language; and Appendix C

contains proof sketches for various results in the paper.

2 Strategy language requirements

To facilitate our discussion we assume that given a term t in a rewrite theory R,

and given a strategy σ in the theory S(R) associated by the strategy language to

R, we can apply σ to t, which we denote by the expression σ @ t. We also assume

that for any term w such that S(R) ⊢ σ @ t −→∗ w one can define an abstract

function sols such that sols(w) denotes the set of solution terms already computed

by the strategy; that is, terms reachable from the initial term that exactly satisfy

the reachability requirements of the given strategy. The two most basic absolute

requirements for any strategy language are then:

• Soundness. If S(R) ⊢ σ @ t −→∗ w and t′ ∈ sols(w), then R ⊢ t −→∗ t′.

• Completeness. If R ⊢ t −→∗ t′ then there is a strategy σ in S(R) and a term

w such that S(R) ⊢ σ @ t −→∗ w and t′ ∈ sols(w).

We now discuss two, clearly optional requirements that a strategy language can

satisfy. The first is what we call determinism. This imposes a natural requirement

on the rewrite theory S(R) that the strategy language associates to R. Intuitively,

one of the motivations for using a strategy language is to control and tame the

nondeterminism of a theory R, since in general its rules may not be confluent and

may not terminate, so that many, wildly different executions are possible. If we

may get quite different sets of answers when evaluating σ @ t, then there is still a

residual nondeterminism left in the strategy language S(R). This is indeed a design

choice. For example, the ELAN language is nondeterministic in this sense, because
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of its don’t care nondeterministic operator dc [1,?]. The point is that the semantics

of the dc operator is essentially 1 given by a conditional rule of the form

dc(σ1, . . . , σn) @ t −→ σi @ t if ¬(σi @ t −→ fail)

where fail is a constant denoting failure, so that sols(fail) = ∅. This means that,

since several of the strategies σ1, . . . , σn may be nonfailing on t, when evaluating

dc(σ1, . . . , σn) @ t we may get completely different sets of answers, since the results

of evaluating each σi @ t is itself a set. The deterministic nature of a strategy

language can be captured at the mathematical semantics level by the fact that, if

we denote by Strat(R) the set of strategies defined in the theory S(R) associated by

the given strategy language to a rewrite theory R = (Σ, E,R), then the set-theoretic

semantics of the strategy language can be defined by a function

[[ @ ]] : Strat(R) × TΣ(X) −→ P(TΣ(X)),

extended to a function

[[ @ ]] : Strat(R) × P(TΣ(X)) −→ P(TΣ(X)),

in the expected pointwise way, namely, if σ ∈ Strat (R) and U ⊆ TΣ(X), we have

[[σ @ U ]] =
⋃

t∈U
[[σ @ t]]. Note that ELAN cannot be given a set-theoretic semantics

in this way. Instead, because of the dc operator, we need a semantic function of the

form

[[ @ ]] : Strat(R) × TΣ(X) −→ P(P(TΣ(X))),

since in general, the result of evaluating an application of the form dc(σ1, . . . , σn)@t

is not a set of terms, but instead a set of sets of terms.

At the operational semantics level, determinism is captured by two minimal

requirements that we call monotonicity and persistence. They intuitively mean

that no solution is ever lost. These requirements can be made precise as follows:

• Monotonicity. If S(R) ⊢ σ @ t −→∗ w and S(R) ⊢ w −→∗ w′, then sols(w) ⊆
sols(w′).

• Persistence. If S(R) ⊢ σ @ t −→∗ w and t′ ∈ [[σ @ t]], then there exists a term

w′ such that S(R) ⊢ w −→∗ w′, and t′ ∈ sols(w′).

Note that these two requirements immediately imply that we can always find a

sequence of one-step rewrites

σ @ t −→ w1 −→ w2 −→ · · ·wn −→ · · ·

such that [[σ @ t]] =
⋃

n∈IN sols(wn).

A second, optional requirement is what we call the separation between the

rewriting language itself and its associated strategy language. In Maude’s strat-

egy language design this means that a Maude system module M never contains

any strategy annotations. Instead, all strategy information is contained in strategy

modules of the form SM , which linguistically constitute a completely different part

of the language, although they of course import the system module M whose exe-

cution the strategies in SM control. This strict division of labor between M and

1 This is not exactly the way the semantics of dc is defined in [1,?], since there the results of σi @ t are
assumed to be available in the functional semantics. However, we believe that our formulation is essentially
equivalent to that in [1,?].
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SM has some advantages. On the one hand, the strictly declarative nature of M

is preserved. On the other, this separation facilitates modularity, since the same

system module M can have many different strategy modules SM for different pur-

poses. In ELAN, since it is possible to include strategy expressions within a rewrite

rule definition, this separation is not enforced by the language. However, we believe

that it is possible to develop ELAN modules following the separation methodology

that we advocate here.

3 Maude strategies and their set-theoretic semantics

In this section we summarize the combinators of our strategy language and their set-

theoretic semantics. Although we have benefitted from our own previous experience

designing strategy languages in Maude, our language is also influenced by other

strategy languages like ELAN [1,?] and Stratego [7]. However, Maude’s strategy

language is deterministic in the precise sense specified in Section 2. Of course,

given a Maude system module M specifying a rewrite theory R = (Σ, E,R), there

is not a fixed set Strat (R). Instead, for each strategy module SM for M we have a

set of strategies Strat(M,SM). Given then a term t ∈ TΣ(X) and a strategy σ ∈
Strat (M,SM), the abstract set-theoretic semantics defines a set [[σ@t]] ∈ P(TΣ(X)).

3.1 Idle and fail

The simplest strategies are the constants idle and fail. The first always succeeds,

but without modifying the term t to which it is applied, that is, [[idle @ t]] = {t},
while the second always fails, that is, [[fail @ t]] = ∅.

3.2 Basic strategies

The basic strategies consist of the application of a rule (identified by the corre-

sponding rule label) to a given term. In this case a rule is applied anywhere in

the term where it matches satisfying its condition, with no further constraints on

the substitution instantiation. In case of conditional rules, the default breadth-first

search strategy is used for checking the rewrites in the condition. Therefore, if l

is a rule label and t a term, [[l @ t]] is the set of terms to which t rewrites in one

step using the rule with label l anywhere where it matches and satisfies the rule’s

condition.

A slightly more general variant allows variables in a rule to be instantiated before

its application by means of a substitution, that is, a mapping of variables to terms,

so that the user has more control on the way the rule is applied. The unconstrained

case becomes then the particular case in which the substitution is the identity.

