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Abstract

Automated deduction methods should be specified not procedurally, but declaratively, as inference systems
which are proved correct regardless of implementation details. Then, different algorithms to implement a
given inference system should be specified as strategies to apply the inference rules. The inference rules
themselves can be naturally specified as (possibly conditional) rewrite rules. Using a high-performance
rewriting language implementation and a strategy language to guide rewriting computations, we can obtain
in a modular way implementations of both the inference rules of automated deduction procedures and
of algorithms controling their application. This paper presents the design of a strategy language for the
Maude rewriting language that supports this modular decomposition: inference systems are specified in
system modules, and strategies in strategy modules. We give a set-theoretic semantics for this strategy
language, present its different combinators, illustrate its main ideas with several examples, and describe
both a reflective prototype in Maude and an ongoing C++ implementation.
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1 Introduction

Automated deduction methods (e.g. congruence closure, resolution, etc.) should be
specified, not procedurally, as low level algorithms (based on pointer manipulation,
etc.), but declaratively as inference systems, which are proved correct regardless of
implementation details. Then, specific algorithms to implement a given inference
system should be specified at a high level as strategies to apply the inference rules.
For example, Shostak’s [24] and Downey-Sethi-Tarjan’s [13] congruence closure al-
gorithms can be viewed as different strategies to apply the same congruence closure
inference rules [25,2].

This allows a modular separation between the inference rules themselves and
their control through strategies. In this way, one can reason, for example, about
key correctness properties of an inference system while leaving open various control
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issues on how to apply the inference rules in an optimal way. This is a much better
way to specify an inference system than the traditional algorithmic descriptions
of deductive procedures in which the logical and control aspects are merged and
confused together.

This abstract methodology can be and has been applied not just to isolated
examples, but to a very wide range of automated deduction methods. It is by now
customary as a way to specify at an abstract level many logical inference systems.
Without in any way trying to be exhaustive, which would be quite impossible, we
can mention by way of examples:

• Unification (Martelli & Montanari [18], Jouannaud & Kirchner [15]).
• Congruence closure (Kapur [16], Tiwari [2,25]).
• Nelson-Oppen combination of decision procedures (Tiwari [25], Conchon & Krstic

[12], Nieuwenhuis, Oliveras & Tinelli [22]).
• Knuth-Bendix completion (Bachmair & Dershowitz [1], Lescanne [17]).
• Inductive theorem proving and other Maude tools (Clavel, Durán & Meseguer

[11,8]).

Rewriting logic is a simple logical framework in which the inference rules of a
logic or of any deductive procedure can be easily expressed as conditional rewrite
rules [21,19]. For example, a rule for orienting equalities present in inference systems
for completion-like procedures

orient
(K,E ∪ {t ≈ c}, R)
(K,E,R ∪ {t→ c})

if t � c

corresponds to a conditional rewrite rule

orient : (K,E ∪ {t ≈ c}, R) −→ (K,E,R ∪ {t→ c}) if t � c

Using a high-performance rewriting language implementation and a strategy
language to guide rewriting computations, the above high-level distinction between
inference rules and strategies can be directly implemented, providing a way to faith-
fully represent the high-level specification as an executable prototype or even as an
implementation.

An interesting feature of rewriting logic is that, thanks to its reflective capabili-
ties [5,10], strategies themselves can also be specified in a declarative way by means
of rewrite rules at the metalevel. That is, by rewrite rules that guide one level up
how the inference rules of the system we are interested in are applied at the “ob-
ject level.” This reflective approach supports reasoning about metalevel features by
means of reflective reasoning techniques [3].

The Maude language [6,7] maintains this modular distinction between rewrite
rules and strategies to execute them: a Maude system module is a rewrite theory
with no strategy information. In general, the same rewrite theory describing an
inference system may be executed with different strategies, which may each have
specific advantages depending on the purpose at hand. Therefore, in Maude strate-
gies can be defined by rules at the metalevel in its META-LEVEL module. There is
great freedom to define in this way different strategy languages [9], which can then
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be used to specify and execute strategies for any object theory of interest. The se-
mantics of the strategy language in question is used to ensure that all computations
allowed are correct deductions in the object theory.

However, pragmatic considerations are important to guide strategy language
designs that can deal well with relevant applications. Therefore, we have undertaken
the project of providing a basic strategy language for Maude [20]. To make the
language easier to use we have made it available at the object level, rather than at
the metalevel. Our strategy language allows the definition of strategy expressions
that control the way a term is rewritten. We have benefitted from our own previous
experience designing strategy languages in Maude, and also from the experience of
other languages like ELAN [4] and Stratego [27]. Our design is based on a strict
separation between the rewrite rules in system modules and the strategy expressions,
that are specified in separate strategy modules. Thus, in our proposal it is not
possible to use strategy expressions in the rewrite rules of a system module: they
can only be specified in a separate strategy module. In fact, this separation makes
possible defining different strategy modules to control in different ways the rewrites
of a single system module.

A strategy is described as an operation that, when applied to a given term,
produces a set of terms as a result, given that the process is nondeterministic in
general. The basic strategies consist of the application of a rule (identified by
the corresponding rule label) to a given term, and allowing variables in a rule to
be instantiated before its application by means of a substitution. For conditional
rules—which may contain rewrite conditions—such rewrite conditions can also be
controlled by means of strategies. Basic strategies are combined by means of several
combinators, including: regular expression constructions (concatenation, union, and
iteration), if-then-else, combinators to control the way subterms of a given term are
rewritten, and recursion [20]. As a new contribution of this paper, we develop the
notion of generic strategies (e.g., backtracking, map, etc.), which are applicable not
to a single rewrite theory, but to a wide range of rewrite theories satisfying some
parametric requirements.