For conditional rules, rewrite conditions can be controlled by means of strategy

expressions. As before, the substitution can be omitted if it is empty. A strategy

expression of the form L[S]{E1 ... En} denotes a basic strategy that applies any-

where in a given state term the rule L with variables instantiated by means of the

substitution S and using E1, . . . , En as strategy expressions to check the rewrites

in the condition of L. The number of rewrite condition fragments appearing in the

condition of rule L must be exactly n for the expression to be meaningful.
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3.3 Top

The most common case allows applying a rule anywhere in a given term, as explained

above, but we also provide an operation to restrict the application of a rule only to

the top of the term, because in some examples like structural operational semantics,

the only interesting or allowed rewrite steps happen at the top.

top(BE) applies the basic strategy BE only at the top of a given state term.

3.4 Tests

Tests are seen as strategies that check a property on a state, so that the test qua

strategy is successful if true and fails if false. In the first case, the state is not

changed. That is, for T a test and t a term, [[T @ t]] is equal to the singleton {t} if

T succeeds on t, and to ∅ if it fails, so that T acts as a filter on its input.

Since matching is one of the basic steps that take place when applying a rule,

the strategies that test some property of a given state term are based on matching.

As in applying a rule, we distinguish between matching anywhere and matching

only at the top of a given term.

amatch T s.t. C is a test that, when applied to a given state term T’, is suc-

cessful if there is a subterm of T’ that matches the pattern T (that is, matching

is allowed anywhere in the state term) and then the condition C is satisfied with

the substitution for the variables obtained in the matching, and fails otherwise.

match T s.t. C corresponds to matching only at the top. When the condition C is

simply true, it can be omitted.

3.5 Regular expressions

Basic strategies can be combined so that strategies are applied to execution paths.

The first strategy combinators we consider are the typical regular expression con-

structions: concatenation, union, and iteration. The concatenation operator is

associative and the union operator is associative and conmutative.

If E, E′ are strategy expressions and t is a term, then [[(E ;E′) @ t]] = [[E′ @

[[E @ t]]]], [[(E |E′) @ t]] = [[E @ t]] ∪ [[E′ @ t]], and [[E + @ t]] =
⋃

i≥1[[E
i @ t]], where

E1 = E and En = (E ;En−1) for n > 1. Of course, E * = idle|E +.

3.6 Conditional strategies

Our next strategy combinator is a typical if-then-else, but generalized so that the

first argument is also a strategy. We have borrowed this idea from Stratego [7], but

it also appears in ELAN [1, Example 5.2].

The behavior of the strategy expression E ? E’ : E’’ is as follows: in a given

state term, the strategy E is evaluated; if E is successful, the strategy E’ is evaluated

in the resulting states, otherwise E’’ is evaluated in the initial state. That is, by

definition, this combinator satisfies the equation

[[(E ? E′ : E′′) @ t]] = if [[E @ t]] 6= ∅ then [[E′ @ [[E @ t]]]] else [[E′′ @ t]] fi.

As explained in [7,5], using the if-then-else combinator, we can define many
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P = g(...P1...Pn...) −→ g(... ... ...)

matching substitution

T = f(... g(... ...)... ...) −→ f(... g(... ...)... ...)

E1 En
rewriting of subterms

Fig. 1. Behavior of the amatchrew combinator.

other useful strategy combinators as derived operations such as, for example,

E orelse E’ = E ? idle : E’
try(E) = E ? idle : idle

3.7 Rewriting of subterms

With the previous combinators we cannot force the application of a strategy to a

specific subterm of the given initial term. In particular, the scope of the substitution

in the (a)match combinators is only the corresponding condition. We can have more

control over the way different subterms of a given state are rewritten by means of

the (a)matchrew combinators.

When the strategy expression

amatchrew P s.t. C by P1 using E1, ..., Pn using En

is applied to a state term T, first a subterm of T that matches P and satisfies C

is selected. Then, the terms P1, . . . , Pn (which must be disjoint subterms of P),

instantiated appropriately, are rewritten as described by the strategy expressions

E1, . . . , En, respectively. The results are combined in P and then substituted in T,

in the way illustrated in Figure 1.

The strategy expressions E1, . . . , En can make use of the variables instantiated

in the matching, thus taking care of information extracted from the state term.

The version matchrew works in the same way, but performing matching only at

the top. In all cases, when the condition is true it can be omitted.

The congruence operators used in ELAN and Stratego [1,7] are special cases of

the matchrew combinator, as shown in [5].

3.8 Recursion

Recursion is achieved by giving a name to a strategy expression and using this

name in the strategy expression itself or in other related strategies. This is done in

strategy modules, described next.

3.9 Strategy modules and commands

Given a Maude system module M, the user can write one or more strategy modules

to define strategies for M. Such strategy modules have the following form:

smod STRAT is

protecting M .

including STRAT1 . ... including STRATj .

strat E1 : T11 ... T1m @ K1 .
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sd E1(P11,...,P1m) := Exp1 .

...

strat En : Tn1 ... Tnp @ Kn .
sd En(Pn1,...,Pnp) := Expn .

csd En(Qn1,...,Qnp) := Expn’ if C .

...

endsd

where M is the system module whose rewrites are being controlled, STRAT1, . . . ,

STRATj are imported strategy submodules, E1, . . . , En are identifiers, and Exp1,

. . . , Expn are strategy expressions (over the language of labels provided by M),

where the identifiers can appear, thus allowing (mutually) recursive definitions.

The basic idea is that these strategy declarations provide useful abbreviations

for strategy expressions E that the user can then utilize in a (strategy rewrite)

command srew T using E, which rewrites a term T using a strategy expression E.

A strategy identifier can have data arguments, that are terms built with the

syntax defined in the system module M. When a strategy identifier is declared (with

the keyword strat), the types of its arguments (if any) are specified between the

symbols : and @. After the symbol @, the type of the terms to which this strategy

can be applied is also specified.

A strategy definition (introduced with the keyword sd) associates a strategy

expression (on the righthand side of the symbol :=) with a strategy identifier (on

the lefthand side) with patterns as arguments, used to capture the values passed

when the strategy is invoked. These strategy definitions can be conditional (with

keyword csd), and there can be several strategy definitions defining different cases

of a given strategy E. A concrete example appears in Appendix B.

4 Rewriting semantics of strategies

We assume given a rewrite theory in the form of a Maude system module M , and

an associated strategy module SM defining strategies for M . The system module

M includes both equations and rules. We can assume without loss of generality

that the variables used in equations are disjoint from the variables used in rules.