In order to validate our strategy language design, we have mainly focused on
automated deduction and programming language semantics applications. Besides
the short examples presented in [20], the language has been successfully used in the
implementation of the operational semantics of the ambient calculus [23], the two-
level operational semantics of the parallel functional programming language Eden
[14], and basic completion algorithms [26]. Moreover, as a further contribution of
this paper, we apply here the strategy language to congruence closure algorithms.

Our first prototype implementation defined the language at the metalevel in the
usual reflective way, while keeping the user interface at the object level for ease
and convenience. After validating our language design experimentally and reaching
a mature language design, we are currently developing a direct implementation
of our strategy language at the C++ level, at which the Maude system itself is
implemented, to make the language a stable new feature of Maude, and to allow a
more efficient execution. A third contribution of this paper is a description of the
main design ideas used in such ongoing implementation.
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2 Rewriting logic and Maude

A rewrite theory [21] (Σ, E,R) consists of a signature Σ, a set E of equations, and
a set R of rules. The static part of a system or logic is specified in an equational
sublogic of rewriting logic (membership equational logic) by means of the equations
E. The system dynamics (transitions or inferences) is specified by means of possibly
conditional rules R that rewrite terms, representing parts of the system, into other
terms.

Maude [6,7] is an efficient implementation of rewriting logic. Maude syntax
is user-definable and operators can have equational attributes like associativity
(assoc), commutativity (comm), and identity (id:), so that rewriting can take place
modulo such equational axioms.

The general form of a rewrite rule with label l is the following:

l : t→ t′ if (
∧
i

ui = vi) ∧ (
∧
j

wj : sj) ∧ (
∧
k

pk → qk)

where t, t′, ui, vi, wj , pk and qk are terms and sj are sort identifiers.
In order to apply such a rule to a subject term u, we have to find a subterm

of u which is an instance of t modulo the equational axioms of the theory (e.g.,
associativity, commutativity, identity) with a substitution θ. But before rewriting
u by replacing θ(t) by θ(t′), the rule’s condition has to be checked. This means
checking that the equalities

∧
i θ(ui) = θ(vi) hold, the memberships

∧
j θ(wj) : sj ,

stating that each term θ(wj) has sort sj , hold, and that for each k we can rewrite
by zero, one, or more steps each term θ(pk) to a substitution instance of θ(qk) (qk
is typically a pattern that can have extra variables). Assuming that the equations
E in the rewrite theory are Church-Rosser and terminating, checking the equations
and memberships is a decidable problem. Instead, checking the rewrite conditions
requires performing breadth-first search. Since in general such a search process may
not terminate, whether a single rewrite step can be performed with a conditional
rule can be undecidable.

A Maude system module specifies a rewrite theory. The Maude syntax is so
close to the corresponding mathematical notation for defining rewrite theories as to
be almost self-explanatory. The general point to keep in mind is that each item: a
sort, a subsort, an operation, an equation, a rule, etc., is declared with an obvious
keyword: sort, subsort, op, eq (or ceq for conditional equations), rl (or crl
for conditional rules), etc., with each declaration ended by a space and a period.
Indeed, a rewrite theory (Σ, E ∪ A,R) is defined with the signature Σ specified
using keywords sort, subsort, and op, equations in E using keyword eq, and
equational axioms in A using keywords assoc, comm and id:, and rules in R using
keyword rl. Another important point is the use of “mix-fix” user-definable syntax,
with the argument positions specified by underbars; for example: if then else fi.
Furthermore, the concrete syntax of equations in conditions has three variants,
namely: ordinary equations t = t’; matching equations t := t’, where the term
t’ is required to match the pattern t; and abbreviated Boolean equations of the
form t, with t a Boolean term, abbreviating the equation t = true.

For example, the system module SORTING below specifies a rewrite theory whose
expressions are arrays, represented as sets of index-value pairs, has an equationally-
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defined length function measuring the length of an array, and has a single, uncon-
ditional rewrite rule switch that switches the values at two array positions.
mod SORTING is
protecting NAT .
sorts Pair PairSet .
subsort Pair < PairSet .
op (_,_) : Nat Nat -> Pair .
op empty : -> PairSet .
op __ : PairSet PairSet -> PairSet [assoc comm id: empty] .
op length : PairSet -> Nat .
vars I J V W : Nat . var PS : PairSet .
eq length(empty) = 0 .
eq length((I, V) PS ) = length(PS) + 1 .
rl [switch] : (J, V) (I, W) => (J, W) (I, V) .

endm

3 The Maude strategy language

In this section we describe the combinators of our strategy language and their
semantics. We have a simple set-theoretic semantics for the strategies of a rewrite
theory R = (Σ, E,R) given by a function

@ : Strat× TΣ(X) −→ P(TΣ(X)),

which has an obvious extension to a function

@ : Strat× P(TΣ(X)) −→ P(TΣ(X)),

where, if s ∈ Strat and U ⊆ TΣ(X), we have s@ U =
⋃

t∈U s@ t.

3.1 Idle and fail

The simplest strategies are the constants idle and fail. The first always succeeds,
but without modifying the term t to which it is applied, that is, idle @ t = {t},
while the second always fails, that is, fail @ t = ∅.

3.2 Basic strategies

The basic strategies consist of the application of a rule (identified by the corre-
sponding rule label) to a given term. In this case a rule is applied anywhere in
the term where it matches satisfying its condition, with no further constraints on
the substitution instantiation. In case of conditional rules, the default breadth-first
search strategy is used for checking the rewrites in the condition. Therefore, if l is a
rule label and t a term, the semantics of l@ t is the set of terms to which t rewrites
in one step using the rule with label l anywhere where it matches and satisfies the
rule’s condition.

A slightly more general variant allows variables in a rule to be instantiated before
its application by means of a substitution, that is, a mapping of variables to terms,
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so that the user has more control on the way the rule is applied.

〈Substitution〉 ::= none

| 〈Variable〉 <- 〈Term〉
| 〈Substitution〉 ; 〈Substitution〉

〈BasicStrat〉 ::= 〈Label〉
| 〈Label〉 [ 〈Substitution〉 ]

〈Strat〉 ::= 〈BasicStrat〉

The unconstrained case L can also be expressed as L[none], where none denotes
the identity (empty) substitution.

For conditional rules, rewrite conditions can be controlled by means of strategy
expressions. As before, the substitution can be omitted if it is empty.

〈StratList〉 ::= 〈Strat〉
| 〈Strat〉 〈StratList〉

〈BasicStrat〉 ::= 〈Label〉 [ [ 〈Substitution〉 ] ] { 〈StratList〉 }

A strategy expression of the form L[S]{E1 ... En} denotes a basic strategy
that applies anywhere in a given state term the rule L with variables instantiated
by means of the substitution S and using E1, . . . , En as strategy expressions to
check the rewrites in the condition of L. The number of rewrite condition fragments
appearing in the condition of rule L must be exactly n for the expression to be
meaningful.

3.3 Top

The most common case allows applying a rule anywhere in a given term, as explained
above, but we also provide an operation to restrict the application of a rule only to
the top of the term, because in some examples like structural operational semantics,
the only interesting or allowed rewrite steps happen at the top.

〈Strat〉 ::= top( 〈BasicStrat〉 )

top(BE) applies the basic strategy BE only at the top of a given state term.
Note, however, that even applying a rule at the top is nondeterministic due to the
possibility of multiple matches, because matching takes place modulo the equational
attributes of the operators, such as associativity, commutativity, or identity.

3.4 Tests

Tests are seen as strategies that check a property on a state, so that the test qua
strategy is successful if true and fails if false. In the first case, the state is not
changed. That is, for T a test and t a term, T @ t will evaluate to {t} if T succeeds
on t, and to ∅ if it fails, so that T acts as a filter on its input.

Since matching is one of the basic steps that take place when applying a rule,
the strategies that test some property of a given state term are based on matching.
As in applying a rule, we distinguish between matching anywhere and matching
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only at the top of a given term.

〈EqCondition〉 ::= 〈BoolTerm〉
| 〈Term〉 = 〈Term〉
| 〈Term〉 := 〈Term〉
| 〈EqCondition〉 /\ 〈EqCondition〉

〈Test〉 ::= amatch 〈Pattern〉 [ s.t. 〈EqCondition〉 ]
| match 〈Pattern〉 [ s.t. 〈EqCondition〉 ]
| xmatch 〈Pattern〉 [ s.t. 〈EqCondition〉 ]

〈Strat〉 ::= 〈Test〉

amatch T s.t. C is a test that, when applied to a given state term T’, is suc-
cessful if there is a subterm of T’ that matches the pattern T (that is, matching
is allowed anywhere in the state term) and then the condition C is satisfied with
the substitution for the variables obtained in the matching, and fails otherwise.
match T s.t. C corresponds to matching only at the top. When the condition C
is simply true, it can be omitted. xmatch T s.t. C performs matching at the top
but with extension [7] modulo the attributes of the top operator of T.

3.5 Regular expressions

Basic strategies can be combined so that strategies are applied to execution paths.
The first strategy combinators we consider are the typical regular expression con-
structions: concatenation, union, and iteration.

〈Strat〉 ::= 〈Strat〉 ; 〈Strat〉 concatenation
| 〈Strat〉 | 〈Strat〉 union
| 〈Strat〉 * iteration (0 or more)
| 〈Strat〉 + iteration (1 or more)

The concatenation operator is associative and the union operator is associative
and conmutative. This commutativity of union provides a form of nondeterminism
in the way the solutions are found.

If E, E′ are strategy expressions and t is a term, then (E ;E′)@t = E′@(E@t),
(E |E′) @ t = (E @ t) ∪ (E′ @ t), and E + @ t =

⋃
i≥1E

i @ t, where E1 = E and
En = (E ;En−1) for n > 1. Of course, E * = idle |E +. For example, a strategy
of the form E ; P (with P a test) will filter out all those results from E that do not
satisfy the test P.

3.6 If-then-else and its derived strategies

Our next strategy combinator is a typical if-then-else, but generalized so that the
first argument is also a strategy. We have borrowed this idea from Stratego [27],
but it also appears in ELAN [4, Example 5.2].

〈Strat〉 ::= 〈Strat〉 ? 〈Strat〉 : 〈Strat〉
The behavior of the strategy expression E ? E’ : E’’ is as follows: in a given

state term, the strategy E is evaluated; if E is successful, the strategy E’ is evaluated
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in the resulting states, otherwise E’’ is evaluated in the initial state. That is, by
definition, this combinator satisfies the equation

(E ? E′ : E′′) @ t = if (E @ t) 6= ∅ then E′ @ (E @ t) else E′′ @ t fi.

Note that, as mentioned above, in general the first argument is a strategy expres-
sion and not just a test. Since a test is a strategy, we have the particular case
P ? E’ : E’’ for a test P where evaluation coincides with the typical Boolean case
distinction: E’ is evaluated when the test P is true and E’’ when the test is false,
taking into account that a test qua strategy fails when false.

Using the if-then-else combinator, we can define many other useful strategy
combinators as derived operations. E orelse E’ evaluates E in a given state; if
such evaluation is successful, its results are the final ones, but if it fails, then E’ is
evaluated in the initial state.

E orelse E’ = E ? idle : E’

not(E) reverses the result of evaluating E, so that not(E) fails when E is suc-
cessful and vice versa.

not(E) = E ? fail : idle

An interesting use of not(E) is the following “normalization” (or “repeat until the
end”) operation E !:

E ! = E * ; not(E)

try(E) evaluates E in a given state; if it is successful, the corresponding result
is given, but if it fails, the initial state is returned.

try(E) = E ? idle : idle

Evaluation of test(E) checks the success/failure result of E, but it does not
change the given initial state.

test(E) = not(E) ? fail : idle

Notice that test(E) = not(not(E)).