In this section we describe how to transform the pair (M,SM) into a rewrite

theory S(M,SM) where we can write strategy expressions and apply them to terms

from M , so that rewriting a term of the form E @ t produces the results of rewriting

the term t by means of the strategy E.

4.1 Auxiliary operations

The transformed theory S(M,SM) is an extension of the equational part of the

system module M . Rules in M are replaced by rules that apply appropriate strate-

gies.

The terms of the module M become data for the strategy expressions in S(M,SM).

On such terms we will need to perform some typical operations like matching and

applying a substitution to a term. For this we need to build some auxiliary infras-

tructure:

• All the variables used in rewrite rules in M become constants in S(M,SM); more
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specifically, each variable X of sort S becomes a constant X of sort VarS, which

is a new subsort of S.

• All the labels in rewrite rules in M become constants of a new sort Label in

S(M,SM).

• We add syntax for substitutions, which are given by sets of assignments defined

by means of an overloaded family of operators

op _<-_ : VarS S -> Substitution .

for each sort S in M , as well as a union operator

op _,_ : Substitution Substitution -> Substitution [assoc id: none] .

Applying a substitution is done by means of an overloaded application operator

op _·_ : S Substitution -> S .

which is equationally defined in the standard way.

• We also add a special “hole” constant for each sort S in M ,

op []S : -> S .

so that terms built with this constant are contexts. The following operation is

used to replace the “hole” in a context with a term of the appropriate sort:

op replace : S S′ ~> S .

• Finally, we add a couple of overloaded matching operators that given a pair of

terms return the set of matches, either at the top or anywhere, that satisfy a given

condition. A match consists of a pair formed by a substitution and a context;

when matching is at the top, the context is simply the “hole”.

sorts Match MatchSet .

subsort Match < MatchSet .

op <_,_> : Substitution S -> Match .

op __ : MatchSet MatchSet -> MatchSet [assoc comm id: none] .
op getMatch : S S Condition -> MatchSet .

op getAmatch : S S Condition -> MatchSet .

4.2 Strategy syntax

The abstract syntax of the strategy language summarized in Section 3 can be given

by a signature represented in Maude as follows:

sorts BasicStrat Strat Test StratCall .

subsorts BasicStrat Test StratCall < Strat .

sorts TermStrat TermStratList .

subsort TermStrat < TermStratList .

op _[_] : Label Substitution -> BasicStrat .

op _[_]{_} : Label Substitution StratList -> BasicStrat .

op match : S Condition -> Test .
op amatch : S Condition -> Test .

ops idle fail : -> Strat .

op top : BasicStrat -> Strat .

op _|_ : Strat Strat -> Strat [assoc comm id: fail] .
op _;_ : Strat Strat -> Strat [assoc] .

op if : Strat Strat Strat -> Strat .

op _* : Strat -> Strat .

op _+ : Strat -> Strat .

op _! : Strat -> Strat .
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op matchrew : S Condition TermStratList -> Strat .

op amatchrew : S Condition TermStratList -> Strat .

op _using_ : S Strat -> TermStrat .

op nilTSL : -> TermStratList .

op _,_ : TermStratList TermStratList -> TermStratList [assoc id: nilTSL] .

sort StratList .

subsort Strat < StratList .

op nil : -> StratList .

op __ : StratList StratList -> StratList [assoc id: nil] .

Notice that the operators match, amatch, matchrew, and amatchrew are pro-

vided as overloaded families of operators for all sorts S in M .

All this syntax is added to the transformed theory S(M,SM). Moreover, the

operator · that applies a substitution to a term is extended to strategy expressions

in the standard way.

4.3 Applying strategies

The following sorts and operators provide the main infrastructure defined in the

transformed theory S(M,SM) in order to define the application of a strategy to a

term. Again several operators are provided as overloaded families of operators for

all sorts S in M .

sorts Task Tasks Cont .

subsort Task < Tasks .

op none : -> Tasks .
op __ : Tasks Tasks -> Tasks [assoc comm id: none] .

eq T:Task T:Task = T:Task .

op <_@_> : Strat S -> Task .
op sol : S -> Task .

op <_;_> : Tasks Cont -> Task .

op chkrw : RewriteList Condition StratList S S′ -> Cont .

op seq : Strat -> Cont .
op ifc : Strat Strat Term -> Cont .

op mrew : S Condition TermStratList S′ -> Cont .

sort RewriteList .
op nilRL : -> RewriteList .

op _=>_ : S S -> RewriteList .

op _/\_ : RewriteList RewriteList -> RewriteList [assoc id:nilRL] .

Applying a strategy to a term is a task that, in the process of rewriting, can

give rise to more tasks. Therefore, the sort Tasks represents sets of tasks by means

of an associative, commutative, and idempotent operator written as juxtaposition,

with identity the empty set none. Solved tasks are of the form sol(t), meaning

that the term t is a solution. Sometimes, these solutions are only the intermediate

results in a task that must be continued with another process; therefore, there is

also some syntax to represent continuations as terms of sort Cont.
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4.4 Strategy rewrite rules

4.4.1 Idle and fail

For each sort S in the system module M , we add rules

rl < idle @ T:S > => sol(T:S) .

rl < fail @ T:S > => none .

We recall that the notation T : S means that T is a Maude variable of sort S.

Since all the operators and variables must be appropriately typed, we need to repeat

operator declarations and rules for each sort.

4.4.2 Basic strategies

For each nonconditional rule [l] : t1 => t2 and each sort S in M , we add the

following rule that collects by means of the getAmatch operation all the possible

matches for the lefthand side pattern in the given state term and then returns the

set of all appropriate instantiations of the righthand side. The gen-sols operation

is used to traverse the set of matches and for each pair of substitution and context,

it builds the appropriate instantiation by first applying the substitution to the

righthand side and then replacing the hole in the context with the resulting term.

crl < l[Sb] @ T:S > => gen-sols(MAT, t2 · Sb)
if MAT := getAmatch(t1 · Sb, T:S, trueC) .

eq gen-sols(none, T:S′) = none .

eq gen-sols(< Sb, Cx:S > MAT, T:S′) = sol(replace(Cx:S, T:S′ · Sb)) gen-sols(MAT, T:S′) .

Notice that Sb is a variable of sort Substitution. In particular, Sb can be instan-

tiated to the identity substitution.

The treatment of conditional rules is much more complex, because we need

to make sure that each solution satisfies the rewrites in the condition using the

appropriate strategies. Moreover, we need to guarantee that no solution exists

when returning the empty set. For these reasons, we make use of a continuation

that handles this situation. Let us consider a conditional rule of the form

crl [l] : t1 => t2 if u1 => v1 /\.../\ un => vn /\ C .