3.7 Rewriting of subterms

With the previous combinators we cannot force the application of a strategy to a
specific subterm of the given initial term. In particular, the scope of the substitution
in the (a/x)match combinators is only the corresponding condition. We can have
more control over the way different subterms of a given state are rewritten by means
of the (a/x)matchrew combinators.

〈TermStratList〉 ::= 〈Term〉 using 〈Strat〉
| 〈TermStratList〉 , 〈TermStratList〉

〈Strat〉 ::= amatchrew 〈Pattern〉 [ s.t. 〈EqCondition〉 ] by
〈TermStratList〉

| matchrew 〈Pattern〉 [ s.t. 〈EqCondition〉 ] by
〈TermStratList〉

| xmatchrew 〈Pattern〉 [ s.t. 〈EqCondition〉 ] by
〈TermStratList〉
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T = g(...T1...Tn...) −→ g(... ... ...)

matching substitution

T’ = f(... g(... ...)... ...) −→ f(... g(... ...)... ...)

E1 En rewriting of subterms

Fig. 1. Behaviour of the xmatchrew combinator.

The strategy expressions E1, . . . , En can make use of the variables instanti-
ated in the matching, thus taking care of information extracted from the state
term (see the examples in Sections 5.1 and 5.6).

The version matchrew works in the same way, but performing matching
only at the top. In both versions, when the condition is true it can be omitted.

In ELAN and Stratego there is a strategy combination mechanism called
congruence operators [2,13]. For each syntax constructor C there is a corre-
sponding congruence operator, also denoted by C. If C is an n-ary construc-
tor, then the corresponding congruence operator allows defining the strategy
C(E1,...,En). Such a strategy applies only to terms of the form C(T1,...,Tn),
and its results are the terms C(T1’,...,T2’), provided the application of each
strategy Ei to each term Ti succeeds with result Ti’. Congruence operators
can be simulated in our language by means of the matchrew combinator, since
the above strategy C(E1,...,En) can be represented as

matchrew C(X1,...,Xn) by X1 using E1, ..., Xn using En

where variables Xi of the appropriate sorts are used to match the arguments
of the term C(T1,...,Tn).

2.1.9 Recursion

Recursion is achieved by giving a name to a strategy expression and using this
name in the strategy expression itself or in other related strategies. This is
done in strategy+search modules (see Section 2.3). Concrete examples will be
shown in Section 5.

2.2 Search syntax

There are basic constructors for the most usual kinds of search: breadth-
first, depth-first, and iterated bounded depth-first. In all of them, the first
argument represents the number of requested solutions (with unbounded for
“all solutions”), while in the third case, the second argument is the increment
between iterations.

op bfs : Bound DStrat -> Search .

op dfs : Bound DStrat -> Search .

op ibdfs : Bound Nat DStrat -> Search .

The current (default) Maude search command [4, Section 17.4]

8

Fig. 1. Behavior of the xmatchrew combinator.

When the strategy expression
amatchrew T s.t. C by T1 using E1, ..., Tn using En

is applied to a state term T’, first a subterm of T’ that matches T and satisfies C
is selected. Then, the terms T1, . . . , Tn (which must be disjoint subterms of T),
instantiated appropriately, are rewritten as described by the strategy expressions
E1, . . . , En, respectively. The results are combined in T and then substituted in T’,
in the way illustrated in Figure 1.

The strategy expressions E1, . . . , En can make use of the variables instantiated
in the matching, thus taking care of information extracted from the state term (see
the example in Section 4.1).

The version matchrew works in the same way, but performing matching only at
the top, while xmatchrew performs matching at the top with extension. In all cases,
when the condition is true it can be omitted.

The congruence operators used in ELAN and Stratego [4,27] are special cases of
the matchrew combinator, as shown in [20].

3.8 Recursion

Recursion is achieved by giving a name to a strategy expression and using this
name in the strategy expression itself or in other related strategies. This is done in
strategy modules (see Section 3.9). Concrete examples will be shown in Section 4.

3.9 Strategy modules and commands

Given a Maude system module M, the user can write one or more strategy modules
to define strategies for M. Such strategy modules have the following form:
smod STRAT is
protecting M .
including STRAT1 . ... including STRATj .
strat E1 : T11 ... T1m @ K1 .
sd E1(P11,...,P1m) := Exp1 .

...
strat En : Tn1 ... Tnp @ Kn .
sd En(Pn1,...,Pnp) := Expn .
csd En(Qn1,...,Qnp) := Expn’ if C .

endsd

where M is the system module whose rewrites are being controlled, STRAT1, . . . ,
STRATp are imported strategy submodules, E1, . . . , En are identifiers, and Exp1,
. . . , Expn are strategy expressions (over the language of labels provided by M),
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where the identifiers can appear, thus allowing (mutually) recursive definitions.
The basic idea is that these strategy declarations provide useful abbreviations

for strategy expressions E that the user can then utilize in a (strategy rewrite)
command srew T using E, which rewrites a term T using a strategy expression E.

A strategy identifier can have data arguments, that are terms built with the
syntax defined in the system module M. When a strategy identifier is declared (with
the keyword strat), the types of its arguments (if any) are specified between the
symbols : and @. After the symbol @, the type of the terms to which this strategy
can be applied is also specified.

A strategy definition (introduced with the keyword sd) associates a strategy
expression (on the righthand side of the symbol :=) with a strategy identifier (on
the lefthand side) with patterns as arguments, used to capture the values passed
when the strategy is invoked. These strategy definitions can be conditional (with
keyword csd). There may be several definitions for the same strategy identifier
but they should refer to disjoint cases of the arguments, due either to the usage of
different constructors in the patterns or to the conditions used.

A strategy module can be parametric. As for other parameterized Maude mod-
ules [7], the requirements that a concrete parameter must fulfill are specified in a
theory, called in this case a strategy theory. In strategy theories, syntax for the
terms (sorts and operators) and strategy identifiers can be declared. For example,
the following strategy theory requires a sort State, two operators from State to
Bool, and a strategy identifier expand without arguments and applicable to State
terms.
sth BT-ELEMS is
protecting BOOL .
sort State .
op isOk : State -> Bool .
op isSolution : State -> Bool .
strat expand @ State .

endsth

A parameterized strategy module, say STRAT, can have several strategy theo-
ries P1, . . ., Pn as formal parameters. Its header will then be declared with syntax
STRAT{X1 :: P1, ..., Xn :: Pn}. A parameterized strategy module can then be
instantiated with actual parameters that are strategy modules S1, . . . , Sn that sat-
isfy, respectively, the requirements in the corresponding strategy theories P1, . . . , Pn.
As done in Maude for instantiating any other kind of parameterized module [7], the
binding of each formal parameter Pi to its corresponding actual parameter Si is
specified by a view, that is, by a theory interpretation that maps sorts in the param-
eter theory Pi to sorts in the strategy module Si, and, likewise, maps operators to
operators or terms, and strategy identifiers to strategy expressions. In Section 4.3
we show a complete example of a parameterized strategy module.

4 Some Examples

In this section we show some examples to illustrate the use of the strategy language.
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4.1 Blackboard

The first example is a simple game. We have a blackboard on which several natural
numbers have been written. A legal move consists in selecting two numbers in the
blackboard, removing them, and writing their arithmetic mean. The objective of
the game is to get the greatest possible number written on the blackboard at the
end. The specification of the game in Maude is also quite simple.
mod BLACKBOARD is
protecting NAT .
sort Blackboard .
subsort Nat < Blackboard .
op __ : Blackboard Blackboard -> Blackboard [assoc comm] .
vars M N : Nat .
rl [play] : M N => (M + N) quo 2 .

endm

A player can choose the numbers randomly, or can follow some strategy. Possible
strategies consist in taking always the two greatest numbers, or the two smallest,
or taking the greatest and the smallest. The following EXT-BLACKBOARD module
extends the BLACKBOARD module with operations to get the maximum and the min-
imum numbers in a blackboard, and for removing an element in the blackboard.
mod EXT-BLACKBOARD is
including NAT .
including BLACKBOARD .
ops max min : Blackboard -> Nat .
op remove : Nat Blackboard -> Blackboard .
vars M N X Y : Nat .
var B : Blackboard .
eq max(N) = N .
eq max(N B) = if N > max(B) then N else max(B) fi .
eq min(N) = N .
eq min(N B) = if N < min(B) then N else min(B) fi .
eq remove(X, X B) = B .

endm

The strategy module BLACKBOARD-STRAT below defines the three mentioned
strategies. Note how the matchrew strategy constructor is used to get informa-
tion about the state term that is then used in the definition of how the rule play
should be applied.
smod BLACKBOARD-STRAT is
protecting EXT-BLACKBOARD .
var B : Blackboard .
vars X Y : Nat .
strat maxmin @ Blackboard .
sd maxmin := (matchrew B s.t. X := max(B) /\ Y := min(B) by

B using play[M <- X ; N <- Y] ) ! .
strat maxmax @ Blackboard .
sd maxmax := (matchrew B s.t. X := max(B) /\ Y := max(remove(X,B)) by

B using play[M <- X ; N <- Y] ) ! .
strat minmin @ Blackboard .
sd minmin := (matchrew B s.t. X := min(B) /\ Y := min(remove(X,B)) by

B using play[M <- X ; N <- Y] ) ! .
endsm
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Y := 2
while Y ≤ N do

X := Y

while X > 1 ∧ V [X − 1] > V [X] do
switch V [X − 1] and V [X]
X := X − 1

Y := Y + 1

Fig. 2. Insertion sort.

Maude> srew 2000 20 2 200 10 50 using maxmin .
result NzNat : 178
Maude> srew 2000 20 2 200 10 50 using maxmax .
result NzNat : 77
Maude> srew 2000 20 2 200 10 50 using minmin .
result NzNat : 1057

4.2 Insertion sort

In this section we present a strategy that implements the insertion sort algorithm.
The imperative pseudocode for this algorithm is shown in Figure 2 (for sorting an
array V [1..N ]). The algorithm keeps two indices, one pointing to the next element
to be inserted between the already sorted elements, and another pointing to the
element which is being inserted.

First we define a module SORTING (shown in Section 2) that specifies arrays as
sets of pairs and a rule to switch the values in two positions of the array.

The following strategy module defines the strategies insort and insert that
rewrite terms of sort PairSet and represent the loops in the algorithm in a recursive
way. Both strategies have a natural number as data argument. They represent the
indices used by the algorithm. The expression X − 1 is represented as sd(X, 1),
where sd is the predefined symmetric difference operation in the NAT module. Notice
that the conjunction in the inner loop is separated in two conditions, and that the
last strategy definition is conditional, with condition X > 1.
smod INSERTION-SORT-STRAT is
protecting SORTING .
var PS : PairSet .
vars X Y V W : Nat .
strat insort : Nat @ PairSet .
sd insort(Y) := try(match PS s.t. Y <= length(PS) ;

insert(Y) ;
insort(Y + 1)) .

strat insert : Nat @ PairSet .
sd insert(1) := idle .
csd insert(X) := try(amatch (sd(X,1), V) (X, W) s.t. V > W ;

switch[J <- sd(X,1) ; I <- X] ;
insert(sd(X,1)))

if X > 1 .
endsm

Maude> srew (1, 18) (2, 14) (3, 11) (4, 15) (5, 12) using insort(2) .
result PairSet : (1, 11) (2, 12) (3, 14) (4, 15) (5, 18)

12
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Sometimes a strategy needs to remember some information about what it has
already done in order to know what it has to do next. In the above insertion
sort strategy, this information is maintained in the arguments of the strategies
insort and insert. But depending on the way this information has to be modified,
sometimes this “memory” for keeping auxiliary information can be maintained as
part of the term being rewritten. In [20] we showed a different way of implementing
the insertion sort algorithm using this “memory-based” approach.