Notice that we have put together all the fragments of the condition that are not

rewrites at the end, in order to simplify the presentation. The first rule is used

to get all the matches with the lefthand side and for each one we instantiate the

rule conditions and call the appropriate continuation to check that the condition is

really satisfied. The gen-rw-tks operation is used to traverse the set of matches

and generate for each match the appropriate task, as shown in the second equation

below.

crl < l[Sb]{E1...En} @ T:S >
=> gen-rw-tks(MAT, E1, u1 · Sb, (u1 => v1 /\.../\ un => vn) · Sb, C · Sb, E1...En, t2 · Sb)
if MAT := getAmatch(t1 · Sb, T:S, trueC) .

eq gen-rw-tks(none, E, T:S′, RL, C, EL, Rhs:S′′) = none .
eq gen-rw-tks(< Sb, Cx:S > MAT, E, T:S′, RL, C, EL, Rhs:S′′) =

< < E @ T:S′ · Sb > ; chkrw(RL · Sb, C · Sb, EL, Rhs:S′′ · Sb, Cx:S) >

gen-rw-tks(MAT, E, T:S′, RL, C, EL, Rhs:S′′) .

The chkrw continuation uses the strategy list to try to satisfy the rewrites in the

11
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conditions. For each partial solution obtained up to the moment the continuation

is called, it checks whether the first rewrite in the first argument is satisfied and

then calls the next strategy with the next rewrite adequately instantiated by the

previous substitution. However, each rewrite condition may also be satisfied in

different ways, giving rise to different substitutions and hence different solutions.

Therefore, we also need to handle the set of possible matches (at the top) by means

of another operation gen-rw-tks2 that traverses this set and generates all the

corresponding continuation tasks.

var TS : Tasks . var RL : RewriteList . var EL : StrategyList .

crl < sol(R:S) TS ;

chkrw(U:S => V:S /\ U’:S′ => V’:S′ /\ RL, C, (E E’ EL), Rhs:S′′, Cx:S′′′) >

=> < TS ; chkrw(U:S => V:S /\ U’:S′ => V’:S′ /\ RL, C, (E E’ EL), Rhs:S′′, Cx:S′′′) >

gen-rw-tks2(MAT, E’, U’:S′, (U’:S′ => V’:S′ /\ RL), C, (E’ EL), Rhs:S′′, Cx:S′′′)
if MAT := getMatch(V:S, R:S, trueC) .

eq gen-rw-tks2(none, E, T:S′, RL, C, EL, Rhs:S′′, Cx:S′′′) = none .

eq gen-rw-tks2(< Sb, Cx:S > MAT, E, T:S′, RL, C, EL, Rhs:S′′, Cx:S′′′) =
< < E @ T:S′ · Sb > ; chkrw(RL · Sb, C · Sb, EL, Rhs:S′′ · Sb, Cx:S′′′) >

gen-rw-tks2(MAT, E, T:S′, RL, C, EL, Rhs:S′′, Cx:S′′′) .

When the last rewrite is reached, the continuation also checks that the non-

rewrite condition C is satisfied as part of the matching. Again, different matches

are possible, which are collected in a set traversed by the operation gen-sols2,

in charge of generating all the solutions by instantiating the righthand side of the

conditional rule and putting the result in the original context.

crl < sol(R:S) TS ; chkrw(U:S => V:S, C, E, Rhs:S′, Cx:S′′) >

=> < TS ; chkrw(U:S => V:S, C, E, Rhs:S′, Cx:S′′) >
gen-sols2(MAT, Rhs:S′, Cx:S′′)

if MAT := getMatch(V:S, R:S, C) .

eq gen-sols2(none, Rhs:S, Cx:S′) = none .

eq gen-sols2(< Sb, Cx’:S′′ > MAT, Rhs:S, Cx:S′)
= sol(replace(Cx:S′, Rhs:S · Sb)) gen-sols2(MAT, Rhs:S, Cx:S′) .

rl < none ; chkrw(RL, C, EL, Rhs:S′)) > => none .

4.4.3 Top

For a basic strategy BE, the strategy top(BE) is defined using the same rules as for

BE, except that matching takes place only at the top instead of anywhere. There-

fore, the corresponding rules are obtained from the rules for basic strategies in the

previous section by using the getMatch operation instead of getAmatch.

4.4.4 Tests

Application of a matching test is directly based on the getMatch and getAmatch

operations, as expected, depending on whether the match is only at the top or

everywhere. When the set of matches is empty (the constant none), the test fails

and hence returns the empty set of solutions; when the set of matches is not empty,

the result consists of only a solution which coincides with the initial state term.

crl < match(P:S, C) @ T:S′ > => sol(T:S′)

if < Sb, Cx:S′ > MAT := getMatch(P:S, T:S′, C) .

crl < match(P:S, C) @ T:S′ > => none

12
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if getMatch(P:S, T:S′, C) = none .

crl < amatch(P:S, C) @ T:S′ > => sol(T:S′)
if < Sb, Cx:S′ > MAT := getAmatch(P:S, T:S′, C) .

crl < amatch(P:S, C) @ T:S′ > => none

if getAmatch(P:S, T:S′, C) = none .

4.4.5 Regular expressions

The rewriting semantics of the union combinator on strategies is based on the

union operator on sets of solutions. Concatenation uses another continuation, while

iteration is reduced to concatenation. In this version, we consider E * as a primitive,

while E + is defined by means of a simple equation.

rl < E | E’ @ T:S > => < E @ T:S > < E’ @ T:S > .

rl < E ; E’ @ T:S > => < < E @ T:S > ; seq(E’) > .

rl < sol(R:S) TS ; seq(E’) > => < E’ @ R:S > < TS ; seq(E’) > .

rl < none ; seq(E’) > => none .

rl < E * @ T:S > => sol(T:S) < E ; (E *) @ T:S > .
eq E + = E ; E * .

4.4.6 If-then-else

The conditional strategy combinator is easily defined by means of a continuation

that “remembers” the remaining arguments while the strategy given as first argu-

ment is executed. If solutions to this strategy are found, then the continuation

can discard the third argument, but the second argument must be applied to all

solutions; otherwise, the second argument is discarded and the third is applied only

to the original state term.

rl < if(E, E’, E’’) @ T:S > => < < E @ T:S > ; ifc(E’, E’’, T:S) > .

rl < sol(RT:S) TS ; ifc(E’, E’’, T:S′) > => < E’ @ R:S > < TS ; seq(E’) > .
rl < none ; ifc(E’, E’’, T:S) > => < E’’ @ T:S > .