4.3 Backtracking

In this section we show a parametric strategy useful for solving a problem using
backtracking. It requires that (partial) solutions are represented as terms of a sort
State, and that there are predicates isOk, to check if a partial solution is extensible
to a complete solution, and isSolution, to check if we already have a solution. It
also assumes a strategy expand that extends a partial solution. These parametric
requirements are collected in the strategy theory BT-ELEMS shown in Section 3.9.
With these ingredients we can then define a generic strategy solve that defines how
a problem has to be solved by means of backtracking.
smod BT-STRAT{X :: BT-ELEMS} is
var S : X$State .
strat solve @ X$State .
sd solve := (match S s.t. isSolution(S)) ? idle

: (expand ;
match S s.t. isOk(S) ;
solve) .

endsm

This strategy first checks if it has already obtained a solution. If this is the case,
it finishes. Otherwise, it applies the strategy expand, checks if the extension is ok,
and continues recursively.

We can use this strategy to find a way out of a labyrinth. The labyrinth is built
on an 8× 8 grid where some cells have a wall that cannot be crossed. The entry is
on the top-left position [1, 1] and the exit to be found is at the bottom-right position
[8, 8]. Solutions are represented as lists of positions that indicate the path to be
followed; a list is a solution if it finishes in the exit; and a partial solution satisfies
the predicate isOk if its final position is on the grid without wall, and the list does
not contain duplications. The following module LABYRINTH defines these elements,
where we use the predefined module LIST, which is parameterized with respect to
the theory TRIV.
fmod POSITIONS is
protecting NAT .
sort Pos .
op [_,_] : Nat Nat -> Pos .

endfm

view Pos from TRIV to POSITIONS is
sort Elt to Pos .

endv

mod LABYRINTH is
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including LIST{Pos} .
op contains : List{Pos} Pos -> Bool .
ops isSolution isOk : List{Pos} -> Bool .
op next : List{Pos} -> Pos .
op wall : -> List{Pos} .
vars X Y : Nat .
var P Q : Pos .
var L : List{Pos} .
eq wall = *** the wall has been omitted *** .
eq isSolution(L [8,8]) = true .
eq isSolution(L) = false [owise] .
eq contains(nil, P) = false .
eq contains(Q L, P) = if P == Q then true else contains(L, P) fi .
eq isOk(L [X,Y]) = X >= 1 and Y >= 1 and X <= 8 and Y <= 8

and not(contains(wall, [X,Y])) and
not(contains(L, [X,Y])) .

crl [extend] : L => L P if next(L) => P .
rl [next] : next(L [X,Y]) => [X + 1, Y] .
rl [next] : next(L [X,Y]) => [X, Y + 1] .
rl [next] : next(L [X,Y]) => [sd(X, 1), Y] .
rl [next] : next(L [X,Y]) => [X, sd(Y, 1)] .

endm

A nonempty list is extended by means of the rewrite rule extend, that appends
any of the positions adjacent to the last one. This rule has to be applied to the
top of the list representing the current partial solution, and using the rules next to
solve the condition. This is precisely what the following strategy expand specifies.
smod LABYRINTH-STRAT is
protecting LABYRINTH .
strat expand @ List{Pos} .
sd expand := top(extend{next}) .

endsm

The following view indicates the source theory, the target strategy module, and
the mapping of each sort, operator or strategy identifier in the source theory. Un-
mentioned elements get the identity mapping, like the isOk and isSolution oper-
ations.
sview LABYRINTH-BT-ELEM from BT-ELEMS to LABYRINTH-STRAT is
sort State to List{Pos} .

endsv

smod LABYRINTH-BT-STRAT is
including BT-STRAT{LABYRINTH-BT-ELEM} .

endsm

4.4 Abstract congruence closure

Congruence closure is a decision procedure for the word problem associated with a
finite set of ground equations. Since it can be used to answer the satisfiability of a
conjunction of equalities and inequalities, it also provides a decision procedure for
the theory of uninterpreted function symbols. We present the abstract formulation
of congruence closure given by Tiwari, which allows a high-level proof of its cor-
rectness [25,2]. We then show how the inference rules have natural and very direct
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representations as rewrite rules that can be executed in Maude. Following Tiwari,
we also show how Shostak’s [24] and Downey-Sethi-Tarjan’s [13] congruence closure
algorithms can be specified as strategies in our strategy language. In this way we
obtain prototypes for these algorithms in Maude in a straighforward manner. Note
that, since the correctness of congruence closure only depends on that of the infer-
ence rules [25,2], and the strategy language only allows rewrites that are correct in
the rewrite theory being controlled, the analysis of these algorithms can be reduced
to control and efficiency issues: they can never perform an incorrect inference. Of
course, they can still be analyzed with respect to completeness.

Tiwari’s congruence closure inference rules are as follows, where K is a set of
constants, E is a set of equations, and R is a set of oriented equations.

Extension
(K,E[t], R)

(K ∪ {c}, E[c], R ∪ {t→ c})
if t→ c is a D-rule

Simplification
(K,E[t], R ∪ {t→ c})
(K,E[c], R ∪ {t→ c})

Orientation
(K ∪ {c}, E ∪ {t ≈ c}, R)
(K ∪ {c}, E,R ∪ {t→ c})

if t � c

Deletion
(K,E ∪ {t ≈ t}, R)

(K,E,R)

Deduction
(K,E,R ∪ {t→ c, t→ d}

(K,E ∪ {c ≈ d}, R ∪ {t→ d})

Collapse
(K,E,R ∪ {s[t]→ d, t→ c}
(K,E,R ∪ {s[c]→ d, t→ c}

if s 6≡ t

Their representation as rewrite rules in Maude follows very closely the above
abstract formulation, with the exception that the set K of constants is represented
as a counter to generate fresh constants. Some auxiliary functions, assumed in the
inference rules and having a straightforward equational definition, are used. These
auxiliary definitions are omitted for the sake of brevity.
crl [Ext] : < K, E u = v, R >

=> < K + 1, E u’ = v, R t -> c >
if subterm(u) => t *** u[t]
/\ isOpConstants?(t) *** t -> c is a D-rule
/\ c := c(K) *** new constant
/\ u’ := subst(u,t,c) .

crl [Sim] : < K, E u = v, R t -> c >
=> < K, E u’ = v, R t -> c >
if subterm(u) => t
/\ u’ := subst(u,t,c) .

crl [Ori] : < K, E t = c, R >
=> < K, E, R t -> c >
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if t > c .

rl [Del] : < K, E t = t, R >
=> < K, E, R > .

crl [Ded] : < K, E, R t -> c t -> d >
=> < K, E, R c -> d t -> d >
if c > d .

crl [Col] : < K, E, R u -> d t -> c >
=> < K, E, R u’ -> d t -> c >
if subterm(u) => t
/\ t =/= u *** proper subterm
/\ u’ := subst(u,t,c) .

Shostak’s [24] and Downey-Sethi-Tarjan’s [13] congruence closure algorithms can
be viewed as different strategies to apply the same congruence closure inference rules
[25,2].

Tiwari et al.’s specification of Shostak’s and Downey-Sethi-Tarjan’s algorithms
[25,2] is as strategies defined in terms of regular expressions. However, since this
formulation relies on a general understanding of regular expressions, and not in a
precise semantics for regular expressions as strategies, the regular expression speci-
fications given are in some sense ambiguous. The source of the ambiguity resides in
the lack of a notation to distinguish between a strategy E∗, which repeatedly ap-
plies E zero, one, or more times, and a strategy E! = E∗;not(E), which repeatedly
applies E “to the bitter end” (see Sections 3.5 and 3.6).

Their specifications of Shostak’s and Downey-Sethi-Tarjan’s algorithms, and
their corresponding, more precise specification in our strategy language are as fol-
lows:

• Shostak’s algorithm [24]:

Shos = ((Sim∗ # Ext∗)∗ # (Del ∪Ori) # (Col # Ded∗)∗)∗

sd Shos1 := (test(Sim | Ext) ; Sim ! ; Ext !)! ;
try( Del | Ori ) ;
(test(Col | Ded) ; try(Col) ; Ded !)! .

sd Shos := matchrew S:State by
S:State using Shos1 ;

(match S:State orelse Shos) .

• Downey-Sethi-Tarjan algorithm [13]:

DST = ((Col # (Ded ∪ {ε}))∗ # (Sim∗ # (Del ∪Ori))∗)∗

sd start := (Ext ; Sim !)! ; Ori ! .

sd DST1 := (test(Col | Ded) ; try(Col) ; try(Ded))! ;
( Sim ! ; (Del | Ori))! .

sd DST = matchrew S:State by
S:State using DST1 ;

(match S:State orelse DST) .
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We can now, for example, solve a congruence closure problem in Maude using
the abstract congruence closure rules as controlled by the DST strategy:
Maude> srew < 0, ’a.S = ’b.S

’f[’f[’a.S]] = ’f[’b.S], mtRlS >
using start ; DST .

result State :
< 5, mtEqS, ’a.S -> c(0)

’b.S -> c(1)
c(0) -> c(1)
c(2) -> c(4)
c(3) -> c(4)
’f[c(1)] -> c(3)
’f[c(4)] -> c(4) >

5 Implementation

The first proposal of the language was implemented as a prototype by using the
Maude metalevel features (Section 5.1). This prototype has been relatively easy
to develop and very useful for experimental purposes to reach a definitive strategy
language design. Currently, the enhanced strategy language is being implemented in
C++, so that it can be integrated with the rest of the Maude system (Section 5.2).

5.1 Reflective prototype implementation

Using the Maude metalevel, we implemented a prototype of the strategy language
as an extension of Full Maude [7, Part II]. It consists of several functions that work
with a labelled version of the conceptual computation tree produced when applying
a strategy E to a given state term T. Nodes in this tree are tuples formed by a term,
a strategy, and possibly other information (used to know which is the next child to
be explored; the specific information saved depends on the top constructor in the
strategy expression). The root is < T, E >, and the children of a node < T’, E’ >
are the terms obtained from T’ by rewriting as described by E’, paired with the
corresponding remainder of E’. In a successful path, the strategy at the leaf node
is empty, meaning that nothing is left to do, which corresponds to a complete
successful application of the strategy E.

The two main functions are first and next. The combination of these two
functions serves to find all the solutions for the application of a strategy to a given
state term. They are implemented in a mutually recursive way, distinguishing cases
on the strategy expression in the last node of the given path, and with the help of the
metalevel descent functions metaApply, metaXapply, metaMatch, and metaXmatch
[7, Section 10.4].

The metalanguage features of Maude allow completing the prototype with a user
interface where strategy modules can be loaded, and commands to rewrite a term
using a strategy can be executed. These commands allow a step-by-step generation
of all the possible results of rewriting a term using a strategy.
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5.2 Maude system implementation

The implementation of the Maude strategy language is challenging: We need to
perform a search taking steps in the rewrite graph that correspond to labels allowed
by the strategy language, and there may be various interactions between the two
due to substitutions, pattern matching, subexpressions, and substrategies for condi-
tions. Without rewrite conditions, the finitary nature of matching in the supported
theories ensures that the rewrite graph is finitely branching though it may have
infinite depth (non-terminating sequences of rewrites); with rewrite conditions we
do not even have the finite branching property.