4.4.7 Rewriting of subterms

Matching and rewriting subterms is again a complex process that is best described

using another continuation. In order to simplify the presentation of the following

rules, we assume that in a strategy expression of the form

(a)matchrew P s.t. C by P1 using E1, ..., Pn using En

the pattern fragments P1, . . . , Pn (besides being disjoint) appear once in pattern P.

The first rule generates all the matches of the given pattern in the state term

and for each one we call the appropriate continuation to rewrite the corresponding

fragments using the given strategies. The gen-mrew operation is used to traverse

the set of matches and generate for each match the appropriate task, as shown in

the second equation below. In this second equation we call again the getAmatch

operation to locate the subpattern P1 (already instantiated) inside the pattern P

(also instantiated with the same substitution), but the result of this call must neces-

sarily be the identity substitution with a unique context, because of the simplifying

assumption we have mentioned before.

crl < amatchrew(P:S, C, TSL) @ T:S′ > => gen-mrew(MAT, P:S, TSL)

if MAT := getAmatch(P:S, T:S′, C) .
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eq gen-mrew(none, P:S, TSL) = none .

ceq gen-mrew(< Sb’, Cx’:S′ > MAT, P:S, (P1:S1 using E1, TSL)) =

< < E1 · Sb’ @ P1:S1 · Sb’ > ; mrew(Cx:S, TSL · Sb’, Cx’:S′) >
gen-mrew(MAT, P:S, (P1:S1 using E1, TSL))

if < none, Cx:S > := getAmatch(P1:S1 · Sb’, P:S · Sb’, trueC) .

The following rules describe the behavior of the mrew continuation. For each

solution obtained from the previous task, this continuation finds the appropriate

fragment to be rewritten using the next strategy in the strategy list. When the

strategy list is empty, the continuation simply takes care of rebuilding the whole

term by putting together the solution inside the appropriate contexts.

crl < sol(R:S′′) TS ; mrew(Cx:S, (P1:S1 using E1, TSL), Cx’:S′) >

=> < < E1 @ P1:S1 > ; mrew(Cx’’:S, TSL, Cx’:S′) >
< TS ; mrew(Cx:S, (P1:S1 using E1, TSL), Cx’:S′) >

if < none, Cx’’:S > := getAmatch(P1:S1, replace(Cx:S, R:S′′), trueC) .

rl < sol(R:S′′) TS ; mrew(Cx:S, nilTSL, Cx’:S′) >

=> sol(replace(Cx’:S′, replace(Cx:S, R:S′′))) < TS ; mrew(Cx:S, nilTSL, Cx’:S′) > .

rl < none ; mrew(Cx:S, TSL, Cx’:S′) > => none .

4.4.8 Strategy definitions

For each strategy definition declaration

strat sid : S1 ... Sn @ S .

in the strategy module SM , we have a new operator in the transformed theory:

op sid : S1 ... Sn -> StratCall .

Such strategy identifiers are defined in SM by means of (possibly conditional)

equations of the form

csd sid(P1, ..., Pn) := E if C .

In the transformed theory, all such strategy definitions are put together as a set of

definitions which is the value of a constant of appropriate sort:

eq DEFS = (sid(P1, ..., Pn), E, C) , ... .

Then the rule for applying strategies defined in this way is the following

crl < SC:StratCall @ T:S > => < E’ @ T:S >

if E’ := find-def(SC:StratCall, DEFS) .

where the auxiliary operation find-def is used to find in the set DEFS of strategy

definitions the one corresponding to the strategy call SC.

5 Correctness and determinism

Rewriting logic is based on rewriting equivalence classes of terms modulo some

equational axioms; however, to simplify the presentation of the following results we

simply consider terms t instead of equivalence classes [t].

First, we state a couple of basic properties of the set-theoretic semantics sum-

marized in Section 3 that can be thought of as the soundness and completeness of

such semantics.
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Proposition 5.1 For terms t and t′ and strategy expression E in S(M,SM), if

t′ ∈ [[E @ t]] then M ⊢ t −→∗ t′.

Proposition 5.2 If M ⊢ t −→∗ t′ then there is a strategy expression E in S(M,SM)

such that t′ ∈ [[E @ t]].

Proof. It is a consequence of the Sequentality Lemma 3.6 in [6]. Any rewrite

t −→∗ t′ can be decomposed as a sequence of rewrites t
l1−→ t1

l2−→ t2 · · ·
ln−→ t′,

where each step consists of the application of a single rule li to a single subterm.

Then the desired strategy expression is E = l1 ; l2 ; . . . ; ln. 2

In our rewriting semantics, the initial terms denoting the application of a strat-

egy to a state term have the form <E @ t> and are of sort Task. When this term is

rewritten using the rules described in the previous section, new tasks are created, so

that rewriting takes place at the level of the sort Tasks representing sets of tasks.

Those tasks (at the top level) of the form sol(t) represent the solutions obtained up

to the moment. Then, the abstract function sols mentioned in Section 2 is defined

in our case as follows: for a term w of sort Tasks, sols(w) is the set of terms t such

that sol(t) is a subterm at the top of w.

The rewriting semantics defined in the previous section and the set-theoretic

semantics are related by the following result:

Theorem 5.3 (Correctness)

For terms t and t′ and strategy expression E in S(M,SM), if there is a term w of

sort Tasks such that S(M,SM) ⊢ <E@ t> −→∗ w with t′ ∈ sols(w), then t′ ∈ [[E@t]].

Then we show that the Maude strategy language satisfies the four requirements

put forward in Section 2.

Theorem 5.4 (Soundness)

If S(M,SM) ⊢ <E@ t> −→∗ w and t′ ∈ sols(w), then M ⊢ t −→∗ t′.

Theorem 5.5 (Monotonicity)

If S(M,SM) ⊢ <E@ t> −→∗ w and S(M,SM) ⊢ w −→∗ w′, then sols(w) ⊆
sols(w′).

Proof. In the rewrite theory S(M,SM) described in Section 4 there are no rules

or equations that can affect a subterm at the top of w of the form sol(t). Thus,

further rewrites take place in disjoint subterms of the ones representing sols(w). 2

Theorem 5.6 (Persistence)

If S(M,SM) ⊢ <E@ t> −→∗ w and t′ ∈ [[E @ t]], then there exists a term w′ such

that S(M,SM) ⊢ w −→∗ w′, and t′ ∈ sols(w′).

Corollary 5.7 If t′ ∈ [[E @ t]], then there exists a term w such that S(M,SM) ⊢
<E@ t> −→∗ w and t′ ∈ sols(w).