The strategy language may be considered to have finite branching but most
useful strategy expressions will describe rewriting sequences of unbounded depth.

We thus have a situation where our search tree is in general both infinitely
branching and infinitely deep.

The best we can do under such circumstances is to support fairness, that is, if
t can rewrite to t′ using strategy s, then solution t′ will be found in a finite (but
potentially impractical in terms of both time and space) computation.

5.2.1 Processes
In attempting to achieve fairness we view the growing search tree as a pool of
processes, each with a subject term to rewrite and a stack of strategy expressions
to use. The stack of strategy expressions essentially corresponds to a concatenation
of strategies and arises naturally, both from the possibility of recursively defined
strategies and the accumulation of “pending” strategies during the decomposition
of more complex strategy expressions.

The processes exist on a circular double linked list. Processes can pop out of
existence at any time and new processes can be created, just ahead of the currently
running process. This location is effectively the back of the queue with respect to the
running process and ensures that unbounded expansion of the process queue cannot
cause starvation. Each process, when it runs, does a small amount of computation
to advance its piece of the search.

The two most important kinds of processes in the Maude implementation are
decomposition processes and application processes. The goal of a decomposition
process is to decompose the strategy expression on the top of its stack into more
decomposition processes in the case of a strategy operator, or into an application
process in the case of a rule label. The goal of an application process is to search for
one step rewrites from the subject term t, to a new term t′, that are consistent with
a given label. For each such t′, an application process forks off a new decomposition
process to rewrite t′ using the remaining strategy expression stack. At each step, a
decomposition process pops a strategy expression s from its stack and takes some
action, based on the top operator of s. Some sample actions are shown in Table 1.
A decomposition process succeeds when its stack becomes empty.

5.2.2 Tasks
It turns out that round-robin driven processes are not sufficient. Sometimes we want
to treat a chunk of the search tree as an entity in its own right—as a subsearch. One
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Popped strategy expression Action

idle Running process yields.

fail Running process terminates.

l (label)
Create application process for label l, with
same term and strategy stack as running pro-
cess. Running process terminates.

s1 ; s2
Push s2, followed by s1 on the stack of the
running process.

s1 | s2
Clone running process; push s1 on the clone’s
stack and s2 on the original process stack.

s *
Clone running process, push s * followed by s
on the stack of the running process.

s +
Push s * followed by s on the stack of the run-
ning process.

d (defined strategy)
Push e on the stack of the running process,
where e is the strategy expression defining d.

Table 1
Sample decomposition actions

case where this occurs is the s1 ? s2 : s3 operator. Here we are interested to know
when all attempts to rewrite with s1 on a given term t fail, so we can run s3 on t.
Another situation where it is advantageous to have subsearches is the not(s) and
test(s) operators. Once we have a single success for rewriting with s on a given
term t, we can kill the entire subsearch as an efficiency measure. The management
of subsearches is done by tasks, which are an event driven fan-in counterpart to the
round-robin driven fan-out processes. An srew command generates the root task.

Each process and each task (except the root task) will belong to some task and
will live on a double linked list belonging to that task. When a process p creates
a new process or task, that process or task belongs to p’s owner. When a task t

creates a new process or task, t gets to choose whether the new entity belongs to t
or to t’s owner.

When a process or task succeeds, it unlinks itself from its owners list and informs
the owning task of the success. When a process or task terminates it likewise unlinks
itself from its owners list. In both cases, it checks if it was the last process or task
belonging to its owner. In that case it informs its owner that subsearch is exhausted.

After root tasks, the most important kind of task in the Maude implementation
is the branch task. Like a process, a branch task has a term t to rewrite and a
stack st of strategy expressions for continuation. A branch task also has an initial
strategy s and possibly other information depending on what options are used. A
branch task forks off a decomposition process to handle rewriting t with s and
waits for successes, or for the subsearch to end in failure. Possible actions in the
failure case are termination, and creating a new decomposition process using t and
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st, after optionally pushing a new strategy expression s2 on st. For each success
t′ there is also the possibilities of creating a new decomposition process using t′

and st, after optionally pushing a new strategy expression s1 on st, and creating
a new branch task to repeat the original search with s on t′. Thus branch tasks
generalize a number of strategy language operators including s1 ? s2 : s3, s !, not(s)
and test(s).

5.2.3 Efficiency considerations
Stacks of strategy expressions play a key rôle in both processes and tasks. To avoid
repeated copying of these structures we can use a persistent stack with new entries
being created via hash consing to avoid duplication and to give us a fast check for
equality between two stacks.

When we create a decomposition process for some task, we can check via a hash
table in that task whether we have already created a decomposition process for that
task with the same subject term and strategy expression stack. If so, creating the
new decomposition process would be redundant.

6 Conclusions

In this paper we have put forward three key ideas:

(i) Rewriting logic is a logical framework to represent logics and inference systems.

(ii) Automated deduction methods should be specified by:
• inference systems, and
• different strategies to apply inference rules.

(iii) Automated deduction systems can be prototyped/implemented at a very high
level in a rewriting logic language having a strategy language.

We have also presented a specific strategy language for Maude, illustrating its use
in automated deduction. We have tried to achieve a relatively simple, yet expressive,
strategy language design and have validated experimentally our design using various
automated deduction and programming language semantics applications. However,
the particular strategy language design of choice is not essential: our general points
apply as well to other rewriting languages. Therefore, the essential point is that the
vision put forward in points (i)–(iii) above can be effectively carried out not just in
Maude, but in any rewriting language with adequate support for strategies.

An interesting future research direction is investigating distributed specifications
and implementations of a strategy language, since this offers the promise of more
efficient and scalable executions, also in automated deduction.
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