Putting together this corollary and Proposition 5.2, we get the following

Theorem 5.8 (Completeness)

If M ⊢ t −→∗ t′ then there is a strategy expression E in S(M,SM) and a term w

such that S(M,SM) ⊢ <E@ t> −→∗ w and t′ ∈ sols(w).
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6 Concluding remarks

We have given general requirements for strategy languages that control the exe-

cution of a rewriting-based language. We have also discussed the mathematical

and operational semantics of Maude’s strategy language, and have shown how the

general requirements are met in its case.

Much work remains ahead. At the implementation level, the C++ implementa-

tion of Maude’s strategy language still needs to be completed, although a subset of

it has been available in alpha versions for some time. At the level of requirements,

we would like to emphasize that the ones given in Section 2 are very basic, but in a

sense they are still too weak. For example, although we believe that the determinis-

tic nature of a strategy language is succintly captured by the requirement that the

evalution of a strategy applied to a term should be a set of terms, instead of a set of

sets of terms, at the operational semantics level, the monotonicity and persistence

requirements are certainly necessary conditions for determinism, but they are still

insufficient. The question can be put as follows: how should the nondeterminism

of a theory R be eliminated as much as possible in the strategy theory S(R)? We

believe that the right answer resides in the notion of fairness. That is, any fair

execution (in an appropriate sense still to be made precise) of the form

σ @ t −→ w1 −→ w2 −→ · · ·wn −→ · · ·

should be such that [[σ @ t]] =
⋃

n∈IN sols(wn). We leave the investigation of this

topic for future reseach. It has, however, a direct bearing on yet another future

research direction, namely, the increased performance of strategy evaluations through

parallelism. The point is that in S(R) a term σ @ t incrementally evaluates to a

(possibly nested) set data structure, so that the natural concurrency of rewriting

logic is directly exploitable in S(R) by applying different rules in different places

of this data structure where solutions are generated. This naturally suggests a

distributed implementation of strategy languages, so that a fair implementation

where all subexpressions are eventually evaluated should guarantee that all solutions

are eventually reached if the strategy language is deterministic, in the stronger sense

of also satisfying the fairness requirement sketched above.
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[1] P. Borovanský, C. Kirchner, H. Kirchner, and C. Ringeissen. Rewriting with strategies in ELAN: A
functional semantics. International Journal of Foundations of Computer Science, 12:69–95, 2001.

[2] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Talcott. All About Maude:
A High-Performance Logical Framework, volume 4350 of Lecture Notes in Computer Science. Springer,
2007.

[3] M. Clavel and J. Meseguer. Reflection and strategies in rewriting logic. In J. Meseguer, editor,
Proceedings First International Workshop on Rewriting Logic and its Applications, WRLA’96,
Asilomar, California, September 3–6, 1996, volume 4 of Electronic Notes in Theoretical Computer
Science. Elsevier, 1996. http://www.elsevier.nl/locate/entcs/volume4.html .

[4] S. Eker, N. Mart́ı-Oliet, J. Meseguer, and A. Verdejo. Deduction, strategies, and rewriting. In M. Archer,
T. B. de la Tour, and C. A. M. noz, editors, Proceedings of the 6th International Workshop on Strategies
in Automated Deduction (STRATEGIES 2006), volume 174(11) of Electronic Notes in Theoretical
Computer Science, pages 3–25. Elsevier, 2007.

[5] N. Mart́ı-Oliet, J. Meseguer, and A. Verdejo. Towards a strategy language for Maude. In N. Mart́ı-Oliet,
editor, Proceedings Fifth International Workshop on Rewriting Logic and its Applications, WRLA 2004,
Barcelona, Spain, March 27 – April 4, 2004, volume 117 of Electronic Notes in Theoretical Computer
Science, pages 417–441. Elsevier, 2005.

16

http://www.elsevier.nl/locate/entcs/volume4.html


Mart́ı-Oliet, Meseguer, and Verdejo

[6] J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical Computer
Science, 96(1):73–155, 1992.

[7] E. Visser. Program transformation with Stratego/XT: Rules, strategies, tools, and systems in
StrategoXT-0.9. In C. Lengauer, editor, Domain-Specific Program Generation, volume 3016 of Lecture
Notes for Computer Science, pages 216–238. Springer, 2004.

A Implementation issues

By taking advantage of the reflective properties of rewriting logic, which allow

to consider metalevel entities such as theories as usual data, the transformation

described in Section 4 could be implemented as an operation from rewrite theories

to rewrite theories, specified itself in rewriting logic. More specifically, we could

write this kind of transformation as an extension of Full Maude, as other theory

transformations described in [2, Chapter 15]. Full Maude is an extension of Maude,

written in Maude itself using the features of the predefined META-LEVEL module,

which provides an efficient implementation of the reflective features of rewriting

logic. In particular, by going to the metalevel, the getMatch and getAmatch could

be implemented by means of the descent functions metaMatch and metaXmatch

provided in META-LEVEL as generic operations for matching, either at the top or at

all posible positions in a term, together with the operations up and down that relate

the object level and the metalevel.

Instead of doing this, we have written a parameterized module (see [2, Sec-

tion 8.3] for information on Maude parameterization features) that extends the

metalevel with the rewriting semantics of the strategy language in a generic and

quite efficient way.

In addition to the inherent complex processes of checking the satisfaction of

rewrite conditions in applying a conditional rule, and matching and rewriting with

strategies at subterms in the matchrew combinator (which have been handled by

means of continuations), the transformed rewrite theory described in Section 4 is

more complex than expected because of the need of handling substitutions, contexts

and matching, and the overloading of operators and repetition of rules for several

sorts when a process makes sense for different sorts. Both things get considerably

simplified if we are willing to use the predefined META-LEVEL module. There are

two main reasons for this simplification:

• The META-LEVEL module includes a sort Term representing by means of appropri-

ate operations all terms for all sorts in a fully generic way, together with sorts

Substitution, Context, TermList, etc. to handle typical operations on terms.

• As already mentioned, among others, the META-LEVEL module also includes very

powerful descent functions metaMatch, metaXmatch, metaApply, and metaXapply

representing respectively the processes of matching and applying a rule, either at

the top or at all posible positions in a term.

Using these META-LEVEL features, we can simplify whole families of overloaded

operator declarations to a single declaration, like, for example, the following ones:

op match : Term Condition -> Test .

op amatch : Term Condition -> Test .

op matchrew : Term Condition TermStratList -> Strat .

op amatchrew : Term Condition TermStratList -> Strat .

17
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op <_@_> : Strat Term -> Task .

op sol : Term -> Task .

In the same way, a family of rules for all sorts in a given module can be reduced

to a single rule such as, for example, the rules corresponding to the idle strategy,

and the sequential and conditional combinators for strategies:

rl < idle @ T > => sol(T) .

rl < E ; E’ @ T > => < < E @ T > ; seq(E’) > .
rl < sol(T) TS ; seq(E’) > => < E’ @ T > < TS ; seq(E’) > .

rl < none ; seq(E’) > => none .

rl < if(E, E’, E’’) @ T > => < < E @ T > ; if(E’, E’’, T) > .

rl < sol(T’) TS ; if(E’, E’’, T) > => < E’ @ T’ > < TS ; seq(E’) > .

rl < none ; if(E’, E’’, T) > => < E’’ @ T > .

where T is now a variable of sort Term.

The matching tests are also reduced to a single rule in each case. Moreover, they

are simply based on the metaMatch (for matching only at the top) and metaXmatch

(for matching anywhere) descent functions available in META-LEVEL:

rl < match(P, C) @ T > => if metaMatch(MOD, P, T, C, 0) == noMatch

then none else sol(T) fi .

rl < amatch(P, C) @ T > => if metaXmatch(MOD, P, T, C, 0, unbounded, 0) == noMatch
then none else sol(T) fi .

where P and T are both variables of sort Term, and MOD is a constant (received as a

parameter of the semantics) naming the given sytem module M .

The matchrew combinator is treated combining both the continuation idea de-

scribed in Section 4 and the meta(X)match descent functions.

Application of a nonconditional rule is now based on the metaXapply descent

function. In addition, the apply-everywhere and apply-top auxiliary operations

collect in a single term all the possible results for the different ways of matching,

either due to finding the same pattern in different positions of a given state term,

or to structural axioms in such a term (such as commutativity, for example). In-

stead of returning sets of matches, as the operations getMatch and getAmatch we

have previously considered in our transformation, the descent functions metaMatch,

metaXmatch, metaApply, and metaXapply have a natural number argument which

is used to enumerate all the possible solutions. The same technique appears as the

fourth argument of the operations apply-everywhere and apply-top.

op apply-everywhere : Label Substitution Term Nat -> Tasks .

op apply-top : Label Substitution Term Nat -> Tasks .

rl < L[Sb] @ T > => apply-everywhere(L, Sb, T, 0) .

ceq apply-everywhere(L, Sb, T, N) = sol(T’) apply-everywhere(L, Sb, T, N + 1)

if { T’, Ty, Sb’, CX } := metaXapply(MOD, T, L, Sb, 0, unbounded, N) .
eq apply-everywhere(L, Sb, T, N) = none [owise] .

rl < top(L[Sb]) @ T > => apply-top(L, Sb, T, 0) .

ceq apply-top(L, Sb, T, N) = sol(T’) apply-top(L, Sb, T, N + 1)
if { T’, Ty, Sb’ } := metaApply(MOD, T, L, Sb, N) .

eq apply-top(L, Sb, T, N) = none [owise] .

Application of a conditional rule combines both the continuation idea described
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in Section 4 for checking the rewrite conditions with strategies, and the meta(X)apply

descent functions.

The complete implementation can be found at the web page http://maude.sip.

ucm.es/strategies.

Finally, we would like to mention the ongoing implementation of our strategy

language at the C++ level, at which the Maude system itself is implemented, to

make the language a stable new feature of Maude, and to allow a more efficient

execution [4].

B Example

We show here how to solve by means of strategies the “Crossing the river” problem

shown in [2, Section 7.8]. In this problem a shepherd needs to transport to the

other side of a river a wolf, a goat, and a cabbage. He has only a boat with room

for the shepherd himself and another item. The problem is that in the absence of

the shepherd the wolf would eat the goat, and the goat would eat the cabbage. We

represent with constants left and right the two sides of the river. The shepherd

and his belongings are represented as objects with an attribute indicating the side of

the river in which each is located and are grouped together with a multiset operator

__; the constant initial denotes the initial situation, where we assume that all

the objects are located on the left riverbank. The rules represent how the wolf or

the goat eat and the ways of crossing the river allowed by the capacity of the boat;

an auxiliary change operation is used to modify the corresponding attributes.

mod RIVER-CROSSING is

sorts Side Group .

ops left right : -> Side .

op change : Side -> Side .
ops s w g c : Side -> Group .

op __ : Group Group -> Group [assoc comm] .

op init : -> Group .

vars S S’ : Side .
eq change(left) = right .

eq change(right) = left .

eq initial = s(left) w(left) g(left) c(left) .

crl [wolf-eats] : w(S) g(S) s(S’) => w(S) s(S’) if S =/= S’ .
crl [goat-eats] : c(S) g(S) s(S’) => g(S) s(S’) if S =/= S’ .

rl [shepherd-alone] : s(S) => s(change(S)) .

rl [wolf] : s(S) w(S) => s(change(S)) w(change(S)) .

rl [goat] : s(S) g(S) => s(change(S)) g(change(S)) .
rl [cabbage] : s(S) c(S) => s(change(S)) c(change(S)) .

endm

In [2] the first two rules were presented as equations in order to force Maude

to apply them before any other rule if it is possible. But besides the fact that

that solution introduced a coherence problem that had to be solved, it changed the

semantics of the problem. Here we can guarantee the priority of these two rules by

means of strategies. The eating strategy below performs all possible eatings; the

oneCross strategy applies one of the other rules once; finally, the allCE strategy

returns all the possible reachable states where eating has had the higher priority.

smod RIVER-CROSSING-STRAT is

protecting RIVER-CROSSING .
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strat eating : @ Group .

sd eating := (wolf-eats | goat-eats) ! .

strat oneCross : @ Group .
sd oneCross := shepherd-alone | wolf | goat | cabbage .

strat allCE : @ Group .

sd allCE := (eating ; oneCross) * .

endsm

If the strategy allCE ; match (s(right) w(right) g(right) c(right)) ap-

plied to the initial state returns a solution, it means that there is a way in which

the shepherd can transport all his belongings to the other side of the river.

By instantiating the parameterized module implementing the semantics of the

strategy language at the metalevel shown in Section A with the modules RIVER-CROSSING

and RIVER-CROSSING-STRAT, we can execute the above strategy. Since strategy

allCE is not terminating, we use a bound on the number of rewrites.

frew [5000] < call(’allCE.Strat) ;
match(’__[’s[’right.Side],’w[’right.Side],

’g[’right.Side],’c[’right.Side]], nil) @

’__[’s[’left.Side],’w[’left.Side],’g[’left.Side],’c[’left.Side]] > .

rewrites: 27357 in 803ms cpu (808ms real) (34053 rewrites/second)
result (sort not calculated):

sol(’__[’c[’right.Side],’g[’right.Side],’s[’right.Side],’w[’right.Side]]) ...

The result contains a solution together with some pending tasks not shown.

C Some proof sketches

Proposition 5.1 For terms t and t′ and strategy expression E in S(M,SM), if

t′ ∈ [[E @ t]] then M ⊢ t −→∗ t′.

Proof. We describe the cases of nonconditional rules, if-then-else, and union.

If t′ ∈ [[L[Sb]@t]], then t′ has been obtained as the result of applying the instance

L[Sb] of rule L to a subterm of t. By the replacement and congruence inference

rules of rewriting logic, we have t −→∗ t′.

Assume now t′ ∈ [[if(E,E′,E′′) @ t]]. If [[E @ t]] 6= ∅, then t′ ∈ [[E′ @ [[E @ t]]]];

hence, there exists t′′ ∈ [[E @ t]] such that t′ ∈ [[E′ @ t′′]]. Then, t −→∗ t′′ and

t′′ −→∗ t′. By the transitivity inference rule of rewriting logic, we get t −→∗ t′. If

[[E @ t]] = ∅, then t′ ∈ [[E′′ @ t]]. Then, t −→∗ t′.

If t′ ∈ [[(E |E′) @ t]] = [[E @ t]] ∪ [[E′ @ t]], then t′ ∈ [[E @ t]] or t′ ∈ [[E′ @ t]]; in

both cases, t −→∗ t′. 2

Theorem 5.3 (Correctness)

For terms t and t′ and strategy expression E in S(M,SM), if there is a term w of

sort Tasks such that S(M,SM) ⊢ <E@ t> −→∗ w with t′ ∈ sols(w), then t′ ∈ [[E@t]].

Proof. We describe the cases of strategic rewriting of subterms and sequential

composition.

If < amatchrew(P,C,(P1 using E1,...,Pn using En)) @ t > −→∗ w, then

for each strategy Ei there are fragments of this rewriting sequence of the form

< < Ei @ ui > ; mrew(...)>TS −→∗ < sol(vi) TS′ ; mrew(...)>TS′′

where ui are subterms of t which are appropriate instances of the subpatterns Pi,
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supporting the application of the rule giving rise to the subterm sol(t′) at the top

of w. Then vi ∈ [[Ei @ ui]] and, since t′ is obtained from t by putting together all

the pieces vi in the respective places of the ui, we get

t′ ∈ [[amatchrew(P,C,(P1 using E1,...,Pn using En))@ t]].

If < E ; E’ @ t > −→∗ w, then this rewriting sequence has the form

< E ; E’ @ t > −→ < < E @ t > ; seq(E’) >

−→∗ < sol(t′′) TS ; seq(E’) >TS′

−→ < E’ @ t′′ > < TS ; seq(E’) >TS′

−→∗ sol(t′)TS′′

where sol(t′) is the result of rewriting the subterm < E’ @ t′′ >. Then, t′′ ∈ [[E@t]]

and t′ ∈ [[E’ @ t′′]]. Therefore, t′ ∈ [[E’ @ [[E @ t]]]] = [[E ; E’ @ t]]. 2

Theorem 5.4 (Soundness)

If S(M,SM) ⊢ <E@ t> −→∗ w and t′ ∈ sols(w), then M ⊢ t −→∗ t′.

Proof. We describe the cases of conditional rules and sequential composition.

If < L[Sb]{E1...En} @ t > −→∗ w, then for each rewrite condition of the rule

there are fragments of this rewriting sequence of the form

< < Ei @ ui > ; chkrw(...)>TS −→∗ < sol(vi) TS′ ; chkrw(...)>TS′′

where ui and vi are appropriate instances of the condition, supporting the applica-

tion of the rule giving rise to the subterm sol(t′) at the top of w. Then ui −→
∗ vi

and all the rewrite conditions of the rule are satisfied. By the replacement and

congruence inference rules, the rule can be applied inside the term t obtaining t′,

that is t −→∗ t′.

If < E ; E’ @ t > −→∗ w, then this rewriting sequence has the form

< E ; E’ @ t > −→ < < E @ t > ; seq(E’) >

−→∗ < sol(t′′) TS ; seq(E’) >TS′

−→ < E’ @ t′′ > < TS ; seq(E’) >TS′

−→∗ sol(t′)TS′′

where sol(t′) is the result of rewriting the subterm < E’ @ t′′ >. Then, t −→∗ t′′

and t′′ −→∗ t′. By the transitivity inference rule, we get t −→∗ t′. 2

Theorem 5.6 (Persistence)

If S(M,SM) ⊢ <E@ t> −→∗ w and t′ ∈ [[E @ t]], then there exists a term w′ such

that S(M,SM) ⊢ w −→∗ w′, and t′ ∈ sols(w′).

Proof. The general idea behind the rewriting semantics described in Section 4 is

that some rules (together with some auxiliary functions) generate a set of inde-

pendent parallel tasks that represent sets of potential solutions. Those tasks are

rewritten disjointly of each other and inside each one there may be other nested

tasks that behave in the same way. Therefore, each solution is searched for inde-

pendently of the others. If a partial result w does not contain yet a solution, it has

a subterm where this solution will appear by further rewriting.

For example, the application of a nonconditional rule at the top, top(L), by

means of the auxiliary operation gen-sols, generates a set of the form sol(t1) . . .
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sol(tn), where t1, . . . , tn are all the instances of the righthand side of the rule L, for

all possible matches with the lefthand side of L (if there are none, the result is the

empty set none). All those terms are precisely the elements of the set [[top(L)@ t]].

Let us consider now the case of if-then-else. The first step in any rewrite sequence

< if(E, E’, E’’) @ t > −→∗ w must be of the form < if(E, E’, E’’) @ t >

−→ < < E @ t > ; ifc(E’, E’’, t) >. Then, the only possible rewrites take

place in the subtask < E @ t >, where all the solutions will be handled in parallel

and eventually found. If there are no solutions, the only possible rewrite step

is < none ; ifc(E’, E’’, t) > −→ < E’’ @ t >, that has put into work the

continuation and will find all the solutions of applying E’’ to the initial term t. On

the other hand, if some solutions exist, then it is always possible to perform once the

step < sol(t′) TS ; ifc(E’, E’’, t) > −→ < E’ @ t′ > < TS ; seq(E’) >

which forwards the solutions of applying the strategy E to the strategy E’, thus

obtaining the solutions of the if-then-else in [[E’ @ [[E @ t]]]].

2
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